ZADANIE ST S A T T A E T C E Z C N Z OŚĆ Ś Ć UK U Ł K AD A U D 53

Wielkość: px
Rozpocząć pokaz od strony:

Download "ZADANIE ST S A T T A E T C E Z C N Z OŚĆ Ś Ć UK U Ł K AD A U D 53"

Transkrypt

1 ZDNE TTECZNOŚĆ UKŁDU 5

2 Treść zadania Wyznazyć najniejszą wartość siły, przy której nastąpi utrata stateznośi. kn 54

3 Układ podstawowy etody przeieszzeń aa jest trzykrotnie geoetryznie niewyznazalna 55

4 Dobór sheatów prętów aa z dodatkowyi podporai 56

5 tan ϕ Wykresy Odkształenie ray M M ϕ ϕ l l ( ϕ 4 s ( M M 6 M s r 6 d s ( ( ( s( r( ( ( ( d d 57 ( ( sin os ( ( sin ( ( os sin

6 tan ϕ Wykresy ( 4 M r( 8 T M s( ϕ M r ( M T r d ( s( ( d ( ( os sin ( ( os T 4 T T 8 4 T 8 M T T T 6 ( s( r( r( 58

7 tan ϕ eakje ( ϕ 4 M s( ( M : ( 6 ( : M 59

8 X Y tan ϕ eakje 8 r( 6 N ϕ N r N 8 ( N : : N 8 N r( ( 6 r( N N 8 N X r Y N 8 ( N : : r( N r( N 8 8 T N X V ( : r r( 6

9 tan ϕ eakje 8 ϕ r( N ( 6 r( r ( ( r( r( 8 4 s ( M 8 T 6

10 tan ϕ Wykresy Odkształenie ray M ϕ ϕ M l l ( M M ϕ M ( ( ( M ϕ M sin ( ( sin( os( 6

11 tan ϕ Wykresy ( M 8 ( M ϕ T 4 T 8 T 8 4 M T M T ϕ T T T M T T sin ( ( sin( os( ( ( T T T ( ( 6

12 tan ϕ eakje ϕ ( M : M ( M : ( 8 ( 5 6 ( 64

13 tan ϕ eakje N 8 X : N Y 8 N N : N 8 N ϕ 8 5 ( N 8 N X Y ( 6 N ( N : N 8 N : 8 ( ( ( 5 N T N X V ( ( : 65

14 tan ϕ eakje ϕ 8 5 N ( 6 ( ( ( ( M 8 ( 8 5 ( T 66

15 tan Wykresy Odkształenie ray r( ( r( M ( ( ( M ( s( r( r( M s( ( r( r( r( os d d( ( os sin M ( ( M sin ( ( sin( os( 67

16 tan Wykresy M M r( T r( ( M l l r( ( ( os d d( ( os sin r( r( T 6 T r( 6 T ( r( T ( r( T 68 T sin ( ( M sin( os( T ( T T T T T ( 6 ( ( ( (

17 M M tan Wykresy r( T r( T r ( M ( ( ( os d d( ( os sin r b ( T T T sin d( r( b( b( ( l l M T T b ( T T r T ( r ( b ( 69 T sin ( ( sin( os( os ( ( sin( os( ( ( r r ( r (

18 tan eakje r( ( r( M r( M r( ( : r M ( ( : ( 7

19 tan eakje b ( b( r ( b N N X : Y : N N ( b( N ( N b ( r( ( N N ( r N X b Y : N N ( r ( N : N X ( r ( b( r ( 7 T N V ( r ( b( : ( r ( b(

20 tan eakje r( ( ( r ( b( r( b ( r( r ( ( M N b ( ( r ( b( N b ( r ( T 7

21 ównowaga w węzłah ϕ ( 6 r( r( ( ( r ( b( ϕ ( 6 (

22 ównowaga w węzłah ϕ ϕ ( 6 r( ϕ ϕ 6 ( r( ϕ ϕ ( r( 6 ϕ ϕ 74

23 ównowaga w węzłah ϕ ϕ 8 5 ( 6 ( ϕ ϕ ( a ( ϕ 8 ϕ ( a ( ϕ 5 6 ϕ 75

24 ównowaga w węzłah ϕ ϕ r( ( ( r ( b( ϕ ϕ ( ( r ( b( r ϕ 6 6 ϕ 6 ( ( r ( b( r ϕ 6 6 ϕ 6 76

25 Układ równań na podstawie równowagi w węzłah ϕ ϕ ϕ ϕ ϕ ϕ ( r ( 6 ϕ ϕ lub ( a ( ϕ 8 ϕ 5 6 ( ( r ( b( r ϕ 6 6 ϕ 6 ( ( ( sin os d s( ( ( sin d r( d ( ( os sin b( ( ( ( os d sin d ϕ ϕ ( r ( 6 r 8 5 ϕ ( ( 6 6 ϕ r b ( ( ( ( sin ( ( sin( os( os ( ( r sin( os( 77

