Definicje 1. Definicje kształtują język poznawczy, wprowadzając nowe lub uściślając dawne wyraŝenia. 2. Konstruują one takŝe przedmioty juŝ wprowadzon

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Definicje 1. Definicje kształtują język poznawczy, wprowadzając nowe lub uściślając dawne wyraŝenia. 2. Konstruują one takŝe przedmioty juŝ wprowadzon"

Transkrypt

1 Definicje Definiowanie dotyczy w równym stopniu zarówno nauk ścisłych jak i humanistycznych, dlatego waŝne jest poznanie funkcji definicji, uniwersalnych zasad ich konstruowania oraz przykładowych zastosowań. W rozumieniu statycznym definiujemy, aby uporządkować nasze myślenie i komunikowanie. Rola definicji w procesach poznawczych jest dwojaka.

2 Definicje 1. Definicje kształtują język poznawczy, wprowadzając nowe lub uściślając dawne wyraŝenia. 2. Konstruują one takŝe przedmioty juŝ wprowadzone do nauki, a przez to wytyczają kierunki jej rozwoju i pogłębiają wiedzę o badanej dziedzinie. Definicje, wprowadzając porządek w wyraŝaniu myśli, pozwalają na uniknięcie wieloznaczności pojęć. Definiowanie jest zatem metodą porządkowania i kształtowania języka.

3 Rodzaje definicji Definicja realna jest to zdanie podające taką charakterystykę pewnego przedmiotu czy teŝ przedmiotów jakiegoś rodzaju, którą tym i tylko tym przedmiotom moŝna przypisać. Np.: zegar to urządzenie słuŝące do mierzenia czasu. W ten sposób charakteryzujemy przedmiot, a nie znaczenie wyrazu. Definicja realna jest sformułowana w języku I stopnia.

4 Rodzaje definicji Definicja nominalna jest to wyraŝenie w ten czy inny sposób, podające informacje o znaczeniu jakiegoś słowa czy słów. Definicja nominalna podaje informacje o znaczeniu definiowanego słowa, jest więc wypowiedzią w języku II stopnia. Definicja nominalna bezpośrednio określa, jak w danym języku równoznacznie zastępować pewien wyraz czy wyrazy znanymi juŝ osobie, na uŝytek której podajemy tę definicję.

5 Rodzaje definicji Np. ktoś nie wie, co znaczy po polsku słowo deltoid. Podajemy mu więc definicję: wyraz deltoid oznacza czworokąt o dwóch parach przyległych boków równych. Na podstawie tej definicji moŝna by w kaŝdym zdaniu, w którym spotykamy słowo deltoid przekreślić je i wpisać na to miejsce wyraŝenie czworokąt o dwóch parach przyległych boków równych.

6 Rodzaje definicji Inny podział definicji dokonywany jest ze względu na zadania stawiane definicjom, genezę znaczenia definiowanego pojęcia lub sposób uzasadnienia definicji. Względem tych trzech kryteriów rozróŝniamy: definicje sprawozdawcze - takie, które wskazują, jakie znaczenie ma, czy teŝ miał kiedyś definiowany wyraz w określonym języku. Są one swego rodzaju sprawozdaniami oddającymi znaczenie danej nazwy.

7 Rodzaje definicji Jeśli nauczyciel w szkole przekazuje definicję pojęcia repatriacja, stwierdzając, Ŝe jest to powrót obywateli do kraju, do ojczyzny wówczas definicja ta jest sprawozdaniem nauczyciela, jak na gruncie języka polskiego rozumie się wyraz repatriacja. Innymi słowy jest to odtworzenie znaczenia tego wyrazu.

8 Rodzaje definicji definicje projektujące takie, które ustalają znaczenie jakiegoś słowa na przyszłość, w projektowanym sposobie mówienia. Mianowicie przez definicję projektującą ustanawia się regułę znaczeniową co do tego, jakie danemu słowu czy zespołowi słów ma być w przyszłości nadane znaczenie. Przykładami definicji projektujących są:

9 Rodzaje definicji 1. kierownika suwnicy elektrycznej nazywać się będzie w niniejszej ustawie suwnicowym ; 2. słowem płaszczynka oznaczać 2. słowem płaszczynka oznaczać będziemy płaskie butelki do atramentu do wiecznych piór, słuŝące zarazem jako kałamarz.

10 Rodzaje definicji Definicja projektująca moŝe być definicją konstrukcyjną albo regulującą. Definicja konstrukcyjna dotyczy nowych słów lub nowego znaczenia słów. Nie nawiązuje ona do dotychczasowego ich znaczenia. Definicja regulująca ustala wyraźne znaczenie danego wyrazu, np. hałas to dźwięk o częstotliwości od 16 Hz do Hz, młodociany to sprawca, który w chwili popełnienia czynu zabronionego nie ukończył 21 lat i w czasie orzekania w sądzie I instancji nie ukończył 24 lat.

11 Rodzaje definicji Ze względu na budowę definicje dzielimy na równościowe i nierównościowe. Definicja równościowa składa się z trzech części: definiendum, czyli części definicji zawierającej zwrot definiowany, zwrotu łączącego (łącznik), definiensa, a więc zwrotu definiującego.

12 Rodzaje definicji Przykłady: 1. śołnierz jest osobą pełniącą czynną słuŝbę wojskową. 2. Standard emisji to dopuszczalna wielkość emisji. Podane wyŝej przykłady definicji równościowych są tzw. definicjami wyraźnymi, czyli takimi, które w definiendum zawierają jedynie definiowany wyraz bądź wyraŝenie.

13 Rodzaje definicji W definicji równościowej definiendum moŝe jednak być skonstruowane w sposób rozbudowany, czyli moŝe obejmować poza wyraŝeniem definiowanym inne wyraŝenia. Np. wynajmującym rzecz R najemcy N jest taka osoba, która zobowiązuje się oddać temu najemcy daną rzecz do uŝywania na czas oznaczony lub nieoznaczony w zamian za otrzymywanie umówionego czynszu.

14 Rodzaje definicji PowyŜszą definicję nazywamy wówczas definicją kontekstową. Definicje równościowe mogą być tworzone na dwa sposoby: definicje klasyczne składają się z określenia rodzaju (genus) i róŝnicy gatunkowej (differentia specifica) w myśl zasady definitio fit per genus et differentia specificam, co znaczy: definiować naleŝy przez podanie rodzaju i róŝnicy gatunkowej.

15 Rodzaje definicji Tak więc np.: dom jest to budynek mieszkalny. Dom to budynek, lecz nie jakikolwiek budynek, ale tym róŝniący się od innych, Ŝe mieszkalny. To jest właśnie róŝnica gatunkowa wyróŝniająca gatunek dom od innych przedmiotów z rodzaju budynek. definicje nieklasyczne (zwane takŝe definicjami zakresowymi) to takie definicje, w których wskazujemy zakresy poszczególnych nazw, łącznie dające zakres nazwy definiowanej, np.:

16 Rodzaje definicji ZboŜem w rozumieniu niniejszego rozporządzenia jest pszenica, Ŝyto, jęczmień, owies, kukurydza, gryka i proso. Ten sposób konstruowania definicji wskazuje na zamienność nazwy definiowanej zboŝe z sumą zakresów wszystkich nazw wymienionych w definiensie. Ogólnym schematem definicji klasycznych jest formuła A jest to B mającą cechę C, zaś definicji nieklasycznych określenie A jest B lub C lub D lub.

