Borys STORCH. Podstawy OBRÓBKI SKRAWANIEM. Koszalin SPIS TREŚCI
|
|
- Agata Gajda
- 2 lat temu
- Przeglądów:
Transkrypt
1 Borys STORCH Podstawy OBRÓBKI SKRAWANIEM Koszalin SPIS TREŚCI
2 1. Wiadomości ogólne Wstęp Podział i określenie obróbki ubytkowej Narzędzia Geometria części roboczej narzędzi skrawających Rola i znaczenie kątów ostrza w procesie skrawania Materiały narzędziowe Stale narzędziowe węglowe Stale narzędziowe stopowe Stale szybkotnące Spieki twarde Materiały pokrywane twardymi warstwami Materiały ceramiczne i cermetale Materiały supertwarde Materiały kompozytowe Ogólne zasady doboru materiałów narzędziowych Obrabiarki i ich rola w procesie skrawania Znaczenie układu OUPN Układ obrabiarka uchwyt przedmiot narzędzie Czynniki wejściowe i wyjściowe w obróbce skrawaniem Odmiany skrawania Struganie i dłutowanie Toczenie Wiercenie obróbka otworów Frezowanie Przeciąganie Wiadomości o oddzielaniu materiału Formowanie wiórów Wiór i spęczanie Postaci wiórów Współczynnik spęczenia Siły i moc skrawania Ciepło skrawania Zjawisko narostu Zużycie i trwałość ostrza Model zużycia pomocniczej powierzchni przyłożenia Płyny obróbkowe chłodzące i smarujące Ciecze obróbkowe olejowe Emulsyjne ciecze obróbkowe Wodorozcieńczalne ciecze obróbkowe Lotne środki obróbkowe Zjawiska przykrawędziowe
3 Skrawanie prostokątne model skrawania Model sił w strefie skrawania swobodnego Rozkład naprężeń i przemieszczeń w materiale obrabianym Skrawanie nieswobodne. Model skrawania Rozkład sił na narożu ostrza Tworzenie nierówności powierzchni obrobionej Charakterystyka warstwy wierzchniej Charakterystyka chropowatości 2D Charakterystyka stereometryczna 3D Dobór warunków skrawania Ogólne zasady i tok doboru warunków obróbki Optymalizacja z uwagi na największą wydajność Optymalizacja z uwagi na trwałość ekonomiczną Spis literatury
4 1. Wiadomości ogólne 1. Wiadomości ogólne 7 Słowa kluczowe: obróbka skrawaniem materiały narzędziowe sztywność OUPN podstawy formowania wiórów zjawiska fizykalne zużycie ostrza WW chropowatość powierzchni obrobionej Skrypt poświęcony jest obróbce wiórowej. W kolejnych częściach omówione są tematy, które stanowią treści wykładów na Wydziale Mechanicznym Politechniki Koszalińskiej. Na kierunku Mechanika i Budowa Maszyn realizowane są zajęcia z przedmiotu Techniki Wytwarzania w różnej liczbie godzin w zależności od specjalności. Treści programowe wykładów różnią się uwzględniając specyfikę specjalności Wstęp Rozdział pierwszy poświęcony jest wprowadzeniu i zdefiniowaniu pojęć stosowanych w obróbce skrawaniem, którymi są: budowa i stereometria ostrza, materiały narzędziowe, znaczenie układu OUPN, odmiany skrawania. W rozdziale drugim przedstawiono podstawy formowania wiórów oraz zjawisk towarzyszących skrawaniu, zwłaszcza siły i temperatury skrawania, narostu oraz mechaniki tworzenia powierzchni obrobionej poszerzonej o zagadnienia dotyczące: - rozkładu sił jednostkowych stycznych i normalnych do powierzchni zaokrąglenia krawędzi skrawającej w przekroju normalnym, - rozkładu sił jednostkowych wzdłuż krawędzi skrawającej, gdy naroże ostrza wykonane jest jako wycinek walca o promieniu r ε, - rozkładu naprężeń i przemieszczeń w strefie skrawania swobodnego. - przebiegu zużywania się powierzchni roboczych ostrza, - chropowatości powierzchni obrobionej ostrzem ostrym i o wyraźnych śladach zużycia. W trzeciej części przedstawiono opis warstwy wierzchniej dla charakterystyki z jednego przekroju oraz trójwymiarowej. W kolejnej czwartej części skryptu omówiono podstawy optymalizacji z uwagi na największą wydajność i trwałość ekonomiczną narzędzia.
5 8 1. Wiadomości ogólne 1.2. Podział i określenie obróbki ubytkowej Technologia maszyn jest nauką o wytwarzaniu wyrobów z materiału wyjściowego, a jej zadanie polega na badaniu środków i procesów produkcji oraz ich optymalizacji. Jest dyscypliną młodą, choć związaną z bardzo starą działalnością ludzką. Podlega nieustannemu rozwojowi, tworząc podstawy teoretyczne dla technik wytwarzania, które są praktyczną jej realizacją. Na rys.1.1. przedstawiono 7 zagadnień wchodzących w skład Technologii Maszyn. Ogólnie biorąc nadanie kształtu wyrobowi uzyskiwane jest przez technologie: formujące przez odkształcenie materiału bez zmian objętości, kształtujące przez przyrost materiału polegają na dodawaniu materiału, kształtujące przez ubytek materiału polegają na stopniowym usuwaniu nadmiaru materiału, z przyjętej wstępnie jego większej ilości, zarówno sposobami skrawania, ścierania lub erodowania (rys.1.2.). Obróbka wiórowa zdefiniowana jest jako: usuwanie w postaci wiórów, określonej objętości materiału, w celu otrzymania przedmiotu o zadanym wymiarze i kształcie oraz stereometrycznych i mechanicznych właściwościach warstwy wierzchniej przedmiotu z wykorzystaniem energii mechanicznej. W tej definicji mieści się pojęcie skrawania jako sposobu obróbki pojedynczym lub wieloma ostrzami o zdefiniowanej geometrii takich jak: toczenie, struganie, cięcie, wiercenie, rozwiercanie, frezowanie, przeciąganie, gwintowanie i obróbka kół zębatych. Sposoby obróbki narzędziami z praktycznie niepoliczalną liczbą ostrzy i niezdefiniowaną ich geometrią jak: szlifowanie, gładzenie, dogładzanie, docieranie, polerowanie, strumieniowo ścierna, udarowo ścierna (zwana ultradźwiękową), nazwano ściernymi. Jest to dziedzina obróbki ubytkowej o znaczącym rozwoju w ostatnim dziesięcioleciu. Dotyczy to coraz powszechniej stosowanego diamentu technicznego oraz wynalezienia nowoczesnych, trwalszych, materiałów narzędziowych, umożliwiających obróbkę z wysokimi prędkościami (powyżej 60 m/s).
6 TECHNOLOGIA MASZYN FORMOWANIE odlewanie przeróbka plastyczna spiekanie KSZTAŁTOWANIE ULEPSZANIE ŁĄCZENIE MIERZENIE PROJEKTOWANIE I AUTOMATYKA ubytkowe cieplne rozłączne porównawcze MASZYN I URZĄ- DZEŃ TECHNI- CZNYCH przyrostowe powłokowe bez zmian wymiaru mieszane cieplno chemiczne pokryciowe zmiana wymiaru z udziałem innego matriału nierozłączne bezwzględne projektowanie i optymalizacja procesów technologicznych konstruowanie i optymalizacja urządzeń technologicznych PRZYGOTOWANIE PRODUKCJI czasowo-przestrzenne kosztowe 1. Wiadomości ogólne Rys.1.1. Podział w technologii maszyn 9
7 10 1. Wiadomości ogólne KSZTAŁTOWANIE UBYTKOWE OBRÓBKA WIÓROWA Skrawanie zdefiniowanym ostrzem Ścieranie niezdefiniowanym ostrzem Erodowanie toczenie szlifowanie chemiczne struganie wiercenie rozwiercanie frezowanie przeciąganie gwintowanie obróbka uzębień gładzenie dogładzanie docieranie polerowanie obróbka strumieniowocieplna obróbka udarowościerna (ultradźwiękowa) elektrochemiczne elektroerozyjne laserowe plazmowe jonowe Rys.1.2. Podział obróbki ubytkowej Każdy z rodzajów obróbki skrawaniem, w zależności od poziomu wymagań jej jakości, można określić jako zgrubny, kształtujący czy wykańczający (rys.1.3.) Wymusza to zastosowanie odpowiednich przyrządów, obrabiarek, narzędzi i organizacji procesu technologicznego. Obróbka - zależnie od wymagań zgrubna kształtująca wykańczająca Rys.1.3. Podział w rodzajach kształtowania
8 1. Wiadomości ogólne 11 Rola obróbki wykańczającej, zgodnie z przewidywaniami, ustawicznie wzrasta. Wprowadzanie coraz doskonalszych materiałów narzędziowych powoduje, że toczenie jest często wykańczającą operacją w procesie technologicznym bez potrzeby szlifowania. Brak jest jednak jednoznacznej definicji obróbki wykańczającej z punktu widzenia mechaniki i teorii skrawania. W literaturze [16], podkreślono, że obróbki wykańczającej nie można zatem utożsamiać z tymi sposobami i odmianami obróbki skrawaniem, które umożliwiają otrzymanie wysokiej gładkości powierzchni obrobionych, gdyż w zasadzie każdy ze znanych sposobów obróbki skrawaniem może być w zależności od potrzeb zastoso,wany do wykończenia przedmiotu. Brak jest w literaturze polskiej podobnego potraktowania zagadnienia obróbki wykańczającej jak na przykład ujmowała to norma TGL 0 140, która podawała następującą definicję:...toczeniem wykańczającym jest skrawanie o geometrycznie określonej formie ostrza, służące do poprawienia kształtu, wymiaru, położenia i powierzchni wstępnie obrobionego przedmiotu, przy czym należy dobrać odpowiednio posuw, prędkość skrawania, promień naroża ostrza r ε oraz materiał narzędzia tak, aby wysokość nierówności mieściła się w dopuszczalnym przedziale R z od 10 do 40µm. Każdy z rodzajów kształtowania inaczej wpływa na koszt wykonania przedmiotu. Procentowy wzrost kosztów, spowodowany wzrostem dokładności wymiarowej ma najczęściej charakter nieliniowy. Postęp techniczny powoduje, że dokładność wykonania przesuwa się (przy tych samych kosztach) do coraz mniejszych wartości wymiarowych. Dzisiaj mówi się o nanotechnologii i wyróżnia się ją jako odmianę wykonania przedmiotów z dokładnością do nanometrów w mechanice precyzyjnej. Gdy analizuje się uzyskiwane dokładności wyrobu, to widoczna jest ewolucja dotycząca zakresu pojęciowego stosowanych nazw. Przykładowo przez okres 100 lat zakres dokładności obróbki ultraprecyzyjnej przesunął się od; około 0.01mm charakterystycznej dla początku wieku do 1 nm na jego koniec (rys.1.4.).
