Innowacja w Gimnazjum nr 38 im. Marii Skłodowskiej-Curie 2013/2016

Wielkość: px
Rozpocząć pokaz od strony:

Download "Innowacja w Gimnazjum nr 38 im. Marii Skłodowskiej-Curie 2013/2016"

Transkrypt

1 PROGRAM INNOWACJI PEDAGOGICZNEJ Z MATEMATYKI I INFORMATYKI Gimnazjum nr 38 im Marii Skłodowskiej - Curie Warszawa ul. Świętokrzyska 18 a Tel Dyr. mgr Małgorzata Król 1. Nazwa innowacji: Intuicja i logika, czyli wzór na umysł ścisły 2. Autorzy i realizatorzy innowacji: Anna Dzbanuszkiewicz nauczyciel matematyki, absolwentka Uniwersytetu Warszawskiego, posiada uprawnienia do nauczania informatyki, nauczyciel dyplomowany Tomasz Ciąćka nauczyciel informatyki, absolwent Uniwersytetu Warszawskiego, posiada uprawnienia do nauczania matematyki, nauczyciel mianowany 3. Klasa objęta innowacją: Klasa z rozszerzonym programem z matematyki i informatyki Poziom: I III gimnazjum 4. Miejsce wdrażania innowacji: Gimnazjum nr 38 im Marii Skłodowskiej Curie w Warszawie 5. Czas realizacji: Data rozpoczęcia innowacji: 1 września 2013r. Data zakończenia innowacji: 30 czerwca 2016r. Czas trwania innowacji: 3 lata Matematyka łącznie 6 godzin tygodniowo Informatyka - po jednej godzinie tygodniowo z podziałem na grupy 6. Program na którym oparta jest innowacja: Matematyka z Plusem numer w wykazie 168/1/2009 Informatyka Europejczyka numer dopuszczenia: 75/ Diagnoza wstępna: W roku szkolnym 2012/13 została eksperymentalnie wprowadzona w klasie pierwszej innowacja mająca na celu poszerzenie zainteresowań uczniów przedmiotami ścisłymi matematyką i informatyką. Program został stworzony na 3 lata i największe sukcesy w postaci wygranych konkursów przedmiotowych spodziewane są na jego zakończenie, jednakże już na obecnym etapie zauważalny jest ogromny rozwój uczniów w kierunkach, na który został położony nacisk. Dodatkowe godziny i rozszerzenie programu standardowego nauczania okazało się wzbudzać w uczniach większą systematyczność w pracy i otwartość na nowe wyzwania. Dlatego też w roku szkolnym 2013/14 rozpoczynamy pracę innowacyjną z kolejną klasą matematyczno informatyczną w trzyletnim cyklu przygotowującym uczniów, już na etapie gimnazjum, do ukierunkowania na nauki ścisłe. Obecnie, mając już wstępne doświadczenia z przebiegu realizacji programu, autorzy innowacji zdecydowali się położyć większy nacisk na samodzielność, abstrakcyjne myślenie, rozwijanie zdolności myślenia krytycznego i twórczego oraz rozwijanie pamięci, logicznego rozumowania i wyciągania wniosków. Aby to osiągnąć planowane jest częściowe przesunięcie realizowanych tematów, wizualizacje zadań w programie GEOGEBRA, położenie nacisku na rozwiązywanie zadań logicznych oraz przygotowanie do korzystania z nowych technologii informacji. Wprowadzając kolejną innowację dostosowujemy system edukacji do prognozowanych potrzeb rynku pracy. Opierając się na odniesieniu do rozwiniętych państw Unii Europejskiej można uznać, że w perspektywie 5-10lat pojawi się coraz większe zapotrzebowanie na absolwentów szkół wyższych o profilach technicznych. Wiele raportów już teraz wskazuje, że w Polsce zaczyna brakować wykwalifikowanych informatyków, inżynierów, finansistów, czy osób zajmujących się logistyką. Wszystkie te zawody powiązane są ściśle z matematyką i informatyką. Stąd w ubie- 1