17 Rodzaje definicji Definicje nierównościowe z uwagi na róŝnorodność ich poszczególnych rodzajów charakteryzowane są w sposób negatywny jako te, które nie mają budowy właściwej dla definicji równościowej, to znaczy w definicji nierównościowej nie ma łącznika.

18 Rodzaje definicji Jednym z rodzajów definicji nierównościowych jest definicja przez postulaty (aksjomatyczna). Jej istotą jest umieszczenie definiowanego wyrazu (wyraŝenia) w kilku wzorcowych zdaniach w sensie gramatycznym, na podstawie których moŝemy zrozumieć, jakie znaczenie mu się przypisuje.

19 Rodzaje definicji Przykładem definicji nierównościowej jest równieŝ definicja indukcyjna (rekurencyjna). W budowie tej definicji wyróŝnia się dwie wyraźnie wyodrębnione części: warunek wyjściowy i warunek indukcyjny. Warunek wyjściowy wymienia bezpośrednio niektóre elementy naleŝące do zbioru, który jest przez tę definicję określany, natomiast warunek indukcyjny wskazuje pośrednio pozostałe elementy tego zbioru poprzez podanie zaleŝności, w jakiej te elementy znajdują się w stosunku do elementów z warunku wyjściowego.

20 Rodzaje definicji Definicja Definicja równościowa Definicja nierównościowa Definicja klasyczna Definicja zakresowa Definicja przez postulaty Definicja indukcyjna

21 Błędy w definiowaniu Problematyka poprawnego budowania definicji była przedmiotem dociekań w staroŝytności. Definicje słuŝyły bowiem budowaniu argumentacji w sporach słownych. Problemy związane z występowaniem błędów w definicjach mają jednak charakter ponadczasowy. Błędy w definiowaniu moŝna pogrupować w następujące kategorie:

22 Błędy w definiowaniu Circulus in definiendo (błędne koło w definiowaniu). Błąd ten polega na określaniu definiowanego wyrazu poprzez odwołanie się do niego samego. Błędne koło w definiowaniu moŝe przyjąć dwie postacie: - błąd idem per idem (to samo przez to samo), np.: logika jest nauką o myśleniu zgodnym z prawidłami logiki. - błędne koło pośrednie powstaje wówczas, gdy jedno wyraŝenie definiujemy za pomocą innego wyraŝenia,

23 Błędy w definiowaniu które z kolei definiujemy za pomocą następnego wyraŝenia, na końcu zaś zwracamy się ku wyraŝeniu pierwotnemu, np.: logika to nauka o poprawnym myśleniu; myślenie poprawne, to myślenie logiczne, a znów myślenie logiczne to tyle, co myślenie zgodne z prawami formułowanymi przez logikę.

24 Błędy w definiowaniu Błąd ignotum per ignotum (nieznane przez nieznane) polega na zamieszczeniu w definiensie wyraŝenia, które podobnie jak definiendum, jest nieznane odbiorcy definicji. Nieadekwatność definicji. Zakres definiendum powinien być zamienny z zakresem definiensa. Wystąpienie innego stosunku zakresowego oznacza, Ŝe dana definicja jest obarczona błędem nieadekwatności, który moŝe przybierać następujące postacie:

25 Błędy w definiowaniu - zakres definiensa jest szerszy od zakresu definiendum (definicja za szeroka) np.: zabytek to rzecz zasługująca na trwałe zachowanie ze względu na posiadaną wartość artystyczną ; - zakres definiensa jest węŝszy od zakresu definiendum (definicja za wąska) np.: trójkąt to figura geometryczna o trzech równych bokach ;

26 Błędy w definiowaniu - zakresy definiendum i definiesa krzyŝują się, np.: prawnik to pracownik Ministerstwa Sprawiedliwości ; - zakresy definiendum i definiensa wykluczają się, np.: nietoperz jest to prowadzący nocny tryb Ŝycia ptak o bardzo dobrze rozwiniętym słuchu. Szczególnym przypadkiem wykluczania się zakresów jest błąd przesunięcia kategorialnego. Ma on miejsce,

27 Błędy w definiowaniu gdy w definiendum i definiensie występują wyraŝenia z róŝnych kategorii ontologicznych (kategorii bytów), czyli rzeczy, cechy, stany i stosunki, np.: czerń to tyle, co rzecz czarna. NaleŜy podkreślić, Ŝe błędy nieadekwatności odnoszą się jedynie do definicji sprawozdawczych, które mogą być prawdziwe albo fałszywe. Definicje projektujące, o których była mowa wcześniej, nie są ani prawdziwe ani fałszywe. Są to bowiem arbitralne stwierdzenia, iŝ pewnym wyrazom lub wyraŝeniom zostaje nadane określone znaczenie.

28 Podział logiczny Jak dobrze pokroić tort? kaŝdy dostaje swój własny kawałek, cały tort zostaje podzielony.

29 Podział logiczny I tak na przykład tort funktor moŝemy podzielić na trzy części: nazwotwórczy, zdaniotwórczy, funktorotwórczy.

30 Podział logiczny Podział logiczny zakresu nazwy A to zbiór zakresów nazw B 1, B 2,, B n podrzędnych względem zakresu nazwy A, parami rozłącznych i takich, Ŝe ich suma równa się zakresowi nazwy A. Definicja ta zawiera w sobie dwa warunki: warunek rozłączności ( parami rozłącznych ); warunek adekwatności, inaczej zupełności ( ich suma równa się zakresowi nazwy A).

31 Podział logiczny Zakres nazwy A to całość dzielona (totum divisionis). Zakresy nazw B 1, B 2,, B n to człony podziału (membra divisionis).

32 Podział logiczny Wśród funktorów wyróŝniamy: funktory nazwotwórcze, funktory zdaniotwórcze, funktory funktorotwórcze. całość dzielona człony podziału

33 Podział logiczny Zasada podziału to cecha, z uwagi której wyróŝniane są człony podziału. Wedle jakiej innej cechy moŝemy dokonać podziału nazwy funktor? Przykład: Zasadą podziału ludzi na kobiety i męŝczyzn jest płeć.

34 Podział logiczny ZauwaŜmy takŝe, Ŝe wyróŝnienie członów podziału ze względu na jednolitą zasadę podziału jest bardzo istotne z punktu widzenia poprawności podziału. Przykład: Podział Polaków na blondynów i rolników jest całkowicie wadliwy (nierozłączny i niezupełny!)

35 Podział logiczny Podział logiczny moŝe być sztuczny lub naturalny. Niełatwo ustalić, co się przez te dwa określenia rozumie, rozróŝnienie nie jest tu ostre, niemniej rozróŝnienie to jest potrzebne. Typowym podziałem naturalnym nazywamy taki podział, przy którym w kaŝdym członie podziału grupują się przedmioty pod wieloma waŝnymi dla nas względami podobne, a niepodobne na ogół do przedmiotów z innych członów podziału.

36 Podział logiczny Natomiast typowym podziałem sztucznym podziałem sztucznym jest taki, przy którym do jednego członu podziału trafiają przedmioty podobne pod jakimś jednym tylko względem, a pod wieloma innymi niepodobne do siebie. Przykład: Podział ludzi według pierwszej litery ich nazwiska jest podziałem sztucznym, natomiast ich podział ze względu na wiek, płeć czy wykonywany zawód jest podziałem naturalnym.