9 12 1. Wiadomości ogólne Rys.1.4. Wzrost dokładności obróbki Metody obróbki erozyjnej erodowanie zaliczane są do kształtowania ubytkowego, jednak różnią się od skrawania rodzajem wykorzystywanej energii elektrycznej i postacią oddzielonego materiału. Zamiast wiórów jak to ma miejsce w skrawaniu, powstają produkty topienia i odparowania materiału obrabianego w temperaturze 10000K. Poszczególne jej odmiany znalazły bardzo konkretne zastosowania. Dotyczy to szczególnie obróbki materiałów konstrukcyjnych, których nie można obrobić skrawaniem czy ścieraniem, na przykład trudno obrabialnych takich jak: kompozytowych, spieków twardych, spieków ceramicznych albo stali austenitycznych. Istotną zaletą jest brak obciążenia układu obrabiarki siłami mechanicznymi. Sprzyja to uzyskiwaniu dobrej dokładności. Wadą jest znaczne, w porównaniu z obróbką wiórową, zużycie energii elektrycznej na jednostkę objętości usuniętego materiału. Stosowany jest także podział obróbki z uwagi na kinematykę podstawowych ruchów, niezbędnych do oddzielenia warstwy materiału, które są określone jako (tabela1.): Tabela 1. Odmiany skrawania z uwagi na wykonywane ruchy
10 1. Wiadomości ogólne 13 główny jest to ten z ruchów (narzędzia lub przedmiotu), który pozwala na zaistnienie procesu oddzielania, podawany w jednostkach m/min lub m/s. Ma charakter jednorazowy i zanika, jeśli nie zostanie wykonany jakikolwiek dodatkowy ruch, posuwowy ruch (narzędzia lub przedmiotu), który służy do podtrzymania procesu skrawania i podawany jest w mm/obr lub w mm/skok. W tabeli 1, pokazano podział na odmiany skrawania z uwagi na wykonywane ruchy. Widoczne jest, że niektóre skojarzenia ruchów, przedmiotu i narzędzia, nie dają możliwości tworzenia wiórów. W tabeli brak także bardziej złożonych ruchów charakterystycznych dla obróbki kół zębatych, na przykład takich, które występują podczas przeciągania kół zębatych Narzędzia Podstawowymi elementami konstrukcyjnymi narzędzia są części zwane: 1. chwytową, 2. roboczą, 3. łączącą. Część chwytowa służy do ustalania położenia krawędzi skrawającej oraz do mocowania narzędzia w celu przeniesienia przez nie obciążenia momentem lub siłami skrawania. Części chwytowe mają różne kształty. Mogą to być powierzchnie walcowe zewnętrzne (wiertła), wewnętrzne (otwory we frezach tarczowych), stożkowe zewnętrzne (frezy trzpieniowe), wewnętrzne (rozwiertaki) lub kształty wieloboków; najczęściej kwadratów, prostokątów.
11 14 1. Wiadomości ogólne Część robocza obejmuje elementy konstrukcyjne związane bezpośrednio z pracą narzędzia, a więc skrawaniem i wykańczaniem obrabianej powierzchni oraz prowadzeniem narzędzia w stosunku do przedmiotu lub przyrządu obróbkowego. Część skrawająca, fragment części roboczej wykonującej proces skrawania, składa się z jednego lub większej liczby ostrzy skrawających, których odpowiednie powierzchnie stykają się w czasie skrawania albo z powstającym wiórem albo z powstającą powierzchnią na przedmiocie. W obróbce wiórowej wyróżnia się trzy umowne metody tworzenia powierzchni przedmiotu: punktową, kształt obrobionej powierzchni jest zbiorem linii będących torem ruchu jednego lub kilku naroży względem przedmiotu (rys.1.5.) kształtową, powierzchnia obrobiona powstaje w wyniku współdziałania toru ruchu narzędzia (zwykle prostego) i kształtu (zarysu) krawędzi skrawającej (rys.1.6.), obwiedniową, złożone, kinematyczne zazębienie przedmiotu i narzędzia z wieloma krawędziami skrawającymi. Powstająca powierzchnia jest obwiednią złożonego kształtu i trajektorii ruchu krawędzi skrawających (rys.1.7.). Rys.1.5. Przykłady obróbki metodą punktową Przedstawione przykłady na rys.1.5. a) toczenia wzdłużnego zewnętrzne, b) toczenia wzdłużnego wewnętrzne, c) toczenia kopiowego, d) strugania płaszczyzn, e) frezowania płaszczyzn, f) frezowania obwodowego, g)
12 1. Wiadomości ogólne 15 frezowania czołowego h) frezowania kopiowego, wskazują, że możliwości obróbki dotyczą powierzchni obrotowych, walcowych oraz o niekołowych przekrojach i innych. Na kolejnym rysunku (rys.1.6.) zilustrowano przykłady powierzchni otrzymanych metodą kształtową. Zastosowane metody kształtowe pozwalają wykonać powierzchnie: 1) obrotowe (od a do g), 2) walcowe ( od h do m), 3) śrubowe (od n do s). Podziały dokonywane są przede wszystkim według zasady wskazującej na złożoność kształtu narzędzia. Frez obwodowy z ostrzami prostymi, nie jest narzędziem kształtowym w odróżnieniu od noża do gwintu zaliczanego do takich narzędzi. Metodami obwiedniowymi wykonuje się w głównej mierze powierzchnie o zarysie walcowym i śrubowym. Dodatkowa grupa przedmiotów obrabianych metodami obwiedniowymi obejmuje te o kształcie kół zębatych stożkowych, ślimacznice. Na rys.1.7. zebrano przykłady obróbki obwiedniowej. Rys.1.6. Przykłady obróbki kształtowej p przedmiot, N narzędzie W narzędziach kształtowych oraz do obróbki obwiedniowej zarysy krawędzi skrawającej są zazwyczaj krzywoliniowe. Wykonanie takich zarysów wymaga odpowiedniego wymiarowania. W miejsce dokładnych rozkładów pól tolerancji
13 16 1. Wiadomości ogólne uwzględniających złożoność kształtu i kinematykę przyjmuje się w obliczeniach zarysy zastępcze. Dla dużej tolerancji krzywoliniowego zarysu przedmiotu możliwe jest jego wykonanie za pomocą prostoliniowej krawędzi skrawającej. W istocie upraszcza to wykonanie narzędzi wymaga jednak zmniejszenia tolerancji wykonania narzędzia. W literaturze wyróżniono dziewięć przypadków obróbki obwiedniowej, z uwagi na kształt elementów współpracujących: (rys.1.7.) 1. powierzchni walcowej z zębatką a) typu Maaga, b) c) Fellowsa, 2. powierzchni śrubowej z zębatką f), g), h), 3. powierzchni walcowych o osiach równoległych i prostopadłych b), c), k), l), m), 4. powierzchni śrubowych o osiach równoległych, jak w 3 ale dodatkowy ruch śrubowy narzędzia, 5. powierzchni walcowej i powierzchni śrubowej ale osie skrzyżowane, 6. powierzchni śrubowych o osiach skośnych d), e), i), 7. ślimaka z ostrzami na linii śrubowej ze ślimacznicą t), 8. ślimaka z ostrzami na powierzchni obrotowej ze ślimacznicą n), 9. koła stożkowego z pierścieniową zębatką: p) metoda Bilgrama, r) Gleasona, s) Klingelnberga.
14 1. Wiadomości ogólne 17 Rys.1.7. Przykłady obróbki obwiedniowej P przedmiot, N narzędzie Geometria części roboczej narzędzi skrawających Stosowane nazwy krawędzi i powierzchni w narzędziach skrawających pokazano na przykładzie noża tokarskiego (rys.1.8.). Powierzchnię (lub powierzchnie), po których spływa wiór nazwano natarcia A γ, oraz powierzchnię (lub powierzchnie), nad którą przechodzi powierzchnia ukształtowana na przedmiocie obrabianym nosi nazwę przyłożenia A α.