26 ozwiązanie ( r( 6 r ( ( ( ( r ( b( l l Pierwsze przeięie wykresu i osi x rozwiązanie.77 kn.77 kr kN ( kn Pierwsza l fora wybozenia Drugie przeięie wykresu i osi x.4.4 kn 567kN ( 78

27 aa z siłą tylko w węźle l ( r( 6 r ( b( ϕ ϕ Wartość siły krytyznej wyznazay na podstawie zależnośi ( r( 6 r ( b( 79

28 aa z siłą tylko w węźle ( r( 6 r ( b( kn 79kN ( 5.47 kn 88kN ( kn l 8

29 aa z siłą tylko w węźle l ( ( ( r ( ϕ 6 ϕ l Wartość siły krytyznej wyznazay na podstawie zależnośi ( ( ( r ( 8

30 aa z siłą tylko w węźle ( (.9 kn 4kN ( r ( (.88 kn 84kN ( kn l 8

31 Porównanie stateznośi ray i pręta kr 79kN kn l kr kr π l w l w kn π ( kr 685.4kN kr 48kN kr l w kn π ( kr 74kN 8

32 KONEC 84

Ę Ę Ę Ó Ę Ę Ó Ź ć Ł Ś Ó Ó Ł Ł Ż ć ć Ż Ą Ż ć Ę Ę ź ć ź Ą Ę Ż ć Ł Ę ć Ż Ę Ę ć ć Ż Ż Ę Ż Ż ć Ó Ę Ę ć Ę ć Ę Ę Ż Ż Ż Ż ź Ż Ę Ę ź Ę ź Ę Ż ć ć Ą Ę Ę ć Ę ć ć Ź Ą Ę ć Ę Ą Ę Ę Ę ć ć ć ć Ć Ą Ą ć Ę ć Ż ć Ę ć ć ć Ą

Bardziej szczegółowo

ż ż ć ż Ż ż ż ć Ł ń ń ź ć ń Ś ż Ł ć ż Ź ż ń ż Ż Ś ć ź ż ć Ś ń ń ź ż ź ń Ś ń Ś ż ń ń ż ć ż ż Ą ć ń ń ń ć ż ć Ś ż Ć ć ż Ś Ś ć Ż ż Ś ć Ż Ż Ż Ą ń ń ć ń Ż ć ń ż Ż ń ż Ś ń Ś Ś ć Ż Ż Ć Ó Ż Ść ż Ż ż ż ń Ż Ż ć

Bardziej szczegółowo

ń ń ź ź ć ń ń Ą Ź ń Ą ĄĄ Ą ń ź Ł Ł ń ć Ó Ą Ą ń ń ć ń ć ź ć ć Ó ć Ó ć Ś ć Ó ń ć ć ć ź ć Ą Ó Ź Ź Ź Ą ź Ó Ą ń ń Ź Ó Ź Ń ć Ń ć ź ń ń ń ń ń ń Ń ń Ź ń Ź Ź Ź ń ń ń Ą Ź Ó ĄĄ ń Ą ń ń Ó Ń Ó Ó ń Ą Ó ź ń ź Ą Ó Ą ź

Bardziej szczegółowo

Ą Ą Ś Ż Ą ć Ź ć Ó Ś Ż Ź Ó ć Ś Ż ć Ś Ź Ó ć Ż Ż Ź Ż Ó Ź Ó Ż Ż Ż Ż Ż Ś Ź Ś ć ć ć Ź ć ć Ó Ó Ó Ś Ą ć ć Ź Ż Ż Ż Ż ź Ż ź Ó Ś Ą Ź Ż Ż ć Ź Ó Ż Ó Ś Ą Ś Ś Ź Ż Ś Ż Ż Ź Ó ć Ś Ś Ść Ś Ż Ź Ó Ś Ó Ź Ó Ż Ź Ó Ś Ś Ż Ź Ż Ś

Bardziej szczegółowo

Ę Ł ć Ą ż Ł Ł Ą Ó ż Ł Ś Ę Ś Ó Ł Ń Ą Ą Ł Ą ĄĄ ż ć Ś Ź ć ć Ł ć ć ć Ś Ó Ś Ś ć ć ć ć Ó ć ć ć Ś ż Ł Ą ż Ś ż Ł ć ć Ó ć ć Ą ć Ś ć ż ć ć Ś ć Ł Ń ć ć Ę ć ć ć Ó ć ć ć ć ć ć ź ć ć Ó ć ć ć ć ć ż ć ć ć ć Ł ć ć ć ć

Bardziej szczegółowo

Ą Ł Ą Ą ś ś ż Ż ś ś ś ść ś ś Ą ś Ż ś ć ż ś ś ż ś ż Ć Ł Ż ż Ź ć ĄĄ Ż Ą Ż Ą Ź Ż Ł Ł Ę ś ś ś ż Ą ś Ą ś Ą Ż Ą Ż Ą Ć Ż Ż ś Ż Ą Ć Ł Ł Ę ś ż Ż ć ś ś ś ś Ż Ć ż ż ś ś ż ś ś Ż Ż ś ś ś ś ś Ż ż Ż ś ś Ż Ę ż ś ż Ź Ę

Bardziej szczegółowo

Ż ź ź ź ź ź ć ć Ą Ą ć Ą ź ź ć Ż Ś ź ć ć Ę ć ź ź ć ź Ą ĄĄ Ń Ą Ń ć ć ć ć Ę ć Ń ć ć ć ć Ą ć ć ć ć ć Ń Ń ć ć ź ź ć Ę Ę ć Ą ć ć ć ć ć Ń Ę ć ć ć ć ć ć ć ć ć ź ć ź Ą ć ć ć Ń ć ć ć ć ź ć ć ć Ń Ń ć ź ź ć ź ź ć

Bardziej szczegółowo

Ę Ę Ę Ę Ę Ź Ą Ę Ą Ę Ą Ą Ę ć Ś ć Ę Ą ź Ą Ź ć Ę Ź Ę ć Ą Ę Ś Ę Ę Ź Ą Ę ć ź Ą Ź Ę ź Ę Ą Ś Ł Ą Ź Ę Ę Ę Ę ć Ę Ą Ę Ę Ą Ś Ą Ę ź ć Ę Ę Ę ź Ź ź Ą Ź Ę Ź ź Ź ć ć Ę Ę Ę Ą Ą Ą Ę ć Ę Ę ć Ę Ę Ą Ę Ą Ę Ę Ę Ą Ę Ś ć Ą ć ć

Bardziej szczegółowo

Ł Ą Ś Ą Ą ź ć ź Ł Ą ć ć ć ć ź Ś ć ć ć Ą Ł ć ź ć ć ć ć Ł ć ć ć ć ć Ł Ą ć Ś Ś Ż ć ź Ą ź ź ź ć ź ć ć ć ć ź ź ć ź ź ź Ś ź ź ć ć ć ć Ś ć ź ź ć ć Ą ź ź ź ź ź ć ć ć ć Ś ć ć ć Ś ć Ż Ł Ś Ł Ł Ł Ł Ż Ł Ś Ś ź ć Ą

Bardziej szczegółowo

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram

ĆWICZENIE 3 Wykresy sił przekrojowych dla ram. Zasady graficzne sporządzania wykresów sił przekrojowych dla ram ĆWICZENIE 3 Wykresy sił przekrojowych dla ram Zasady graficzne sporządzania wykresów sił przekrojowych dla ram Wykresy N i Q Wykres sił dodatnich może być narysowany zarówno po górnej jak i dolnej stronie

Bardziej szczegółowo

ż Ą Ź Ą Ż ź ż ć Ą ż ź ć ź Ś ż ź ć ż ĄĄ ż ż ź ż ć ć Ę ć ż ć Ś ć ć ź ż ż ć ż ć Ę ć Ę Ę ż ż Ę ć Ś ż ć ż ć ż Ą ź ż źć ż ż ż ż ź ź ż ć ć ż ć ż ć ć ż Ę ć ź ć ć ż ć ć ż ć ć ć ć ż Źć ź ż ć ć Ę Ą Ę ć ź Ę Ę ż Ę

Bardziej szczegółowo

3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ

3. RÓWNOWAGA PŁASKIEGO UKŁADU SIŁ 3. ÓWNOWG PŁSKIEGO UKŁDU SIŁ Zadanie 3. elka o długości 3a jest utwierdzona w punkcie zaś w punkcie spoczywa na podporze przegubowej ruchomej, rysunek 3... by belka była statycznie wyznaczalna w punkcie

Bardziej szczegółowo

Ź Ć Ą ć Ą ż Ć Ł Ł Ł Ą ć Ź ż ń ć ń ż ż ż ż Ź Ź Ą ż Ć ż ż ż ż ż Ą Ą Ć Ź ż ć ż ż Ą Ź Ą ż ż ć ż Ć Ą Ą ż Ą ź ż Ą ż Ź ż Ą ż ż ż ć Ąć ć Ą ć ż Ć Ą Ź Ą ż ż Ą ż Ą Ą ĄĄ Ą ż ż Ą Ć ż Ą ż ż ż ć Ą Ą Ł ż Ć ć ĄĄ Ą ć Ą

Bardziej szczegółowo

ź ą ą ź ć ź ą ć ź ź ń ą ą ń ą ą ą Żą Żą ć ź ą ą ą ą ą ą ć ć ź ą ąą ą ą ą ąą ą ą ć ą ć ź ć ć ć ą ć ć ą ć ć ć ć ą ć ą ą ć ć ć ą ć ź ć ć ź ć ą ć ą ą ć ć Ę Ł Ż ć ą ą ć ć ą ć ć ć ą ą ń Ż ą ą ą ą ą ć ć ą ć ą

Bardziej szczegółowo

Ź Ź Ó Ł Ś Ź Ń Ż Ę Ę ź Ę Ź ĘĄ ż ź Ę Ź Ż ź Ź Ł ź Ę Ż ż Ż Ą ź ż Ż Ż ż Ź ż ć ć ć Ż ż ż Ź ż ż Ź Ź Ż ć ć Ą Ż ć Ż Ń Ó ż ć ż Ż ż Ż Ź Ż ż ż Ę ż Ź Ź Ź Ź Ź ĄĄ ź Ż Ź Ź Ź Ż Ź Ź ź Ż Ź ź ź ź Ś Ź Ę ĘĄ ż Ż Ę ż ć Ś ĄĄ Ę

Bardziej szczegółowo

Ą ń ż ź ż ż ż ź ź Ą ń ź ź Ć Ł ń Ą Ą ż Ę Ę ń ź ź ź ź ż ż ź ź ż ź ź ź ź ż ź ż ź ż ź ń ź ż ń ź ż Ó ń ń ń ż ż Ą ź ż ż Ę ż ż ż ż Ć ż ż Ą Ą ż ź ż ź ź ń Ę ń Ą ż ż ń ź ź ź Ę ż Ś ż Ć ń Ę ż Ę Ę Ę Ę Ś ź Ę ź ĄĄ Ę

Bardziej szczegółowo

Ą Ą Ą Ą Ą Ą Ą Ą Ł Ó Ę Ń Ą Ą Ę Ł Ę Ś Ś Ś Ś Ł Ą Ż Ś Ź Ł Ó Ł Ą Ł Ę Ł Ą Ą Ą Ą Ą Ą Ą ĄĄ Ą Ś Ć Ą Ę Ę Ć Ł Ł Ś Ź Ź Ó ĆŚ Ż Ł Ś Ś Ź Ź Ó Ę Ę Ę Ó Ś Ź Ą Ę Ą Ś Ę Ł Ś Ł Ś Ś Ń Ś Ę Ę Ż Ż Ó Ś Ą Ć Ą Ź Ń Ś Ś Ś Ć Ł Ś

Bardziej szczegółowo

ź Ł Ą ź ż ź ż ż ć ż ć ź ć Ą ć Ź ć Ą ż Ś Ą ż ź ń ź Ź ż Ą ż ć ć ż ń ż Ś ż ż ż ć ń ż ż Ź ń Ś ć ć ź Ą ż ć ń ż ż ż Ź ń ć Ę ż ż ń Ź ż ż ć ż ć ć ż ń Ś ć Ć ć ń ć ć ż ć ń ż Ś ż Ó ń Ś Ś Óż Ą Ą Ą ń ż Ń Ń Ł ż Ś Ą

Bardziej szczegółowo

Ó ć ć Ł ć ć Ó ć ć ć ć ć Ć ć ź ć ć ć ź ć ć Ó Ó ć Ó Ó Ą Ó Ź Ó Ł Ó Ó Ó Ź Ó Ó ć Ć ć Ó Ł ć ć ć Ć ć ć Ó Ó ć ć Ó Ć ć ć Ą ć Ó Ć Ó ć ć Ć Ć Ó Ź ć Ó Ą ć ć ć ź ć Ś ć ź Ć ć ć Ć Ź ĄĄ Ą Ó Ć ć Ć Ć Ć ć Ć Ć Ć Ą ĄĄ ź Ą Ś

Bardziej szczegółowo

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Siła skupiona Mechanika teoretyczna Wykłady nr 5 Obliczanie sił wewnętrznych w belkach przykłady 1 2 Moment skupiony Obciążenie ciągłe równomierne 3 4 Obciążenie ciągłe liniowo zmienne Obciążenie ciągłe

Bardziej szczegółowo

Ś ć Ź Ż ć Ś Ą Ć Ł Ą Ł Ł Ś Ś Ń Ś Ś ć ć Ą ć ć ć Ść ć Ść Ł Ł Ą ć Ź Ż ź Ź Ń ć Ś Ą Ą Ł ć ć ć ć ć ź ć ć Ą ć ź ź ź Ł ź ź ć ź Ą Ą ź ć ć ć Ł ć ć Ą Ń ć ć ć Ą Ą Ą ć ć Ą Ą ć Ą Ł ć Ą Ą Ó Ó Ą ć ź ź ć ć ć Ą Ą Ą ĄĄ Ł

Bardziej szczegółowo

ć Ó ć Ź ć ć ć ć ć ć Ś Ą ć ź Ź ć Ź Ź ć ć ć Ą Ź ĄĄ ć ź ć ć ć ć ć ć Ą ź Ó ć ć ć ć ć ć ć Ą ć ź ć ć ć Ś Ą ź ć Ó ć ć ć Ł ć ć Ą ć ć Ą Ó ć ć ć ć ź ć ć ć ć ć ć Ść ć ć Ó ć Ę ć ć ÓĄ Ś ć ć ć Ą ć ć Ź ź Ś ć Ź ć ć ć

Bardziej szczegółowo

ź ź ź Ł ź Ł Ł Ł Ł Ł ź Ż Ł Ż Ś Ł ź Ó Ł Ą Ś Ś Ś Ł Ł ź Ł Ł Ł Ł Ł Ż Ź ź Ł Ą Ę Ł Ł Ł Ę Ś Ę ź ź Ą ź Ł ź ź Ł Ł ź ź ź Ą Ł Ł ź Ł ź Ł Ł Ś Ą ź ź Ę Ę ź ź ź Ą ź ź Ś Ą ź Ś Ś Ś Ł ź Ś Ł Ś Ź Ę Ó Ę Ą Ś Ą ź Ł Ł Ę Ś Ś ź Ś

Bardziej szczegółowo

Ź Ę ą ć Ź Ź Ń ą ą Ź ą ę ę Ę Ń Ć ą Ę Ę ą Ć Ń ę Ń ę ę ą Ś ę ę ę Ę ę ą Ś Ę ę ą Ś ą Ź ą ę ą ę ą Ź Ś ę ą ą ę ę ęź ęź Ś Ę Ś Ć ą Ź Ś Ś ę ę Ź ę ą ą Ź ę Ź ą ą ą ą ę ę ę Ź ę Ź Ę ę Ś ź Ś Ę Ć ę Ź Ź ą Ń Ś ąą Ś Ź Ę

Bardziej szczegółowo

Ą ć ź ć Ą ć Ą Ą Ł Ź Ą Ź ć ć Ź Ą Ą Ą ź Ł ć Ź Ą ć ź ć Ą Ź ć ź Ą Ą Ą Ł Ą Ł Ź ć Ś Ń ć Ł Ź Ó ć ć ć Ą ÓŁ ź Ą Ą Ź ć Ź Ź Ą Ł Ł ć ć ć ć ź ć ź ć Ą Ą Ź Ź Ą ć Ą Ź Ś Ą Ó Ź Ó Ą Ź Ą Ł Ł Ź ć Ś ć Ą Ą ć Ź Ó Ś Ś Ź ź ź Ś

Bardziej szczegółowo

Ł ó ó ó ż Ą ó ó ó ń ż ó ó ń Ą ó Ń ż ó ż ó ó Ł ó Ł Ą Ś ż ń Ó ż ż ó Ń ć ć ż ó Ą ż ż ó ż ó Ł ó ó ż ó ż ż ż Ć ż Ą ó ó ż ŚÓ ż Ą ż Ś ó ń Ó ó ń ó ż Ą ó Ś ć ó ó ń ź ó źó ó ó ż ż Ć Ć ó Ż Ś ć ó ó ó ó Ó ż ó ń ń ó

Bardziej szczegółowo

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania

Zbigniew Mikulski - zginanie belek z uwzględnieniem ściskania Przykład. Wyznaczyć linię ugięcia osi belki z uwzględnieniem wpływu ściskania. Przedstawić wykresy sił przekrojowych, wyznaczyć reakcje podpór oraz ekstremalne naprężenia normalne w belce. Obliczenia wykonać

Bardziej szczegółowo

Ś Ą Ą Ć Ą ĘŁ Ą Ó Ą Ó Ó Ł ź ę ęć ę Ś Ś ę ć ć ć ć ć ć ć Ę ź ć ŚĆ Ś ę ź ę ę ę ę ź ę Ś ę ę ź ę ć ź ź ć ę ź ę ź ę ź ę ę Ę Ó ę Ę Ó ź Ć ź ę ę ę ę ę ć ć ę ę ę ę ę ę ę ę ź ź ę ź ę ę Ź ę Ó ź Ó Ó ź Ó ć ć Ś ź Ś Ó

Bardziej szczegółowo

Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych

Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 3 Obliczanie sił wewnętrznych w powłokach zbiorników osiowo symetrycznych Daniel Sworek gr. KB2 Rok akademicki

Bardziej szczegółowo

Ż ć Ó Ś Ó ć Ę Ó Ś ź Ż Ż Ó Ż ź Ó ÓŚ Ć Ó ź Ó ź Ó Ź ć Ę Ó Ś Ż Ó Ó Ń Ą ź ź Ź Ś Ą Ą Ś Ą Ś ć ć ź ź Ó Ó Ę Ź Ą Ź Ę ĘŚ ć ź Ę Ę ź Ę ć Ś Ś Ę Ż Ż ć Ść ć ć Ń Ż Ś ć Ż Ż Ż Ż Ż Ó Ą Ę Ę Ę Ą Ż Ż Ż Ź Ż ć Ś Ż Ż Ż Ż Ż ć Ś

Bardziej szczegółowo

Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć:

Zadanie 3. Belki statycznie wyznaczalne. Dla belek statycznie wyznaczalnych przedstawionych. na rysunkach rys.a, rys.b, wyznaczyć: adanie 3. elki statycznie wyznaczalne. 15K la belek statycznie wyznaczalnych przedstawionych na rysunkach rys., rys., wyznaczyć: 18K 0.5m 1.5m 1. składowe reakcji podpór, 2. zapisać funkcje sił przekrojowych,

Bardziej szczegółowo

FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA

FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA POTĘGA, DZIAŁANIA NA POTĘGACH Potęga o wykładniku naturalnym. Jest to po prostu pomnożenie przez siebie danej liczby tyle razy ile wynosi wykładnik. Zapisujemy

Bardziej szczegółowo

Zestaw pytań z konstrukcji i mechaniki

Zestaw pytań z konstrukcji i mechaniki Zestaw pytań z konstrukcji i mechaniki 1. Układ sił na przedstawionym rysunku a) jest w równowadze b) jest w równowadze jeśli jest to układ dowolny c) nie jest w równowadze d) na podstawie tego rysunku

Bardziej szczegółowo

OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH

OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH Sporządził: Bartosz Pregłowski Grupa : II Rok akadem: 2004/2005 OBLICZANIE SIŁ WEWNĘTRZNYCH W POWŁOKACH ZBIORNIKÓW OSIOWO SYMETRYCZNYCH

Bardziej szczegółowo

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m

Tra r n a s n fo f rm r a m c a ja a na n p a rę r ż ę eń e pomi m ę i d ę zy y uk u ł k a ł d a am a i m i obr b ó r cony n m y i m Wytrzymałość materiałów Naprężenia główne na przykładzie płaskiego stanu naprężeń 1 Tensor naprężeń Naprężenia w stanie przestrzennym: τ τxz τ yx τ yz τzx τzy zz Układ współrzędnych jest zwykle wybrany

Bardziej szczegółowo

MECHANIKA OGÓLNA wykład 4

MECHANIKA OGÓLNA wykład 4 MECHNIK OGÓLN wykład 4 D R I N Ż. G T M R Y N I K Obliczanie sił wewnętrznych w układach prętowych. K R T O W N I C E KRTOWNIC UKŁD PRĘTÓW PROSTOLINIOWYCH Przegubowe połączenia w węzłach Obciążenie węzłowe

Bardziej szczegółowo

1 Funkcja wykładnicza i logarytm

1 Funkcja wykładnicza i logarytm 1 Funkcja wykładnicza i logarytm 1. Rozwiązać równania; (a) x + 3 = 3 ; (b) x 2 + 9 = 5 ; (c) 3 x 1 = 3x 2 2. Rozwiązać nierówności : (a) 2x 1 > 2 ; (b) 3x 4 2x + 3 > x + 2 ; (c) 3 x > 1. 3. Znając wykres

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

METODA SIŁ KRATOWNICA

METODA SIŁ KRATOWNICA Część. METDA SIŁ - RATWNICA.. METDA SIŁ RATWNICA Sposób rozwiązywania kratownic statycznie niewyznaczalnych metodą sił omówimy rozwiązują przykład liczbowy. Zadanie Dla kratownicy przedstawionej na rys..

Bardziej szczegółowo

Ż Ź Ą Ó Ś Ó Ś Ó Ś Ż Ó Ś Ó ć Ź ć ć ń ć ć Ż Ż ĄĄ ć Ź ć Ó ć ń ń ń ń ń Ś ń Ź Ś ń ń Ó Ó ć Ó Ź ć Ż ć Ó Ż Ó Ż Ó ć Ź Ś Ś Ą Ć ń ć Ż ń Ó ć Ś Ś Ć Ś Ź ć ń ć ń Ż ń Ś Ż ń ń Ó Ó Ś Ś Ąń ń ń Ż Ż Ś ń Ą Ą Ś ć ń Ś Ó ć Ó Ż

Bardziej szczegółowo

Z1/2 ANALIZA BELEK ZADANIE 2

Z1/2 ANALIZA BELEK ZADANIE 2 05/06 Z1/. NLIZ LK ZNI 1 Z1/ NLIZ LK ZNI Z1/.1 Zadanie Udowodnić geometryczną niezmienność belki złożonej na rysunku Z1/.1 a następnie wyznaczyć reakcje podporowe oraz wykresy siły poprzecznej i momentu

Bardziej szczegółowo

Ł Ń Ś Ó Ó Ę Ó Ó Ó Ń Ś ć ć Ó Ł ć ć ć ć ć ć ć ć ć ć ć Ę ć ć Ę ć ć ć ć ć ć Ę ć ć ć Ę ć ć ć ć ć ć ć ĄĄ ć ć ć ć Ę ć ć ć Ę ć ć ć ć ć ć Ę ć ćę ć ć ć ć Ę Ę ć ć ć ć ć Ę ć Ą ć ć ć ć ć ć ć ć ć ć ć ć ć ć Ę ć Ę ć ć

Bardziej szczegółowo

Ó Ł ć ź Ą ź Ń Ł ź Ę Ł Ń ż ż ż Ź Ł ć ć Ą ź Ę ż Ć ć Ł ż ć ć ć ż ć ć ż ć ć ż Ę Ź Ę ć Ś Ę ć ź ż ź ż Ę ż Ł ż ż ż ż ź Ń ć ż ż Ó Ś Ś ż Ą Ś Ą Ź ź ż ż Ę Ź Ź ż ź ż Ź Ź ć ć ć ź ć ż ż Ź żć ć ć Ź ż ż ć ć ż ć ż ż ż

Bardziej szczegółowo

Redukcja płaskiego układu wektorów, redukcja w punkcie i redukcja do najprostszej postaci

Redukcja płaskiego układu wektorów, redukcja w punkcie i redukcja do najprostszej postaci Redukcja płaskiego układu wektorów, redukcja w punkcie i redukcja do najprostszej postaci Twierdzenie o redukcji: Każdy układ wektorów równoważny jest układowi złożonemu ze sumy o początku w dowolnym punkcie

Bardziej szczegółowo

Ę Ą Ó Ż Ą Ą ĄĄĘ ż ż Ź ż Ż Ą Ś Ż ż Ż Ą ż ż Ś ż Ó ż Ś ż ż ĄĄ Ż ż ż Ź Ó ż ż Ż Ś Ż ż Ż Ż ż Ó ć Ó Ś ż Ś Ś Ż Ź ż ć Ść Ó Ó Ż ż ż Ż Ż ć Ś Ś Ó Ś Ż ź Ż ż Ź Ę Ż Ż Ó Ę Ż Ś ż ż ż ż ż ć ż Ó Ó ż ż ż Ś Ź ż Ś Ą Ó Ść Ż

Bardziej szczegółowo

Ł ś ą ś ż ą Ż ż ż ó ó ó ó ś ą ą Ś ą ą ó ą ś Ż ą ż ż ż ą ą Ś ą ą ą ż ś ą ó ą Ę ą ą ś ą ą ó ś ą ś Ą ż ż ą ą Ś ą Ż ą ż Ł ó ą ś ą ó ó Ę ą ą Ś ą ą ó ą ą ż ś ą ą Ę ż Ąą ą ś ą ą ą ą ś Ż ó ą ą ż ż ą ą Ś ą Ę ó

Bardziej szczegółowo

Ł ą Ł Ł ż Ł Ł Ź ą ę ą ą ę ż ę Ę ą ą ź Ą ąą ś ę ą ą ę ś ę ś ść ę ż ę ś ę ś ś ę ę ą ę ś Ł ą Ł ę ę ś ę ę ś ę ś ą ą ę ś ę ś ę ę ś ę ę ś ę ą ę ś ę ą ę ę ś ż ę ś ę ę ą ęć Ś Ś ę ść ą ą Ó ę ś ę ę ęć ą ę ś ę ę

Bardziej szczegółowo

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y

R o z w i ą z a n i e Przy zastosowaniu sposobu analitycznego należy wyznaczyć składowe wypadkowej P x i P y Przykład 1 Dane są trzy siły: P 1 = 3i + 4j, P 2 = 2i 5j, P 3 = 7i + 3j (składowe sił wyrażone są w niutonach), przecinające się w punkcie A (1, 2). Wyznaczyć wektor wypadkowej i jej wartość oraz kąt α

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Inne rodzaje obciążeń Mechanika teoretyczna Obciążenie osiowe rozłożone wzdłuż pręta. Obciążenie pionowe na pręcie ukośnym: intensywność na jednostkę rzutu; intensywność na jednostkę długości pręta. Wykład

Bardziej szczegółowo

Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice

Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych. Pręty obciążone osiowo Kratownice Tematyka wykładu 2 Obliczenia statyczne ustrojów prętowych statycznie wyznaczalnych ręty obciążone osiowo Kratownice Mechanika budowli - kratownice Kratownicą lub układem kratowym nazywamy układ prostoliniowych

Bardziej szczegółowo

Ą Ł Ą Ń Ń ź Ń Ę ź Ł Ł ź Ł Ą Ą Ą ź Ń Ą Ę Ą ź Ą Ę ź Ą ź ź Ę Ą ź Ś ć ź ć Ł Ś Ł ŁĄ Ś ź Ł ć ć Ł ŚĆ Ł Ł Ą Ń Ł Ó Ó Ą Ś ć Ę Ą Ł Ó ć Ł Ś ć Ł ź ć Ł Ł Ś Ł Ś Ł ŁĄ Ś ź Ę ź ź Ń Ę ź ć ź Ń Ś Ś Ś Ń Ś Ś Ś Ł Ń ć Ł Ł Ść Ł

Bardziej szczegółowo

Funkcja liniowa i prosta podsumowanie

Funkcja liniowa i prosta podsumowanie Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik

Bardziej szczegółowo

Przykład 4.2. Sprawdzenie naprężeń normalnych

Przykład 4.2. Sprawdzenie naprężeń normalnych Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m

Bardziej szczegółowo

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1

Część ZADANIA - POWTÓRKA ZADANIA - POWTÓRKA. Zadanie 1 Część 6. ZADANIA - POWTÓRKA 6. 6. ZADANIA - POWTÓRKA Zadanie Wykorzystując metodę przemieszczeń znaleźć wykres momentów zginających dla ramy z rys. 6.. q = const. P [m] Rys. 6.. Rama statycznie niewyznaczalna

Bardziej szczegółowo

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI

Katedra Mechaniki Konstrukcji ĆWICZENIE PROJEKTOWE NR 1 Z MECHANIKI BUDOWLI Katedra Mechaniki Konstrukcji Wydział Budownictwa i Inżynierii Środowiska Politechniki Białostockiej... (imię i nazwisko)... (grupa, semestr, rok akademicki) ĆWICZENIE PROJEKTOWE NR Z MECHANIKI BUDOWLI

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

1. METODA PRZEMIESZCZEŃ

1. METODA PRZEMIESZCZEŃ .. METODA PRZEMIESZCZEŃ.. Obliczanie sił wewnętrznych od obciążenia zewnętrznego q = kn/m P= kn Rys... Schemat konstrukcji φ φ u Rys... Układ podstawowy metody przemieszczeń Do wyliczenia mamy niewiadome:

Bardziej szczegółowo

Modelowanie układów prętowych

Modelowanie układów prętowych Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie

Bardziej szczegółowo

ZGINANIE PŁASKIE BELEK PROSTYCH

ZGINANIE PŁASKIE BELEK PROSTYCH ZGINNIE PŁSKIE EEK PROSTYCH WYKRESY SIŁ POPRZECZNYCH I OENTÓW ZGINJĄCYCH Zginanie płaskie: wszystkie siły zewnętrzne czynne (obciążenia) i bierne (reakcje) leżą w jednej wspólnej płaszczyźnie przechodzącej

Bardziej szczegółowo

ę Ś Ę Ż ć ę ę Ę Ą Ś Ó Ó Ó Ś ć ę Ć ę Ą ć Ś Ć Ś Ć Ś Ą Ę Ą Ó Ś Ę ę Ć ę Ś ę Ę Ń Ę Ó Ś Ó Ą Ż Ę ź ć Ó Ó Ś ź ź ź ŃŃ Ę ź Ó Ę Ę ć ć ę Ę ć ę Ó ę ć Ę Ć ę ę Ą ź Ś ę ę ę Ś Ń Ó ć Ć ć ź ć Ż ę Ó ę ę ę ę Ó ęć Ń ę ę Ś ę

Bardziej szczegółowo

7. Funkcje elementarne i ich własności.

7. Funkcje elementarne i ich własności. Misztal Aleksandra, Herman Monika 7. Funkcje elementarne i ich własności. Definicja funkcji elementarnej Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe, np. wykładnicze logarytmiczne

Bardziej szczegółowo

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie

Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie Mechanika ogólna Kierunek: budownictwo, sem. II studia zaoczne, I stopnia inżynierskie materiały pomocnicze do zajęć audytoryjnych i projektowych opracowanie: dr inż. Piotr Dębski, dr inż. Dariusz Zaręba

Bardziej szczegółowo

Ć ź Ą Ć ź ź Ę Ę Ę Ę Ń Ą Ę ź ź Ó Ę Ę Ć Ę Ó ź ź ź ź Ń ź ź Ę Ę Ó ź Ć Ę ź ź Ą Ć Ę Ę Ę Ą Ć Ć Ż Ż Ó Ó Ą Ą Ą Ź Ą ź Ę Ą Ę Ó Ę ź Ę Ą Ś Ń Ż Ś Ó Ó Ó Ż Ę Ę Ę Ż Ź Ę Ę Ę Ę Ę Ę Ż Ż Ę Ę Ę Ę Ę Ę Ę Ż Ż Ń Ę Ś Ę Ę ĘĘ ÓŚ Ę

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej.

ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej. ZAJĘCIA 25. Wartość bezwzględna. Interpretacja geometryczna wartości bezwzględnej. 1. Wartość bezwzględną liczby jest określona wzorem: x, dla _ x 0 x =, x, dla _ x < 0 Wartość bezwzględna liczby nazywana

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Jacek Jarnicki Politechnika Wrocławska

Jacek Jarnicki Politechnika Wrocławska Plan wykładu Wykład Prezentacja graficzna danych liczbowych. Cel i zastosowania graficznej prezentacji danych. Dane w postaci zbioru liczb 3. Funkcja jednej zmiennej 4. Funkcja dwóch zmiennych. Niektóre

Bardziej szczegółowo

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych)

Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Szukanie rozwiązań funkcji uwikłanych (równań nieliniowych) Funkcja uwikłana (równanie nieliniowe) jest to funkcja, która nie jest przedstawiona jawnym przepisem, wzorem wyrażającym zależność wartości

Bardziej szczegółowo

1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym

1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym 1. Zaproponuj doświadczenie pozwalające oszacować szybkość reakcji hydrolizy octanu etylu w środowisku obojętnym 2. W pewnej chwili szybkość powstawania produktu C w reakcji: 2A + B 4C wynosiła 6 [mol/dm

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu.

3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu. Zadanie: 1) Dana jest funkcja y=-+7.nie wykonując wykresu podaj a) miejsce zerowe b)czy funkcja jest rosnąca czy malejąca(uzasadnij) c)jaka jest rzędna punktu przecięcia wykresu z osią y. ) Wykres funkcji

Bardziej szczegółowo