37 Podział logiczny

38 Podział logiczny Podział dychotomiczny według cech sprzecznych: to taki podział logiczny, w którym wyróŝnia się dwa człony tego podziału według następującej zasady: do jednego zalicza się wszystkie elementy całości dzielonej, które posiadają wskazaną cechę w zasadzie podziału, do drugiego zaś te które owej cechy nie posiadają.

39 Podział logiczny Przykłady: 1. podział liczb całkowitych na parzyste i nieparzyste; 2. podział kręgowców na ssaki i nie-ssaki; 3. podział ludzi na kobiety i na nie-kobiety. Czy podział ludzi na kobiety i męŝczyzn jest podziałem dychotomicznym według cech sprzecznych?

40 Podział logiczny Często jednak podział dychotomiczny według cech sprzecznych jest niewystarczający. RozróŜniamy więc inny rodzaj podziału tzw. podział według zasady specyfikacyjnej, czyli podział według róŝnych odmian określonej cechy. Cecha, według której dokonujemy podziału nazywamy determinandą, jej odmiany determinatami. Przykład: Buty moŝemy podzielić według determinandy rozmiar, a determinatami będą numery,10, 11,12,13,, 45,46,

41 Podział logiczny Klasyfikacja jest to wielostopniowy podział logiczny.

42 Podział logiczny Od podziału logicznego naleŝy odróŝniać wyróŝnianie typów przedmiotów. W tym drugim przypadku rozwaŝamy, w jakim stopniu przedmioty z pewnego zbioru mają cechy zbliŝone do przedmiotu o interesujących nas cechach. Przedmioty, które stosunkowo mało róŝnią się od przedmiotu wzorcowego, z którym je porównujemy, nazywamy przedmiotami typowymi.

43 Podział logiczny Pewne przedmioty mogą znajdować się na pograniczu dwóch zbliŝonych typów i moŝna by je zaliczać do obu tych typów. Dlatego przy wyróŝnianiu typów nie ma warunku rozłączności i adekwatności. Partycja jest to wyróŝnienie części składowych pewnego przedmiotu.

Wprowadzenie do logiki Podział logiczny

Wprowadzenie do logiki Podział logiczny Wprowadzenie do logiki Podział logiczny Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Jak dobrze pokroić tort? Dwie proste zasady ku pożytkowi ogólnemu i szczęśliwości: każdy dostaje

Bardziej szczegółowo

Wprowadzenie do logiki Podział logiczny. Definicje

Wprowadzenie do logiki Podział logiczny. Definicje Wprowadzenie do logiki Podział logiczny. Definicje Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Jak dobrze pokroić tort? Dwie proste zasady ku pożytkowi ogólnemu i szczęśliwości:

Bardziej szczegółowo

Wstęp do logiki. O definiowaniu

Wstęp do logiki. O definiowaniu Wstęp do logiki O definiowaniu Cele definiowania Generalnie, definiowanie to operacja językowa prowadząca do ustalania znaczeń wyrażeń z wykorzystaniem wyrażeń już w języku występujących. Celem definiowania

Bardziej szczegółowo

Wykład 4 Logika dla prawników. Nazwy, Relacje między zakresami nazw, Podział logiczny, Definicje

Wykład 4 Logika dla prawników. Nazwy, Relacje między zakresami nazw, Podział logiczny, Definicje Wykład 4 Logika dla prawników Nazwy, Relacje między zakresami nazw, Podział logiczny, Definicje Nazwy Nazwą jest taka częśd zdania, która w zdaniu może pełnid funkcję podmiotu lub orzecznika. Nazwami mogą

Bardziej szczegółowo

Wprowadzenie do logiki Definicje część 1

Wprowadzenie do logiki Definicje część 1 Wprowadzenie do logiki Definicje część 1 Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Rozkład jazdy Poszukamy odpowiedzi na pytania następujące: 1 Co definicje definiują? 2 Jak

Bardziej szczegółowo

Wykład 8. Definicje. 1. Definicje normalne/równościowe i nierównościowe. Np.: Studentem jest człowiek posiadający ważny indeks wyższej uczelni

Wykład 8. Definicje. 1. Definicje normalne/równościowe i nierównościowe. Np.: Studentem jest człowiek posiadający ważny indeks wyższej uczelni Wykład 8. Definicje I. Podział definicji 1. Definicje normalne/równościowe i nierównościowe. Np.: Studentem jest człowiek posiadający ważny indeks wyższej uczelni Składa się z trzech członów Definiendum

Bardziej szczegółowo

Wprowadzenie do logiki Definicje część 3

Wprowadzenie do logiki Definicje część 3 Wprowadzenie do logiki Definicje część 3 Mariusz Urbański Instytut Psychologii UAM Mariusz.Urbanski@amu.edu.pl Rozkład jazdy 1 Co definicje definiują? 2 Jak budujemy definicje? 3 Do czego używamy definicji?

Bardziej szczegółowo

DEFINICJE. Definicja krótkie określenie czegoś (można określać przedmiot lub wyraz lub wyrażenie).

DEFINICJE. Definicja krótkie określenie czegoś (można określać przedmiot lub wyraz lub wyrażenie). DEFINICJE Definicja krótkie określenie czegoś (można określać przedmiot lub wyraz lub wyrażenie). Czyli: definicja to określenie zmierzające do jednoznacznej charakterystyki jakiegoś przedmiotu (rzeczy)

Bardziej szczegółowo

LOGIKA Definicje. Robert Trypuz. 22 października 2013. Katedra Logiki KUL. Robert Trypuz (Katedra Logiki) Definicje 22 października 2013 1 / 39

LOGIKA Definicje. Robert Trypuz. 22 października 2013. Katedra Logiki KUL. Robert Trypuz (Katedra Logiki) Definicje 22 października 2013 1 / 39 LOGIKA Definicje Robert Trypuz Katedra Logiki KUL 22 października 2013 Robert Trypuz (Katedra Logiki) Definicje 22 października 2013 1 / 39 Plan wykładu 1 Wprowadzenie 2 Definicja realna 3 Definicja nominalna

Bardziej szczegółowo

Aktualizacja materiałów z logiki dla doktorantów PW

Aktualizacja materiałów z logiki dla doktorantów PW Aktualizacja materiałów z logiki dla doktorantów PW Rodzaje definicji Definicja sprawozdawcza, inaczej analityczna, wskazuje, jakie znaczenie miał dotychczas wyraz definiowany w pewnym języku. Definicja

Bardziej szczegółowo

Piotr Łukowski, Wykład dla studentów prawa WYKŁAD 10. definicje pytania

Piotr Łukowski, Wykład dla studentów prawa WYKŁAD 10. definicje pytania WYKŁAD 10 definicje pytania 1 lukowski@filozof.uni.lodz.pl Katedra Logiki i Metodologii Nauk Instytut Filozofii Uniwersytet Łódzki ul. Kopcińskiego 16/18, I piętro, pok.13 tel. 635-61-34 dyŝur: poniedziałki,

Bardziej szczegółowo

PODZIAŁ LOGICZNY. Zbiór Z. Zbiór A. Zbiór B

PODZIAŁ LOGICZNY. Zbiór Z. Zbiór A. Zbiór B Fragment książki Jarosława Strzeleckiego Logika z wyobraźnią. Wszelki uwagi merytoryczne i stylistyczne proszę kierować pod adres jstrzelecki@uwm.edu.pl PODZIAŁ LOGICZNY I. DEFINICJA: Podziałem logicznym