15 18 1. Wiadomości ogólne ' Powierzchnia przyłożenia pomocnicza A α styka się z powierzchnią obrobioną. Wyróżnia się główną krawędź skrawającą S w miejscu przecięcia pierwszej powierzchni natarcia A γ z pierwszą powierzchnią przyłożenia A α. W miejscu przecięcia powierzchni natarcia z pierwszą pomocniczą powierzchnią ' przyłożenia A α powstaje pomocnicza krawędź skrawająca S. Rys.1.8. Krawędzie skrawające i powierzchnie części roboczej Dla ujednolicenia opisu postaci narzędzi, w PN 92/M 01002/01 [48], przedstawiono zasady wymiarowania i kształtowania bryły ostrza narzędzi skrawających z uwzględnieniem przewidywanej jego pracy. Norma ta definiuje geometrię ostrza w dwóch układach odniesienia: narzędzia (rys.1.9.) przeznaczony do określenia geometrii narzędzia dla jego wykonania i sprawdzenia, wyznaczający geometrię ostrza narzędzia traktowanego jako bryła geometryczna, jednak z uwzględnieniem przewidywanej jego pracy, zaś płaszczyzny (oznaczane dużą literą P uzupełniane indeksem) układu wymiarowania orientuje się biorąc pod uwagę elementy bazowe narzędzia stosowane do ich wykonania takie na przykład, jak: oś dla narzędzi obrotowych lub podstawa mocowania dla narzędzi z uchwytem o przekroju wieloboku (rys.1.9. i rys.1.10.). Płaszczyzna podstawowa P r, dla noża tokarskiego, przechodzi przez rozpatrywany punkt na krawędzi skrawającej równolegle do bazy noża i prostopadle do kierunku ruchu głównego. Płaszczyzna krawędzi skrawającej P jest styczna do krawędzi skrawającej w rozpatrywanym s
16 1. Wiadomości ogólne 19 punkcie krawędzi i prostopadła do płaszczyzny podstawowej P. r Płaszczyzna ortogonalna P o przechodzi przez rozpatrywany punkt krawędzi skrawającej i jest prostopadła do płaszczyzn P r i P s. Płaszczyzna normalna P n jest prostopadła do krawędzi skrawającej w rozpatrywanym punkcie tej krawędzi. Płaszczyzna boczna P f przechodzi przez rozpatrywany punkt krawędzi skrawającej prostopadle do płaszczyzny podstawowej P r i równolegle do zamierzonego kierunku ruchu posuwowego. Płaszczyzna tylna P p w rozpatrywanym punkcie krawędzi skrawającej jest prostopadła do płaszczyzn P r i roboczym (rys.1.10.) rozpatrującym geometrię ostrza narzędzia w warunkach skrawania. Płaszczyzny układu roboczego orientuje się biorąc pod uwagę kierunek wypadkowego ruchu względnego pomiędzy narzędziem a P. f przedmiotem, w rozpatrywanym punkcie krawędzi skrawającej. W przypadku gdy prędkość ruchu posuwowego ν f jest nieznaczna w stosunku do prędkości ruchu głównego ν c, układ roboczy może być zastąpiony układem ustawienia, co prowadzi do istotnych uproszczeń obliczeniowych. Na rys a i b przedstawiono geometrię ostrza w układzie roboczym. Z uwagi na przejrzystość ilustracji płaszczyzn na rysunku a) pokazano płaszczyzny boczną P fe i tylnią P pe. Na drugiej części rys przedstawiono położenia płaszczyzn P se krawędzi skrawającej, P ne normalnej i ortogonalnej P oe. Kąty w układzie narzędzia dla noża tokarskiego ilustruje rys natomiast w układzie roboczym rys Układ ustawienia stosowany jest dla powiązania, układu narzędzia (wykorzystywanego do określania kątów narzędzia poruszającego się stosownie do zmiany położenia narzędzia względem obrabiarki) z układem roboczym (wykorzystywanym do wyznaczenia kątów roboczych uwzględniającym zmiany kierunku ruchu wypadkowego). Układ ustawienia nie obraca się wraz ze zmianą położenia narzędzia wzdłuż drogi skrawania ani zmianą kierunku ruchu wypadkowego (rys.1.13.). W PN zebrano zależności między kątami w układzie narzędzia, które ilustruje tabela 2. Wzajemne związki układu ustawienia i: układu narzędzia polegają na opisie położenia narzędzia po zamocowaniu na obrabiarce,
17 20 1. Wiadomości ogólne układu roboczego polegają na opisie rzeczywistej geometrii ostrza w ruchu narzędzia względem przedmiotu obrabianego. Ogólnie mówiąc, stosuje się go celem określenia zmienności kątów ostrza wzdłuż krawędzi skrawającej w odniesieniu do punktu na powierzchni przedmiotu obrabianego. Płaszczyzny układu ustawienia (rys.1.13.) orientuje się w stosunku do kierunków ruchu głównego ν c i posuwowego ν f. Przy pokrywaniu się kierunków ruchów rzeczywistych z kierunkami przyjętymi przy definiowaniu układu narzędzia, obydwa układy zarówno narzędzia jak i ustawienia pokrywają się. Przesunięcie ostrza z osi obrabianego przedmiotu lub jego skręcanie powoduje zmianę kątów w układzie ustawienia (rys a, b).
18 1. Wiadomości ogólne 21 Rys.1.9. Płaszczyzny układu narzędzia
19 22 1. Wiadomości ogólne a) b) Rys Podstawowe płaszczyzny w układzie roboczym
20 1. Wiadomości ogólne 23 Rys Nóż tokarski. Kąty w układzie narzędzia
21 Tabela 2. Zależności między kątami w układzie narzędzia γ α λ κ o o s r,,, γ α λ κ,,, n n s r γ γ α α,,, f p f p γ α δ θ,,, g b r r κr γ α γ α = κ p p f f r tg ctg tg ctg tg δ γ θ α δ γ θ α = κ r g r b r g r b r sin tg sin ctg cos tg cos ctg tg λ s γ κ γ κ = = α κ α κ = λ f r p r f r p r s tg cos tg sin ctg cos ctg sin tg ) ( ) ( δ + κ γ = = α + θ κ = λ r r g b r r r cos tg tg cos tg α o λ α = α s n o cos tg tg α κ + + α κ = α f r p r o ctg sin ctg cos ctg ) ( θ + κ α = α r r b o sin tg tg γ o λ γ = γ s n o cos tg tg γ κ + γ κ = γ f r p r o tg sin tg cos tg ) ( δ + κ γ = γ r r g o sin tg tg α n λ α = α s o n cos tg tg λ α κ + + α κ = α s f r p r n ) cos ctg sin ctg (cos ctg ) ( θ + κ λ α = α r r s b n sin cos tg tg γ n λ γ = γ s o n cos tg tg s f r p r n )cos tg sin tg (cos tg λ κ + + κ = γ γ γ ) ( δ + κ λ γ = γ r r s g n sin cos tg tg α p λ κ + + α κ = α s r o r p tg sin ctg cos ctg λ κ + + λ α κ = α s r s n r p tg sin cos ctg cos ctg α θ = α b r p ctg sin ctg Wiadomości ogólne
22 α f γ p γ f Tabela 2. Zależności między kątami w układzie narzędzia c.d. ctgαf = sin κ cosκ tgλ tg γ p r + sin κ tgλ tg γ f s r ctgα = cosκ tg γ r s cosκ tgλ r = sin κ tg γ r r s o o o + ctgα tgλ ctgα ctg = n αf sin κr cosλs cosκ tgλ r tg γ tg = n γp cosκr cosλs sin κ tgλ r tg γ tg = n γf sin κr cosλs cosκ tgλ θ r ( ) o tg κr + θr = tg ( κr + θr) δ r ( κ + δ ) ) α 1 b ) γ 1 g s r s s s ctgα = sinλ tg γ = o tg γ tg r r tg ( + ) = n κr δr tgλ sinλ ctgα b = ± 2 s o 2 ctg α + tg λ s tg αb = ± n s 2 ctg αn + 2 tg λs 2 cos λs s tgα tg θ = f r tgα tg γ tg δr = tg γ ctg αb = ± f p p 2 α + 2 ctg p ctg αf ctg α tg γ tg γ p f f = cosθ ctgα r = sinδ tg γ r g = cosδ tgγ 2 = ± 2 γ γ + 2 tg γ tg g tg o tg λs tg γ = ± n + 2 g tg λs tg = ± γg tg γ p tg γf 2 cos λs 1) Znaki kątów α b i γ g określa się na podstawie konwersji wg 5.3. PN 92/M /01 [48]. r g b 1. Wiadomości ogólne 25
23 26 1. Wiadomości ogólne Rys Nóż tokarski. Kąty w układzie roboczym
24 1. Wiadomości ogólne 27 Rys Związki geometryczne w układzie ustawienia dla a) płaszczyzn b) geometrii ostrza Zmiany kątów narzędzia na kąty robocze i odwrotnie, czyli ogólne zasady konwersji, opisuje druga część normy PN 92/M /02 [48]. Układ narzędzia porusza się wraz z narzędziem skrawającym. W zależności zaś od zmiany kierunku ruchu wypadkowego zmienia się położenie układu roboczego. Podstawową sprawą jest zdefiniowanie osi współrzędnych układów odniesienia. W układzie narzędzia założonej płaszczyzny bocznej f osie opisują krawędzie przecięcia odpowiednich płaszczyzn i dla Xf (Pr Pp) (podstawowej i tylnej), Yf (Pp Pf ) (tylnej i bocznej), Zf (Pf Pr) (bocznej i podstawowej). Zwroty dodatnie osi: X f w miarę oddalania się od powierzchni obrobionej lub naroża, Y f przeciwny do założonego ruchu głównego, Z f w miarę oddalania się od powierzchni przejściowej. Osie w układzie roboczym f e stanowią linie przecięcia par Xfe (Pre Ppe), Yfe (Ppe Pfe), Pfe (Pfe Pre).Przyjęto za zwroty dodatnie dla osi: X fe oddalanie się od powierzchni obrobionej lub naroża odniesienia,