2 głym roku powstał projekt rozwoju młodzieży, już na etapie gimnazjalnym, w kierunkach zdefiniowanych, jako najbardziej przyszłościowych. Program jest kierowany do młodzieży, która w przeciągu trzech lat nauki w gimnazjum będzie mogła realizować własne zainteresowania matematyczno - informatyczne, a w przyszłości będzie je kontynuować na uczelniach technicznych. W klasie znajdą się miejsca dla uczniów potrafiących myśleć logicznie, abstrakcyjnie i niestandardowo, posiadających umiejętność szybkiego uczenia, zapamiętywania oraz chęci do zmagania się z zadaniami o podwyższonym stopniu trudności oraz takich, którzy już w szkole podstawowej wykazywali zdolności w przedmiotach ścisłych i dla których matematyka i informatyka jest wiodącą pasją od najmłodszych lat. Rozszerzony program matematyki (w stosunku do obecnie obowiązującego "Matematyka z plusem") jest perspektywą na systematyczność, dostosowanie czasu do możliwości intelektualnej pracy ucznia, ogromną satysfakcję, sukcesy w konkursach i olimpiadach matematycznych, na bardzo dobre wyniki z egzaminów po klasie trzeciej gimnazjum, a w rezultacie na wybrane licea i docelowo studia. Praca z uczniem zdolnym to jeden z trudniejszych, ale ważniejszych elementów pracy nauczyciela i szkoły. Jest wyzwaniem, które warto i powinno się podejmować możliwie wcześnie. Od lat pracujemy z młodzieżą uzdolnioną matematycznie i informatycznie i wprowadzenie innowacji w ubiegłym roku dało nam możliwość pracy z większą grupą uczniów uzdolnionych oraz kontynuowania ich i naszej pasji. Odpowiednio dobrana do takiej klasy młodzież wzajemnie motywowała się do pracy. Zostali nauczeni pracy w grupie przy wymyślaniu niestandardowych rozwiązań, jak i indywidualnego studiowania przypadków. Zarówno dotychczasowe doświadczenie, jak i potencjał, jaki widzimy w ukierunkowywaniu uczniów w przedmiotach ścisłych, oraz zgłaszane ze strony rodziców uczniów klas szóstych szkół podstawowych zapotrzebowanie na prowadzenie w gimnazjum programów innowacyjnych uzasadniają w pełni powody, dla których warto kontynuować nasz projekt dla kolejnego rocznika. 11. Cele programu: Program innowacji jest przeznaczony dla uczniów o zainteresowaniach matematyczno - informatycznych, którzy z racji swoich zainteresowań zadeklarowali chęć uczęszczania do tej klasy. 1. Popularyzowanie wiedzy matematycznej i informatycznej 2. Rozbudzanie i pogłębianie uzdolnień i zainteresowań matematycznych wzbogaconych elementami informatyki 3. Kształtowanie rozumienia i posługiwania się językiem matematyki. 4. Doskonalenie umiejętności matematycznego i twórczego myślenia uczniów. 5. Rozwijanie wyobraźni, myślenia abstrakcyjnego i logicznego rozumowania. 6. Wdrażanie uczniów do samokształcenia i współzawodnictwa. 7. Zapoznanie z zagadnieniami wykraczającymi poza program nauczania oraz poszukiwanie nowych, skutecznych rozwiązań 8. Kształtowanie umiejętności wykorzystywania zdobytej wiedzy w sytuacjach praktycznych. 9. Ukierunkowanie ucznia w celu umiejętnego korzystania z wartościowych źródeł danych, wykorzystywania multimedialnych źródeł wiedzy i narzędzi informatycznych do rozwiązywania problemów, nabywania umiejętności gromadzenia, selekcjonowania i przetwarzania informacji pochodzących z różnych źródeł, unikania zagrożeń związanych z rozwojem komputeryzacji 12. Zasady innowacji: Na realizację zawartych w programie treści przewiduje się dla ucznia dodatkowe 2 godziny tygodniowo z matematyki oraz jedną godzinę informatyki, włączone w proces nauki i pozwalające na codzienne, rozszerzanie i pogłębianie wiedzy oraz doskonalenie zdobywanych umiejętności w sytuacjach praktycznych. Zakres realizowanego materiału zostanie rozszerzony o treści, których nie ujęto w podstawie programowej, a które są bardzo ważne w dalszej edukacji. Uczniowie będą przyzwyczajani do systematycznej pracy przez codzienne wykonywanie dodatkowych 2

3 zadań wykraczających poza zakres materiału, przy których otrzymają dużą samodzielność w poszukiwaniu rozwiązań. Każde z tych zadań zostanie następnie omówione pod kątem różnych możliwości interpretacji. Rolą nauczyciela będzie ukierunkowanie na szukanie rozwiązań najprostszych i najbardziej optymalnych oraz bycie przewodnikiem przy spornych interpretacjach. Przy tym systemie pracy będziemy oczekiwać ogromnego zaangażowania uczniów, widocznych wyników w pracach klasowych, testach kompetencji i konkursach nie tylko matematycznych i informatycznych. Uważamy, że ten rodzaj pracy dostarczy uczniom i nam wielu satysfakcji i nowych doświadczeń, a osiągnięcia młodzieży przyczynią się do kształtowania pozytywnego wizerunku gimnazjum, do którego uczęszczają. Mamy nadzieję, że efekty będą widoczne już po pierwszym roku pracy. Przy wprowadzeniu dodatkowych zajęć niezwykle pomocny będzie fakt, że pracownia matematyczna i informatyczna posiadają bardzo dobrze rozwiniętą bazę dydaktyczną. Elementami wspomagającymi naukę będą: Tablica interaktywna unikalna pomoc uatrakcyjniająca prowadzenie lekcji, pozwalająca na jednoczesne korzystanie z niej dwóm uczniom, mobilizująca do pracy i motywująca do rywalizacji. Atutami tablicy są jej bogate zasoby matematyczne, możliwość korzystania z Internetu, możliwość kopiowania, modernizacja, nowoczesność i interaktywne rozwiązania. Wizualizer pomoc umożliwiająca podgląd obiektów typu prace domowe uczniów, ważne definicje, rysunki, wzory oraz ich modyfikowanie i zapamiętywanie Geogebra - oprogramowanie matematyczne do samodzielnego uczenia się i nauczania, z wykorzystaniem interaktywnej grafiki, algebry i arkusza kalkulacyjnego Ćwiczenia interaktywne z zeszytu ćwiczeń Matematyka z plusem podzielone według działów i tematów. EduROM Matematyka (Gimnazjum) klasa 1,2,3. EduROM multimedialny program komputerowy, obejmujący cały materiał nauczania matematyki w gimnazjum. Atutem są trójwymiarowe animacje, filmy wideo oraz interaktywne ćwiczenia. Ogromna baza zgromadzonych zadań z konkursów matematycznych Prezentacje matematyczne w PowerPoint (realizacja podczas dodatkowych lekcji informatyki) Bogate zasoby Internetu (realizacja podczas dodatkowych lekcji informatyki) Program Excel - symulujący na ekranie komputera arkusz obliczeniowy oraz prezentacje danych w postaci różnego typu wykresów (realizacja podczas dodatkowych lekcji informatyki). 13. Zagadnienia z matematyki w poszczególnych klasach zgodne z Programem Nauczania Matematyka z Plusem numer w wykazie 168/1/2009 oraz informatyki zgodne z Programem Nauczania Informatyka Europejczyka numer dopuszczenia: 75/2009 PROGRAM ZACHOWUJE PODSTAWOWE OBOWIĄZUJĄCE DZIAŁY PRZEWIDZIANE W NAUCZANIU MATEMATYKI I INFORMATYKI Plan realizacji materiału klasy 1 3