Bardziej szczegółowo

Notatki z zajęd: od 1 do 4

Notatki z zajęd: od 1 do 4 Notatki z zajęd: od 1 do 4 Niniejsze notatki obejmują pojęcia omówione/przedstawione na slajdach. Zalecam, mimo to, przeczytanie podręcznika Z. Ziembioskiego rozdziały od 1 do 4. Zajęcia nr 1 1. Znakiem

Bardziej szczegółowo

Etyka i filozofia współczesna wykład 11. Logiczna kultura argumentacji:

Etyka i filozofia współczesna wykład 11. Logiczna kultura argumentacji: Logiczna kultura argumentacji: Logiczna kultura argumentacji: wypowiedź argumentacyjna a wnioskowanie, przyczyny nieporozumień, definiowanie i błędy w definiowaniu. Wnioskowanie: proces poznawczy, który

Bardziej szczegółowo

Rozdział VII. Znaczenie logiki dla prawa i pracy prawnika Zadania i odpowiedzi 20

Rozdział VII. Znaczenie logiki dla prawa i pracy prawnika Zadania i odpowiedzi 20 Przedmowa Wykaz skrótów XIII XV Część A. Wprowadzenie Rozdział I. Rys historyczny 1 1. Początki logiki jako nauki 1 2. Średniowiecze 2 3. Czasy nowożytne i współczesne 4 Rozdział II. Podstawowe prawa myślenia

Bardziej szczegółowo

Laboratorium nr 5. Temat: Funkcje agregujące, klauzule GROUP BY, HAVING

Laboratorium nr 5. Temat: Funkcje agregujące, klauzule GROUP BY, HAVING Laboratorium nr 5 Temat: Funkcje agregujące, klauzule GROUP BY, HAVING Celem ćwiczenia jest zaprezentowanie zagadnień dotyczących stosowania w zapytaniach języka SQL predefiniowanych funkcji agregujących.

Bardziej szczegółowo

Podstawy logiki pojęć 1

Podstawy logiki pojęć 1 Podstawy logiki pojęć 1 O słownym formułowaniu myśli. (semantyka) Sposób rozumienia przyporządkowany w danym języku jakiemuś wyrażeniu nazywa się znaczeniem, jakie temu wyrażeniu przysługuje w owym języku.

Bardziej szczegółowo

Rachunek zdań. Zdanie w sensie logicznym jest to wyraŝenie jednoznacznie stwierdzające, na gruncie reguł danego języka, iŝ tak a

Rachunek zdań. Zdanie w sensie logicznym jest to wyraŝenie jednoznacznie stwierdzające, na gruncie reguł danego języka, iŝ tak a Zdanie w sensie logicznym jest to wyraŝenie jednoznacznie stwierdzające, na gruncie reguł danego języka, iŝ tak a tak jest alboŝe tak a tak nie jest. Wartość logiczna zdania jest czymś obiektywnym, to

Bardziej szczegółowo

Naukoznawstwo. Michał Lipnicki. 10 grudnia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Naukoznawstwo 10 grudnia / 54

Naukoznawstwo. Michał Lipnicki. 10 grudnia Zakład Logiki Stosowanej UAM. Michał Lipnicki () Naukoznawstwo 10 grudnia / 54 Naukoznawstwo Michał Lipnicki Zakład Logiki Stosowanej UAM 10 grudnia 2009 Michał Lipnicki () Naukoznawstwo 10 grudnia 2009 1 / 54 Pojęcie definicji Definicje Pamiętamy, że kontrola zdań proponowanych

Bardziej szczegółowo

Wybrane informacyjne problemy definiowania zrównoważonego i trwałego rozwoju ujęcie teoretyczne

Wybrane informacyjne problemy definiowania zrównoważonego i trwałego rozwoju ujęcie teoretyczne Prof. dr hab. Stanisław Czaja Dr inż. Agnieszka Becla Uniwersytet Ekonomiczny we Wrocławiu Wybrane informacyjne problemy definiowania zrównoważonego i trwałego rozwoju ujęcie teoretyczne Różnorodność pojęć

Bardziej szczegółowo

Znak, język, kategorie syntaktyczne

Znak, język, kategorie syntaktyczne Składnia ustalone reguły jakiegoś języka dotyczące sposobu wiązania wyrazów w wyrażenia złożone. Językoznawstwo zajmuje się m.in. opisem składni poszczególnych języków, natomiast przedmiotem syntaktyki

Bardziej szczegółowo

Nazwy. Jak widać, nazwa to nie to samo co rzeczownik. W podanych przykładach na nazwę złoŝoną składa się cały zespół

Nazwy. Jak widać, nazwa to nie to samo co rzeczownik. W podanych przykładach na nazwę złoŝoną składa się cały zespół Nazwa spełnia istotną rolę w języku, gdyŝ umoŝliwia proces identyfikowania róŝnych obiektów i z tego powodu nazwa jest podstawowym składnikiem wypowiedzi. Nazwa jest to wyraz albo wyraŝenie rozumiane jednoznacznie,

Bardziej szczegółowo

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI

MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI MATEMATYKA DYSKRETNA, PODSTAWY LOGIKI I TEORII MNOGOŚCI Program wykładów: dr inż. Barbara GŁUT Wstęp do logiki klasycznej: rachunek zdań, rachunek predykatów. Elementy semantyki. Podstawy teorii mnogości

Bardziej szczegółowo

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 15 zaliczenie z oceną

Liczba godzin Punkty ECTS Sposób zaliczenia. ćwiczenia 15 zaliczenie z oceną Wydział: Prawo i Administracja Nazwa kierunku kształcenia: Prawo Rodzaj przedmiotu: podstawowy Opiekun: prof. dr hab. Kazimierz Pawłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb

Bardziej szczegółowo

Podział logiczny Definicje

Podział logiczny Definicje Podział logiczny Definicje Elementy logiki i metodologii nauk spotkanie IV Bartosz Gostkowski Poznań, 10 XI 09 Plan wykładu: Podział logiczny Definicje realne vs nominalne równościowe vs nierównościowe

Bardziej szczegółowo

KaŜdemu atrybutowi A przyporządkowana jest dziedzina Dom(A), czyli zbiór dopuszczalnych wartości.

KaŜdemu atrybutowi A przyporządkowana jest dziedzina Dom(A), czyli zbiór dopuszczalnych wartości. elacja chemat relacji chemat relacji jest to zbiór = {A 1,..., A n }, gdzie A 1,..., A n są artybutami (nazwami kolumn) np. Loty = {Numer, kąd, Dokąd, Odlot, Przylot} KaŜdemu atrybutowi A przyporządkowana

Bardziej szczegółowo

LOGIKA I TEORIA ZBIORÓW

LOGIKA I TEORIA ZBIORÓW LOGIKA I TEORIA ZBIORÓW Logika Logika jest nauką zajmującą się zdaniami Z punktu widzenia logiki istotne jest, czy dane zdanie jest prawdziwe, czy nie Nie jest natomiast istotne o czym to zdanie mówi Definicja

Bardziej szczegółowo

Programowanie deklaratywne

Programowanie deklaratywne Programowanie deklaratywne Artur Michalski Informatyka II rok Plan wykładu Wprowadzenie do języka Prolog Budowa składniowa i interpretacja programów prologowych Listy, operatory i operacje arytmetyczne

Bardziej szczegółowo

Logika dla socjologów Część 4: Elementy semiotyki O pojęciach, nazwach i znakach

Logika dla socjologów Część 4: Elementy semiotyki O pojęciach, nazwach i znakach Logika dla socjologów Część 4: Elementy semiotyki O pojęciach, nazwach i znakach Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Krótkie wprowadzenie, czyli co

Bardziej szczegółowo

Ćwiczenie 3 funkcje agregujące

Ćwiczenie 3 funkcje agregujące Ćwiczenie 3 funkcje agregujące Funkcje agregujące, klauzule GROUP BY, HAVING Ćwiczenie 3 funkcje agregujące Celem ćwiczenia jest zaprezentowanie zagadnień dotyczących stosowania w zapytaniach języka SQL

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie naleŝy powielać ani udostępniać w Ŝadnej formie

Bardziej szczegółowo

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi.

Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Logika Jest to zasadniczo powtórka ze szkoły średniej, być może z niektórymi rzeczami nowymi. Często słowu "logika" nadaje się szersze znaczenie niż temu o czym będzie poniżej: np. mówi się "logiczne myślenie"

Bardziej szczegółowo

PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 JĘZYK POLSKI

PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 JĘZYK POLSKI PRÓBNY EGZAMIN GIMNAZJALNY Z NOWĄ ERĄ 2015/2016 JĘZYK POLSKI ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ Copyright by Nowa Era Sp. z o.o. Zadanie 1. (0 1) Wymagania szczegółowe 2) wyszukuje w wypowiedzi potrzebne

Bardziej szczegółowo

Potencjał społeczności lokalnej-podstawowe informacje

Potencjał społeczności lokalnej-podstawowe informacje Projekt Podlaska Sieć Partnerstw na rzecz Ekonomii Społecznej nr POKL.07.02.02-20-016/09 Potencjał społeczności lokalnej-podstawowe informacje Praca powstała na bazie informacji pochodzących z publikacji

Bardziej szczegółowo

Rachunek logiczny. 1. Język rachunku logicznego.

Rachunek logiczny. 1. Język rachunku logicznego. Rachunek logiczny. Podstawową własnością rozumowania poprawnego jest zachowanie prawdy: rozumowanie poprawne musi się kończyć prawdziwą konkluzją, o ile wszystkie przesłanki leżące u jego podstaw były

Bardziej szczegółowo

Katedra Teorii i Filozofii Prawa Poznań, dnia 12 lutego 2013 r. OPISU MODUŁU KSZTAŁCENIA (SYLABUS)

Katedra Teorii i Filozofii Prawa Poznań, dnia 12 lutego 2013 r. OPISU MODUŁU KSZTAŁCENIA (SYLABUS) Katedra Teorii i Filozofii Prawa Poznań, dnia 12 lutego 2013 r. Zespół wykładowców: prof. UAM dr hab. Jarosław Mikołajewicz dr Marzena Kordela Zespół prowadzących ćwiczenia: prof. UAM dr hab. Jarosław

Bardziej szczegółowo

PODSTAWY SZTUCZNEJ INTELIGENCJI

PODSTAWY SZTUCZNEJ INTELIGENCJI Katedra Informatyki Stosowanej Politechnika Łódzka PODSTAWY SZTUCZNEJ INTELIGENCJI Laboratorium PROGRAMOWANIE SYSTEMÓW EKSPERTOWYCH Opracowanie: Dr hab. inŝ. Jacek Kucharski Dr inŝ. Piotr Urbanek Cel ćwiczenia

Bardziej szczegółowo

Filozofia, ISE, Wykład III - Klasyfikacja dyscyplin filozoficznych

Filozofia, ISE, Wykład III - Klasyfikacja dyscyplin filozoficznych Filozofia, ISE, Wykład III - Klasyfikacja dyscyplin filozoficznych 2011-10-01 Plan wykładu 1 Klasyczny podział dyscyplin filozoficznych 2 Podział dyscyplin filozoficznych Klasyczny podział dyscyplin filozoficznych:

Bardziej szczegółowo

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi:

Ziemia obraca się wokół Księżyca, bo posiadając odpowiednią wiedzę można stwierdzić, czy są prawdziwe, czy fałszywe. Zdaniami nie są wypowiedzi: 1 Elementy logiki W logice zdaniem nazywamy wypowiedź oznajmującą, która (w ramach danej nauki) jest albo prawdziwa, albo fałszywa. Tak więc zdanie może mieć jedną z dwóch wartości logicznych. Prawdziwość

Bardziej szczegółowo

Warszawa, 25 lipca 2001 r.

Warszawa, 25 lipca 2001 r. Warszawa, 25 lipca 2001 r. Opinia na temat wniosku Stowarzyszenia Związek Polskich Artystów Plastyków do Trybunału Konstytucyjnego o stwierdzenie niezgodności art. 34 ust. 1 pkt 3 ustawy o gospodarce nieruchomościami

Bardziej szczegółowo

Przewodnik do ćwiczeń z logiki dla prawników

Przewodnik do ćwiczeń z logiki dla prawników Przewodnik do ćwiczeń z logiki dla prawników redakcja naukowa Andrzej Malinowski Andrzej Malinowski, Michał Pełka, Radosław Brzeski Zamów książkę w księgarni internetowej SERIA AKADEMICKA 6. WYDANIE WARSZAWA

Bardziej szczegółowo

Kultura logiczna Definicje i podział logiczny

Kultura logiczna Definicje i podział logiczny Kultura logiczna Definicje i podział logiczny Bartosz Gostkowski bgostkowski@gmail.com Kraków 19 IV 2010 Plan wykładu: Podział logiczny Definicje realne vs nominalne równościowe vs nierównościowe sprawozdawcze

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje ułamki dziesiętne zna kolejność

Bardziej szczegółowo

STATYSTYKA. dr Agnieszka Figaj

STATYSTYKA. dr Agnieszka Figaj STATYSTYKA OPISOWA dr Agnieszka Figaj Literatura B. Pułaska Turyna: Statystyka dla ekonomistów. Difin, Warszawa 2011 M. Sobczyk: Statystyka aspekty praktyczne i teoretyczne, Wyd. UMCS, Lublin 2006 J. Jóźwiak,

Bardziej szczegółowo

Laboratorium nr 8. Temat: Podstawy języka zapytań SQL (część 2)

Laboratorium nr 8. Temat: Podstawy języka zapytań SQL (część 2) Laboratorium nr 8 Temat: Podstawy języka zapytań SQL (część 2) PLAN LABORATORIUM: 1. Sortowanie. 2. Warunek WHERE 3. Eliminacja powtórzeń - DISTINCT. 4. WyraŜenia: BETWEEN...AND, IN, LIKE, IS NULL. 5.

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ

LUBELSKA PRÓBA PRZED MATURĄ POZIOM PODSTAWOWY Czas pracy 170 minut Klasa 3 Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym. 3. W zadaniach od

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony

Próbny egzamin maturalny z matematyki Poziom rozszerzony Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Zadanie 1 (4 pkt) Rozwiąż równanie: w przedziale 1 pkt Przekształcenie równania do postaci: 2 pkt Przekształcenie równania

Bardziej szczegółowo

LOGIKA: WIELKA KSIĘGA PYTAŃ I ODPOWIEDZI EDYCJA I: ROK 2009

LOGIKA: WIELKA KSIĘGA PYTAŃ I ODPOWIEDZI EDYCJA I: ROK 2009 LOGIKA: WIELKA KSIĘGA PYTAŃ I ODPOWIEDZI EDYCJA I: ROK 2009 SPIS TREŚCI: TEORIA NAZW [2] / TEORIA DEFINICJI [12] / TEORIA PYTAŃ [19] / TEORIA WNIOSKOWAŃ [23] / KATEGORIE SYNTAKTYCZNE [27] / INNE [29].