25 28 1. Wiadomości ogólne Y fe ruch przeciwny do założonego ruchu wypadkowego, Z fe oddalanie się od powierzchni przejściowej. Transformację prostą stanowi wyrażenia wyznaczające kąt roboczy jako funkcję kątów narzędzia, kątów ustawczych i kątów ruchu. Transformację odwrotną stanowi wyrażenie przedstawiające kąt narzędzia jako funkcję kątów roboczych, kątów ustawczych i kątów ruchu. Przyjęto konwencję oznaczania kątów między osiami układu narzędzia ( Xf,Yf, Zf ) oraz układu roboczego ( Xfe,Yfe, Zfe) (tabela 3.). Tabela 3. Zasada opisywania kątów transformacji osie X fe Y fe Z fe X f kąt(1.1) kąt(1.2) kąt(1.3) Y f kąt(2.1) kąt(2.2) kąt(2.3) Z f kąt(3.1) kąt(3.2) kąt(3.3) Osie układu ustawienia ( Xm,Ym, Zm) tworzą najczęściej kąty z osiami układu narzędzia i roboczego, których cosinusy są pomocnicze dla wyliczenia kątów między osiami układu narzędzia. Korzystając z tablicy cosinusów kątów (zawartych w tabeli 4) można wyznaczać te kąty dla dowolnych przypadków. Tabela 4. Kosinusy kątów pomocniczych cos( 1,1) cos( 2,1) cos( 3,1) cos( 1,2) cos( 2,2) cos( 3,2) cos( 1,3) cos( 2,3) cos( 3,3) = cos(xf, Xm) cos(xfe, Xm) + cos(xf, Ym) cos(xfe, Ym) + cos(xf, Zm) cos(xfe, Zm) = cos(yf, Xm) cos(xfe, Xm) + cos(yf, Ym) cos(xfe, Ym) + cos(yf, Zm) cos(xfe, Zm) = cos(zf, Xm) cos(xfe, Xm) + cos(zf, Ym) cos(xfe, Ym) + cos(zf, Zm) cos(xfe, Zm) = cos(xf, Xm) cos(yfe, Xm) + cos(xf, Ym) cos(yfe, Ym) + cos(xf, Zm) cos(yfe, Zm) = cos(yf, Xm) cos(yfe, Xm) + cos(yf, Ym) cos(yfe, Ym) + cos(yf, Zm) cos(yfe, Zm) = cos(zf, Xm) cos(yfe, Xm) + cos(zf, Ym) cos(yfe, Ym) + cos(zf, Zm) cos(yfe, Zm) = cos(xf, Xm) cos(zfe, Xm) + cos(xf, Ym) cos(zfe, Ym) + cos(xf, Zm) cos(zfe, Zm) = cos(yf, Xm) cos(zfe, Xm) + cos(yf, Ym) cos(zfe, Ym) + cos(yf, Zm) cos(zfe, Zm) = cos(zf, Xm) cos(zfe, Xm) + cos(zf, Ym) cos(zfe, Ym) + cos(zf, Zm) cos(zfe, Zm) Gdy płaszczyzna robocza P fe pokrywa się z płaszczyzną P f w układzie narzędzia sytuacje typowe dla: większości operacji wytaczania i toczenia powierzchni walcowych, wiercenia i podobnych obróbek, frezowania. przez podstawienie wartości kątów pomocniczych do ogólnych wzorów konwersji otrzymuje się zależności (1.1):
26 sinλ = sinλ cos(2,2) cosλ cosκ sin(3,2), se s 1. Wiadomości ogólne 29 s r cos sin tan s r κ re =, (1.1) sin sin(3,2) + cos cos cos(2,2) sinγ ne λ s λ λ s κ κ r [(sinγ sin cos ) sin(3,2) + sinγ cos cos(2,2) ] 1 = s r cos n λ κ n λ λ se Transformację odwrotną, polegającą na tym, że znany jest obrót układu roboczego a zadaniem jest wyliczenie kątów w układzie narzędzia, wykorzystuje się do sprawdzania granicznych warunków kinematyki ruchu z uwagi na geometrię ostrza. W normie proponowane są wzory konwersji w oparciu o metodę macierzową, bardziej przydatną w zastosowaniach komputerowych. Układ z rys nazywano układem (O) osi współrzędnych. Osie tego układu wyznaczają krawędzie przecięcia płaszczyzn: Xo Pr z Ps (podstawowej i krawędzi skrawającej), Yo Ps z Po (krawędzi skrawającej i ortogonalnej), Zo Po z Pr (ortogonalnej i podstawowej) W tym układzie współrzędnych brane są pod uwagę dwie charakterystyczne linie. Pierwsza jest krawędzią skrawającą, a druga linią przecięcia płaszczyzny P n z powierzchnią natarcia w określonym punkcie na tej krawędzi. s. cos λs G = sin γn sin λs sinλs sin γn cos λs 0 cos γn Rys Cosinusy kierunkowe Cosinusy kierunkowe tych dwu linii: - krawędzi skrawającej: (cosλ,sinλ,0), s s
27 30 1. Wiadomości ogólne - linii przecięcia płaszczyzny P n z powierzchnią natarcia A γ : ( sinγ sin s,sin cos s,cos ) n λ γn λ γ, n tworzą macierz G: cosλs sinλs 0 G = (1.2) sin γn sinλs sin γn cosλs cosγn Ge odpowiednio dla układu osi G e : cosλse sinλse 0 = (1.3) sin γ ne sinλse sin γ ne cosλse cos γ ne Widoczne jest, że transformacja macierzy G do macierzy G e polega na obrocie układu współrzędnych wokół jednej z jego osi. Na przykład, dla danego punktu A ( 0,1,1 ) w układzie współrzędnych X1 Y1Z1, gdy pokrywają się początki współrzędnych oraz jedna z osi X2 = X1 dla x kąta między osiami Y 1 i Y 2, to współrzędne punktu w nowym układzie otrzymuje się z wymnożenia jednowierszowej macierzy współrzędnych oraz macierzy transformacji T x (rys.1.15.): Z 2 x Z 1 A(0,1,1) Y 2 x Y 1 X 1, X 2 Rys Obrót elementarny wokół osi X
28 1. Wiadomości ogólne T x = cosx sin x = 0 cosx + sin x sin x + cosx 0 sin x cosx (1.4) gdzie: T x macierz transformacji przy obrocie wokół osi X, natomiast macierze transformaty wokół osi Y i Z mają postać: T y cosy sin y 0 0 sin y cosy T z cosz = = sinz 0 sinz cosz (1.5) Jeśli zamierza się wykonać kolejne transformacje, wówczas ostateczna macierz transformacji jest iloczynem macierzy transformacji elementarnych Tx,Ty,Tz. Polska norma PN 92/M /02 opisuje kilka formuł wzajemnych transformacji podając jednocześnie postacie transformat: z układu O do układu f, sin κ r 0 cos κ r Tκ r = (1.6) cos κ r 0 sin κ r z układu f do układu ustawienia, cosg 0 sing cos H sin H 0 T G = 0 sing 1 0 T H = sin H cos H 0 oraz 0 cosg T L = cos L sin L 0 sin L cos L (1.7) gdzie G, H i L to kąty ustawcze: G poziomy, odpowiada obrotowi wokół osi Y m w układzie ustawienia, wyznaczany w płaszczyźnie podstawowej układu narzędzia P r, zawarty między założoną płaszczyzną P f w jej położeniu zerowym i założoną płaszczyzną roboczą końcową. H pionowy, odpowiada obrotowi wokół osi Z, wyznaczany między osią układu ustawienia a jej rzutem na założoną płaszczyznę roboczą P f. Y m
29 32 1. Wiadomości ogólne L obrotu, odpowiada obrotowi wokół osi X f układu narzędzia, zawarty między płaszczyzną P r w jej położeniu zerowym i końcowym. Położeniem zerowym określono układ osi X,Y, Z, wyznaczony dla każdego typu obrabiarki. Przy położeniu zerowym narzędzia względem obrabiarki płaszczyzny układu narzędzia Xf,Yf, Zf pokrywają się z płaszczyznami układu obrabiarki X,Y, Z. Gdy płaszczyzna P f pokrywa się z kierunkiem posuwu to system stałych osi układu ustawienia Xm,Ym, Zm pokrywa się także z osiami układu narzędzia X,Y, Z. z układu ustawienia do układu f f f f T M = cos M 0 sin M sin M 0 cos M T N T T cosn sin N 0 = sin N cosn 0 oraz = 0 cost sint (1.8) 0 sint cost gdzie M, N, T to kąty ruchu: M poziomego, odpowiada obrotowi układu pomocniczego wokół osi Y m, dla toczenia powierzchni walcowych i większości innych operacji M = 0. Należy uwzględniać go podczas obróbki powierzchni stożkowych. N pionowego, odpowiada obrotowi wokół osi Z, zawarty jest między osią Y m układu ustawienia i jej rzutem na płaszczyznę roboczą P fe. W większości przypadków, kąt ruchu pionowego jest równy zeru. Dla toczenia gdy rozpatrywany punkt krawędzi skrawającej znajduje w odległości h poniżej osi obrotu to kąt N wyznacza się z zależności: 2 h sin N = d d średnica toczenia. (1.9)
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 1
Przedmiot : OBRÓBKA SKRAWANIEM I NARZĘDZIA Temat: Geometria ostrzy narzędzi skrawających KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 1 Kierunek: Mechanika
Budowa i zastosowanie narzędzi frezarskich do obróbki CNC.
