Przestrzenie liniowe w zadaniach

Wielkość: px
Rozpocząć pokaz od strony:

Download "Przestrzenie liniowe w zadaniach"

Transkrypt

1 Przestrzenie linioe zadaniach Zadanie 1. Cz ektor [3, 4, 4 jest kombinacja linioa ektoró [1, 1, 1, [1, 0, 1, [1, 3, 5 przestrzeni R 3? Roziazanie. Szukam x,, z R takich, że [3, 4, 4 x [1, 1, 1 + [1, 0, 1 + z [1, 3, 5. Ale x [1, 1, 1 + [1, 0, 1 + z [1, 3, 5 [x + + z, x + 3z, x + 5z, iec z arunku róności ektoró otrzmujem, że szukane liczb x,, z spe lniaja uk lad rónań: x + + z 3 x + 3z 4. x + 5z 4 Stosujem metode eliminacji Gaussa: x z x Zatem nasz uk lad jest sprzeczn i obec tego ektor [3, 4, 4 nie jest kombinacja linioa ektoró [1, 1, 1, [1, 0, 1, [1, 3, 5. Zadanie 2. W przestrzeni R 4 zbadać prost z definicji linioa [1, 2, 1, 2, [2, 3, 1, 0, [1, 2, 2, 3. Roziazanie. Weźm doolne liczb rzecziste a, b, c takie, że a [1, 2, 1, 2 + b [2, 3, 1, 0 + c [1, 2, 2, 3 [0, 0, 0, 0. (1) Wted [a + 2b + c, 2a + 3b + 2c, a + b + 2c, 2a 3c [0, 0, 0, 0, i ec otrzmujem uk lad rónań: któr roziażem metoda eliminacji Gaussa: , 3 1, ( 1) 2, 4+ 3 a + 2b + c 0 2a + 3b + 2c 0 a + b + 2c 0 2a 3c , (2) 3 2, Zatem uk lad (2) ma dok ladnie jedno roziazanie: a 0, b 0, c 0. Stad jeśli liczb rzecziste a, b, c spe lniaja róność (1), to a b c 0. Zatem ektor [1, 2, 1, 2, [2, 3, 1, 0, [1, 2, 2, 3 sa linioo niezależne. Zadanie 3. W przestrzeni R 3 zbadać linioa [1, 1, 2, [ 1, 3, 0, [2, 0, 3. Roziazanie. Macierza tego uk ladu ektoró jest A

2 I Sposób. Ponieaż det(a) [1, 1, 2, [ 1, 3, 0, [2, 0, 3 sa linioo zależne. II Sposób. Obliczam rzad macierz A: [ r(a) 2 31 r r r(a) < 3, iec ektor [1, 1, 2, [ 1, 3, 0, [2, 0, 3 s ( ) 0, i ec ektor r [ 0 0 a linioo zależne. Zadanie 4. W przestrzeni R 5 zbadać linioa [5, 3, 2, 1, 10, [ 1, 8, 1, 4, 7, [2, 1, 9, 3, 6, [1, 3, 5, 9, 11. Roziazanie. Macierza tego uk ladu ektoró jest A rzad macierz A: r(a) r 1 54, 2+4, r Ponieaż Obliczam k3+k [ 1+172, r r r [ , bo macierz ma rzad , gdż posiada niezero minor > 0 stopnia 2. Zatem rzad macierz uk ladu czterech ektoró [5, 3, 2, 1, 10, [ 1, 8, 1, 4, 7, [2, 1, 9, 3, 6, [1, 3, 5, 9, 11 jest rón 4, czli te ektor sa linioo niezależne. Zadanie 5. W przestrzeni R 4 zbadać linioa [1, 4, 7, 10, [2, 5, 8, 11, [2, 6, 9, Roziazanie. Macierza tego uk ladu ektoró jest A Ale r(a) r [ r , 2 23 r r [ < 3, iec ektor [1, 4, 7, 10, [2, 5, 8, 11, [2, 6, 9, 12 sa linioo zależne. Zadanie 6. Dla jakich a R ektor [1, 1, 1, [1, a, 2, [2, 3, 4 torza baze przestrzeni R 3? Roziazanie. Macierza tego uk ladu ektoró jest A 1 a 2. Zatem 4 det(a) a a 4a a 6 4 2a 3. Stad det(a) 0 a 3 2 i ektor [1, 1, 1, [1, a, 2, [2, 3, 4 torza baze przestrzeni R 3 ted i tlko ted, gd a 3 2. Zadanie 7. Pokazać, że V {[x,, z R 3 : x + + z 0} jest podprzestrzenia przestrzeni R 3. Wznaczć baze i miar V. 2