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ

LUBELSKA PRÓBA PRZED MATURĄ Klasa POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 18 stron.. W zadaniach od 1. do 0. są podane 4 odpowiedzi: A, B, C, D, z których tylko jedna jest prawdziwa.

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

* Załączniki do PRZEDMIOTOWEGO SYSTEMU OCENIANIA Z JĘZYKA POLSKIEGO w Szkole Podstawowej nr 1 im. Henryka Sienkiewicza w Zielonej Górze

* Załączniki do PRZEDMIOTOWEGO SYSTEMU OCENIANIA Z JĘZYKA POLSKIEGO w Szkole Podstawowej nr 1 im. Henryka Sienkiewicza w Zielonej Górze * Załączniki do PRZEDMIOTOWEGO SYSTEMU OCENIANIA Z JĘZYKA POLSKIEGO w Szkole Podstawowej nr 1 im. Henryka Sienkiewicza w Zielonej Górze KRYTERIA OCENY OPOWIADANIA Realizacja tematu (0-7 p.) 1. Zgodność

Bardziej szczegółowo

Wynalazczość w uczelni technicznej pułapki i zagrożenia

Wynalazczość w uczelni technicznej pułapki i zagrożenia VIII Spotkanie Zawodowe 2013-06-06 WEiTI PW R.ZAŁ. 1951 Wynalazczość w uczelni technicznej pułapki i zagrożenia dr inż. Ireneusz Słomka UPRP Wszelkie prawa zastrzeżone 1 1.Co jest, a co nie jest wynalazkiem

Bardziej szczegółowo

Runda 5: zmiana planszy: < < i 6 rzutów.

Runda 5: zmiana planszy: < < i 6 rzutów. 1. Gry dotyczące systemu dziesiętnego Pomoce: kostka dziesięciościenna i/albo karty z cyframi. KaŜdy rywalizuje z kaŝdym. KaŜdy gracz rysuje planszę: Prowadzący rzuca dziesięciościenną kostką albo losuje

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

KRYTERIA OCENIANIA- język angielski Kl. I mgr Beata Swoboda

KRYTERIA OCENIANIA- język angielski Kl. I mgr Beata Swoboda KRYTERIA OCENIANIA- język angielski Kl. I mgr Beata Swoboda OCENA celujący bardzo dobry dobry KRYTERIA OCENY Uczeń wykazuje ogólną wiedzę przekraczającą wymagania oceny bardzo dobrej, wykonuje nieobowiązkowe

Bardziej szczegółowo

Edukacja matematyczna. Edukacja przyrodnicza. Pożądane umiejętności ucznia po klasie I

Edukacja matematyczna. Edukacja przyrodnicza. Pożądane umiejętności ucznia po klasie I Pożądane umiejętności ucznia po klasie I grupie. Dba o zdrowie i bezpieczeństwo własne i innych. Szanuje własność osobistą i społeczną, dba o porządek. Potrafi dobrze zaplanować czas pracy i zabawy. Edukacja

Bardziej szczegółowo

Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu,

Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, wprowadzenie Co to jest algorytm? przepis prowadzący do rozwiązania zadania, problemu, w przepisie tym podaje się opis czynności, które trzeba wykonać, oraz dane, dla których algorytm będzie określony.

Bardziej szczegółowo

Komunikaty statystyczne medyczne

Komunikaty statystyczne medyczne Komunikaty statystyczne-medyczne (raporty statystyczne SWX) zawierają informację o usługach medycznych wykonanych przez świadczeniodawcę. Przekazany przez świadczeniodawcę komunikat podlega sprawdzeniu

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA NIEMIECKIEGO dla klas 1-3 Gimnazjum

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA NIEMIECKIEGO dla klas 1-3 Gimnazjum PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA NIEMIECKIEGO dla klas 1-3 Gimnazjum Obszary aktywności podlegające ocenianiu 1. WYPOWIEDZI USTNE (przynajmniej 1 ocena w semestrze) - dialogi lub monologi na dany

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2015/2016 CZĘŚĆ 1. JĘZYK POLSKI ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZ GH-P8 KWIECIEŃ 2016 Zadanie 1. (0 1) 2) wyszukuje w wypowiedzi potrzebne informacje

Bardziej szczegółowo

Metodologia badań psychologicznych

Metodologia badań psychologicznych Metodologia badań psychologicznych Lucyna Golińska SPOŁECZNA AKADEMIA NAUK Psychologia jako nauka empiryczna Wprowadzenie pojęć Wykład 5 Cele badań naukowych 1. Opis- (funkcja deskryptywna) procedura definiowania

Bardziej szczegółowo

KRYTERIA OCENIANIA DŁUŻSZYCH FORM WYPOWIEDZI PISEMNYCH NOTATKA. L.p. Kryteria oceny Punktacja

KRYTERIA OCENIANIA DŁUŻSZYCH FORM WYPOWIEDZI PISEMNYCH NOTATKA. L.p. Kryteria oceny Punktacja KRYTERIA OCENIANIA DŁUŻSZYCH FORM WYPOWIEDZI PISEMNYCH NOTATKA L. Kryteria oceny Punktacja Realizacja tematu 1 Zgodność całości tekstu z tematem 0 2 Kompozycja 2 Zachowanie spójności tekstu Język i styl

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

Wymagania edukacyjne z języka polskiego Klasa III Gimnazjum

Wymagania edukacyjne z języka polskiego Klasa III Gimnazjum Wymagania edukacyjne z języka polskiego Klasa III Gimnazjum SPRAWNOŚCI WYMAGANIA KONIECZNE PODSTAWOWE ROZSZERZONE DOPEŁNIAJĄCE (ocena: dopuszczający) (ocena: dostateczny) (ocena: dobry) (ocena: bardzo

Bardziej szczegółowo

RAPORT. Przedszkole Szkoła klasa 0 PRZYGOTOWANIE DO EDUKACJI SZKOLNEJ. Lipiec 2009

RAPORT. Przedszkole Szkoła klasa 0 PRZYGOTOWANIE DO EDUKACJI SZKOLNEJ. Lipiec 2009 PRACOWNIA ZARZĄDZANIA I DIAGNOZY EDUKACYJNEJ ODN W ZIELONEJ GÓRZE RAPORT Przedszkole Szkoła klasa 0 PRZYGOTOWANIE DO EDUKACJI SZKOLNEJ Lipiec 2009 Zapraszamy na omówienie wyników testu 17 września 2009

Bardziej szczegółowo

Relacje. Zdania opisujące stosunki dwuczłonowe mają ogólny wzór budowy: xry, co czytamy: x pozostaje w relacji R do y.

Relacje. Zdania opisujące stosunki dwuczłonowe mają ogólny wzór budowy: xry, co czytamy: x pozostaje w relacji R do y. Zdania stwierdzające relację Pewne wyrazy i wyraŝenia wskazują na stosunki, czyli relacje, jakie zachodzą między róŝnymi przedmiotami. Do takich wyrazów naleŝą m. in. wyrazy: nad, pod, za, przy, braterstwo,

Bardziej szczegółowo

Pochylmy się nad pewnym rozporządzeniem

Pochylmy się nad pewnym rozporządzeniem Henryk Skowron RozwaŜania sceptyczniejącego optymisty Pochylmy się nad pewnym rozporządzeniem Znana juŝ, jakby się mogło wydawać, powszechnie Dyrektywa 2000/76/UE reguluje grupę problemów, tworzących pewną

Bardziej szczegółowo

1. Formułuje krótkie wypowiedzi ze zdań prostych w większości poprawnie zbudowanych na tematy bliskie uczniowi, związane z ilustracjami.

1. Formułuje krótkie wypowiedzi ze zdań prostych w większości poprawnie zbudowanych na tematy bliskie uczniowi, związane z ilustracjami. UMIEJĘTOŚCI WSPANIALE BARDZO DOBRZE DOBRZE PRACUJ WIĘCEJ JESZCZE NIE POTRAFISZ 1 2 3 4 5 6 MÓWIENIE 1.Samodzielnie bogatym słownictwem, wypowiada się na temat treści literackiego, określa jego nastrój,

Bardziej szczegółowo

2. Cena CD ROM-u wraz z 7% podatkiem VAT wynosiła 252 zł 60 gr. Oblicz jego cenę z 22% podatkiem VAT.

2. Cena CD ROM-u wraz z 7% podatkiem VAT wynosiła 252 zł 60 gr. Oblicz jego cenę z 22% podatkiem VAT. Tematy zadań sprawdziany klasa I poziom podstawowy Elementy logiki Określ, czy podane wyraŝenie jest zdaniem logicznym lub formą zdaniową Odpowiedź uzasadnij a) Liczbą przeciwną do liczby jest liczba x

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA ANGIELSKIEGO W KLASACH I-III SZKOŁY PODSTAWOWEJ

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA ANGIELSKIEGO W KLASACH I-III SZKOŁY PODSTAWOWEJ PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA ANGIELSKIEGO W KLASACH I-III SZKOŁY PODSTAWOWEJ 1. Obszary podlegające ocenianiu słuchanie i słownictwo - stopniowe osłuchanie z dźwiękami i intonacją języka angielskiego

Bardziej szczegółowo

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia

1. Liczby naturalne, podzielność, silnie, reszty z dzielenia 1. Liczby naturalne, podzielność, silnie, reszty z dzielenia kwadratów i sześcianów przez małe liczby, cechy podzielności przez 2, 4, 8, 5, 25, 125, 3, 9. 26 września 2009 r. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra)

Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena dobra) MATEMATYKA (wg programu Nie tylko wynik ) Wymagania programowe na poszczególne oceny Poziom wymagao edukacyjnych: K konieczny (ocena dopuszczająca) P podstawowy (ocena dostateczna) R rozszerzający (ocena

Bardziej szczegółowo

Zmienne powłoki. Wywołanie wartości następuje poprzez umieszczenie przed nazwą zmiennej znaku dolara ($ZMIENNA), np. ZMIENNA=wartosc.

Zmienne powłoki. Wywołanie wartości następuje poprzez umieszczenie przed nazwą zmiennej znaku dolara ($ZMIENNA), np. ZMIENNA=wartosc. Zmienne powłoki Zmienne powłoki (shell variables) to tymczasowe zmienne, które mogą przechowywać wartości liczbowe lub ciągi znaków. Związane są z powłoką, Przypisania wartości do zmiennej następuje poprzez

Bardziej szczegółowo

Logika dla socjologów Część 2: Przedmiot logiki

Logika dla socjologów Część 2: Przedmiot logiki Logika dla socjologów Część 2: Przedmiot logiki Rafał Gruszczyński Katedra Logiki Uniwersytet Mikołaja Kopernika 2011/2012 Spis treści 1 Działy logiki 2 Własności semantyczne i syntaktyczne 3 Błędy logiczne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z JĘZYKA NIEMIECKIEGO KRYTERIA NA POSZCZEGÓLNE OCENY :

WYMAGANIA EDUKACYJNE Z JĘZYKA NIEMIECKIEGO KRYTERIA NA POSZCZEGÓLNE OCENY : WYMAGANIA EDUKACYJNE Z JĘZYKA NIEMIECKIEGO KRYTERIA NA POSZCZEGÓLNE OCENY : OCENĘ CELUJĄCĄ otrzymuje uczeń, gdy: posiadł wiedzę i umiejętności znacznie wykraczające poza program nauczania w danej klasie

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom rozszerzony. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom rozszerzony. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL We współpracy PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

PSO z języka niemieckiego w klasach IV-VI

PSO z języka niemieckiego w klasach IV-VI PSO z języka niemieckiego w klasach IV-VI FORMY PRACY CZĘSTOTLIWOŚĆ OCENA 1.Odpowiedź ustna na bieżąco,,+,,,- lub ocena 2. Kartkówka kilka razy w semestrze wg skali procentowej 100% - 97% - celujący 96%

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony klasa II

LUBELSKA PRÓBA PRZED MATURĄ MATEMATYKA - poziom rozszerzony klasa II 1 MATEMATYKA - poziom rozszerzony klasa II CZERWIEC 2015 Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16 stron (zadania 1 17). Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA ANGIELSKIEGO. dla gimnazjum

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA ANGIELSKIEGO. dla gimnazjum PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA ANGIELSKIEGO dla gimnazjum PSO opiera się na Wewnątrzszkolnym Systemie Oceniania, który stanowi załącznik do Statutu szkoły. W ramach oceniania przedmiotowego nauczyciel

Bardziej szczegółowo

Egzamin gimnazjalny z zakresu przedmiotów humanistycznych Odpowiedzi i punktacja zadań do zestawu egzaminacyjnego Razem w parze

Egzamin gimnazjalny z zakresu przedmiotów humanistycznych Odpowiedzi i punktacja zadań do zestawu egzaminacyjnego Razem w parze Egzamin gimnazjalny z zakresu przedmiotów humanistycznych Odpowiedzi i punktacja zadań do zestawu egzaminacyjnego Razem w parze ODPOWIEDZI DO ZADAŃ ZAMKNIĘTYCH 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

Bardziej szczegółowo

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW FILOZOFIA. I. Umiejscowienie kierunku w obszarze/obszarach kształcenia wraz z uzasadnieniem:

EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW FILOZOFIA. I. Umiejscowienie kierunku w obszarze/obszarach kształcenia wraz z uzasadnieniem: Załącznik nr 1 do uchwały nr 445/06/2012 Senatu UR z dnia 21 czerwca 2012 roku EFEKTY KSZTAŁCENIA DLA KIERUNKU STUDIÓW FILOZOFIA poziom kształcenia profil kształcenia tytuł zawodowy absolwenta I stopień

Bardziej szczegółowo

Okręgowa Komisja Egzaminacyjna w Poznaniu Materiał ćwiczeniowy z wiedzy o społeczeństwie Poziom rozszerzony

Okręgowa Komisja Egzaminacyjna w Poznaniu Materiał ćwiczeniowy z wiedzy o społeczeństwie Poziom rozszerzony MODEL ODPOWIEDZI I SCHEMAT PUNKTOWANIA MATERIAŁ ĆWICZENIOWY 2010 poziom rozszerzony Zadania od 1 do 18 (50 pkt) Zasady oceniania: za rozwiązanie zadań z arkusza poziomu rozszerzonego moŝna uzyskać maksymalnie

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA UKRAIŃSKIEGO W SZKOLE PODSTAWOWEJ

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA UKRAIŃSKIEGO W SZKOLE PODSTAWOWEJ PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA UKRAIŃSKIEGO W SZKOLE PODSTAWOWEJ Opracowała: Tetyana Ouerghi I. ZASADY: 1. Każdy uczeń jest oceniany zgodnie z zasadami sprawiedliwości. 2. Ocenie podlegają wszystkie

Bardziej szczegółowo

Kryteria oceniania wiadomości i umiejętności z języka angielskiego klasy IV-VI

Kryteria oceniania wiadomości i umiejętności z języka angielskiego klasy IV-VI Kryteria oceniania wiadomości i umiejętności z języka angielskiego klasy IV-VI Ocenę celującą otrzymuje uczeń, który spełnia wszystkie wymagania na ocenę bardzo dobrą a ponadto: - posiada wiedzę i umiejętności

Bardziej szczegółowo

śledzi tok lekcji, zapamiętuje najważniejsze informacje;

śledzi tok lekcji, zapamiętuje najważniejsze informacje; SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE Z JĘZYKA POLSKIEGO W KLASIE II w I okresie Ocenę dopuszczającą otrzymuje uczeń, który: opanował technikę czytania; śledzi tok lekcji, zapamiętuje najważniejsze informacje;

Bardziej szczegółowo

Liczba godzin Punkty ECTS Sposób zaliczenia. konwersatoria 30 zaliczenie z oceną

Liczba godzin Punkty ECTS Sposób zaliczenia. konwersatoria 30 zaliczenie z oceną Wydział: Prawo i Administracja Nazwa kierunku kształcenia: Administracja Rodzaj przedmiotu: podstawowy Opiekun: prof. dr hab. Kazimierz Pawłowski Poziom studiów (I lub II stopnia): I stopnia Tryb studiów:

Bardziej szczegółowo

RAPORT. KLASA I kształcenie zintegrowane PRACOWNIA ZARZĄDZANIA I DIAGNOZY EDUKACYJNEJ ODN W ZIELONEJ GÓRZE

RAPORT. KLASA I kształcenie zintegrowane PRACOWNIA ZARZĄDZANIA I DIAGNOZY EDUKACYJNEJ ODN W ZIELONEJ GÓRZE PRACOWNIA ZARZĄDZANIA I DIAGNOZY EDUKACYJNEJ ODN W ZIELONEJ GÓRZE RAPORT KLASA I kształcenie zintegrowane WEWNĄTRZSZKOLNE DIAGNOZOWANIE OSIĄGNIĘĆ UCZNIÓW SZKOŁY PODSTAWOWEJ Październik 28. Informacje ogólne

Bardziej szczegółowo

Klucz odpowiedzi do testu z języka polskiego dla uczniów gimnazjów /etap szkolny/ Liczba punktów możliwych do uzyskania: 63.

Klucz odpowiedzi do testu z języka polskiego dla uczniów gimnazjów /etap szkolny/ Liczba punktów możliwych do uzyskania: 63. Klucz odpowiedzi do testu z języka polskiego dla uczniów gimnazjów /etap szkolny/ Liczba punktów możliwych do uzyskania: 63 Zadania zamknięte Zad.1 Zad.4 Zad.6 Zad.8 Zad.9 Zad.11 Zad.13 Zad.14 Zad.16 Zad.18

Bardziej szczegółowo

O zeszycie ćwiczeń. Zeszyt ćwiczeń część 1 obejmuje tematykę 19 pierwszych modułów podręcznika. Przy każdym ćwiczeniu podano jego stopień trudności

O zeszycie ćwiczeń. Zeszyt ćwiczeń część 1 obejmuje tematykę 19 pierwszych modułów podręcznika. Przy każdym ćwiczeniu podano jego stopień trudności O zeszycie ćwiczeń Zeszyt ćwiczeń część 1 obejmuje tematykę 19 pierwszych modułów podręcznika. Przy każdym ćwiczeniu podano jego stopień trudności Tytuł modułu odpowiada tytułowi z podręcznika Każdą lekcję

Bardziej szczegółowo

opracowała Jowita Malecka

opracowała Jowita Malecka opracowała Jowita Malecka JeŜeli chcecie nauczyć się pływać, to trzeba, Ŝebyście weszli do wody. JeŜeli zamierzacie nauczyć się rozwiązywać zadania, to trzeba, Ŝebyście je rozwiązywali. George Polya W

Bardziej szczegółowo

Zagadnienia prawne związane z dzierŝawą gruntów rolnych

Zagadnienia prawne związane z dzierŝawą gruntów rolnych Zagadnienia prawne związane z dzierŝawą gruntów rolnych Bardzo często w skład gospodarstwa rolnego wchodzą równieŝ grunty, które nie stanowią własności rolnika lecz są przez niego dzierŝawione lub teŝ

Bardziej szczegółowo

WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH

WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH PODSTAWY SYGNAŁÓW POMIAROWYCH I METROLOGII WYZNACZANIE CECH PUNKTOWYCH SYGNAŁÓW POMIAROWYCH WSTĘP TEORETYCZNY Sygnałem nazywamy przebieg dowolnej wielkości fizycznej mogącej być nośnikiem informacji Opis

Bardziej szczegółowo

Definicje. Algorytm to:

Definicje. Algorytm to: Algorytmy Definicje Algorytm to: skończony ciąg operacji na obiektach, ze ściśle ustalonym porządkiem wykonania, dający możliwość realizacji zadania określonej klasy pewien ciąg czynności, który prowadzi

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA

AKADEMIA GÓRNICZO-HUTNICZA AKADEMIA GÓRNICZO-HUTNICZA Wydział Elektrotechniki, Automatyki, Informatyki i Elektroniki KATEDRA INFORMATYKI Reprezentacja wiedzy - typowa i nietypowa rekcja w wyraŝeniach przyimkowych Kierunek, rok studiów:

Bardziej szczegółowo

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH

5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH 5. OKREŚLANIE WARTOŚCI LOGICZNEJ ZDAŃ ZŁOŻONYCH Temat, którym mamy się tu zająć, jest nudny i żmudny będziemy się uczyć techniki obliczania wartości logicznej zdań dowolnie złożonych. Po co? możecie zapytać.

Bardziej szczegółowo

OGÓLNOPOLSKI SPRAWDZIAN KOMPETENCJI TRZECIOKLASISTY KLUCZ ODPOWIEDZI I SCHEMAT PUNKTOWANIA

OGÓLNOPOLSKI SPRAWDZIAN KOMPETENCJI TRZECIOKLASISTY KLUCZ ODPOWIEDZI I SCHEMAT PUNKTOWANIA OGÓLNOPOLSKI SPRAWDZIAN KOMPETENCJI TRZECIOKLASISTY KLUCZ ODPOWIEDZI I SCHEMAT PUNKTOWANIA Klucz odpowiedzi do zadań zamkniętych Numer 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 zadania Odpowiedź

Bardziej szczegółowo

Z-ZIP Logika. Stacjonarne Wszystkie Katedra Matematyki Dr Beata Maciejewska. Podstawowy Nieobowiązkowy Polski Semestr trzeci

Z-ZIP Logika. Stacjonarne Wszystkie Katedra Matematyki Dr Beata Maciejewska. Podstawowy Nieobowiązkowy Polski Semestr trzeci KARTA MODUŁU / KARTA PRZEDMIOTU Z-ZIP-1003 Kod modułu Nazwa modułu Logika Nazwa modułu w języku angielskim Logic Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek

Bardziej szczegółowo