Budowa i zastosowanie narzędzi frezarskich do obróbki CNC. Materiały szkoleniowe. Sporządził mgr inż. Wojciech Kubiszyn 1. Frezowanie i metody frezowania Frezowanie jest jedną z obróbek skrawaniem mającej
Schemat obróbki nożami tokarskimi. Oznaczenia noży tokarskich wg ISO, PN, DIN, F, Gost. ISO 2 NNZc-d 4972 302 2102. Nóż wygięty ISO 243 ISO 514.
Schemat obróbki nożami tokarskimi Oznaczenia noży tokarskich wg ISO, PN, DIN, F, Gost ISO 243 Nóż ISO 514 PN / M-58352 DIN F GOST (PN / M-58355) ISO 1 NNZa-b 4971 301 2100 Nóż prosty ISO 2 NNZc-d 4972
Poradnik narzędziowca / Eugeniusz Górski. wyd. 5 popr. i uzup. - 2 dodr. Warszawa, Spis treści
Poradnik narzędziowca / Eugeniusz Górski. wyd. 5 popr. i uzup. - 2 dodr. Warszawa, 2015 Spis treści ROZDZIAŁ I Materiały i półfabrykaty stosowane na narzędzia skrawające 11 1. Materiały narzędziowe 11
KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI. Obróbka skrawaniem i narzędzia
KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI Przedmiot: Temat ćwiczenia: Obróbka skrawaniem i narzędzia Toczenie cz. II Numer ćwiczenia: 3 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studenta z parametrami
KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI. Obróbka skrawaniem i narzędzia
KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI Przedmiot: Temat ćwiczenia: Obróbka skrawaniem i narzędzia Toczenie cz. II Numer ćwiczenia: 3 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie studenta z parametrami
Rajmund Rytlewski, dr inż.
Rajmund Rytlewski, dr inż. starszy wykładowca Wydział Mechaniczny PG Katedra Technologii Maszyn i Automatyzacji Produkcji p. 240A (bud. WM) Tel.: 58 3471379 rajryt@mech.pg.gda.pl http://www.rytlewski.republika.pl
MATERIAŁY KONSTRUKCYJNE
Stal jest to stop żelaza z węglem o zawartości węgla do 2% obrobiona cieplnie i przerobiona plastycznie Stale ze względu na skład chemiczny dzielimy głównie na: Stale węglowe Stalami węglowymi nazywa się
TOOLS NEWS B228P. Seria frezów trzpieniowych CERAMIC END MILL. Ultrawysoka wydajność obróbki stopów żaroodpornych na bazie niklu
TOOLS NEWS B228P Seria frezów trzpieniowych CERAMIC END MILL Ultrawysoka wydajność obróbki stopów żaroodpornych na bazie niklu CERAMIC Seria frezów trzpieniowych Łatwa obróbka materiałów trudnoobrabialnych!
Karta (sylabus) przedmiotu
WM Karta (sylabus) przedmiotu Mechanika i Budowa Maszyn Studia I stopnia o profilu: A P Przedmiot: Obróbka ubytkowa Kod przedmiotu Status przedmiotu: obowiązkowy MBM N 0 4-0_0 Język wykładowy: polski Rok:
WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII
WOJSKOWA AKADEMIA TECHNICZNA Wydział Nowych Technologii i Chemii KATEDRA ZAAWANSOWANYCH MATERIAŁÓW I TECHNOLOGII DOBÓR NARZĘDZI I PARAMETRÓW SKRAWANIA Techniki Wytwarzania Ć1: Budowa narzędzi tokarskich
Przykładowe rozwiązanie zadania egzaminacyjnego z informatora
Przykładowe rozwiązanie zadania egzaminacyjnego z informatora Rozwiązanie zadania obejmuje: - opracowanie propozycji rozwiązania konstrukcyjnego dla wpustu przenoszącego napęd z wału na koło zębate w zespole
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 3
Przedmiot : OBRÓBKA SKRAWANIEM I NARZĘDZIA Temat: Toczenie cz. II KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 3 Kierunek: Mechanika i Budowa Maszyn
DOLFA-POWDER FREZY TRZPIENIOWE ZE STALI PROSZKOWEJ DOLFAMEX
-POWDER FREZY TRZPIENIOWE ZE STALI PROSZKOWEJ Dzięki użyciu nowoczesnego materiału mają one zastosowanie przy obróbce stali i żeliwa o podwyższonej twardości: q charakteryzują się wysoką żywotnością narzędzia,
Węglikowe pilniki obrotowe. Asortyment rozszerzony 2016
Węglikowe pilniki obrotowe Asortyment rozszerzony 2016 1 WĘGLIKOWE PILNIKI OBROTOWE Asortyment rozszerzony 2016 WSTĘP Pilniki obrotowe Dormer to wysokiej jakości, uniwersalne narzędzia o różnej budowie
KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI Inżynieria wytwarzania: Obróbka ubytkowa
Przedmiot: KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI Inżynieria wytwarzania: Obróbka ubytkowa Temat ćwiczenia: Toczenie Numer ćwiczenia: 1 1. Cel ćwiczenia Poznanie odmian toczenia, budowy i przeznaczenia
Sposób kształtowania plastycznego wałków z wieńcami zębatymi
Sposób kształtowania plastycznego wałków z wieńcami zębatymi Przedmiotem wynalazku jest sposób kształtowania plastycznego wałków z wieńcami zębatymi, zwłaszcza wałków drążonych. Przez pojecie wał drążony
1. Klasyfikacja narzędzi. Mechanizmy zużycia i Wymagania stawiane narzędziom
1. Klasyfikacja narzędzi. Mechanizmy zużycia i Wymagania stawiane narzędziom Rozwój materiałów narzędziowych Historia rozwoju narzędzi sięga czasów starożytnych Znaleziono je w piramidach egipskich mają
5. ZUŻYCIE NARZĘDZI SKRAWAJĄCYCH. 5.1 Cel ćwiczenia. 5.2 Wprowadzenie
5. ZUŻYCIE NARZĘDZI SKRAWAJĄCYCH 5.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z formami zużywania się narzędzi skrawających oraz z wpływem warunków obróbki na przebieg zużycia. 5.2 Wprowadzenie
Tematy prac dyplomowych inżynierskich kierunek MiBM
Tematy prac dyplomowych inżynierskich kierunek MiBM Nr pracy Temat Cel Zakres Prowadzący 001/I8/Inż/2013 002/I8/Inż/2013 003/I8/ Inż /2013 Wykonywanie otworów gwintowanych na obrabiarkach CNC. Projekt
Podstawy Konstrukcji Maszyn
Podstawy Konstrukcji Maszyn Część Wykład nr. 1 1. Podstawowe prawo zazębienia I1 przełożenie kinematyczne 1 i 1 = = ω ω r r w w1 1 . Rozkład prędkości w zazębieniu 3 4 3. Zarys cykloidalny i ewolwentowy
Poradnik tokarza / Karol Dudik, Eugeniusz Górski. wyd. 12 zm., 1 dodr. (PWN). Warszawa, Spis treści
Poradnik tokarza / Karol Dudik, Eugeniusz Górski. wyd. 12 zm., 1 dodr. (PWN). Warszawa, 2016 Spis treści PRZEDMOWA 13 Rozdział 1 PODSTAWY TOKARSTWA 15 1.1. Tolerancje i pasowania 15 1.2. Struktura geometryczna
OBRÓBKA SKRAWANIEM DOBÓR NARZĘDZI I PARAMETRÓW SKRAWANIA DO FREZOWANIA. Ćwiczenie nr 6
OBRÓBKA SKRAWANIEM Ćwiczenie nr 6 DOBÓR NARZĘDZI I PARAMETRÓW SKRAWANIA DO FREZOWANIA opracowali: dr inż. Joanna Kossakowska mgr inż. Maciej Winiarski PO L ITECH NI KA WARS ZAWS KA INSTYTUT TECHNIK WYTWARZANIA
6. BADANIE TRWAŁOŚCI NARZĘDZI SKRAWAJĄCYCH. 6.1 Cel ćwiczenia. 6.2 Wprowadzenie
6. BADANIE TRWAŁOŚCI NARZĘDZI SKRAWAJĄCYCH 6.1 Cel ćwiczenia Celem ćwiczenia jest praktyczne zapoznanie się studentów z metodami badań trwałości narzędzi skrawających. Uwaga: W opracowaniu sprawozdania
Przekładnie zębate. Klasyfikacja przekładni zębatych. 1. Ze względu na miejsce zazębienia. 2. Ze względu na ruchomość osi
Przekładnie zębate Klasyfikacja przekładni zębatych 1. Ze względu na miejsce zazębienia O zazębieniu zewnętrznym O zazębieniu wewnętrznym 2. Ze względu na ruchomość osi O osiach stałych Planetarne przynajmniej
KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI
KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Przedmiot : OBRÓBKA SKRAWANIEM I NARZĘDZIA Temat: Katalogowy dobór narzędzi i parametrów obróbki Nr ćwiczenia : 10 Kierunek:
KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI
KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Przedmiot : OBRÓBKA SKRAWANIEM I NARZĘDZIA Temat: Wiercenie, pogłębianie, rozwiercanie, gwintowanie Nr ćwiczenia : 5 Kierunek:
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 7
Przedmiot : OBRÓBKA SKRAWANIEM I NARZĘDZIA Temat: Szlifowanie cz. II. KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 7 Kierunek: Mechanika i Budowa Maszyn
POKRYWANE FREZY ZE STALI PROSZKOWEJ PM60. Idealne rozwiązanie dla problemów z wykruszaniem narzędzi węglikowych w warunkach wibracji i drgań
FREZY POKRYWANE FREZY ZE STALI PROSZKOWEJ PM60 Idealne rozwiązanie dla problemów z wykruszaniem narzędzi węglikowych w warunkach wibracji i drgań - Lepsza odporność na zużycie - Lepsza żywotność narzędzi
Wydajność w obszarze HSS
New czerwiec 2017 Nowe produkty dla techników obróbki skrawaniem Wydajność w obszarze HSS Nowe wiertło HSS-E-PM UNI wypełnia lukę pomiędzy HSS a VHM TOTAL TOOLING = JAKOŚĆ x SERWIS 2 WNT Polska Sp. z o.o.