3 Roziazanie. Zauażm, że V {[x,, x : x, R} {[x, 0, x + [0,, : x, R} {x [1, 0, 1 + [0, 1, 1 : x, R} L([1, 0, 1, [01, 1), iec V jest podprzestrzenia przestrzeni [ R 3. Ponadto ektor [1, 0, 1, [0, 1, 1 generuja V oraz sa linioo niezależne, bo r 2, iec ektor [1, 0, 1, [0, 1, 1 torza baze podprzestrzeni V i miar V jest rón 2. Zadanie 8. Wektor [2, 3, 4, 5, [3, 4, 8, 9 uzupe lnić do baz przestrzeni R 4. Roziazanie. Oznaczm przez V podprzestrzeń generoana przez ektor [2, 3, 4, 5, [3, 4, 8, 9. Stosujac metode eliminacji Gaussa na ierszach macierz tego uk ladu ektoró znajdziem taka baze [ podprzestrzeni V, która [ lato bedzie uzupe lnić [ do baz ca lej przestrzeni [ R Stad baza V jest {[1, 1, 4, 4, [0, 1, 4, 3}. Zatem dim(v ) 2 i obec tego ektor [2, 3, 4, 5, [3, 4, 8, 9 sa linioo niezależne. Ponadto ektor [1, 1, 4, 4, [0, 1, 4, 3, [0, 0, 1, 0, [0, 0, 0, 1 torza baze przestrzeni R 4, bo r Zatem ektor [2, 3, 4, 5, [3, 4, 8, 9, [0, 0, 1, 0, [0, 0, 0, 1 torz a szukana baze przestrzeni R 4. Zadanie 9. Znaleźć baze i miar podprzestrzeni V przestrzeni R 4 generoanej przez ektor: [ 1, 4, 3, 2, [3, 7, 5, 3, [3, 2, 1, 0, [ 4, 1, 0, 1. Roziazanie. Baze podprzestrzeni V znajdziem tosujac metode eliminacji Gaussa na ierszach macierz A danego uk ladu ektoró. Rónoażności dotcza teraz zachoania podprzestrzeni generoanch , 3+3 1, , [. Stad ektor [ 1, 4, 3, 2, [0, 5, 4, 3 generuja podprzestrzeń V i sa linioo niezależne (bo macierz z nich utorzona ma rzad 2). Zatem baza V jest {[ 1, 4, 3, 2, [0, 5, 4, 3} oraz dim(v ) 2. Zadanie 10. Znajdź baze i miar podprzestrzeni V przestrzeni R 5 generoanej przez ektor: [ 3, 1, 5, 3, 2, [2, 3, 0, 1, 0, [1, 2, 3, 2, 1, [3, 5, 1, 3, 1, [3, 0, 1, 0, 0. Uzupe lnij znaleziona baze podprzestrzeni V do baz ca lej przestrzeni R 5. Roziazanie. Baze podprzestrzeni V znajdziem tosujac metode eliminacji Gaussa na ierszach macierz A danego uk ladu ektoró. Rónoażności dotcza teraz zachoania podprzestrzeni generoanch , , 3 2 2, , 4 2 5,

4 [0, 0,, 12, 9, skad dim(v ) Zatem baze podprzestrzeni V torza ektor [ 1, 3, 1, 1, 0, [0, 1, 6, 3, 2, Ponieaż r , iec szukana baza przestrzeni R 5 jest {[ 1, 3, 1, 1, 0, [0, 1, 6, 3, 2, [0, 0,, 12, 9, [0, 0, 0, 1, 0, [0, 0, 0, 0, 1}. Zadanie 11. Znajdź uk lad jednorodn rónań linioch, którego zbiorem roziazań jest podprzestrzeń V przestrzeni R 5 generoana przez ektor: [ 3, 1, 5, 3, 2, [2, 3, 0, 1, 0, [1, 2, 3, 2, 1, [3, 5, 1, 3, 1, [3, 0, 1, 0, 0. Roziazanie. Z roziazania zadania 10 mam, że ektor [ 1, 3, 1, 1, 0, [0, 1, 6, 3, 2, [0, 0,, 12, 9 torza beze V oraz ektor [ 1, 3, 1, 1, 0,[0, 1, 6, 3, 2,[0, 0,, 12, 9,[0, 0, 0, 1, 0,[0, 0, 0, 0, 1 torza baze przestrzeni R 5. Istnieje zatem przekszta lcenie linioe f : R 5 R 2 takie, że f([ 1, 3, 1, 1, 0) [0, 0, (3) f([0, 1, 6, 3, 2) [0, 0, (4) f([0, 0,, 12, 9) [0, 0, (5) f([0, 0, 0, 1, 0) [1, 0, (6) f([0, 0, 0, 0, 1) [0, 1. (7) Wted f(r 5 ) L([1, 0, [0, 1) R 2, iec dim f(r 5 ) 2. Ale dim Ker(f) + dim f(r 5 ) dim R 5, iec dim Ker(f) Ponadto V Ker(f) i dim V 3, iec V Ker(f). Pozostaje zatem znaleźć zór analitczn na przekszta lcenie f. W tm celu zaś starcz znaczć f(ɛ k ) dla k 1, 2, 3, 4, 5, gdzie ɛ 1 [1, 0, 0, 0, 0, ɛ 2 [0, 1, 0, 0, 0, ɛ 3 [0, 0, 1, 0, 0, ɛ 4 [0, 0, 0, 1, 0, ɛ 5 [0, 0, 0, 0, 1. Ze zoró (6) i (7) mam od razu, że f(ɛ 4 [1, 0 oraz f(ɛ 5 [0, 1. Z linioości przekszta lcenia f oraz ze zoru (5) otrzmujem, że f(ɛ 3 ) + 12 f(ɛ 4 ) + 9 f(ɛ 5 ) [0, 0, czli f(ɛ 3 ) + 12 [1, [0, 1 [0, 0, skad f(ɛ 3 ) [ 12, 9, iec f(ɛ 3 ) [ 12, 9. Z linioości f i ze zoru (4) mam, że f(ɛ 2 )+6 f(ɛ 3 )+3 f(ɛ 4 )+2 f(ɛ 5 ) [0, 0. Zatem f(ɛ 2 )+6 [ 12, 9 +3 [1, 0+2 [0, 1 [0, 0, czli f(ɛ 2 )+[ 72, 54 +[84 56, 0+[0, [0, 0, iec f(ɛ 2) [ 12, 2. Z linioości f i ze zoru (3) mam, że f(ɛ 1 ) + 3 f(ɛ 2 ) f(ɛ 3 ) + f(ɛ 4 ) [0, 0. Zatem f(ɛ 1 ) + 3 [ 12, 2 12 [, 9 + [1, 0 [0, 0, czli f(ɛ 1 ) [ 36, 6 + [ 12, 9 + [, 0, sk ad f(ɛ 1 ) [ 4, 3. Ale f([x 1, x 2, x 3, x 4, x 5 ) f(x 1 ɛ 1 + x 2 ɛ 2 + x 3 ɛ 3 + x 4 ɛ 4 + x 5 ɛ 5 ) x 1 f(ɛ 1 ) + x 2 f(ɛ 2 ) + x 3 f(ɛ 3 ) + x 4 f(ɛ 4 ) + x 5 f(ɛ 5 ) x 1 [ 4, 3 + x 2 [ 12, 2 + x 3 [ 12, 9 + x 4 [, 0 + x 5 [0, [ 1 7 x x x 3 + x 4, 3 x 1 2 x 2 9 x 3 + x 5. Zatem V Ker(f) jest zbiorem roziazań uk ladu rónań: { 1 7 x x x 3 + x x 1 2 x 2 9 x x 5 0, 4

5 któr możem też zapisać postaci: { x1 3x 2 3x 3 + 7x 4 0 3x 1 2x 2 9x x 5 0. Zadanie 12. Niech przestrzeni linioej R 4 : V L([1, 1, 1, 1, [1, 1, 1, 1, [1, 1, 1, 1) oraz W L([1, 1, 1, 1, [2, 2, 0, 0, [3, 1, 1, 1). Wznaczć baze i miar podprzestrzeni: V, W, V +W, V W. Roziazanie. Znajdujem baze podprzestrzeni V : 2 1, ( 1 2 )2, ( 1 2 ) dim V Znajdujem baze podprzestrzeni W : Zatem baza V jest {[1, 1, 0, 0, [0, 1, 0, 1, [0, 0, 1, 1}, skad , , ( 1)3 1+2 Zatem baza W jest {[1, 0, 0, 0, [0, 1, 0, 0, [0, 0, 1, 1}, skad dim W 3. Ponadto V + W L([1, 1, 0, 0, [0, 1, 0, 1, [0, 0, 1, 1, [1, 0, 0, 0, [0, 1, 0, 0, [0, 0, 1, 1) L([1, 1, 0, 0, [0, 1, 0, 1, [0, 0, 1, 1, [1, 0, 0, 0, [0, 1, 0, 0) L([1, 0, 0, 0, [0, 1, 0, 0, [0, 1, 0, 1, [0, 0, 1, 1) L([1, 0, 0, 0, [0, 1, 0, 0, [0, 0, 1, 0, [0, 0, 0, 1) R 4, iec baza V +W jest {[1, 0, 0, 0, [0, 1, 0, 0, [0, 0, 1, 0, [0, 0, 0, 1} oraz dim(v + W ) 4. Ze zoru dim(v + W ) dim V + dim W dim(v W ) liczam dim(v W ) , czli dim(v W ) 2. Ponadto [0, 0, 1, 1 V W, [1, 1, 0, 0 [1, 0, 0, 0+[0, 1, 0, 0 W i [1, 1, 0, 0 V, iec [1, 1, 0, 0, [0, 0, 1, 1 V W. Ale ektor [1, 1, 0, 0, [0, 0, 1, 1 sa linioo niezależne i dim(v W ) 2, iec baza V W jest {[1, 1, 0, 0, [0, 0, 1, 1}. 5

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 4. wykład z algebry liniowej Warszawa, październik 2010 Mirosław Sobolewski (UW) Warszawa, wrzesień 2006 1 / 7

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy

Zadania z algebry liniowej - sem. I Przestrzenie liniowe, bazy, rząd macierzy Zadania z algebry liniowej - sem I Przestrzenie liniowe bazy rząd macierzy Definicja 1 Niech (K + ) będzie ciałem (zwanym ciałem skalarów a jego elementy nazywać będziemy skalarami) Przestrzenią liniową

Bardziej szczegółowo

Endomorfizmy liniowe

Endomorfizmy liniowe Endomorfizmy liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 8. wykład z algebry liniowej Warszawa, listopad 2011 Mirosław Sobolewski (UW) Warszawa, listopad 2011 1 / 16 Endomorfizmy

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

Zadania z GAL-u. 1 Rozwia. Listopad x + 3y = 1 3x + y = x + y = 1 x + 2y 3z = 3 2x + 4y + z = 1 1.2

Zadania z GAL-u. 1 Rozwia. Listopad x + 3y = 1 3x + y = x + y = 1 x + 2y 3z = 3 2x + 4y + z = 1 1.2 Zadania z GAL-u Listopad 2004 1 Rozwia zać uk lady równań: 11 12 13 14 15 { 2x + 3y = 1 3x + y = 0 x + y = 1 x + 2y 3z = 3 2x + 4y + z = 1 3x + y + z = 1 x + 2z = 6 3y + 2z = 0 2x + 3y + 2z = 1 3x + 4y

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

Wykład Analiza jakościowa równań różniczkowych

Wykład Analiza jakościowa równań różniczkowych Na podstawie książki J. Rusinka, Równania różniczkowe i różnicowe w zarządzaniu, Oficna Wdawnicza WSM, Warszawa 2005. 21 maja 2012 Definicja Stabilność Niech = F (x, ) będzie równaniem różniczkowm. Rozwiązanie

Bardziej szczegółowo

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} },

R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, nazywa- Definicja 1. Przestrzenią liniową R n my zbiór wektorów R n = {(x 1, x 2,..., x n ): x i R, i {1,2,...,n} }, z określonymi działaniami dodawania wektorów i mnożenia wektorów przez liczby rzeczywiste.

Bardziej szczegółowo

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy

Bardziej szczegółowo

Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013

Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013 Iloczyn skalarny Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 10. wykład z algebry liniowej Warszawa, grudzień 2013 Mirosław Sobolewski (UW) Warszawa, grudzień 2013 1 / 14 Standardowy

Bardziej szczegółowo

Zadania o liczbach zespolonych

Zadania o liczbach zespolonych Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i

Bardziej szczegółowo

Praca domowa - seria 6

Praca domowa - seria 6 Praca domowa - seria 6 28 grudnia 2012 Zadanie 1. Znajdź bazę jądra i obrazu przekształcenia liniowego φ : R 4 wzorem: R 3 danego φ(x 1, x 2, x 3, x 4 ) = (x 1 +2x 2 x 3 +3x 4, x 1 +x 2 +2x 3 +x 4, 2x

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3

RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 RÓWNANIA RÓŻNICZKOWE WYKŁAD 3 Równania różniczkowe liniowe Metoda przewidwań Metoda przewidwań całkowania równania niejednorodnego ' p( x) opiera się na następującm twierdzeniu. Twierdzenie f ( x) Suma

Bardziej szczegółowo

6 Homomorfizmy przestrzeni liniowych

6 Homomorfizmy przestrzeni liniowych konspekt wykladu - 2009/10 1 6 Homomorfizmy przestrzeni liniowych Definicja 6.1. Niech V, U be przestrzeniami liniowymi nad cialem K. Przeksztalcenie F : V W nazywamy przeksztalceniem liniowym (homomorfizmem

Bardziej szczegółowo

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna

Wyk lad 5 W lasności wyznaczników. Macierz odwrotna Wyk lad 5 W lasności wyznaczników Macierz odwrotna 1 Operacje elementarne na macierzach Bardzo ważne znaczenie w algebrze liniowej odgrywaja tzw operacje elementarne na wierszach lub kolumnach macierzy

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

Zadania do rozdziału 10.

Zadania do rozdziału 10. Zadania do rozdziału 0. Zad.0.. Jaką wsokość musi mieć pionowe zwierciadło ab osoba o wzroście.80 m mogła się w nim zobaczć cała. Załóżm, że ocz znajdują się 0 cm poniżej czubka głow. Ab prawidłowo rozwiązać

Bardziej szczegółowo

2. Równania nieliniowe i ich uk lady

2. Równania nieliniowe i ich uk lady Metoda Newtona stycznych dla równania f(x) 0: x n+ x n f(x n) f (x n ) Chcemy rozwia ι zać uk lad N równań dla N niewiadomych f (x,x,,x N ) 0 f (x,x,,x N ) 0, f N (x,x,,x N ) 0 krócej: Czy jest jakaś analogia?

Bardziej szczegółowo

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 10. Homomorfizmy Definicja 1. Niech V, W będą dwiema przestrzeniami liniowymi nad ustalonym ciałem, odwzorowanie ϕ : V W nazywamy homomorfizmem

Bardziej szczegółowo

X Wrocławski Konkurs Matematyczny dla uczniów klas I-III gimnazjów. Etap II

X Wrocławski Konkurs Matematyczny dla uczniów klas I-III gimnazjów. Etap II X rocławski Konkurs Matematczn dla uczniów klas I-III gimnazjów rok szkoln 04/05 Etap II Zadanie Uczniowie otrzmali z prac klasowej ocen,, 4 i 5. Ocen, i 5 ło tle samo, a czwórek ło więcej niż wszstkich

Bardziej szczegółowo

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ.

B jest liniowo niezależny V = lin (B) 1. Układ pusty jest bazą przestrzeni trywialnej {θ}. a i v i = i I. b i v i, (a i b i ) v i = θ. 8 Baza i wymiar Definicja 8.1. Bazą przestrzeni liniowej nazywamy liniowo niezależny układ jej wektorów, który generuję tę przestrzeń. Innymi słowy, układ B = (v i ) i I wektorów z przestrzeni V jest bazą

Bardziej szczegółowo

Rozwiązania, seria 5.

Rozwiązania, seria 5. Rozwiązania, seria 5. 26 listopada 2012 Zadanie 1. Zbadaj, dla jakich wartości parametru r R wektor (r, r, 1) lin{(2, r, r), (1, 2, 2)} R 3? Rozwiązanie. Załóżmy, że (r, r, 1) lin{(2, r, r), (1, 2, 2)}.

Bardziej szczegółowo

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu

Bardziej szczegółowo

Rozwiązania zadań z listy T.Koźniewskiego

Rozwiązania zadań z listy T.Koźniewskiego Rozwiązania zadań z listy T.Koźniewskiego 1. Podstawiamy do równań. Tylko czwarty wektor spełnia wszystkie trzy równania.. U 1 : ( + 0x 9x 4, 7x + 8x 4, x, x 4 ), U : ( x 4, 4 x 4, + x 4, x 4 ), U : (x

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

SKRYPT Z MATEMATYKI. Wstęp do matematyki. Rafał Filipów Piotr Szuca

SKRYPT Z MATEMATYKI. Wstęp do matematyki. Rafał Filipów Piotr Szuca Publikacja współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego SKRYPT Z MATEMATYKI Wstęp do matematki Rafał Filipów Piotr Szuca Publikacja współfinansowana przez Unię Europejską

Bardziej szczegółowo

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ). Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich

Bardziej szczegółowo

(wymiar macierzy trójk¹tnej jest równy liczbie elementów na g³ównej przek¹tnej). Z twierdzen 1 > 0. Zatem dla zale noœci

(wymiar macierzy trójk¹tnej jest równy liczbie elementów na g³ównej przek¹tnej). Z twierdzen 1 > 0. Zatem dla zale noœci 56 Za³ó my, e twierdzenie jest prawdziwe dla macierzy dodatnio okreœlonej stopnia n 1. Macierz A dodatnio okreœlon¹ stopnia n mo na zapisaæ w postaci n 1 gdzie A n 1 oznacza macierz dodatnio okreœlon¹

Bardziej szczegółowo

Wyk lad 14 Cia la i ich w lasności

Wyk lad 14 Cia la i ich w lasności Wyk lad 4 Cia la i ich w lasności Charakterystyka cia la Określenie cia la i w lasności dzia lań w ciele y ly omówione na algerze liniowej. Stosujac terminologie z teorii pierścieni możemy powiedzieć,

Bardziej szczegółowo

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4 " 5 3$ 7&=0 5$+7&=4

= Zapiszemy poniższy układ w postaci macierzy. 8+$+ 2&=4  5 3$ 7&=0 5$+7&=4 17. Układ równań 17.1 Co nazywamy układem równań liniowych? Jak zapisać układ w postaci macierzowej (pokazać również na przykładzie) Co to jest rozwiązanie układu? Jaki układ nazywamy jednorodnym, sprzecznym,

Bardziej szczegółowo

Rozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady

Rozdzia l 10. Formy dwuliniowe i kwadratowe Formy dwuliniowe Definicja i przyk lady Rozdzia l 10 Formy dwuliniowe i kwadratowe 10.1 Formy dwuliniowe 10.1.1 Definicja i przyk lady Niech X K b edzie przestrzenia liniowa nad cia lem K, dim(x K ) = n. Definicja 10.1 Przekszta lcenie ϕ : X

Bardziej szczegółowo

Działania na przekształceniach liniowych i macierzach

Działania na przekształceniach liniowych i macierzach Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Przestrzenie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 2 wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 10 Przestrzenie

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja

Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja przestrzenie liniowe nad A: każdy z nich ma rozk lad na sume modu lów prostych. W tych rozk

Bardziej szczegółowo

Zadania z GAL-u 2004/2005

Zadania z GAL-u 2004/2005 1 Rozwia zać uk lady równań: { 2x + 3y = 1 11 3x + y = 0 x + y = 1 12 x + 2y 3z = 3 2x + 4y + z = 1 3x + y + z = 1 13 x + 2z = 6 3y + 2z = 0 2x + 3y + 2z = 1 14 3x + 4y + 2z = 2 4x + 2y + 3z = 3 x + y

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiał ddaktczne na zajęcia wrównawcze z matematki dla studentów pierwszego roku kierunku zamawianego Inżnieria i Gospodarka Wodna w ramach projektu Era inżniera pewna lokata na przszłość Projekt Era

Bardziej szczegółowo

Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe

Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe Zadania z analizy i algebry. (wykład prof.prof. J. Wojtkiewicza i K. Napiórkowskiego) ALGEBRA, przestrzenie wektorowe Zadanie Zbadać czy wektor v mażna przedstawić jako kombinację liniową wektorów e i

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 Centralna Komisja Egzaminacjna EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA ODPOWIEDZI I PROPOZYCJE OCENIANIA PRZYKŁADOWEGO ZESTAWU ZADAŃ PAŹDZIERNIK 2011 Zadania

Bardziej szczegółowo

5.4.1. Ruch unoszenia, względny i bezwzględny

5.4.1. Ruch unoszenia, względny i bezwzględny 5.4.1. Ruch unozeni, zględny i bezzględny Przy ominiu ruchu punktu lub bryły zkłdliśmy, że punkt lub brył poruzły ię zględem ukłdu odnieieni x, y, z użnego z nieruchomy. Możn rozptrzyć tki z przypdek,

Bardziej szczegółowo

Zastosowania wyznaczników

Zastosowania wyznaczników Zastosowania wyznaczników Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 7.wykład z algebry liniowej Warszawa, listopad 2012 Mirosław Sobolewski (UW) Warszawa, listopad 2012 1 / 17

Bardziej szczegółowo

Przestrzenie liniowe

Przestrzenie liniowe Rozdział 4 Przestrzenie liniowe 4.1. Działania zewnętrzne Niech X oraz F będą dwoma zbiorami niepustymi. Dowolną funkcję D : F X X nazywamy działaniem zewnętrznym w zbiorze X nad zbiorem F. Przykład 4.1.

Bardziej szczegółowo

Całkowanie przez podstawianie i dwa zadania

Całkowanie przez podstawianie i dwa zadania Całkowanie przez podstawianie i dwa zadania Antoni Kościelski Funkcje dwóch zmiennch i podstawianie Dla funkcji dwóch zmiennch zachodzi następując wzór na całkowanie przez podstawianie: f(x(a, b), (a,

Bardziej szczegółowo

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Pawe l Józiak 007-- Poje cia wste pne Wielomianem zmiennej rzeczywistej t nazywamy funkcje postaci:

Bardziej szczegółowo

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011

Formy kwadratowe. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 14. wykład z algebry liniowej Warszawa, styczeń 2011 Formy kwadratowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 14. wykład z algebry liniowej Warszawa, styczeń 2011 Mirosław Sobolewski (UW) Warszawa, 2011 1 / 16 Definicja Niech V,

Bardziej szczegółowo

Ś Ń ź Ś ź Ś Ś Ś Ś Ś Ś Ś Ą Ś Ż ż ż Ż ć ć ź ź ÓĆ ć Ż Ą ć Ż ż ć Ą Ł Ś Ń ć Ś Ą Ą ż Ż Ą ź Ą ź Ą ż Ś Ń Ł Ś Ś Ó Ą ż ż Ś Ń Ł Ś ż ź ź Ą ć ż ż ć ć ż ć ż Ą ż Ł ż ć ż ż Ż ż ż ż ć Ąć ż ż ż Ż Ż ż ż ć ż ć ż ż ż Ż ż ż

Bardziej szczegółowo

Fizyka laboratorium 1

Fizyka laboratorium 1 Rozdzia l Fizyka laboratorium.. Elementy analizy matematycznej Funkcje Zmienna y nazywa sie zmienna zależna albo funkcja zmiennej x, jeżeli przyjmuje ona określone wartości dla każdej wartości zmiennej

Bardziej szczegółowo

Zmiana baz. Jacek Jędrzejewski 2014. 1 Macierz przejścia od bazy do bazy 2

Zmiana baz. Jacek Jędrzejewski 2014. 1 Macierz przejścia od bazy do bazy 2 Zmiana baz Jacek Jędrzejewski 2014 Spis treści 1 Macierz przejścia od bazy do bazy 2 2 Wektory a zmiana baz 2 21 Współrzędne wektora względem różnych baz 2 22 Wektory o tych samych współrzędnych względem

Bardziej szczegółowo

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że

4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze. ϕ : K(x 0, δ) (y 0 η, y 0 + η), taka że 4. O funkcji uwikłanej 4.1. Twierdzenie. Niech będzie dana funkcja f klasy C 1 na otwartym podzbiorze taka że K(x 0, δ) (y 0 η, y 0 + η) R n R, f(x 0, y 0 ) = 0, y f(x 0, y 0 ) 0. Wówczas dla odpowiednio

Bardziej szczegółowo

Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010

Rezolucja w rachunku predykatów. Przedrostkowa koniunkcyjna postać normalna. Formu ly ustalone. Joanna Józefowska. Poznań, rok akademicki 2009/2010 Instytut Informatyki Poznań, rok akademicki 2009/2010 1 Postać klauzulowa formu l 2 Regu la rezolucji Regu la rezolucji dla klauzul ustalonych Regu la rezolucji dla klauzul ustalonych a spe lnialność Ogólna

Bardziej szczegółowo

Algebra z geometrią analityczną zadania z odpowiedziami

Algebra z geometrią analityczną zadania z odpowiedziami Algebra z geometrią analityczną zadania z odpowiedziami Maciej Burnecki Spis treści 0 Wyrażenia algebraiczne, indukcja matematyczna 2 2 2 1 Geometria analityczna w R 2 3 3 3 2 Liczby zespolone 4 4 4 3

Bardziej szczegółowo

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) =

y 1 y 2 = f 2 (t, y 1, y 2,..., y n )... y n = f n (t, y 1, y 2,..., y n ) f 1 (t, y 1, y 2,..., y n ) y = f(t, y),, f(t, y) = Uk lady równań różniczkowych Pojȩcia wsȩpne Uk ladem równań różniczkowych nazywamy uk lad posaci y = f (, y, y 2,, y n ) y 2 = f 2 (, y, y 2,, y n ) y n = f n (, y, y 2,, y n ) () funkcje f j, j =, 2,,

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

Optymalizacja Rozpoczniemy od przedstawienia kilku charakterystycznych przyk ladów zadań optymalizacji liniowej.

Optymalizacja Rozpoczniemy od przedstawienia kilku charakterystycznych przyk ladów zadań optymalizacji liniowej. Optymalizacja Rozpoczniemy od przedstawienia kilku charakterystycznych przyk ladów zadań optymalizacji liniowej. Zagadnienie diety. Jak wymieszać wymieszać pszenice, soje i maczk e rybna by uzyskać najtańsza

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Podstawowe działania w rachunku macierzowym

Podstawowe działania w rachunku macierzowym Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory

Bardziej szczegółowo

Ę Ć Ę Ó Ą ź Ó Ń Ń Ć Ó Ó Ł Ź Ł Ą Ł ć Ł ć Ź Ź ź Ń Ń Ź ć ć Ó Ą ź ć ć Ż ć ć Ź ć Ą ź Ł Ł Ę ć ć Ł Ś ć Ź ć Ł ć ć ć Ż Ó Ś Ł ć ź ć Ć ć ź ć Ź Ź Ł ć ć ć ź ź Ż Ą ź Ł ć ć ć Ó Ś Ć Ń ć Ń ć ć ź ć ć ć ć Ą Ł Ń ć Ł ć Ę Ą

Bardziej szczegółowo

Ć ń ń Ę Ó ń Ę ć ć ź Ę ć Ź ć ń ń ń ń ć ń ń ń Ę ć Ą Ę Ź ć ć ń Ą ź Ó ź ń Ę ć ć ń Ó Ą Ą ź ź Ę Ć Ę ć Ó ź Ą ć ć Ę ź ć Ź ć Ę ć Ź Ź ć ć ć ć Ł Ę ć Ć Ę Ź ć Ż Ę ń Ź Ę ć ń ć ń Ź Ź ń Ę ń ć Ó Ó Ź ć ń Ź ń Ż ć ź ź Ą Ć

Bardziej szczegółowo

Ą Ą ć Ż ć ć ź ć ć ć ć ć ć ć ć ć Ą ć ć Ą ć ć Ó Ź ć Ą ć ć ć ć ć Ą ć ć Ą Ź ć ć ć ć ć ć ć ć ć ć ć ć ć Ą ć Ą Ż ć Ź ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ż ć ć Ż ć ć ć ć ć Ą ź ć Ę ć ć ć ć Ź ć ć ź ć ć ć

Bardziej szczegółowo

Ę Ę Ń ć Ź ć Ź Ń Ę Ó Ź Ę Ź Ń Ń ć Ź ź Ą Ź ć Ę Ą Ę Ź Ź Ź Ę Ź Ą Ź Ź Ą Ó Ó Ź Ą ć Ń Ą ć ć ć Ż Ą Ą Ż Ą Ą Ą ć Ź Ź Ę Ą Ą Ę Ź Ń ź Ś ź Ż Ż Ż Ą ć Ś Ą ć Ą Ż Ń Ż Ą Ź Ź ć Ń Ś Ń Ź Ź Ą Ź Ż Ą ź ć ć Ę Ź Ź Ź ź Ę ź Ę Ń Ź Ę

Bardziej szczegółowo

ć ź ć ź ć ć Ź ć ć ć ć ź ć ć ź ć ć Ź Ł ć ć ć Ż ć Ż ć ć Ź ź Ć Ą Ź Ż Ż Ź Ż Ć Ł Ł Ź Ź ź Ą ź Ą Ć Ź Ł Ź ć Ź ćź Ź Ź Ą Ź ć Ź ć Ł ć Ł ć ć Ł ć Ą ć ć ć ź ź ć ć ć ć ź ć ć ć ź ć ć ć ć ć ć ć ć Ł Ź ć ź ć Ą ć ć Ą Ć

Bardziej szczegółowo

Ł Ł Ń Ń Ś Ń Ń ź Ń Ą Ż Ł Ę Ł Ś Ą Ą Ś Ł Ń Ś Ą Ń ć Ą Ą Ą Ą Ł Ś Ę Ś Ń Ż Ż Ś Ć Ź ć Ę Ś Ą Ź Ś Ś Ś Ś Ż Ś Ź Ą Ż Ć Ą Ś Ź Ż Ź Ź Ź Ś Ą ć Ś Ść Ś Ść Ż Ź Ź ć Ź Ź Ź Ż Ż Ź Ś Ś Ż Ż ć Ź Ż Ż ć Ś Ś Ą Ź ć Ś ć ć Ś Ś ć Ż Ż Ą

Bardziej szczegółowo

Ą Ą Ą ń ż Ę Ż ż ń ż ć ż ż ć Ń Ż ż ż Ź Ą ń Ż Ę Ń ż Ą ń ż ć Ź ć ć ż ć ż ć ż Ż ż ż ż ć ż ń ż ć ń ż ż ż ć ć ń ń ż ć ż ćż ż ż ń ż ń ż ż Ę ż Ę Ą ż ż Ęć ż ż Ę ż ć ć ć ż ń ź ń ń Ź ż Ę Ę ń Ź Ź ć Ż ć ź ż ż ż ź Ę

Bardziej szczegółowo

Ł Ł Ś Ł Ń Ń Ł Ę ć ć Ż ć Ż Ę ć ć ć Ę Ę ć Ż ź Ż ć Ż Ą Ę Ę Ż Ę ź Ś ć ć Ę ź Ą ć Ł Ę Ę ź Ż ć ć Ę Ę Ż Ż ć Ż Ę ć Ę Ę ć ź Ą ć ć ć Ę ć ć ź ć ć ź ć Ś Ż ć ć Ż ć Ż ć Ż ć ź Ż Ż Ę Ę ź Ę ć Ż Ż Ę Ż Ę Ż Ą ć ć ć Ż ź Ż ć

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 5 Kalkulacja sk ladki netto I 1 Kodeks cywilny Tytu l XXVII, Umowa ubezpieczenia Dzia l I. Przepisy ogólne Dzia l II. Ubezpieczenia majatkowe

Bardziej szczegółowo

1. Rozwiązać układ równań { x 2 = 2y 1

1. Rozwiązać układ równań { x 2 = 2y 1 Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,

Bardziej szczegółowo

Programowanie liniowe metoda sympleks

Programowanie liniowe metoda sympleks Programowanie liniowe metoda sympleks Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2012 Mirosław Sobolewski (UW) Warszawa, 2012 1 / 12

Bardziej szczegółowo

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l TEORIA FUNKCJONA LÓW GȨSTOŚCI (Density Functional Theory - DFT) Monika Musia l PRZEDMIOT BADAŃ Uk lad N elektronów + K j ader atomowych Przybliżenie Borna-Oppenheimera Zamiast funkcji falowej Ψ(r 1,σ 1,r

Bardziej szczegółowo

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016. Forma studiów: Niestacjonarne Kod kierunku: 06.

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2015/2016. Forma studiów: Niestacjonarne Kod kierunku: 06. Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 201/2016 Kierunek studiów: Zarządzanie i inżynieria

Bardziej szczegółowo

Ćwiczenie 361 Badanie układu dwóch soczewek

Ćwiczenie 361 Badanie układu dwóch soczewek Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka

Bardziej szczegółowo

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów

wszystkich kombinacji liniowych wektorów układu, nazywa się powłoką liniową uk ładu wektorów KOINACJA LINIOWA UKŁADU WEKTORÓW Definicja 1 Niech będzie przestrzenią liniową (wektorową) nad,,,, układem wektorów z przestrzeni, a,, współczynnikami ze zbioru (skalarami). Wektor, nazywamy kombinacją

Bardziej szczegółowo

Wprowadzenie z dynamicznej optymalizacji

Wprowadzenie z dynamicznej optymalizacji Wprowadzenie z dynamicznej optymalizacji Lukasz Woźny 29 kwietnia 2007 Spis treści 1 Optymalizacja statyczna a optymalizacja dynamiczna 2 1.1 Ekstrema lokalne funkcji wielu zmiennych - statyka...... 2

Bardziej szczegółowo

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm

Rozdział 5. Macierze. a 11 a a 1m a 21 a a 2m... a n1 a n2... a nm Rozdział 5 Macierze Funkcję, która każdej parze liczb naturalnych (i,j) (i = 1,,n;j = 1,,m) przyporządkowuje dokładnie jedną liczbę a ij F, gdzie F = R lub F = C, nazywamy macierzą (rzeczywistą, gdy F

Bardziej szczegółowo

9 Przekształcenia liniowe

9 Przekształcenia liniowe 9 Przekształcenia liniowe Definicja 9.1. Niech V oraz W będą przestrzeniami liniowymi nad tym samym ciałem F. Przekształceniem liniowym nazywamy funkcję ϕ : V W spełniającą warunek (LM) v1,v 2 V a1,a 2

Bardziej szczegółowo

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi: Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane

Bardziej szczegółowo

Równania różniczkowe cząstkowe

Równania różniczkowe cząstkowe Równania różniczkowe cząstkowe Definicja: Równaniem różniczkowm cząstkowm nazwam takie równanie różniczkowe w którm wstępuje co najmniej jedna pochodna cząstkowa niewiadomej funkcji dwóch lub więcej zmiennch

Bardziej szczegółowo

LOGIKA ALGORYTMICZNA

LOGIKA ALGORYTMICZNA LOGIKA ALGORYTMICZNA 0.0. Relacje. Iloczyn kartezjański: A B := (a, b) : a A i b B} (zak ladamy, że (x, y) i (u, v) s a równe wtedy i tylko wtedy gdy x = u i y = v); A n := (x 1,..., x n ) : x i A}; R

Bardziej szczegółowo

Całki powierzchniowe w R n

Całki powierzchniowe w R n Całki powierzchniowe w R n Na początek małe uzupełnienie z algebry liniowej. Niech R n k oznacza przestrzeń liniową macierzy o n wierszach i k kolumnach. Dla dowolnej macierzy A R n k, gdzie k n, połóżmy

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek

Bardziej szczegółowo

Dyskretne modele populacji

Dyskretne modele populacji Dyskretne modele populacji Micha l Machtel Adam Soboczyński 17 stycznia 2007 Typeset by FoilTEX Dyskretne modele populacji [1] Wst ep Dyskretny opis modelu matematycznego jest dobry dla populacji w których

Bardziej szczegółowo

ROZWIĄZANIA I ODPOWIEDZI

ROZWIĄZANIA I ODPOWIEDZI Zastosowania matematki w analitce medcznej zestaw do kol. semestr. - rozwiązania i odpowiedzi (część I). ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. a) Rozważając dwa przpadki ze względu na moduł mam: skąd ostatecznie,3>.

Bardziej szczegółowo

1 Podstawowe struktury algebraiczne i cia lo liczb zespolonych

1 Podstawowe struktury algebraiczne i cia lo liczb zespolonych 1 Podstawowe struktury algebraiczne i cia lo liczb zespolonych Niech X i Y bȩd a zbiorami Iloczynem kartezjańskim tych zbiorów nazywamy zbiór X Y = {(x, y) : x X, y Y } Dwuargumentowym dzia laniem na zbiorze

Bardziej szczegółowo

1 Elementy logiki i teorii mnogości

1 Elementy logiki i teorii mnogości 1 Elementy logiki i teorii mnogości 11 Elementy logiki Notatki do wykładu Definicja Zdaniem logicznym nazywamy zdanie oznajmujące, któremu przysługuje jedna z dwu logicznych ocen prawda (1) albo fałsz

Bardziej szczegółowo

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017. Forma studiów: Niestacjonarne Kod kierunku: 11.

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017. Forma studiów: Niestacjonarne Kod kierunku: 11. Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Techniczny obowiązuje studentów rozpoczynających studia w roku akademickim 206/207 Kierunek studiów: Informatyka Profil: Praktyczny

Bardziej szczegółowo

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów

lim = 0, gdzie d n oznacza najdłuższą przekątną prostokątów 9. CAŁKA POWÓJNA 9.. Całka podwójna w prostokącie Niech P będzie prostokątem opisanm na płaszczźnie OXY nierównościami: a < < b, c < < d, a f(,) funkcją określoną i ograniczoną w tm prostokącie. Prostokąt

Bardziej szczegółowo

Procesy Stochastyczne - Zestaw 1

Procesy Stochastyczne - Zestaw 1 Procesy Stochastyczne - Zestaw 1 Zadanie 1 Niech ξ i η bed a niezależnymi zmiennymi losowymi o rozk ladach N (0, 1). Niech X = ξ +η i Y = ξ η. Znaleźć rozk lad (X, Y ) i rozk lad warunkowy L X ( Y ). Zadanie

Bardziej szczegółowo

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013. Forma studiów: Niestacjonarne Kod kierunku: 12.

Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013. Forma studiów: Niestacjonarne Kod kierunku: 12. Państwowa Wyższa Szko la Zawodowa w Nowym Sa czu Karta przedmiotu Instytut Zdrowia obowiązuje studentów rozpoczynających studia w roku akademickim 2012/2013 Kierunek studiów: Pielęgniarstwo Profil: Praktyczny

Bardziej szczegółowo

Wyk lad 3 Wielomiany i u lamki proste

Wyk lad 3 Wielomiany i u lamki proste Wyk lad 3 Wielomiany i u lamki proste 1 Konstrukcja pierścienia wielomianów Niech P bedzie dowolnym pierścieniem, w którym 0 1. Oznaczmy przez P [x] zbiór wszystkich nieskończonych ciagów o wszystkich

Bardziej szczegółowo

Metody numeryczne. Zagadnienia własne. Janusz Szwabiński.

Metody numeryczne. Zagadnienia własne. Janusz Szwabiński. Metody numeryczne Zagadnienia własne Janusz Szwabiński szwabin@ift.uni.wroc.pl nm_slides-11.tex Metody numeryczne Janusz Szwabiński 17/12/2002 21:53 p.1/66 Zagadnienia własne 1. Pojęcia podstawowe 2. Zaburzenia

Bardziej szczegółowo