Michał Kozielski Łukasz Warchał. Instytut Informatyki, Politechnika Śląska

Wielkość: px
Rozpocząć pokaz od strony:

Download "Michał Kozielski Łukasz Warchał. Instytut Informatyki, Politechnika Śląska"

Transkrypt

1 Michał Kozielski Łukasz Warchał Instytut Informatyki, Politechnika Śląska

2 Algorytm DBSCAN Algorytm OPTICS Analiza gęstego sąsiedztwa w grafie Wstępne eksperymenty Podsumowanie

3 Algorytm DBSCAN Analiza gęstości danych Wyznaczenie grup o dowolnym kształcie Wskazanie obiektów danych nie należących do żadnej grupy (szum)

4 Algorytm DBSCAN M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD 96), pages , 1996.

5 Algorytm DBSCAN Parametry wejściowe Promień ε określający sąsiedztwo Liczba obiektów danych m stanowiąca o gęstości sąsiedztwa

6 Algorytm DBSCAN 1. for każdy obiekt o nie należący do żadnej grupy 2. wyznacz sąsiedztwo(o,ε) 3. if sąsiedztwo(o,ε) < m 4. o szum 5. else 6. utwórz grupę z sąsiedztwa o 7. for każdy obiekt p należący do gęstego sąsiedztwa 8. wyznacz sąsiedztwo(p,ε) 9. if sąsiedztwo(p,ε) >= m 10. for każdy obiekt należący do gęstego sąsiedztwa 11. if obiekt nie należy do grupy 12. dodaj obiekt do grupy 13. if obiekt nie jest szumem 14. dodaj obiekt do analizowanego dalej gęstego sąsiedztwa

7 Algorytm DBSCAN 1. for każdy obiekt o nie należący do żadnej grupy 2. wyznacz sąsiedztwo(o,ε) 3. if sąsiedztwo(o,ε) < m 4. o szum 5. else

8 Algorytm DBSCAN 1. for każdy obiekt o nie należący do żadnej grupy 2. wyznacz sąsiedztwo(o,ε) 3. if sąsiedztwo(o,ε) < m 4. o szum 5. else

9 Algorytm DBSCAN 1. for każdy obiekt o nie należący do żadnej grupy 2. wyznacz sąsiedztwo(o,ε) 3. if sąsiedztwo(o,ε) < m 4. o szum 5. else

10 Algorytm DBSCAN 5. else 6. utwórz grupę z sąsiedztwa o

11 Algorytm DBSCAN 5. else 6. utwórz grupę z sąsiedztwa o 7. for każdy obiekt p należący do gęstego sąsiedztwa 8. wyznacz sąsiedztwo(p,ε)

12 Algorytm DBSCAN 9. if sąsiedztwo(p,ε) >= m 10. for każdy obiekt należący do gęstego sąsiedztwa 11. if obiekt nie należy do grupy 12. dodaj obiekt do grupy

13 Algorytm DBSCAN 9. if sąsiedztwo(p,ε) >= m 10. for każdy obiekt należący do gęstego sąsiedztwa 11. if obiekt nie należy do grupy 12. dodaj obiekt do grupy

14 Algorytm DBSCAN 13. if obiekt nie jest szumem 14. dodaj obiekt do analizowanego dalej gęstego sąsiedztwa

15 Algorytm DBSCAN 13. if obiekt nie jest szumem 14. dodaj obiekt do analizowanego dalej gęstego sąsiedztwa

16 Algorytm DBSCAN M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD 96), pages , 1996.

17 Algorytm DBSCAN M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD 96), pages , 1996.

18 Algorytm DBSCAN

19 Algorytm DBSCAN

20 Algorytm DBSCAN

21 Algorytm DBSCAN

22 Algorytm DBSCAN

23 Algorytm DBSCAN

24 Algorytm OPTICS

25 Algorytm OPTICS

26 Algorytm DBSCAN Podsumowanie Parametry wejściowe Promień ε określający sąsiedztwo Liczba obiektów danych m stanowiąca o gęstości sąsiedztwa Wynik grupowania Podział na grupy Grupa zawierająca szum Złożoność O(n logn)

27 Definicja gęstego sąsiedztwa w grafie Wysoki stopień węzła Wysoka wartość współczynnika grupowania dla węzła dla krawędzi Duża liczba powiązanych trójkątów

28 Przegląd istniejących rozwiązań Falkowski T., Barth A., Spiliopoulou M. DENGRAPH: A Density-based Community Detection Algorithm, IEEE/WIC/ACM International Conference on Web Intelligence, 2008, pp Zastosowanie DBSCAN do analizy grafu Odległość węzłów definiowana poprzez intensywność relacji

29 Przegląd istniejących rozwiązań Bródka, P.; Musial, K.; Kazienko, P.; A Method for Group Extraction in Complex Social Networks, CCIS Vol. 111, 2010, pp Zastosowanie operacji union i intersect wykorzystywanych także w analizie gęstości danych o wielu reprezentacjach Wykorzystanie współczynnika grupowania

30 Przegląd istniejących rozwiązań Günnemann S., Boden B. and Seidl T., DB-CSC: A Density-Based Approach for Subspace Clustering in Graphs with Feature Vectors. LNCS, Vol. 6911, 2011, pp Analiza grafu i jego reprezentacji w podprzestrzeniach atrybutów Zastosowanie operacji union i intersect wykorzystywanych także w analizie gęstości danych o wielu reprezentacjach

31 DBSCAN dla grafu Modyfikacja algorytmu Rozszerzanie grupy na podstawie struktury Macierz odległości Wyznaczenie odległości na podstawie struktury

32

33

34

35

36

37

38

39

40

41 Algorytm Girvan-Newman

42 Algorytm Clasuet et al.

43 Analiza ewolucji społeczności Adaptacja metody IncrementalDBSCAN Identyfikacja społeczności opisanych w dziedzinie atrybutów Modyfikacja DB-CSC

44 Ankerst M., Breunig M., Kriegel H.P., Sander J.: OPTICS: ordering points to identify the clustering structure, SIGMOD Rec., 1999, Vol. 28, No 2, pp M. Ester, H. P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering clusters in large spatial databases with noise. Proc. 2nd Int. Conf. on Knowledge Discovery and Data Mining (KDD 96), pages , 1996.

GĘSTOŚCIOWA METODA GRUPOWANIA I WIZUALIZACJI DANYCH ZŁOŻONYCH

GĘSTOŚCIOWA METODA GRUPOWANIA I WIZUALIZACJI DANYCH ZŁOŻONYCH STUDIA INFORMATICA 2012 Volume 33 Number 2A (105) Agnieszka NOWAK-BRZEZIŃSKA, Tomasz XIĘSKI Uniwersytet Śląski, Instytut Informatyki GĘSTOŚCIOWA METODA GRUPOWANIA I WIZUALIZACJI DANYCH ZŁOŻONYCH Streszczenie.

Bardziej szczegółowo

Badania w sieciach złożonych

Badania w sieciach złożonych Badania w sieciach złożonych Grant WCSS nr 177, sprawozdanie za rok 2012 Kierownik grantu dr. hab. inż. Przemysław Kazienko mgr inż. Radosław Michalski Instytut Informatyki Politechniki Wrocławskiej Obszar

Bardziej szczegółowo

WYBÓR ALGORYTMU GRUPOWANIA A EFEKTYWNOŚĆ WYSZUKIWANIA DOKUMENTÓW

WYBÓR ALGORYTMU GRUPOWANIA A EFEKTYWNOŚĆ WYSZUKIWANIA DOKUMENTÓW STUDIA INFORMATICA 2010 Volume 31 Number 2A (89) Agnieszka NOWAK BRZEZIŃSKA, Tomasz JACH, Tomasz XIĘSKI Uniwersytet Śląski, Wydział Informatyki i Nauki o Materiałach, Instytut Informatyki WYBÓR ALGORYTMU

Bardziej szczegółowo

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki

Bardziej szczegółowo

Przegląd darmowego oprogramowania do analizy dużych zbiorów danych

Przegląd darmowego oprogramowania do analizy dużych zbiorów danych Przegląd darmowego oprogramowania do analizy dużych zbiorów danych Tomasz Jach, Tomasz Xięski Uniwersytet Śląski, Instytut Informatyki, ul. Będzińska 39, 41-200 Sosnowiec {tomasz.jach tomasz.xieski}@us.edu.pl

Bardziej szczegółowo

Rozpoznawanie: Klasteryzacja zbioru ofert sprzedaży mieszkania.

Rozpoznawanie: Klasteryzacja zbioru ofert sprzedaży mieszkania. Rozpoznawanie: Klasteryzacja zbioru ofert sprzedaży mieszkania. Paweł Szołtysek Spis treści 1 Wstęp 2 2 Wygląd oferty sprzedaży nieruchomości 2 2.1 Ogłoszenia problematyczne.................... 3 3 Wybór

Bardziej szczegółowo

Grafowy model bazy danych na przykładzie GOOD

Grafowy model bazy danych na przykładzie GOOD GOOD p. 1/1 Grafowy model bazy danych na przykładzie GOOD (Graph-Oriented Object Database Model) Marcin Jakubek GOOD p. 2/1 Plan prezentacji Przykłady modeli danych Zastosowania Inne modele grafowe Wizualizacja

Bardziej szczegółowo

Implementacja wybranych algorytmów eksploracji danych na Oracle 10g

Implementacja wybranych algorytmów eksploracji danych na Oracle 10g Implementacja wybranych algorytmów eksploracji danych na Oracle 10g Sławomir Skowyra, Michał Rudowski Instytut Informatyki Wydziału Elektroniki i Technik Informacyjnych, Politechnika Warszawska S.Skowyra@stud.elka.pw.edu.pl,

Bardziej szczegółowo

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Problem NP Problem NP (niedeterministycznie wielomianowy, ang. nondeterministic polynomial) to problem decyzyjny, dla którego rozwiązanie

Bardziej szczegółowo

Metoda klasteryzacji i segmentacji mikrozwapnień w celu redukcji wskazań fałszywych przy komputerowym wspomaganiu mammografii

Metoda klasteryzacji i segmentacji mikrozwapnień w celu redukcji wskazań fałszywych przy komputerowym wspomaganiu mammografii Metoda klasteryzacji i segmentacji mikrozwapnień w celu redukcji wskazań fałszywych przy komputerowym wspomaganiu mammografii Anna Wróblewska, Artur Przelaskowski, Paweł Bargieł, Piotr Boniński Zakład

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

STUDIA INFORMATICA 2014 Volume 35 Number 2 (116)

STUDIA INFORMATICA 2014 Volume 35 Number 2 (116) STUDIA INFORMATICA 2014 Volume 35 Number 2 (116) Agnieszka NOWAK-BRZEZIŃSKA, Tomasz XIĘSKI Uniwersytet Śląski, Instytut Informatyki WYDOBYWANIE WIEDZY Z DANYCH ZŁOŻONYCH Streszczenie. Artykuł przedstawia

Bardziej szczegółowo

Krzysztof Kutt Sprawozdanie 2: Modeling knowledge with Resource Description Framework (RDF)

Krzysztof Kutt Sprawozdanie 2: Modeling knowledge with Resource Description Framework (RDF) Akademia Górniczo-Hutnicza Wydział EAIiIB Katedra Informatyki Stosowanej Semantic Web Technologies 2013 Krzysztof Kutt Sprawozdanie 2: Modeling knowledge with Resource Description Framework (RDF) Kraków