Wiertła do metalu Wiertła SPiralNe HSS-tiN do ekstremalnych obciążeń w przemyśle i rzemiośle met iertła al u Polecane do obróbki: Kasety z wiertłami
SPIRALNE HSS-TiN DIN 338 wiertło z uchwytem cylindrycznym, krótkie, prawotnące, typu N 30 l Do ekstremalnych obciążeń w przemyśle i rzemiośle l Szlif dwuścinowy wg. DIN 1412 C, kąt wierzchołkowy 135 l
Poradnik GARANT OBRÓBKA SKRAWANIEM wiercenie gwintowanie pogłębianie rozwiercanie dokładne cięcie frezowanie toczenie mocowanie
Poradnik OBRÓBKA SKRAWANIEM ROZWIERCANIE DOKŁADNE POGŁĘBIANIE GWINTOWANIE WIERCENIE PODSTAWY MATERIAŁY wiercenie gwintowanie pogłębianie rozwiercanie dokładne cięcie frezowanie toczenie mocowanie INFO
QM - MAX. Wysokowydajne frezy do obróbki kopiowej i kształtowej DIJET INDUSTRIAL CO., LTD
QM - MAX Wysokowydajne frezy do obróbki kopiowej i kształtowej DIJET INDUSTRIAL CO., LTD Właściwości produktu 1) Wysoka produktywność poprzez zastosowanie wielu ostrzy 2) Możliwość stosowania wysokich
Ewolucja we frezowaniu trochoidalnym
New Nowe Lipiec 2016 produkty dla techników obróbki skrawaniem Ewolucja we frezowaniu trochoidalnym Frezy trzpieniowe CircularLine skracają czas obróbki i wydłużają żywotność TOTAL TOOLING = JAKOŚĆ x SERWIS
Przedmiotowy system oceniania - kwalifikacja M19. Podstawy konstrukcji maszyn. Przedmiot: Technologia naprawy elementów maszyn narzędzi i urządzeń
Przedmiotowy system oceniania - kwalifikacja M19 KL II i III TM Podstawy konstrukcji maszyn nauczyciel Andrzej Maląg Przedmiot: Technologia naprawy elementów maszyn narzędzi i urządzeń CELE PRZEDMIOTOWEGO
Narzędzia skrawające firmy Sandvik Coromant. Narzędzia obrotowe FREZOWANIE WIERCENIE WYTACZANIE SYSTEMY NARZĘDZIOWE
Narzędzia skrawające firmy Sandvik Coromant Narzędzia obrotowe RZOWANI WIRCNI WYTACZANI SYSTMY NARZĘDZIOW 2012 WIRCNI ak dobrać odpowiednie wiertło ak dobrać odpowiednie wiertło 1 Określenie średnicy i
OBRÓBKA SKRAWANIEM DOBÓR NARZĘDZI I PARAMETRÓW SKRAWANIA DO TOCZENIA. Ćwiczenie nr 5. opracowała: dr inż. Joanna Kossakowska
OBRÓBKA SKRAWANIEM Ćwizenie nr 5 DOBÓR NARZĘDZI I PARAMETRÓW SKRAWANIA DO TOCZENIA opraowała: dr inż. Joanna Kossakowska PO L ITECH NI KA WARS ZAWS KA INSTYTUT TECHNIK WYTWARZANIA ZAKŁAD AUTOMATYZACJI,
WIERTŁA STOPNIOWE. profiline
WIERTŁA STOPNIOWE profiline Charakterystyka produktu W przypadku wierteł owych nowej generacji RUKO o wysokiej wydajności spiralny rowek wiórowy szlifowany jest w technologii CBN w materiale poddanym uprzednio
ĆWICZENIE NR Materiały pomocnicze do wykonania zadania
ĆWICZENIE NR 3 3. OBRÓBKA TULEI NA TOKARCE REWOLWEROWEJ 3.1. Zadanie technologiczne Dla zadanego rysunkiem wykonawczym tulei wykonać : - Plan operacyjny obróbki tokarskiej, wykonywanej na tokarce rewolwerowej
TECHNOLOGIA MASZYN. Wykład dr inż. A. Kampa
TECHNOLOGIA MASZYN Wykład dr inż. A. Kampa Technologia - nauka o procesach wytwarzania lub przetwarzania, półwyrobów i wyrobów. - technologia maszyn, obejmuje metody kształtowania materiałów, połączone
Politechnika Poznańska Instytut Technologii Mechanicznej. Programowanie obrabiarek CNC. Nr 2. Obróbka z wykorzystaniem kompensacji promienia narzędzia
1 Politechnika Poznańska Instytut Technologii Mechanicznej Programowanie obrabiarek CNC Nr 2 Obróbka z wykorzystaniem kompensacji promienia narzędzia Opracował: Dr inż. Wojciech Ptaszyński Poznań, 2015-03-05
Obliczanie parametrów technologicznych do obróbki CNC.
Obliczanie parametrów technologicznych do obróbki CNC. Materiały szkoleniowe. Opracował: mgr inż. Wojciech Kubiszyn Parametry skrawania Podczas obróbki skrawaniem można rozróżnić w obrabianym przedmiocie
PRZEWODNIK PO PRZEDMIOCIE
Nazwa przedmiotu: OBRÓBKA UBYTKOWA, NARZĘDZIA I OPRZYRZĄDOWANIE TECHNOLOGICZNE I I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów ze zjawiskami fizycznymi towarzyszącymi
Spis treści tomu I. Część pierwsza. Proces skrawania. Rozdział I Wiadomości ogólne prof. dr hab. inż. Eugeniusz. Rozdział II Materiały narzędziowe
Spis treści tomu I Część pierwsza Proces skrawania I Wiadomości ogólne prof. dr hab. inż. Eugeniusz Górski 1. Podział obróbki skrawaniem 1 2. Kinematyka skrawania 3 3. Geometria ostrza 5 Literatura 18
passion passion for precision for precision Wiertło Supradrill U
passion passion for precision for precision Wiertło Supradrill U Wiertło Supradrill U do obróbki stali i stali nierdzewnej Wiertło kręte Supradrill U to wytrzymałe narzędzie z węglika spiekanego zaprojektowane
Zespół Szkół Samochodowych im. Tadeusza Kościuszki ul. Leśna 1a Podstawy Konstrukcji Maszyn Techniki Wytwarzania. Temat: Prace ślusarskie.
Zespół Szkół Samochodowych im. Tadeusza Kościuszki ul. Leśna 1a Podstawy Konstrukcji Maszyn Techniki Wytwarzania. Temat: Prace ślusarskie. 23.02.2016 Podstawy Konstrukcji Maszyn 1 PRZEBIEG LEKCJI: 1. Ślusarstwo.