4 Lp Działy wg programu Matematyka z plusem Dodatkowe treści programowe matematyczne W każdym z działów dodatkowo jest przewidziane rozwiązywanie zadań z konkursów matematycznych Omawiane działy będą wspomagane przez zajęcia z informatyki z wykorzystaniem: - Ćwiczeń interaktywnych - EduROM - Prezentacje w programie GeoGebra - Prezentacje w PowerPoint - Program Excel 1. Liczby i działania 2. Procenty 3. Figury na płaszczyźnie 4. Czworokąty Wyrażenia algebraiczne 7. Równania i nierówności 8. Proporcjonalność prosta i odwrotna 9. Symetrie Dowody zamiany ułamka okresowego na zwykły - Potęgi i pierwiastki - Podstawowe liczby niewymierne liczba - Ułamki piętrowe - Posługiwanie się kalkulatorem - wykorzystanie pamięci kalkulatora do prostych obliczeń kilkudziałaniowych - Dowody podzielności liczb - Zadania z chemii: stężenia procentowe, stopy - Oprocentowanie w banku - punkty procentowe - Lokata pieniędzy, kredyty. - Stosowanie procentów w sytuacjach nietypowych - Zadania na dowodzenie przystawania trójkątów - Twierdzenie Pitagorasa, dowód obrazkowy, - Proste zadania z tw. Pitagorasa - Okrąg opisany na okręgu i wpisany w okrąg - Promień okręgu wpisanego w okrąg - Rysowanie figur geometrycznych za pomocą programów graficznych - Dowody wzorów na pola trapezów - Dowody geometryczne z zastosowaniem własności czworokątów Kąty w kole - Kąty środkowe i kąty wpisane - Dowody geometryczne z zastosowaniem twierdzeń o kątach środkowych i wpisanych - Iloczyn sum algebraicznych - Wzory skróconego mnożenia - Dowody algebraiczne z zastosowaniem wzorów skróconego mnożenia - Przekształcanie wzorów - Zadania tekstowe z fizyki i chemii - Proste układy równań - Wykresy proporcjonalności prostej Elementy funkcji - Odczytywanie danych z wykresów korelacja z fizyką, chemią i geografią i informatyką - Operacje na danych statystycznych 4

5 11. - Przegląd brył geometrycznych - Omówienie graniastosłupów i ostrosłupów 12. Elementy rachunku prawdopodobieństwa Plan realizacji materiału klasy 2 Lp Działy wg programu Matematyka z plusem Dodatkowe treści programowe W każdym z działów dodatkowo jest przewidziane rozwiązywanie zadań z konkursów matematycznych Omawiane działy będą wspomagane przez zajęcia z informatyki z wykorzystaniem: - Ćwiczeń interaktywnych - EduROM - Prezentacje w programie GeoGebra - Prezentacje w PowerPoint - Program Excel 1. Potęgi i pierwiastki 2. Długość okręgu i pole koła 3. Wyrażenia algebraiczne 4. Równania, nierówności, układy równań 5. Trójkąty prostokątne 6. Wielokąty i okręgi - Dowody geometryczne Graniastosłupy i ostrosłupy Elementy rachunku prawdopodobieństwa - Potęga o wykładniku wymiernym - Liczby niewymierne, dowód istnienia liczby niewymiernej - Zastosowanie notacji wykładniczej w astronomii, fizyce, chemii i biologii - Liczba poszukiwania informacji w Internecie - Zastosowanie liczby w bryłach obrotowych - Przekształcanie wzorów - Wzory skróconego mnożenia w dowodach algebraicznych - Nierówności z wartością bezwzględną - Zadania tekstowe o podwyższonym stopniu trudności - Dowody geometryczne z zastosowaniem twierdzenia Pitagorasa - Twierdzenie Pitagorasa w zadaniach konkursowych - Nietypowe przekroje graniastosłupów i ostrosłupów - Bryły w architekturze na podstawie projektu edukacyjnego uczniów naszej szkoły - Diagramy - Odczytywanie danych z wykresów - Operacje na danych statystycznych - Zdarzenia losowe - Elementy rachunku prawdopodobieństwa Funkcje - zadania z konkursów matematycznych Podobieństwo trójkątów - Zadania i dowody z zastosowaniem podobieństwa Zbiory - Pojęcie zbioru - Działania na zbiorach - dodawanie zbiorów, część wspólna (iloczyn), różnica - Zawieranie się zbiorów. Podzbiory - Podzbiory zbioru liczb rzeczywistych - Przedziały liczbowe 5

6 Plan realizacji materiału klasy 3 Lp Działy wg programu Matematyka z plusem - Zbiory nieskończone Dodatkowe treści programowe W każdym z działów dodatkowo jest przewidziane rozwiązywanie zadań z konkursów matematycznych Omawiane działy będą wspomagane przez zajęcia z informatyki z wykorzystaniem: - Ćwiczeń interaktywnych - EduROM - Prezentacje w programie GeoGebra - Prezentacje w PowerPoint - Program Excel 1. Liczby i wyrażenia algebraiczne 2. Funkcje 3. Wielokąty, koła i okręgi - Dowody arytmetyczne dot. podzielności liczb, - NWD i NWW - Przekształcanie wzorów - Przekształcanie trudniejszych wielomianów z zastosowaniem wzorów skróconego mnożenia - Równania, nierówności z wartością bezwzględną - Równania z parametrem - Dowody algebraiczne z zastosowaniem wzorów skróconego mnożenia - Notacja wykładnicza w astronomii, fizyce, chemii i biologii Funkcje - Wykresy funkcji nieliniowych - Własności funkcji - Przykłady wykresów funkcji trygonometrycznych - Wykorzystywanie wykresów w różnych dziedzinach życia - Konstrukcje geometryczne - Zastosowanie wielokątów foremnych w architekturze - Dowody z zastosowaniem kątów wpisanych i środkowych 4. Przekształcenia geometryczne - Wektory długość wektora - Przesunięcie o dany wektor 5. Figury podobne - Dowody geometryczne 6. Bryły geometryczne Matematyka w zastosowaniach - korelacja z fizyką, chemią i geografią i informatyką - Bryły geometryczne w architekturze - Przekroje brył - Nietypowe rzuty - Kąty dwuścienne - Elementy rachunku prawdopodobieństwa - Obliczanie prawdopodobieństwa zdarzenia losowego - Działania na zbiorach - Przedziały liczbowe - Lokata pieniędzy, kredyty - Stosowanie procentów w sytuacjach nietypowych Funkcje trygonometryczne w trójkątach prostokątnych - Związki między kątami 30 0, 45 0, Tożsamości trygonometryczne 6

7 14. Zakładane efekty działalności innowacyjnej: Przewidywane osiągnięcia: Fascynacja matematyką i informatyką Opanowanie w wysokim stopniu abstrakcyjnego i logicznego myślenia Wysokie osiągnięcia w konkursach matematycznych i informatycznych Wysokie wyniki w egzaminie gimnazjalnym Umiejętność pracy w zespole Opanowanie umiejętności dobrej organizacji pracy i wytrwałości w osiąganiu wyznaczonego celu Opanowanie umiejętności precyzyjnego formułowania problemów i argumentowania. Stosowanie poznanych pojęć, twierdzeń, działań matematycznych w praktycznej działalności człowieka. Bardzo dobre podstawy do kontynuowania nauki matematyki i informatyki w dalszym procesie nauki Umiejętność wyszukiwania i wykorzystywania informacji z różnych źródeł 7

PROGRAM INNOWACJI PEDAGOGICZNEJ Z MATEMATYKI. Kreatywne myślenie i twórcze działanie na matematyce w gimnazjum

PROGRAM INNOWACJI PEDAGOGICZNEJ Z MATEMATYKI. Kreatywne myślenie i twórcze działanie na matematyce w gimnazjum PROGRAM INNOWACJI PEDAGOGICZNEJ Z MATEMATYKI Gimnazjum nr 2 im. Jana Pawła II w Piasecznie 05-500 Piaseczno ul. Aleja Kalin 30 1. Nazwa innowacji: Kreatywne myślenie i twórcze działanie na matematyce w

Bardziej szczegółowo

klasa I Dział Główne wymagania edukacyjne Forma kontroli

klasa I Dział Główne wymagania edukacyjne Forma kontroli semestr I 2007 / 2008r. klasa I Liczby wymierne Dział Główne wymagania edukacyjne Forma Obliczenia procentowe Umiejętność rozpoznawania podzbiorów zbioru liczb wymiernych. Umiejętność przybliżania i zaokrąglania

Bardziej szczegółowo

Innowacja pedagogiczna Matematyka ciekawa i nie taka trudna

Innowacja pedagogiczna Matematyka ciekawa i nie taka trudna Innowacja pedagogiczna Matematyka ciekawa i nie taka trudna Temat: Matematyka ciekawa i nie taka trudna Rodzaj: Innowacja metodyczno organizacyjna Miejsce: Gimnazjum Gminne w Zespole Szkół w Dębem Wielkim

Bardziej szczegółowo

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy

Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Matematyka do liceów i techników Szczegółowy rozkład materiału Zakres podstawowy Wariant nr (klasa I 4 godz., klasa II godz., klasa III godz.) Klasa I 7 tygodni 4 godziny = 48 godzin Lp. Tematyka zajęć

Bardziej szczegółowo

Zajęcia wyrównawcze klasa III b, c gim.

Zajęcia wyrównawcze klasa III b, c gim. Zajęcia wyrównawcze klasa III b, c gim. Cele nauczania: Głównym celem zajęć jest wyrównanie braków z matematyki oraz poprawa wyników nauczania i kształcenia. Cele szczegółowe: 1. Rozwijanie umiejętności

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY III A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ

PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ PROGRAM KLASY Z ROZSZERZONĄ MATEMATYKĄ ALGEBRA Klasa I 3 godziny tygodniowo Klasa II 4 godziny tygodniowo Klasa III 3 godziny tygodniowo A. Liczby (24) 1. Liczby naturalne i całkowite. a. Własności, kolejność

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

egzaminu gimnazjalnego z matematyki dla uczniów klas IIIA

egzaminu gimnazjalnego z matematyki dla uczniów klas IIIA PROJEKT EDUKACYJNY ROK SZK. 2011/2012 Program zajęć przygotowujących do egzaminu gimnazjalnego z matematyki dla uczniów klas IIIA Opracowanie: Jadwiga Głazman Projekt zajęć przygotowujących do egzaminu

Bardziej szczegółowo

Egzamin gimnazjalny 2015 część matematyczna

Egzamin gimnazjalny 2015 część matematyczna Egzamin gimnazjalny 2015 część matematyczna imię i nazwisko Kalendarz gimnazjalisty Tydz. Dział start 22.09 29 26.09 Przygotowanie do pracy zapoznanie się z informacjami na temat egzaminu gimnazjalnego

Bardziej szczegółowo

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas

Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas Wymagania edukacyjne z matematyki do programu pracy z podręcznikiem Matematyka wokół nas klasa I 1)Działania na liczbach: dopuszczający: uczeń potrafi poprawnie wykonać cztery podstawowe działania na ułamkach

Bardziej szczegółowo

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym

GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym GIMNAZJUM Wymagania edukacyjne z matematyki na poszczególne oceny półroczne i roczne w roku szkolnym 2013-2014 Ocenę celującą otrzymuje uczeń, który: wykorzystuje na lekcjach matematyki wiadomości z innych

Bardziej szczegółowo

rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności

rozwiązuje - często przy pomocy nauczyciela - zadania typowe, o niewielkim stopniu trudności KRYTERIA OCENIANIA Z MATEMATYKI Klasa I Gimnazjum Kryteria ocen i wymagań: Ocenę dopuszczającą otrzymuje uczeń, który: w ograniczonym zakresie opanował podstawowe wiadomości i umiejętności, a braki nie

Bardziej szczegółowo

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka

Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka Wymagania przedmiotowe dla klasy 3as i 3b gimnazjum matematyka TEMAT 5. Przekątna kwadratu. Wysokość trójkąta równobocznego 6. Trójkąty o kątach 90º, 45º, 45º oraz 90º, 30º, 60º 1. Okrąg opisany na trójkącie

Bardziej szczegółowo

wymagania programowe z matematyki kl. III gimnazjum

wymagania programowe z matematyki kl. III gimnazjum wymagania programowe z matematyki kl. III gimnazjum 1. Liczby i wyrażenia algebraiczne Zna pojęcie notacji wykładniczej. Umie zapisać liczbę w notacji wykładniczej. Umie porównywać liczy zapisane w różny

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h)

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony. Klasa I (90 h) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum, zakres podstawowy i rozszerzony (według podręczników z serii MATeMAtyka) Klasa I (90 h) Temat Liczba godzin 1. Liczby rzeczywiste 15

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki - Technikum. obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki - Technikum obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku szkolnego informuję

Bardziej szczegółowo

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania

MATEMATYKA. WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski. KLASA I Wymagania MATEMATYKA WYMAGANIA EDUKACYJNE KLASA I, II, III Bożena Tarnowiecka, Arkadiusz Wolski Treści zapisane kursywą (i oznaczone gwiazdką) wykraczają poza podstawę programową. Nauczyciel może je realizować,

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi

ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi ROZKŁAD MATERIAŁU NAUCZANIA MATEMATYKI DLA KLASY II A WYMAGANIA PODSTAWY PROGRAMOWEJ w Publicznym Gimnazjum Integracyjnym nr 47 w Łodzi Rozkład materiału nauczania został opracowany na podstawie programu

Bardziej szczegółowo

Program kółka matematycznego dla klas I - III gimnazjum

Program kółka matematycznego dla klas I - III gimnazjum Literka.pl Program kółka matematycznego dla klas I - III gimnazjum Data dodania: 2006-04-05 09:40:11 Dynamika przemian naukowo technicznych ispołeczno kulturowych spowodowała, że ludzi zdolnych,inteligentnych

Bardziej szczegółowo

RAPORT. Komputerowe wspomaganie nauczania matematyki-innowacja z matematyki z elementami informatyki. Z realizacji innowacji pedagogicznej

RAPORT. Komputerowe wspomaganie nauczania matematyki-innowacja z matematyki z elementami informatyki. Z realizacji innowacji pedagogicznej RAPORT Z realizacji innowacji pedagogicznej Komputerowe wspomaganie nauczania matematyki-innowacja z matematyki z elementami informatyki Autor: mgr Renata Ziółkowska Miejsce realizacji innowacji pedagogicznej:

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1

MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 MINIMUM PROGRAMOWE DLA SŁUCHACZY CKU NR 1 Rozkład materiału nauczania wraz z celami kształcenia oraz osiągnięciami dla słuchaczy CKU Nr 1 ze specyficznymi potrzebami edukacyjnymi ( z podziałem na semestry

Bardziej szczegółowo

Dla uczniów Szkoły Podstawowej

Dla uczniów Szkoły Podstawowej GIMNAZJUM W ZESPOLE SZKÓŁ W RUSKU PROGRAM ZAJĘĆ POZALEKCYJNYCH Z MATEMATYKI Dla uczniów Szkoły Podstawowej Cele ogólne: CELE KSZTAŁCENIA 1. Rozbudzanie i kształtowanie zainteresowań matematycznych. 2.

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum

Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum LICZBY (20 godz.) Propozycja szczegółowego rozkładu materiału dla 4-letniego technikum Wg podręczników serii Prosto do matury KLASA I (60 godz.) 1. Zapis dziesiętny liczby rzeczywistej 1 2. Wzory skróconego

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY III Program nauczania matematyki w gimnazjum Matematyka dla przyszłości DKW 4014 162/99 Opracowała: mgr Mariola Bagińska 1. Liczby i działania Podaje rozwinięcia

Bardziej szczegółowo

wymagania programowe z matematyki kl. II gimnazjum

wymagania programowe z matematyki kl. II gimnazjum wymagania programowe z matematyki kl. II gimnazjum Umie obliczyć potęgę liczby wymiernej o wykładniku naturalnym. 1. Arytmetyka występują potęgi o wykładniku naturalnym. Umie zapisać i porównać duże liczby

Bardziej szczegółowo

OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM

OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM OKREŚLENIE WYMAGAŃ NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW GIMNAZJUM (założone osiągnięcia ucznia w klasach I III gimnazjum zgodnie z programem nauczania Matematyka z plusem (DPN-5002-17/08) realizującym

Bardziej szczegółowo

MATeMAtyka klasa II poziom rozszerzony

MATeMAtyka klasa II poziom rozszerzony MATeMAtyka klasa II poziom rozszerzony W klasie drugiej na poziomie rozszerzonym realizujemy materiał z klasy pierwszej tylko z poziomu rozszerzonego (na czerwono) oraz cały materiał z klasy drugiej. Rozkład

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM. Arytmetyka KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne, - szacować wartości

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych. z matematyki dla uczniów klasy I LO poziom podstawowy

Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych. z matematyki dla uczniów klasy I LO poziom podstawowy Wymagania edukacyjne niezbędne do uzyskania śródrocznych i rocznych ocen klasyfikacyjnych Nauczyciel: mgr Karolina Bębenek z matematyki dla uczniów klasy I LO poziom podstawowy 1. Wprowadzenie do matematyki.

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI W KLASIE III Przedmiotowe Zasady Oceniania z matematyki są zgodne z Wewnątrzszkolnym Ocenianiem GIMNAZJUM IM. JANA PAWŁA II W BOGUSZYCACH 1/8 ZASADY OCENIANIA:

Bardziej szczegółowo

Regulamin Konkursu Matematycznego ZAGIMAK. rok szkolny 2012/13

Regulamin Konkursu Matematycznego ZAGIMAK. rok szkolny 2012/13 Regulamin Konkursu Matematycznego ZAGIMAK rok szkolny 2012/13 Organizatorem konkursu jest Lubelskie Samorządowe Centrum Doskonalenia Nauczycieli Oddział w Zamościu i Państwowa Wyższa Szkoła Zawodowa im.

Bardziej szczegółowo

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia.

1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. 1. Elementy logiki i algebry zbiorów 1.1. Rachunek zdań: alternatywa, koniunkcja, implikacja i równoważność zdań oraz ich zaprzeczenia. Funkcje zdaniowe. Zdania z kwantyfikatorami oraz ich zaprzeczenia.

Bardziej szczegółowo

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania

Kryteria ocen z matematyki w Gimnazjum. Klasa I. Liczby i działania Kryteria ocen z matematyki w Gimnazjum Klasa I Liczby i działania obliczać wartości wyrażeń arytmetycznych, w których występują liczby wymierne skracać i rozszerzać ułamki zwykłe porównywać dwa ułamki

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE III GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 1

Kształcenie w zakresie podstawowym. Klasa 1 Kształcenie w zakresie podstawowym. Klasa 1 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Żądza wiedzy, wspólna wszystkim ludziom, jest chorobą, której nie można uleczyć, ponieważ ciekawość wzrasta wraz z wiedzą.

Żądza wiedzy, wspólna wszystkim ludziom, jest chorobą, której nie można uleczyć, ponieważ ciekawość wzrasta wraz z wiedzą. Żądza wiedzy, wspólna wszystkim ludziom, jest chorobą, której nie można uleczyć, ponieważ ciekawość wzrasta wraz z wiedzą. Kartezjusz INNOWACJA PEDAGOGICZNA Z MATEMATYKI MATEMATYKA W ZASTOSOWANIACH dla

Bardziej szczegółowo

KLASA O PROFILU MATEMATYCZNO-INFORMATYCZNYM

KLASA O PROFILU MATEMATYCZNO-INFORMATYCZNYM KLASA O PROFILU MATEMATYCZNO-INFORMATYCZNYM COS SIN I. Część matematyczna Uczniowie, którzy będą uczyć się w tej klasie będą mieli możliwość rozwijać swoje talenty matematyczne, a pozyskaną wiedzę weryfikować

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa III program Matematyka z plusem Dział: LICZBY I WYRAŻENIA ALGEBRAICZNE POZIOM KONIECZNY - ocena dopuszczająca Uczeń umie: szacować wyniki działań, zaokrąglać liczby

Bardziej szczegółowo

PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3

PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3 PLAN WYNIKOWY Z ROZKŁADEM MATERIAŁU klasa 3 W planie wynikowym wraz z rozkładem materiału dla klasy trzeciej uwzględniono zarówno nowy materiał, zawarty w programie nauczania Matematyka wokół nas Gimnazjum

Bardziej szczegółowo

WYMAGANIA PRZEDMIOTOWE Z MATEMATYKI

WYMAGANIA PRZEDMIOTOWE Z MATEMATYKI OCENĘ CELUJĄCĄ otrzymuje uczeń który: posiadł wiedzę i umiejętności znacznie wykraczające poza program nauczania; biegle posługuje się zdobytymi wiadomościami w rozwiązywaniu problemów teoretycznych lub

Bardziej szczegółowo

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany.

MATEMATYKA. kurs uzupełniający dla studentów 1. roku PWSZ. w ramach»europejskiego Funduszu Socjalnego« Adam Kolany. MATEMATYKA kurs uzupełniający dla studentów 1. roku PWSZ w ramach»europejskiego Funduszu Socjalnego«Adam Kolany rozkład materiału Projekt finansowany przez Unię Europejską w ramach Europejskiego Funduszu

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM WYMAGANIA EDUKACYJNE NIEZBĘDNE DO UZYSKANIA ŚRÓDROCZNYCH I ROCZNYCH OCEN KLASYFIKACYJNYCH Z MATEMATYKI W KLASIE II GIMNAZJUM OCENA ŚRÓDROCZNA: NIEDOSTATECZNY ocenę niedostateczny otrzymuje uczeń, który

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów

Bardziej szczegółowo

1. Przedmiot oceniania:

1. Przedmiot oceniania: Przedmiotowy system oceniania z matematyki w Gimnazjum w Posądzy Opracowano na podstawie Wewnątrzszkolnego Systemu Oceniania oraz w oparciu o program "Matematyka 2001 1. Przedmiot oceniania: a) wiadomości,

Bardziej szczegółowo

Egzamin gimnazjalny z matematyki 2016 analiza

Egzamin gimnazjalny z matematyki 2016 analiza Egzamin gimnazjalny z matematyki 2016 analiza Arkusz zawierał 23 zadania: 20 zamkniętych i 3 otwarte. Dominowały zadania wyboru wielokrotnego, w których uczeń wybierał jedną z podanych odpowiedzi. W pięciu

Bardziej szczegółowo

SPIS TREŚCI 1 Założenia organizacyjne...3 2 Cele ogólne kształcenia matematycznego...3

SPIS TREŚCI 1 Założenia organizacyjne...3 2 Cele ogólne kształcenia matematycznego...3 PROGRAM KOŁA MATEMATYCZNEGO DLA UCZNIÓW KLASY I GIMNAZJUM UZDOLNIONYCH MATEMATYCZNIE I ZAINTERESOWANYCH MATEMATYKĄ Opracowanie: Małgorzata Kaczmarek Jedlnia Letnisko, wrzesień 2004 1 SPIS TREŚCI 1 Założenia

Bardziej szczegółowo

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza

MATeMAtyka 1. Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Klasa pierwsza MATeMAtyka 1 Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Klasa pierwsza Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać

Bardziej szczegółowo

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny

Wymagania edukacyjne na poszczególne oceny Wymaganiach edukacyjne niezbędne do otrzymania przez ucznia klasy I Gimnazjum poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych z matematyki, wynikające z programu nauczania: praca zbiorowa

Bardziej szczegółowo

Renata Krzemińska. nauczyciel matematyki i informatyki

Renata Krzemińska. nauczyciel matematyki i informatyki Program zajęć wyrównawczych w Gimnazjum Matematyka J1 w ramach projektu pn. Czym skorupka za młodu nasiąknie - rozwój kompetencji kluczowych uczniów Zespołu Szkół w Nowej Wsi Lęborskiej Renata Krzemińska

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem

ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW /99 Liczę z Pitagorasem ROZKŁAD MATERIAŁU Z MATEMATYKI DLA KLASY IV SP NA PODSTAWIE PROGRAMU DKW 4014 180/99 Liczę z Pitagorasem Lp. Dział programu Tematyka jednostki metodycznej Uwagi 1 2 3 4 Lekcja organizacyjna I Działania

Bardziej szczegółowo

Rozkład materiału KLASA I

Rozkład materiału KLASA I I. Liczby (31 godz.) Rozkład materiału Wg podręczników serii Prosto do matury. Zakres podstawowy i rozszerzony (Na czerwono zaznaczono treści z zakresu rozszerzonego) KLASA I 1. Zapis dziesiętny liczby

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO 1 KLASY LICEUM (ZAKRES PODSTAWOWY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. TEMAT Równania i nierówności (30h) LICZBA GODZIN LEKCYJNYCH Liczby wymierne 3 Liczby niewymierne 1 Zapisywanie

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

P 2.3. Plan wynikowy z rozkładem materiału klasa 3

P 2.3. Plan wynikowy z rozkładem materiału klasa 3 P 2.3. Plan wynikowy z rozkładem materiału klasa 3 W planie wynikowym wraz z rozkładem materiału dla klasy trzeciej uwzględniono zarówno nowy materiał, zawarty w programie nauczania Matematyka wokół nas

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH. Sposoby sprawdzania wiedzy i umiejętności uczniów WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASYFIKACYJNE DLA UCZNIÓW KLAS TRZECICH Sposoby sprawdzania wiedzy i umiejętności uczniów 1. Odpowiedzi ustne. 2. Sprawdziany pisemne. 3. Kartkówki. 4. Testy.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

Uczeo spełnia wymagania poziomu koniecznego oraz umie: porównywać liczby zapisane w różny sposób, obliczyć potęgę o wykładniku całkowitym,

Uczeo spełnia wymagania poziomu koniecznego oraz umie: porównywać liczby zapisane w różny sposób, obliczyć potęgę o wykładniku całkowitym, szacować wyniki działań, zaokrąglać liczby do podanego rzędu, zapisywać i odczytywać liczby naturalne w systemie rzymskim, podać rozwinięcie dziesiętne ułamka zwykłego, odczytać współrzędną punktu na osi

Bardziej szczegółowo

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE

EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012. CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Okręgowa Komisja Egzaminacyjna w Gdańsku EGZAMIN GIMNAZJALNY W ROKU SZKOLNYM 2011/2012 CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA Matematyka WOJEWÓDZTWO KUJAWSKO-POMORSKIE Osiągnięcia gimnazjalistów z zakresu matematyki

Bardziej szczegółowo

Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku

Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku Podstawa programowa matematyki dla liceum i technikum (zakres podstawowy) podpisana przez Ministra Edukacji Narodowej 23 sierpnia 2007 roku C e l e e d u k a c y j n e 1. Przygotowanie do świadomego i

Bardziej szczegółowo

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające

Konieczne Podstawowe Rozszerzające Dopełniające Wykraczające 12 OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu tworzyć teksty w stylu wykorzystywać

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego)

Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Kryteria oceniania osiągnięć uczniów z matematyki w kl. III gimnazjum. (Program Matematyka z plusem dla III etapu edukacyjnego) Ocena DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY CELUJĄCY Uczeń: Uczeń:

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2

TEMAT 1. LICZBY I DZIAŁANIA 14 20. 1. Liczby 1-2. 2. Rozwinięcia dziesiętne liczb wymiernych. 3. Zaokrąglanie liczb. Szacowanie wyników 1-2 TEMAT 1. LICZBY I DZIAŁANIA 14 20 LICZBA GODZIN LEKCYJNYCH 1. Liczby 1-2 2. Rozwinięcia dziesiętne liczb wymiernych 3. Zaokrąglanie liczb. Szacowanie wyników 1 1-2 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ

Bardziej szczegółowo

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony

MATeMAtyka 3. Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych. Zakres podstawowy i rozszerzony Agnieszka Kamińska, Dorota Ponczek MATeMAtyka 3 Propozycja przedmiotowego systemu oceniania wraz z określeniem wymagań edukacyjnych Zakres podstawowy i rozszerzony Wyróżnione zostały następujące wymagania

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia)

MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia) MATEMATYKA Wymagania edukacyjne i zakres materiału w roku szkolnym 2014/2015 (klasa trzecia) ZAKRES MATERIAŁU, TREŚCI NAUCZANIA 1. Potęgi. Logarytmy. Funkcja wykładnicza sprawnie wykonywać działania na

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb

6. Notacja wykładnicza stosuje notację wykładniczą do przedstawiania bardzo dużych liczb LICZBY I DZIAŁANIA PROCENTY str. 1 Przedmiot: matematyka Klasa: 2 ROK SZKOLNY 2015/2016 temat Wymagania podstawowe P 2. Wartość bezwzględna oblicza wartość bezwzględną liczby wymiernej 3. Potęga o wykładniku

Bardziej szczegółowo

Plan wynikowy z matematyki kl.i LO

Plan wynikowy z matematyki kl.i LO Literka.pl Plan wynikowy z matematyki kl.i LO Data dodania: 2006-09-23 09:27:55 Przedstawiam Państwu plan wynikowy z matematyki dla klasy pierwszej LO wg programu programu DKOS 4015-12/02 na rok szkolny

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017

Wymagania edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 NAUCZYCIEL: edukacyjne z matematyki dla kl. 2 Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2016/2017 mgr Dorota Maj PODRĘCZNIK: Liczy się matematyka WYD. WSiP Na lekcjach matematyki

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

Klasa II LP. Matematyka

Klasa II LP. Matematyka Klasa II LP Matematyka zakres podstawowy (3 godz. tygodniowo) Nauczyciel: Urszula Stopka I. FORMY SPRAWDZANIA WIADOMOŚCI: 1) zadanie domowe- uczeń może otrzymać z zadania domowego ocenę (jeśli zadanie

Bardziej szczegółowo

Matematyka klasa II Dział programowy: 1. Potęgi (14 h)

Matematyka klasa II Dział programowy: 1. Potęgi (14 h) Matematyka klasa II Dział programowy: 1. Potęgi (14 h) Wymagania podstawowe na ocenę: 14 1. Lekcja organizacyjna. 2-3. Potęga o wykładniku naturalnym. 4-5. Iloczyn i iloraz potęg o jednakowych podstawach.

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu

Bardziej szczegółowo

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa pierwsza. Poziom podstawowy.

Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa pierwsza. Poziom podstawowy. Wymagania edukacyjne oraz sposoby sprawdzania osiągnięć edukacyjnych uczniów Matematyka XI LO w Krakowie. Klasa pierwsza. Poziom podstawowy. Wymagania ogólne interpretuje tekst matematyczny, po rozwiązaniu

Bardziej szczegółowo

PROGRAM KOŁA MATEMATYCZNEGO. Wytrwałością osiągniesz powodzenie, nawet gdybyś długo musiał czekać Ali Jbn Abi Jalib

PROGRAM KOŁA MATEMATYCZNEGO. Wytrwałością osiągniesz powodzenie, nawet gdybyś długo musiał czekać Ali Jbn Abi Jalib PROGRAM KOŁA MATEMATYCZNEGO Wytrwałością osiągniesz powodzenie, nawet gdybyś długo musiał czekać Ali Jbn Abi Jalib 1 WSTĘP Praca z uczniem zdolnym to przyjemność, ale takŝe duŝe wyzwanie dla kaŝdego nauczyciela.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE DRUGIEJ GIMNAZJUM Opracowano na podstawie programu Matematyka z plusem dla III etapu edukacyjnego (klasy I III) dopuszczonego przez MEN do użytku szkolnego i

Bardziej szczegółowo