Bardziej szczegółowo

STUDIA INFORMATICA 2011 Volume 32 Number 2A (96)

STUDIA INFORMATICA 2011 Volume 32 Number 2A (96) STUDIA INFORMATICA 2011 Volume 32 Number 2A (96) Agnieszka NOWAK-BRZEZIŃSKA, Tomasz XIĘSKI Uniwersytet Śląski, Instytut Informatyki GRUPOWANIE DANYCH ZŁOŻONYCH Streszczenie. Artykuł stanowi wprowadzenie

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

Optymalizacja reguł decyzyjnych względem pokrycia

Optymalizacja reguł decyzyjnych względem pokrycia Zakład Systemów Informatycznych Instytut Informatyki, Uniwersytet Śląski Chorzów, 9 grudzień 2014 Wprowadzenie Wprowadzenie problem skalowalności dla optymalizacji reguł decyzjnych na podstawie podejścia

Bardziej szczegółowo

Zastosowania metod odkrywania wiedzy do diagnostyki maszyn i procesów

Zastosowania metod odkrywania wiedzy do diagnostyki maszyn i procesów Zastosowania metod odkrywania wiedzy do diagnostyki maszyn i procesów Wojciech Moczulski Politechnika Śląska Katedra Podstaw Konstrukcji Maszyn Sztuczna inteligencja w automatyce i robotyce Zielona Góra,

Bardziej szczegółowo

METODY REPREZENTACJI DANYCH ZŁOŻONYCH

METODY REPREZENTACJI DANYCH ZŁOŻONYCH STUDIA INFORMATICA 2013 Volume 34 Number 2A (111) Agnieszka NOWAK-BRZEZIŃSKA, Tomasz XIĘSKI Uniwersytet Śląski, Instytut Informatyki METODY REPREZENTACJI DANYCH ZŁOŻONYCH Streszczenie. Artykuł dokonuje

Bardziej szczegółowo

Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP

Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP Łukasz Strąk lukasz.strak@gmail.com Uniwersytet Śląski, Instytut Informatyki, Będzińska 39, 41-205 Sosnowiec 9 grudnia

Bardziej szczegółowo

Centralność w sieciach społecznych. Radosław Michalski Social Network Group - kwiecień 2009

Centralność w sieciach społecznych. Radosław Michalski Social Network Group - kwiecień 2009 Centralność w sieciach społecznych Radosław Michalski Social Network Group - kwiecień 2009 Agenda spotkania Pojęcie centralności Potrzeba pomiaru centralności Miary centralności degree centrality betweenness

Bardziej szczegółowo

Wprowadzenie do technologii informacyjnej.

Wprowadzenie do technologii informacyjnej. Wprowadzenie do technologii informacyjnej. Data mining i jego biznesowe zastosowania dr Tomasz Jach Definicje Eksploracja danych polega na torturowaniu danych tak długo, aż zaczną zeznawać. Eksploracja

Bardziej szczegółowo

Wykład 8. Drzewo rozpinające (minimum spanning tree)

Wykład 8. Drzewo rozpinające (minimum spanning tree) Wykład 8 Drzewo rozpinające (minimum spanning tree) 1 Minimalne drzewo rozpinające - przegląd Definicja problemu Własności minimalnych drzew rozpinających Algorytm Kruskala Algorytm Prima Literatura Cormen,

Bardziej szczegółowo

Analiza Skupień - Grupowanie Zaawansowana Eksploracja Danych

Analiza Skupień - Grupowanie Zaawansowana Eksploracja Danych Analiza Skupień - Grupowanie Zaawansowana Eksploracja Danych JERZY STEFANOWSKI Inst. Informatyki PP Wersja dla TPD 2013 Część II Organizacja wykładu Przypomnienie wyboru liczby skupień Studium przypadku

Bardziej szczegółowo

Sprawozdanie do zadania numer 2

Sprawozdanie do zadania numer 2 Sprawozdanie do zadania numer 2 Michał Pawlik 29836 Temat: Badanie efektywności algorytmów grafowych w zależności od rozmiaru instancji oraz sposobu reprezentacji grafu w pamięci komputera 1 WSTĘP W ramach

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat

BIBLIOTEKA PROGRAMU R - BIOPS. Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat BIBLIOTEKA PROGRAMU R - BIOPS Narzędzia Informatyczne w Badaniach Naukowych Katarzyna Bernat Biblioteka biops zawiera funkcje do analizy i przetwarzania obrazów. Operacje geometryczne (obrót, przesunięcie,

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Sieci Społeczne i Analiza Sieci. P. Kazienko and K. Musial Instytut Informatyki Stosowanej, Politechnika Wrocławska Wrocław, 25 Października 2007

Sieci Społeczne i Analiza Sieci. P. Kazienko and K. Musial Instytut Informatyki Stosowanej, Politechnika Wrocławska Wrocław, 25 Października 2007 Sieci Społeczne i Analiza Sieci P. Kazienko and K. Musial Instytut Informatyki Stosowanej, Politechnika Wrocławska Wrocław, 25 Października 2007 Agenda Kilka słów o naszej grupie Dlaczego warto zająć się

Bardziej szczegółowo

Rozwiązywanie problemów metodą przeszukiwania

Rozwiązywanie problemów metodą przeszukiwania Rozwiązywanie problemów metodą przeszukiwania Dariusz Banasiak Katedra Informatyki Technicznej W4/K9 Politechnika Wrocławska Reprezentacja problemu w przestrzeni stanów Jedną z ważniejszych metod sztucznej

Bardziej szczegółowo

Praca dyplomowa magisterska

Praca dyplomowa magisterska WYDZIAŁ ELEKTROTECHNIKI, AUTOMATYKI, INFORMATYKI I INŻYNIERII BIOMEDYCZNEJ KATEDRA Automatyki i Robotyki Praca dyplomowa magisterska Analiza położenia użytkownika sieci geo-społecznościowej Analysis of

Bardziej szczegółowo

Synteza i eksploracja danych sekwencyjnych

Synteza i eksploracja danych sekwencyjnych Synteza i eksploracja danych sekwencyjnych Definicja problemu i wstępne wyniki eksperymentalne Projekt finansowany z grantu nr DEC-2011/03/D/ST6/01621 otrzymanego z Narodowego Centrum Nauki Plan prezentacji

Bardziej szczegółowo

Jarosław Kuchta Jakość Systemów Informatycznych Jakość Oprogramowania. Pomiary w inżynierii oprogramowania

Jarosław Kuchta Jakość Systemów Informatycznych Jakość Oprogramowania. Pomiary w inżynierii oprogramowania Jarosław Kuchta Jakość Systemów Informatycznych Jakość Oprogramowania Pomiary w inżynierii oprogramowania Cel pomiarów ocena jakości produktu ocena procesów (produktywności ludzi) stworzenie podstawy dla

Bardziej szczegółowo

Sortowanie topologiczne skierowanych grafów acyklicznych

Sortowanie topologiczne skierowanych grafów acyklicznych Sortowanie topologiczne skierowanych grafów acyklicznych Metody boolowskie w informatyce Robert Sulkowski http://robert.brainusers.net 23 stycznia 2010 1 Definicja 1 (Cykl skierowany). Niech C = (V, A)

Bardziej szczegółowo

ANALIZA ZASOBÓW INTERNETOWYCH NA PODSTAWIE STRUKTURY POŁĄCZEŃ

ANALIZA ZASOBÓW INTERNETOWYCH NA PODSTAWIE STRUKTURY POŁĄCZEŃ STUDIA INFORMATICA 2010 Volume 31 Number 2B (90) Anna KOTULLA Politechnika Śląska, Instytut Informatyki ANALIZA ZASOBÓW INTERNETOWYCH NA PODSTAWIE STRUKTURY POŁĄCZEŃ Streszczenie. Opracowanie omawia możliwości

Bardziej szczegółowo

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010

Algorytmy równoległe. Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka 2010 Algorytmy równoległe Rafał Walkowiak Politechnika Poznańska Studia inżynierskie Informatyka Znajdowanie maksimum w zbiorze n liczb węzły - maksimum liczb głębokość = 3 praca = 4++ = 7 (operacji) n - liczność

Bardziej szczegółowo

(Raport cząstkowy z prac realizowanych w ramach projektu pt. Inteligentne metody analizy szans i zagrożeń w procesie kształcenia)

(Raport cząstkowy z prac realizowanych w ramach projektu pt. Inteligentne metody analizy szans i zagrożeń w procesie kształcenia) Testy porównawcze metod klasteryzacji jako narzędzia identyfikacji grup studenckich oraz tworzenia klas pytań ankietowych Marek Jaszuk, Teresa Mroczek, Barbara Fryc Wyższa Szkoła Informatyki i Zarządzania

Bardziej szczegółowo

WSTĘP I TAKSONOMIA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza

WSTĘP I TAKSONOMIA METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING. Adrian Horzyk. Akademia Górniczo-Hutnicza METODY INŻYNIERII WIEDZY KNOWLEDGE ENGINEERING AND DATA MINING WSTĘP I TAKSONOMIA Adrian Horzyk Akademia Górniczo-Hutnicza Wydział Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Katedra

Bardziej szczegółowo

sieci społecznych metodą analizy - future work...

sieci społecznych metodą analizy - future work... Badanie cech lokalnej topologii sieci społecznych metodą analizy motywów sieciowych - perspetktywy... - zastosowania... - future work... Krzysztof Juszczyszyn Krzysztof Juszczyszyn www.iit.pwr.wroc.pl/~krzysiek

Bardziej szczegółowo

Analiza Sieci Społecznych Pajek

Analiza Sieci Społecznych Pajek Analiza Sieci Społecznych Pajek Dominik Batorski Instytut Socjologii UW 25 marca 2005 1 Wprowadzenie Regularności we wzorach relacji często są nazywane strukturą. Analiza sieci społecznych jest zbiorem

Bardziej szczegółowo

4.3 Grupowanie według podobieństwa

4.3 Grupowanie według podobieństwa 4.3 Grupowanie według podobieństwa Przykłady obiektów to coś więcej niż wektory wartości atrybutów. Reprezentują one poszczególne rasy psów. Ważnym pytaniem, jakie można sobie zadać, jest to jak dobrymi

Bardziej szczegółowo

Model relacyjny. Wykład II

Model relacyjny. Wykład II Model relacyjny został zaproponowany do strukturyzacji danych przez brytyjskiego matematyka Edgarda Franka Codda w 1970 r. Baza danych według definicji Codda to zbiór zmieniających się w czasie relacji

Bardziej szczegółowo

Ćwiczenie 5. Metody eksploracji danych

Ćwiczenie 5. Metody eksploracji danych Ćwiczenie 5. Metody eksploracji danych Reguły asocjacyjne (association rules) Badaniem atrybutów lub cech, które są powiązane ze sobą, zajmuje się analiza podobieństw (ang. affinity analysis). Metody analizy

Bardziej szczegółowo

Siedem cudów informatyki czyli o algorytmach zdumiewajacych

Siedem cudów informatyki czyli o algorytmach zdumiewajacych Siedem cudów informatyki czyli o algorytmach zdumiewajacych Łukasz Kowalik kowalik@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski Łukasz Kowalik, Siedem cudów informatyki p. 1/25 Problem 1: mnożenie

Bardziej szczegółowo

Wstęp do Informatyki i Programowania (kierunek matematyka stosowana)

Wstęp do Informatyki i Programowania (kierunek matematyka stosowana) Wstęp do Informatyki i Programowania (kierunek matematyka stosowana) Jacek Cichoń Przemysław Kobylański Instytut Matematyki i Informatyki Politechnika Wrocławska Na podstawie: M.Summerfield.Python 3. Kompletne

Bardziej szczegółowo

Modelowanie sieci złożonych

Modelowanie sieci złożonych Modelowanie sieci złożonych B. Wacław Instytut Fizyki UJ Czym są sieci złożone? wiele układów ma strukturę sieci: Internet, WWW, sieć cytowań, sieci komunikacyjne, społeczne itd. sieć = graf: węzły połączone

Bardziej szczegółowo

Metody automatycznego wytwarzania sygnatur zagrożeń sieciowych

Metody automatycznego wytwarzania sygnatur zagrożeń sieciowych Metody automatycznego wytwarzania sygnatur zagrożeń sieciowych Piotr Kijewski CERT Polska/NASK e-mail: piotr.kijewski (at) cert.pl Wstęp Wytwarzanie sygnatur zagrożeń sieciowych, które są stosowane w systemach

Bardziej szczegółowo

Algorytmy Komunikacyjne dla Trójwymiarowych Sieci Opartych na Plastrze Miodu. Ireneusz Szcześniak. Politechnika Śląska 20 czerwca 2002 r.

Algorytmy Komunikacyjne dla Trójwymiarowych Sieci Opartych na Plastrze Miodu. Ireneusz Szcześniak. Politechnika Śląska 20 czerwca 2002 r. Algorytmy Komunikacyjne dla Trójwymiarowych Sieci Opartych na Plastrze Miodu Ireneusz Szcześniak Politechnika Śląska 20 czerwca 2002 r. 2 Plan prezentacji Wprowadzenie Prezentacja trójwymiarowych sieci

Bardziej szczegółowo

Wstęp do Sztucznej Inteligencji

Wstęp do Sztucznej Inteligencji Wstęp do Sztucznej Inteligencji Rozwiązywanie problemów-i Joanna Kołodziej Politechnika Krakowska Wydział Fizyki, Matematyki i Informatyki Rozwiązywanie problemów Podstawowe fazy: Sformułowanie celu -

Bardziej szczegółowo

Data Warehouse Physical Design: Part III

Data Warehouse Physical Design: Part III Data Warehouse Physical Design: Part III Robert Wrembel Poznan University of Technology Institute of Computing Science Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Lecture outline Group

Bardziej szczegółowo

Algorytmy heurystyczne w UCB dla DVRP

Algorytmy heurystyczne w UCB dla DVRP Algorytmy heurystyczne w UCB dla DVRP Seminarium IO na MiNI 24.03.2015 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP UCB na potrzeby DVRP Algorytmy

Bardziej szczegółowo

Język programowania komputerów kwantowych oparty o model macierzy gęstości

Język programowania komputerów kwantowych oparty o model macierzy gęstości oparty o model macierzy gęstości (Promotorski) Piotr Gawron Instytut Informatyki Teoretycznej i Stosowanej PAN 13 grudnia 2008 Plan wystąpienia Wstęp Motywacja Teza pracy Model obliczeń kwantowych Operacje

Bardziej szczegółowo

Wykrywanie istotnych i nieistotnych fragmentów stron WWW

Wykrywanie istotnych i nieistotnych fragmentów stron WWW Wykrywanie istotnych i nieistotnych fragmentów stron WWW Michał Wójcik opiekun naukowy: dr inż. Piotr Gawrysiak Plan prezentacji definicja fragmentów istotnych i nieistotnych, oraz powody dla których warto

Bardziej szczegółowo

Algorytm grupowania oparty o łańcuch reguł dyskryminacyjnych

Algorytm grupowania oparty o łańcuch reguł dyskryminacyjnych AI-METH 2002 - Artificial Intelligence Methods November 13 15, 2002, Gliwice, Poland Algorytm grupowania oparty o łańcuch reguł dyskryminacyjnych Dariusz Mazur Silesian University of Technology, Faculty

Bardziej szczegółowo

Interaktywne wyszukiwanie informacji w repozytoriach danych tekstowych

Interaktywne wyszukiwanie informacji w repozytoriach danych tekstowych Interaktywne wyszukiwanie informacji w repozytoriach danych tekstowych Marcin Deptuła Julian Szymański, Henryk Krawczyk Politechnika Gdańska Wydział Elektroniki, Telekomunikacji i Informatyki Katedra Architektury

Bardziej szczegółowo

Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych

Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych Temat: Data mininig i wielowymiarowa analiza danych zgromadzonych w systemach medycznych na potrzeby badań naukowych Autorzy: Tomasz Małyszko, Edyta Łukasik 1. Definicja eksploracji danych Eksploracja

Bardziej szczegółowo

Cyfrowe Przetwarzanie Obrazów (CPOB)

Cyfrowe Przetwarzanie Obrazów (CPOB) Cyfrowe Przetwarzanie Obrazów (CPOB) dr inż. Beata Leśniak-Plewińska pok. 40 (parter, niska cześć budynku Wydziału Mechatroniki) B.Lesniak-Plewinska@mchtr.pw.edu.pl zib.mchtr.pw.edu.pl Dydaktyka Przedmioty

Bardziej szczegółowo

Deep Learning na przykładzie Deep Belief Networks

Deep Learning na przykładzie Deep Belief Networks Deep Learning na przykładzie Deep Belief Networks Jan Karwowski Zakład Sztucznej Inteligencji i Metod Obliczeniowych Wydział Matematyki i Nauk Informacyjnych PW 20 V 2014 Jan Karwowski (MiNI) Deep Learning

Bardziej szczegółowo

Nowy generator grafów dwudzielnych

Nowy generator grafów dwudzielnych Nowy generator grafów dwudzielnych w analizie systemów rekomendujących Szymon Chojnacki Instytut Podstaw Informatyki Polskiej Akademii Nauk 08 marca 2011 roku Plan prezentacji 1 Wprowadzenie 2 Dane rzeczywiste

Bardziej szczegółowo

Metody uporządkowania

Metody uporządkowania Metody uporządkowania W trakcie faktoryzacji macierzy rzadkiej ilość zapełnień istotnie zależy od sposobu numeracji równań. Powstaje problem odnalezienia takiej numeracji, przy której ilość zapełnień będzie

Bardziej szczegółowo

Planowanie przedsięwzięć

Planowanie przedsięwzięć K.Pieńkosz Badania Operacyjne Planowanie przedsięwzięć 1 Planowanie przedsięwzięć Model przedsięwzięcia lista operacji relacje poprzedzania operacji modele operacji funkcja celu planowania K.Pieńkosz Badania

Bardziej szczegółowo

Analiza Sieci Społecznych Pajek

Analiza Sieci Społecznych Pajek Analiza Sieci Społecznych Pajek Dominik Batorski Instytut Socjologii UW 3 czerwca 2016 1 Wprowadzenie Regularności we wzorach relacji często są nazywane strukturą. Analiza sieci społecznych jest zbiorem

Bardziej szczegółowo

TADEUSZ KWATER 1, ROBERT PĘKALA 2, ALEKSANDRA SALAMON 3

TADEUSZ KWATER 1, ROBERT PĘKALA 2, ALEKSANDRA SALAMON 3 Wydawnictwo UR 2016 ISSN 2080-9069 ISSN 2450-9221 online Edukacja Technika Informatyka nr 4/18/2016 www.eti.rzeszow.pl DOI: 10.15584/eti.2016.4.46 TADEUSZ KWATER 1, ROBERT PĘKALA 2, ALEKSANDRA SALAMON

Bardziej szczegółowo

Problem 1 prec f max. Algorytm Lawlera dla problemu 1 prec f max. 1 procesor. n zadań T 1,..., T n (ich zbiór oznaczamy przez T )

Problem 1 prec f max. Algorytm Lawlera dla problemu 1 prec f max. 1 procesor. n zadań T 1,..., T n (ich zbiór oznaczamy przez T ) Joanna Berlińska Algorytmika w projektowaniu systemów - ćwiczenia 1 1 Problem 1 prec f max 1 procesor (ich zbiór oznaczamy przez T ) czas wykonania zadania T j wynosi p j z zadaniem T j związana jest niemalejąca

Bardziej szczegółowo

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76 . p. 1 Algorytmem nazywa się poddający się interpretacji skończony zbiór instrukcji wykonania zadania mającego określony stan końcowy dla każdego zestawu danych wejściowych W algorytmach mogą występować

Bardziej szczegółowo

Wykrywanie nietypowości w danych rzeczywistych

Wykrywanie nietypowości w danych rzeczywistych Wykrywanie nietypowości w danych rzeczywistych dr Agnieszka NOWAK-BRZEZIŃSKA, mgr Artur TUROS 1 Agenda 1 2 3 4 5 6 Cel badań Eksploracja odchyleń Metody wykrywania odchyleń Eksperymenty Wnioski Nowe badania

Bardziej szczegółowo

Plan Prezentacji Wprowadzenie Telefonia IP a bezpieczeństwo istotne usługi ochrony informacji i komunikacji w sieci Klasyczna architektura bezpieczeńs

Plan Prezentacji Wprowadzenie Telefonia IP a bezpieczeństwo istotne usługi ochrony informacji i komunikacji w sieci Klasyczna architektura bezpieczeńs Wojciech Mazurczyk Instytut Telekomunikacji Politechnika Warszawska http://mazurczyk.com Możliwości wykorzystania watermarkingu do zabezpieczenia telefonii IP Plan Prezentacji Wprowadzenie Telefonia IP

Bardziej szczegółowo

Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej. Adam Żychowski

Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej. Adam Żychowski Zastosowanie sieci neuronowych w problemie klasyfikacji wielokategorialnej Adam Żychowski Definicja problemu Każdy z obiektów może należeć do więcej niż jednej kategorii. Alternatywna definicja Zastosowania

Bardziej szczegółowo

TABLICE W JĘZYKU C/C++ typ_elementu nazwa_tablicy [wymiar_1][wymiar_2]... [wymiar_n] ;

TABLICE W JĘZYKU C/C++ typ_elementu nazwa_tablicy [wymiar_1][wymiar_2]... [wymiar_n] ; Ogólna postać definicji tablicy: TABLICE W JĘZYKU C/C++ typ_elementu nazwa_tablicy [wymiar_1][wymiar_2]... [wymiar_n] ; np. int tablica [ 10 ]; // 10-cio elementowa tablica liczb całkowitych char tekst

Bardziej szczegółowo

Mapy poznawcze jako narzędzia rozumienia informacji

Mapy poznawcze jako narzędzia rozumienia informacji Mapy poznawcze jako narzędzia rozumienia informacji Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska i Wydział Matematyki i Informatyki Uniwersytet w Białymstoku www.mini.pw.edu.pl/ homenda

Bardziej szczegółowo

Statystyki teoriografowe grafów funkcjonalnych w sieciach neuronowych

Statystyki teoriografowe grafów funkcjonalnych w sieciach neuronowych Statystyki teoriografowe grafów funkcjonalnych w sieciach neuronowych Wydział Matematyki i Informatyki, UMK 2011-12-21 1 Wstęp Motywacja 2 Model 3 4 Dalsze plany Referencje Motywacja 1 Wstęp Motywacja

Bardziej szczegółowo

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel

Zalew danych skąd się biorą dane? są generowane przez banki, ubezpieczalnie, sieci handlowe, dane eksperymentalne, Web, tekst, e_handel według przewidywań internetowego magazynu ZDNET News z 8 lutego 2001 roku eksploracja danych (ang. data mining ) będzie jednym z najbardziej rewolucyjnych osiągnięć następnej dekady. Rzeczywiście MIT Technology

Bardziej szczegółowo

IDENTYFIKACJA I ANALIZA PARAMETRÓW GEOMETRYCZNYCH I MECHANICZNYCH KOŚCI MIEDNICZNEJ CZŁOWIEKA

IDENTYFIKACJA I ANALIZA PARAMETRÓW GEOMETRYCZNYCH I MECHANICZNYCH KOŚCI MIEDNICZNEJ CZŁOWIEKA POLITECHNIKA ŚLĄSKA ZESZYTY NAUKOWE Nr 1651 Antoni JOHN SUB Gottingen 7 217 780 458 2005 A 3012 IDENTYFIKACJA I ANALIZA PARAMETRÓW GEOMETRYCZNYCH I MECHANICZNYCH KOŚCI MIEDNICZNEJ CZŁOWIEKA Gliwice 2004

Bardziej szczegółowo

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH

Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, w głąb. Spis treści: 1. Wprowadzenie 3. str. 1.1 Krótki Wstęp

Bardziej szczegółowo

SPOTKANIE 9: Metody redukcji wymiarów

SPOTKANIE 9: Metody redukcji wymiarów Wrocław University of Technology SPOTKANIE 9: Metody redukcji wymiarów Piotr Klukowski* Studenckie Koło Naukowe Estymator piotr.klukowski@pwr.wroc.pl 08.12.2015 *Część slajdów pochodzi z prezentacji dr

Bardziej szczegółowo

Data Mining Kopalnie Wiedzy

Data Mining Kopalnie Wiedzy Data Mining Kopalnie Wiedzy Janusz z Będzina Instytut Informatyki i Nauki o Materiałach Sosnowiec, 30 listopada 2006 Kopalnie złota XIX Wiek. Odkrycie pokładów złota spowodowało napływ poszukiwaczy. Przeczesywali

Bardziej szczegółowo

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor

S O M SELF-ORGANIZING MAPS. Przemysław Szczepańczyk Łukasz Myszor S O M SELF-ORGANIZING MAPS Przemysław Szczepańczyk Łukasz Myszor Podstawy teoretyczne Map Samoorganizujących się stworzył prof. Teuvo Kohonen (1982 r.). SOM wywodzi się ze sztucznych sieci neuronowych.

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Eksploracja danych Co to znaczy eksploracja danych Klastrowanie (grupowanie) hierarchiczne Klastrowanie

Bardziej szczegółowo

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych POLITECHNIKA KRAKOWSKA WYDZIAŁ INŻYNIERII ELEKTRYCZNEJ i KOMPUTEROWEJ Katedra Automatyki i Technik Informacyjnych Algorytmy i Struktury Danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew

Bardziej szczegółowo

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Drzewa. Piotr Chrząstowski-Wachtel Wstęp do programowania Drzewa Piotr Chrząstowski-Wachtel Drzewa Drzewa definiują matematycy, jako spójne nieskierowane grafy bez cykli. Równoważne określenia: Spójne grafy o n wierzchołkach i n-1 krawędziach

Bardziej szczegółowo

Ekstrakcja informacji o zdarzeniach z tekstów dziedzinowych

Ekstrakcja informacji o zdarzeniach z tekstów dziedzinowych Ekstrakcja informacji o zdarzeniach z tekstów dziedzinowych mgr inż. Michał Marcińczuk opiekun naukowy prof. Zbigniew Huzar Instytut Informatyki Stosowanej Politechnika Wrocławska 17 czerwca 2008 Plan

Bardziej szczegółowo

Szybka wielobiegunowa metoda elementów brzegowych w analizie układów liniowosprężystych

Szybka wielobiegunowa metoda elementów brzegowych w analizie układów liniowosprężystych Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Politechnika Śląska, Gliwice Szybka wielobiegunowa metoda elementów brzegowych w analizie układów liniowosprężystych Algorytm SWMEB. Część

Bardziej szczegółowo

Scenariusz Web Design DHTML na 10 sesji. - Strony statyczne I dynamiczne. - Dodawanie kodu VBScript do strony HTML. Rysunek nie jest potrzebny

Scenariusz Web Design DHTML na 10 sesji. - Strony statyczne I dynamiczne. - Dodawanie kodu VBScript do strony HTML. Rysunek nie jest potrzebny Scenariusz Web Design DHTML na 10 sesji L.p. Specyficzne detale 2.1 - Strony statyczne I dynamiczne - Dodawanie kodu VBScript do strony HTML doc w Rysunek nie jest potrzebny 2.1.1 Opcje w pisaniu skryptów

Bardziej szczegółowo

Systemy Wspomagania Decyzji

Systemy Wspomagania Decyzji Reguły Asocjacyjne Szkoła Główna Służby Pożarniczej Zakład Informatyki i Łączności March 18, 2014 1 Wprowadzenie 2 Definicja 3 Szukanie reguł asocjacyjnych 4 Przykłady użycia 5 Podsumowanie Problem Lista

Bardziej szczegółowo

Wstęp do programowania. Listy. Piotr Chrząstowski-Wachtel

Wstęp do programowania. Listy. Piotr Chrząstowski-Wachtel Wstęp do programowania Listy Piotr Chrząstowski-Wachtel Do czego stosujemy listy? Listy stosuje się wszędzie tam, gdzie występuje duży rozrzut w możliwym rozmiarze danych, np. w reprezentacji grafów jeśli

Bardziej szczegółowo

Plan prezentacji 0 Wprowadzenie 0 Zastosowania 0 Przykładowe metody 0 Zagadnienia poboczne 0 Przyszłość 0 Podsumowanie 7 Jak powstaje wiedza? Dane Informacje Wiedza Zrozumienie 8 Przykład Teleskop Hubble

Bardziej szczegółowo

Detekcja motywów w złożonych strukturach sieciowych perspektywy zastosowań Krzysztof Juszczyszyn

Detekcja motywów w złożonych strukturach sieciowych perspektywy zastosowań Krzysztof Juszczyszyn Detekcja motywów w złożonych strukturach sieciowych perspektywy zastosowań Krzysztof Juszczyszyn Instytut Informatyki Technicznej PWr MOTYWY SIECIOWE -NETWORK MOTIFS 1. Co to jest? 2. Jak mierzyć? 3. Gdzie

Bardziej szczegółowo

Systemy ekspertowe. Od bazy danych do bazy wiedzy. Część druga. Krótkie wprowadzenie do zagadnień eksploracji danych

Systemy ekspertowe. Od bazy danych do bazy wiedzy. Część druga. Krótkie wprowadzenie do zagadnień eksploracji danych Część druga Autor Roman Simiński Krótkie wprowadzenie do zagadnień eksploracji danych Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych

Bardziej szczegółowo

AiSD zadanie trzecie

AiSD zadanie trzecie AiSD zadanie trzecie Gliwiński Jarosław Marek Kruczyński Konrad Marek Grupa dziekańska I5 5 czerwca 2008 1 Wstęp Celem postawionym przez zadanie trzecie było tzw. sortowanie topologiczne. Jest to typ sortowania

Bardziej szczegółowo

Słowem wstępu. Część rodziny języków XSL. Standard: W3C XSLT razem XPath 1.0 XSLT Trwają prace nad XSLT 3.0

Słowem wstępu. Część rodziny języków XSL. Standard: W3C XSLT razem XPath 1.0 XSLT Trwają prace nad XSLT 3.0 Słowem wstępu Część rodziny języków XSL Standard: W3C XSLT 1.0-1999 razem XPath 1.0 XSLT 2.0-2007 Trwają prace nad XSLT 3.0 Problem Zakładane przez XML usunięcie danych dotyczących prezentacji pociąga

Bardziej szczegółowo

Metody wspomagania detekcji zmian patologicznych w mammografii

Metody wspomagania detekcji zmian patologicznych w mammografii Metody wspomagania detekcji zmian patologicznych w mammografii Doktorat: Anna Wróblewska Promotor: Artur Przelaskowski Zakład Elektroniki Jądrowej i Medycznej Instytut Radioelektroniki Politechnika Warszawska

Bardziej szczegółowo

Detekcja zakleszczenia (1)

Detekcja zakleszczenia (1) Detekcja zakleszczenia (1) Wykład prowadzą: Jerzy Brzeziński Jacek Kobusiński Plan wykładu Procesy aktywne i pasywne Definicja zakleszczenia Problem detekcji wystąpienia zakleszczenia Detekcja zakleszczenia

Bardziej szczegółowo

Analiza i projektowanie aplikacji Java

Analiza i projektowanie aplikacji Java Analiza i projektowanie aplikacji Java Modele analityczne a projektowe Modele analityczne (konceptualne) pokazują dziedzinę problemu. Modele projektowe (fizyczne) pokazują system informatyczny. Utrzymanie

Bardziej szczegółowo

Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1

Eksploracja danych. Grupowanie. Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne. Grupowanie wykład 1 Grupowanie Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Grupowanie wykład 1 Sformułowanie problemu Dany jest zbiór obiektów (rekordów). Znajdź naturalne pogrupowanie

Bardziej szczegółowo

Metody uporządkowania

Metody uporządkowania Metody uporządkowania W trakcie faktoryzacji macierzy rzadkiej ilość zapełnień istotnie zależy od sposobu numeracji równań. Powstaje problem odnalezienia takiej numeracji, przy której: o ilość zapełnień

Bardziej szczegółowo

Korelacje krzyżowe kryzysów finansowych w ujęciu korelacji potęgowych. Analiza ewolucji sieci na progu liniowości.

Korelacje krzyżowe kryzysów finansowych w ujęciu korelacji potęgowych. Analiza ewolucji sieci na progu liniowości. Korelacje krzyżowe kryzysów finansowych w ujęciu korelacji potęgowych. Analiza ewolucji sieci na progu liniowości. Cross-correlations of financial crisis analysed by power law classification scheme. Evolving

Bardziej szczegółowo

A C T A UNIVERSITATIS LODZIENSIS FOLIA OECONOMICA 183,2004. Sebastian Szamański, Ryszard Budziński

A C T A UNIVERSITATIS LODZIENSIS FOLIA OECONOMICA 183,2004. Sebastian Szamański, Ryszard Budziński A C T A UNIVERSITATIS LODZIENSIS FOLIA OECONOMICA 183,2004 Sebastian Szamański, Ryszard Budziński METODY EKSPLORACJI REGUŁ ASOCJACYJNYCH I ICH ZASTOSOWANIE Wprowadzenie Ogromny postęp technologiczny ostatnich

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych Algorytmy i struktury danych Zaawansowane algorytmy sortowania Witold Marańda maranda@dmcs.p.lodz.pl 1 Sortowanie za pomocą malejących przyrostów metoda Shella Metoda jest rozwinięciem metody sortowania

Bardziej szczegółowo