1. Właściwy dobór taśmy
1. Właściwy dobór taśmy 1. 1. Długość taśmy Wymiary taśmy są ściśle związane z rodzajem używanej przecinarki. Informacje na ten temat można przeczytać w DTR-ce maszyny. 1. 2. Szerokość taśmy W przecinarkach
PRELIMINARY BROCHURE CORRAX. A stainless precipitation hardening steel
PRELIMINARY BROCHURE CORRAX A stainless precipitation hardening steel Ogólne dane Właściwości W porównaniu do konwencjonalnych narzędziowych odpornych na korozję, CORRAX posiada następujące zalety: Szeroki
INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 9
Przedmiot : OBRÓBKA SKRAWANIEM I NARZĘDZIA Temat: Ostrzenie narzędzi skrawających. KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Nr ćwiczenia : 9 Kierunek: Mechanika
W glik spiekany. Aluminium. Stal
Osełki Osełki z elektrokorundu szlachetnego o spoiwie ceramicznym znajdują zastosowanie w produkcji form i narzędzi, powszechne w budowie maszyn i przyrządów do szlifowania narzędzi lub usuwania zadziorów,
STAL NARZĘDZIOWA DO PRACY NA ZIMNO
STAL NARZĘDZIOWA DO PRACY NA ZIMNO Jakościowe porównanie głównych własności stali Tabela daje jedynie wskazówki, by ułatwić dobór stali. Nie uwzględniono tu charakteru obciążenia narzędzia wynikającego
Temat: NAROST NA OSTRZU NARZĘDZIA
AKADEMIA TECHNICZNO-HUMANISTYCZNA w Bielsku-Białej Katedra Technologii Maszyn i Automatyzacji Ćwiczenie wykonano: dnia:... Wykonał:... Wydział:... Kierunek:... Rok akadem.:... Semestr:... Ćwiczenie zaliczono:
ZAAWANSOWANE TECHNIKI WYTWARZANIA W MECHATRONICE
: BMiZ Studium: stacj. II stopnia : : MCH Rok akad.: 05/6 Liczba godzin - 5 ZAAWANSOWANE TECHNIKI WYTWARZANIA W MECHATRONICE L a b o r a t o r i u m ( h a l a H 0 Z O S ) Prowadzący: dr inż. Marek Rybicki
ĆWICZENIE NR Materiały pomocnicze do wykonania zadania
ĆWICZENIE NR 2 2. OBRÓBKA TARCZY NA TOKARCE 2.1. Zadanie technologiczne Dla zadanej rysunkiem wykonawczym tarczy wykonać : - Plan operacyjny obróbki tokarskiej, wykonywanej na tokarce kłowej TUR-50. -
PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 06/15
PL 221264 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 221264 (13) B1 (21) Numer zgłoszenia: 405298 (51) Int.Cl. B23F 1/08 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:
Tematy prac dyplomowych magisterskich kierunek MiBM
Tematy prac dyplomowych magisterskich kierunek MiBM Nr pracy Temat Cel Zakres Prowadzący 001/I8/Mgr/2013 Badanie sił skrawania i chropowatości powierzchni podczas obróbki stopów niklu 002/I8/ Mgr /2013
STAL NARZĘDZIOWA DO PRACY NA ZIMNO
STAL NARZĘDZIOWA DO PRACY NA ZIMNO Jakościowe porównanie głównych własności stali Tabela daje jedynie wskazówki, by ułatwić dobór stali. Nie uwzględniono tu charakteru obciążenia narzędzia wynikającego
CZAS WYKONANIA BUDOWLANYCH ELEMENTÓW KONSTRUKCJI STALOWYCH OBRABIANYCH METODĄ SKRAWANIA A PARAMETRY SKRAWANIA
Budownictwo 16 Piotr Całusiński CZAS WYKONANIA BUDOWLANYCH ELEMENTÓW KONSTRUKCJI STALOWYCH OBRABIANYCH METODĄ SKRAWANIA A PARAMETRY SKRAWANIA Wprowadzenie Rys. 1. Zmiana całkowitych kosztów wytworzenia
Geometryczne podstawy obróbki CNC. Układy współrzędnych, punkty zerowe i referencyjne. Korekcja narzędzi
Geometryczne podstawy obróbki CNC. Układy współrzędnych, punkty zerowe i referencyjne. Korekcja narzędzi 1 Geometryczne podstawy obróbki CNC 1.1. Układy współrzędnych. Układy współrzędnych umożliwiają
LABORATORIUM NAUKI O MATERIAŁACH
Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Ćwiczenie nr 5 Temat: Stale stopowe, konstrukcyjne, narzędziowe i specjalne. Łódź 2010 1 S t r
Stale narzędziowe. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego
Stale narzędziowe Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Stale narzędziowe stopy przeznaczone na narzędzia tj. przedmioty służące do rozdzielania
Narzędzia precyzyjne i półprzewodnikowe. Producent światowej klasy narzędzi diamentowych i CBN
Narzędzia precyzyjne i półprzewodnikowe Producent światowej klasy narzędzi diamentowych i CBN Tarcze ścierne ze spoiwem metalicznym oraz żywicznym Tarcza ze spoiwem metalicznym Tarcza ze spoiwem żywicznym
Przedmowa do wydania czwartego 15. Przedmowa do wydania pierwszego 15. 1. Wiadomości ogólne 17. 2. Dokumentacja technologiczna 43
Spis treści 5 Spis treści Przedmowa do wydania czwartego 15 Przedmowa do wydania pierwszego 15 1. Wiadomości ogólne 17 1.1. Proces produkcyjny i technologiczny oraz jego podział 17 1.2. Rodzaje obróbki
UE6110 MC6025 UH6400 US735 HZ/HL/ HM/HX/ HV/HR TOOLS NEWS. Nowy system łamaczy wióra do obróbki ciężkiej
TOOLS NEWS B45P Nowy system łamaczy wióra do obróbki ciężkiej Przeznaczony specjalnie do obróbki cięzkiej stali nierdzewnych i stopowych. // HM/HX/ HV/HR Nowy system łamaczy wióra do obróbki ciężkiej //
Dobór parametrów dla frezowania
Dobór parametrów dla frezowania Wytyczne dobru parametrów obróbkowych dla frezowania: Dobór narzędzia. W katalogu narzędzi naleŝy odszukać narzędzie, które z punktu widzenia technologii umoŝliwi zrealizowanie
Przedmiotowy System Oceniania
rzedmiotowy System Oceniania ok szkolny 2010/2011 rzedmiot Technologia obróbki skrawaniem i obrabiarki Szkoła/zawód: Technikum Mechaniczne przy Zespole Szkół im.gen. J.ustronia w Lubaczowie/ technik mechanik
Narzędzia do toczenia poprzecznego
Dragonskin 1335 / HCN1345 - toczenie stali 1335 i HCN1345 to nowe rodzaje powłok Dragonskin, jakie WNT wprowadza na rynek. Powłoka 1335 różni się od konkurencji nie tylko optycznie. Także jej wydajność
Stal - definicja Stal
\ Stal - definicja Stal stop żelaza z węglem,plastycznie obrobiony i obrabialny cieplnie o zawartości węgla nieprzekraczającej 2,11% co odpowiada granicznej rozpuszczalności węgla w żelazie (dla stali
WIERTŁA ŁUSZCZENIOWE DO BLACHY. profiline
WIERTŁA ŁUSZCZENIOWE DO BLACHY profiline Charakterystyka produktu W przypadku wysokowydajnych wierteł łuszczeniowych do blachy RUKO rowek wiórowy śrubowy jest szlifowany metodą CBN w zahartowanym materiale.
Cechy ściernic diamentowych i z regularnego azotku boru ze spoiwem ceramicznym
Ściernice diamentowe i CBN ze spoiwem ceramicznym Narzędzia ścierne diamentowe i z regularnego azotku boru ze spoiwami ceramicznymi przeznaczone są do obróbki ściernej ceraminiki specjalnej (tlenkowej,
TOOLS. Najnowsza generacja w toczeniu. Specjalne właściwości. NeW NeW. Nr. 226 /2011-PL
Nr. 226 /2011-PL POLSKA Najnowsza generacja w toczeniu Specjalne właściwości dwie geometrie dla różnych zastosowań polerowana powierzchnia płytki niskie opory skrawania stabilne krawędzie tnące nowy gatunek
Nowe rozwiązania obróbka otworów
P K M N S H NARZĘDZIA DO FAZOWANIA Nowe rozwiązania obróbka otworów P M S H Możliwość zastosowania FREZY DO ZAOKRĄGLEŃ w wielu maszynach frezarki tokarki wiertarki P K M N S H P M POGŁĘBIACZE 4 W 1 NAWIERTAKI
Frezy UFJ Wiertła WDXC Płytki: węglikowe ceramiczne borazonowe OBRÓBKA INCONELU.
Frezy UFJ Wiertła WDXC Płytki: węglikowe ceramiczne borazonowe OBRÓBKA INCONELU DEDYKOWANE NARZĘDZIA DO INCONELU TIZ IMPLEMENTS Seria frezów UFJ Połączenie ultra-drobnego węglika o wysokiej wytrzymałości,
1 Wiertła HSS 1. Wiertła VHM. Wiertła z płytkami wymiennymi. Rozwiertaki i pogłębiacze. Gwintowniki HSS. Frezy cyrkulacyjne do gwintów
1 Wiertła 1 Wiercenie 2 3 Wiertła VHM Wiertła z płytkami wymiennymi 4 Rozwiertaki i pogłębiacze 5 Gwintowniki Gwint 6 rezy cyrkulacyjne do gwintów 7 8 Płytki do toczenia gwintów arzędzia tokarskie Toczenie
MATERIAŁY SUPERTWARDE
MATERIAŁY SUPERTWARDE Twarde i supertwarde materiały Twarde i bardzo twarde materiały są potrzebne w takich przemysłowych zastosowaniach jak szlifowanie i polerowanie, cięcie, prasowanie, synteza i badania
KOMPETENCJI W PRECYZJI I JAKOSC ŁUSZCZENIOWE DO BLACHY WIERTŁA
KOMPETENCJI W PRECYZJI I JAKOSC WIERTŁA ŁUSZCZENIOWE DO BLACHY Charakterystyka produktu W przypadku wysokowydajnych wierteł łuszczeniowych do blachy RUKO rowek wiórowy śrubowy jest szlifowany metodą CBN
Obróbka skrawaniem OBRÓBKA SKRAWANIEM
OBRÓBKA SKRAWANIEM 1/4 1/35 Wiertło od strony 1/5 od strony 1/6 od strony 1/10 1/37 1/51 Pogłębiacz od strony 1/38 od strony 1/39 od strony 1/39 1/52 1/53 Rozwiertaki od strony 1/52 od strony 1/52 od strony
PROFESJONALNE PILNIKI OBROTOWE Z WĘGLIKA SPIEKANEGO PRZEZNACZONE DO WYSOKOWYDAJNEJ PRACY W CIĘŻKICH WARUNKACH PRZEMYSŁOWYCH
PROFESJONALNE PILNIKI OBROTOWE Z WĘGLIKA SPIEKANEGO PRZEZNACZONE DO WYSOKOWYDAJNEJ PRACY W CIĘŻKICH WARUNKACH PRZEMYSŁOWYCH 1500 HV WĘGLIK WOLFRAMU NAJWYŻSZEGO GATUNKU, BARDZO SILNE POŁĄCZENIE GŁÓWKI Z
Podręczniki. Podstawy obróbki ubytkowej. Kazimierz Zaleski Jakub Matuszak. Lublin 2016
Kazimierz Zaleski Jakub Matuszak Podstawy obróbki ubytkowej Lublin 2016 Podręczniki Podstawy obróbki ubytkowej Podręczniki Politechnika Lubelska Politechnika Lubelska Wydział Mechaniczny ul. Nadbystrzycka
KARTA PRZEDMIOTU. 1. Ma podstawową wiedzę w zakresie podstaw inżynierii materiałowej. 2. Ma podstawową wiedzę w zakresie fizyki.
KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Procesy obróbki ubytkowej 2. KIERUNEK: Mechanika i Budowa Maszyn 3. POZIOM STUDIÓW: Studia pierwszego stopnia 4. ROK/ SEMESTR STUDIÓW: rok studiów II/ semestr 3 5.
STAL NARZĘDZIOWA DO PRACY NA GORĄCO
STAL NARZĘDZIOWA DO PRACY NA GORĄCO Stal BÖHLER W360 ISOBLOC jest stalą narzędziową na matryce i stemple do kucia na zimno i na gorąco. Stal ta może mieć szerokie zastosowanie, gdzie wymagane są wysoka
PRZECIĄGACZE.
Wzrost produktywności Poprawa jakości Bezkonkurencyjność Przepychacze Przeciągacze śrubowe Przeciągacze okrągłe Przeciągacze wielowypustowe Przeciągacze wielowypustowe o zarysie ewolwentowym Przeciągacze
3. TEMPERATURA W PROCESIE SZLIFOWANIA. 3.1 Cel ćwiczenia. 3.2 Wprowadzenie
3. TEMPERATURA W PROCESIE SZLIFOWANIA 3.1 Cel ćwiczenia Celem ćwiczenia jest zapoznanie studentów z wpływem wybranych parametrów szlifowania na zmiany temperatury szlifowania oraz ze sposobem jej pomiaru.
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN
POLITECHNIKA GDAŃSKA WYDZIAŁ MECHANICZNY KATEDRA KONSTRUKCJI I EKSPLOATACJI MASZYN KOREKCJA ZAZĘBIENIA ĆWICZENIE LABORATORYJNE NR 5 Z PODSTAW KONSTRUKCJI MASZYN OPRACOWAŁ: dr inż. Jan KŁOPOCKI Gdańsk 2000
Trzpieniowe 6.2. Informacje podstawowe
6. Trzpieniowe Informacje podstawowe 6 Trzpieniowe Narzędzia trzpieniowe wykonywane w formie frezów z lutowanymi ostrzami HSS lub HM, głowic z wymienną płytką oraz frezów spiralnych, monolitycznych. Frezy
Tolerancja wymiarowa
Tolerancja wymiarowa Pojęcia podstawowe Wykonanie przedmiotu zgodnie z podanymi na rysunku wymiarami, z uwagi na ograniczone dokładności wykonawcze oraz pomiarowe w praktyce jest bardzo trudne. Tylko przez
7 Płytki do toczenia gwintów 7 8
1 Wiertła HSS Wiercenie 2 3 Wiertła VHM Wiertła z płytkami wymiennymi 4 5 Rozwiertaki i pogłębiacze Gwintowniki HSS Gwint 6 Frezy cyrkulacyjne do gwintów Płytki do toczenia gwintów 8 Narzędzia tokarskie
ĆWICZENIE NR OBRÓBKA UZĘBIENIA W WALCOWYM KOLE ZĘBATYM O UZĘBIENIU ZEWNĘTRZNYM, EWOLWENTOWYM, O ZĘBACH PROSTYCH, NA FREZARCE OBWIEDNIOWEJ
ĆWICZENIE NR 6. 6. OBRÓBKA UZĘBIENIA W WALCOWYM KOLE ZĘBATYM O UZĘBIENIU ZEWNĘTRZNYM, EWOLWENTOWYM, O ZĘBACH PROSTYCH, NA FREZARCE OBWIEDNIOWEJ 6.1. Zadanie technologiczne Dla zadanego rysunkiem wykonawczym
Podstawy Konstrukcji Maszyn. Wykład nr. 2 Obróbka i montaż części maszyn
Podstawy Konstrukcji Maszyn Wykład nr. 2 Obróbka i montaż części maszyn 1. WSTĘP Przedwojenny Polski pistolet VIS skomplikowana i czasochłonna obróbka skrawaniem Elementy składowe pistoletu podzespoły
Ceramiczne materiały narzędziowe. Inteligentna i produktywna obróbka superstopów
Ceramiczne materiały narzędziowe Inteligentna i produktywna obróbka superstopów Skrawanie ostrzami ceramicznymi Zastosowania Ceramiczne gatunki płytek wieloostrzowych mogą być stosowane w szerokim zakresie
PL 213921 B1. Sposób odzyskowego toczenia odpadowych wałków metalowych i zestaw noży tnących do realizacji tego sposobu. WYSOCKI RYSZARD, Rogoźno, PL
PL 213921 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 213921 (13) B1 (21) Numer zgłoszenia: 386269 (51) Int.Cl. B23B 1/00 (2006.01) B23B 27/06 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej
Podstawy Konstrukcji Maszyn
0-05-7 Podstawy Konstrukcji Maszyn Część Wykład nr.3. Przesunięcie zarysu przypomnienie znanych zagadnień (wykład nr. ) Zabieg przesunięcia zarysu polega na przybliżeniu lub oddaleniu narzędzia od osi
STALE NARZĘDZIOWE (opracowanie dr Maria Głowacka) I. Ogólna charakterystyka Wysoka twardość Odporność na zużycie ścierne Odpowiednia hartowność
STALE NARZĘDZIOWE (opracowanie dr Maria Głowacka) I. Ogólna charakterystyka Stale narzędziowe są stopami przeznaczonymi na narzędzia tj. przedmioty służące do rozdzielania i rozdrabniania materiałów bądź
WIERTŁA DO BETONU I PRZECINAKI KOMPETENCJI W PRECYZJI I JAKOSC
WIERTŁA DO BETONU I PRZECINAKI KOMPETENCJI W PRECYZJI I JAKOSC Wiertło udarowe SDS-plus Dzięki wzmocnionemu rdzeniowi najwyższa trwałość i możliwość przeniesienia maksimum energii z wiertarki udarowej
1. OBRÓBKA WAŁKA NA TOKARCE KŁOWEJ
ĆWICZENIE NR 1. 1. OBRÓBKA WAŁKA NA TOKARCE KŁOWEJ 1.1. Zadanie technologiczne Dla zadanego rysunkiem wykonawczym wałka wykonać : - Plan operacyjny obróbki tokarskiej, wykonywanej na tokarce kłowej TUC
KOMPETENCJI W PRECYZJI I JAKOSC WIERTŁA KRĘTE
KOMPETENCJI W PRECYZJI I JAKOSC WIERTŁA KRĘTE Wiertło kręte DIN 338 TL 3000 Uniwersalne wiertło do większych głębokości nadaje się szczególnie dobrze. Zastępuje w wielu zakresach typy N, H i W. Szlif ostrza:
LABORATORIUM NAUKI O MATERIAŁACH
Politechnika Łódzka Wydział Mechaniczny Instytut Inżynierii Materiałowej LABORATORIUM NAUKI O MATERIAŁACH Ćwiczenie nr 5 Temat: Stale niestopowe, stopowe, konstrukcyjne, narzędziowe, specjalne. Łódź 2010
AKTUALNOŚCI B194P Płytki z cermetalu z powłoką PVD do obróbki stali MP3025. Zapewniają doskonałą gładkość powierzchni po obróbce
AKTUALNOŚCI Płytki z cermetalu z powłoką PVD do obróbki stali 3025 2014.01 B194P Zapewniają doskonałą gładkość powierzchni po obróbce Płytki z cermetalu z powłoką PVD do obróbki stali Płytki z cermetalu
ĆWICZENIE NR OBRÓBKA UZĘBIENIA W WALCOWYM KOLE ZĘBATYM O UZĘBIENIU ZEWNĘTRZNYM, EWOLWENTOWYM, O ZĘBACH PROSTYCH, NA DŁUTOWNICY FELLOWSA
ĆWICZENIE NR 5. 5. OBRÓBKA UZĘBIENIA W WALCOWYM KOLE ZĘBATYM O UZĘBIENIU ZEWNĘTRZNYM, EWOLWENTOWYM, O ZĘBACH PROSTYCH, NA DŁUTOWNICY FELLOWSA 5.1. Zadanie technologiczne Dla zadanego rysunkiem wykonawczym
PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 20/12
PL 218402 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 218402 (13) B1 (21) Numer zgłoszenia: 394247 (51) Int.Cl. B23F 5/27 (2006.01) B21D 53/28 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej