Analiza statystyczna wartości Intensity (TLS) zarejestrowanych na powierzchni konstrukcji betonowej

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza statystyczna wartości Intensity (TLS) zarejestrowanych na powierzchni konstrukcji betonowej"

Transkrypt

1 Janina ZACZEK-PEPLINSKA 1 Adam GÓRA Michał GRZYB 1 Wydział Geodezji i Kartografii, Politechnika Warszawska 90 Analiza statystyczna wartości Intensity (TLS) zarejestrowanych na powierzchni konstrukcji betonowej Statistical analysis of values of Intensity captured with TLS on the surface of the concrete structure Streszczenie Naziemny skaning laserowy stanowi stosunkowo nowoczesną, dynamicznie rozwijającą się technologię pomiarów przestrzennych. Pozwala ona na pozyskanie danych geometrycznych dowolnego obiektu w postaci współrzędnych oraz dodatkowej informacji w postaci intensywności odbicia wiązki lasera. Dzięki temu można określić nie tylko kształt powierzchni, ale również część jej właściwości fizycznych (np. wilgotność) oraz część właściwości materiału, z którego jest wykonana. Tematem artykułu jest opracowanie algorytmu pozwalającego na odszukanie podobnych obszarów na fragmencie odpowietrznej ściany zapory na podstawie analiz statystycznych wartości intensywności promienia laserowego odbitego od betonowej powierzchni ściany konstrukcji. W artykule przedstawiono zjawiska fizyczne jakim podlega wiązka lasera, modele funkcji opisujące intensywność odbitego promieniowania oraz czynniki wpływające na wartość intensywności. Opisano eksperymenty pomiarowe mające na celu wyznaczenie zależności pomiędzy wartością intensywności odbitego promienia lasera a odległością i kątem padania wiązki. Uzyskaną zależność wykorzystano do opracowania danych pochodzących z pomiaru zapory w Solinie skanerem Z+F Imager 5006h, wykonania analiz statystycznych wartości intensywności oraz przeprowadzenia klasyfikacji nienadzorowanej przy pomocy algorytmu k-średnich (k-means). Uzyskane wyniki klasyfikacji pozwalają wyrazić przekonanie, iż istnieje duży potencjał wykorzystania naziemnych skanerów laserowych do zadań związanych z oceną stanu powierzchni betonowych oraz klasyfikacją obszarów podobnych na powierzchni masywnych konstrukcji hydrotechnicznych. Summary Terrestrial Laser Scanning is a relatively modern, dynamically developing technology of sp atial measurement. It allows for acquisition of geometrical data of any object in the form of coordinates and additional information as intensity of the reflected laser beam. This in turn makes it possible to define not only the shape of the surface but also some of its physical characteristics (ex. dampness) and to some extent the properties of the material it is made of. The article focuses on the development of an algorithm that would allow for the identification of similar areas on a downstream wall of a dam basing on the statistical analysis of the intensity value of the beam reflected from the concrete surface of the object's wall. Physical phenomena that affect the laser beam's function, models describing intensity of the reflected beam as well as factors influencing the intensity value are presented in the paper. The conducted measurement experiments focused on determining the relation between reflected beam's intensity value and the distance and the angle of incidence are described. The found relat ion was used when the data obtained during the measurement of the dam in Solina with Z+F Imager 5006h scanner was elaborated. Moreover, it was also used when statistical analysis of the intensity values was performed and when unsupervised image classification with k-means algorithm was carried out. The obtained classification results allow to conclude that a substantial potential can be found in the use of terrestrial laser scanners when performing tasks connected to the evaluation of concrete surfaces and classification of similar areas on the surface of massive hydrotechnical constructions. Słowa kluczowe: naziemny skaning laserowy, intensywność, konstrukcje hydrotechniczne, klasyfikacja nienadzorowana Key Words: terrestrial laser scanning, intensity, hydrotechnical objects, unsupervised image classification

2 Wstęp Wraz z upływem czasu i rozwojem technologii naziemnego skaningu laserowego, skanery laserowe wykorzystywane są w coraz większej ilości zadań pomiarowych. Są one stosowane nie tylko w dziedzinie geodezji, przy pomiarach inwentaryzacyjnych obiektów budowlanych, ale również w inwentaryzacji zabytków, dokumentowaniu wykopalisk archeologicznych oraz miejsc przestępstw, a także przemyśle budowlanym, stoczniowym czy filmowym. Na mniejszą skalę skanery wykorzystywane są w dziedzinach leśnictwa, kryminalistyki, pomiarów deformacji czy monitoringu lodowców. Głównym powodem użycia skanerów laserowych jest zwykle potrzeba szybkiego i dokładnego zarejestrowania geometrii obiektów, które często są niedostępne do pomiaru przy pomocy innych technologii. W niniejszym artykule przedstawiono wybrane przykłady wykorzystania naziemnego skaningu laserowego. Masywne konstrukcje hydrotechniczne wystawione są na działanie szeregu czynników, które mogą prowadzić do zmiany właściwości mechanicznych betonu, a tym samym, do jego przyspieszonego zużycia i niszczenia konstrukcji. W ciągu kilku lat eksploatacji i wystawienia na działanie czynników atmosferycznych zaczynają występować pierwsze oznaki uszkodzenia materiału. W przypadku zapór wodnych są to często: nieciągłości betonu w postaci rys i spękań oraz destrukcja powierzchniowa betonu, które mogą powodować przecieki w korpusie konstrukcji i stanowić zagrożenie w jej funkcjonowaniu. Ze względu na fakt, iż zapory wodne są konstrukcjami strategicznymi, a ich eksploatacja ma duże znaczenie dla bezpieczeństwa otoczenia, powinny być podejmowane wszelkie działania pozwalające na utrzymanie ich w dobrym stanie. Wynika stąd potrzeba dokładnej i bieżącej oceny stanu powierzchni betonu w celu podjęcia decyzji o ewentualnych zabiegach remontowych. W Katedrze Geodezji Inżynieryjnej i Systemów Pomiarowo-Kontrolnych na Wydziale Geodezji i Kartografii Politechniki Warszawskiej zespół pod kierownictwem dr inż. Janiny Zaczek-Peplinskiej, zajmuje się oceną stanu powierzchni masywnych konstrukcji hydrotechnicznych. Zespół prowadził badania m.in. na zaporze w Solinie, Klimkówce czy w Sieniawie, gdzie sprawdzano możliwości wykorzystania wyników naziemnego skanowania laserowego (TLS) a w szczególności rejestrowanych wartości intensywności odbicia promienia laserowego do oceny stanu konstrukcji betonowej. Wiązka światła lasera jest falą elektromagnetyczną i podlega elementarnym zjawiskom fizycznym związanym z jej odbiciem, rozproszeniem oraz absorpcją. Według dostępnej literatury, intensywność promienia powracającego zależy od: - kąta padania wiązki, - odległości do skanowanego obiektu, - barwy, struktury i wilgotności powierzchni konstrukcji, - warunków zewnętrznych, np. źródła promieniowania. Modele funkcji opisujące intensywność odbitego promieniowania Jednym z modeli opisujących intensywność odbitego promieniowania jest cosinusowe prawo Lamberta:!"#$%&(') = $(') * +"(') * cos,(-) gdzie: $(') intensywność światła padającego w funkcji długości fali (koloru); +"' współczynnik odbicia rozproszonego w funkcji długości fali; - kąt jaki tworzy promień padający na powierzchnię z jej normalną. 91

3 Dzięki powyższym zależnościom, na podstawie analizy zeskanowanej chmury punktów można określić zarówno kształt powierzchni, jak i oszacować niektóre właściwości fizyczne oraz cechy materiału budowlanego. Analizowaną informacją jest współczynnik odbicia powierzchni danego obiektu, czyli stosunek promieniowania powracającego w stronę odbiornika do promieniowania padającego. Naziemny skaner laserowy dla każdego mierzonego punktu rejestruje wartość zwaną Intensity (intensywność). Wartość ta jest miarą mocy elektronicznej sygnału, otrzymanej na skutek przekształcenia i wzmocnienia mocy optycznej rozproszenia wstecznego. Informacje o intensywności są rzadko używane, najczęściej mają na celu wizualne wsparcie reprezentacji chmury punktów, mogą jednak zostać wykorzystane do klasyfikacji powierzchni na podstawie właściwości materiału [3]. Jak wynika z powyższego wzoru, na wiązkę lasera ma wpływ: absorbcja sygnału przez atmosferę, odbicie i rozproszenie od powierzchni mierzonego obiektu oraz kąt padania promienia. Stąd można stwierdzić, że dla ciemnych celów następuje absorbcja większości promieniowania, a odbity sygnał będzie bardzo słaby, co w przypadku skaningu laserowego może skutkować niższą dokładnością wyznaczenia punktu. Powierzchnie o większym współczynniku odbicia (jasne) nie tylko będą rozpraszały więcej światła, ale i pomiar odległości będzie dokładniejszy. Z drugiej strony, jeśli refleksyjność będzie zbyt duża, wiązka odbije się zgodnie ze zwierciadlanym modelem odbicia i dotrze do innego obiektu lub rozejdzie się w przestrzeni, tym samym wprowadzając szum wpływający na dokładność pomiarów [6]. Dla powierzchni lambertowskich można także zapisać zależność odebranej mocy! w funkcji wyemitowanej mocy " jako:! = #$ "$%$cos(&) 4$' 2 * +,- *./. gdzie: % refleksyjność materiału; & kąt padania; ' odległość powierzchni od skanera; * +,- współczynnik przepuszczalności (transmisji) atmosferycznej; *./. współczynnik przepuszczalności (transmisji) systemu pomiarowego [3]. Tematem artykułu jest próba opracowania algorytmu pozwalającego na odszukanie obszarów o podobnych charakterystykach spektralnych na fragmencie odpowietrznej ściany zapory na podstawie analiz statystycznych wartości intensywności promienia laserowego odbitego od betonowej powierzchni ściany konstrukcji. Eksperyment pomiarowy Różne właściwości materiałów konstrukcyjnych obiektów mają istotne odzwierciedlenie w wielkości odbicia promieniowania laserowego, stąd zarejestrowane wartości Intensity mogą odpowiadać różnym właściwościom obiektu. Należy pamiętać, że czynniki zewnętrzne takie jak kąt padania wiązki oraz odległość, w istotny sposób wpływają na wartość odbicia. Zatem w celu poszukiwania obszarów podobnych, koniecznie jest wyeliminowanie tych czynników podczas opracowania wyników skaningu. W teorii można zrobić to na dwa sposoby. Pierwszy mówi o tym, że wszystkie punkty reprezentujące obiekt powinny być zeskanowane z tej samej odległości i pod tym samym kątem. Taką sytuację uzyskano by wówczas, gdyby każdy punkt był skanowany 92

4 z odrębnego stanowiska, zorientowanego zawsze tak samo względem skanowanego celu. Podejście to jest nierealne, ponieważ, po pierwsze trudno byłoby zawsze tak samo orientować instrument, a po drugie, wymaga ono skanowania z bardzo wielu stanowisk. Drugi sposób polega na analitycznym wyeliminowaniu wpływu czynników zewnętrznych poprzez wprowadzenie poprawek do zarejestrowanych wartości intensywności. Jako, że interesuje nas jedynie znalezienie podobnych obszarów, wystarczy ograniczenie się do wprowadzenia poprawek ze względu na odmienne dla każdego skanowanego punktu czynniki, czyli kąt padania oraz odległość. Jednak to podejście również nie jest pozbawione wad. Zgodnie z dostępną literaturą, istnieją powierzchnie, dla których odbicie silnie zależy od kąta padania (powierzchnie lustrzane) oraz takie, dla których odbicie może słabo lub skrajnych przypadkach wcale nie reagować na zmianę kąta padania (powierzchnie lambertowskie). W związku z tym, celem przeprowadzonych pomiarów eksperymentalnych było wyznaczanie zależności zmian intensywności odbicia od powierzchni betonowych ze względu na zmiany kątów padania oraz odległości, na podstawie których następnie wprowadzono odpowiednie korekty do surowych wartości Intensity. Wyprowadzona zależność powinna pozwolić na wprowadzenie poprawek do wartości Intensity dla skanu fragmentu zapory w Solinie, celem jej późniejszego opracowania w ramach poszukiwania obszarów podobnych. Planowanie eksperymentu pomiarowego rozpoczęto od wyboru obszaru na odpowietrznej ścianie zapory wodnej w Solinie. Obszar ten został ostatecznie poddany analizom, w celu odszukania na nim podobnych fragmentów betonowej powierzchni o zbliżonych właściwościach powierzchniowych. Dane wejściowe dla tego eksperymentu stanowiła chmura punktów (o współrzędnych X, Y, Z oraz wartości intensywności odbitego promienia laserowego) uzyskana z pomiaru ściany zapory skanerem laserowym Z+F Imager 5006h przez pracowników Politechniki Warszawskiej w lipcu 2013 roku. Przy wyborze obszaru uwzględniono m.in. wysokość i nachylenie ściany odpowietrznej zapory, odległość stanowiska skanera laserowego od zapory oraz kąt padania wiązki laserowej na powierzchnię ściany. W 2013 roku, w trakcie realizacji pomiarów dokonano również wizyjnych oględzin ściany, celem wyboru możliwie zróżnicowanego jej fragmentu. Ostatecznie, do dalszych badań, przyjęto obszar zlokalizowany między dwiema sekcjami konstrukcyjnymi sąsiadującymi z przelewem górnym o szerokości 59m oraz wysokości 7,5 m, od płaszczyzny XY wyznaczonej przez skaner. Odrzucono tym samym obszary położone w wyższej części ściany, dla których kąty padania wiązki lasera były na tyle duże, iż można było przypuszczać, że zarejestrowana tam intensywność odbicia będzie słabo zróżnicowana. Wybrany obszar został przedstawiony na rysunku 1. Rys. 1. Wybrany do opracowania obszar na odpowietrznej ścianie zapory w Solinie. 93

5 Następnie przystąpiono do obliczenia zakresów: kąta padania promienia i odległości. Obliczono minimalną i maksymalną odległość od stanowiska skanera laserowego do punktów obszaru: 11 m i 35m. W przypadku kąta padania, mamy tu do czynienia z wypadkowym kątem padania, powstałym z pomiaru każdego punktu obszaru pod kątem poziomym i pionowym. Przy jego obliczaniu należało również uwzględnić kąt nachylenia ściany zapory, wynoszący około 53. Zostało to zobrazowane na rysunku 2. W pierwszym etapie obliczeń wyznaczono równanie ogólne nachylonej płaszczyzny odpowietrznej ściana ściany zapory.! +! +"# +$ = 0 W tym celu na badanym obszarze wybrano dziesięć równomiernie rozmieszczonych punktów, po czym metodą najmniejszych kwadratów wyznaczono parametry płaszczyzny najlepiej aproksymującej zbiór tych punktów: % 0 =&15,1092 ' ( = 1,3457 '! =&0,0306 Rys. 2. Wypadkowy kąt padania sygnału laserowego (δ) na powierzchnię zapory, przyjęte oznaczenia: N wektor normalny do płaszczyzny średniej ściany odpowietrznej; α, β, γ zakresy kąta padania wiązki promienia laserowego. Kąt padania promienia wysyłanego przez skaner będzie zatem kątem zawartym pomiędzy dwoma wektorami: wektorem normalnym do wyznaczonej płaszczyzny i wektorem padającego promienia. Z własności równania, wektorem normalnym do tej płaszczyzny będzie wektor)*+ =[,,,"]. Ze względu na to, iż stanowisko instrumentu wyznacza początek układu współrzędnych, każdy promień padający na powierzchnięściany zapory będzie wektorem przyjmującym współrzędne punktu, na który pada -**+ =[(,!,#]. Ostatecznie, dla wybranego obszaru obliczono zakres kąta padania wiązki wysyłanej przez skaner korzystając ze wzoru: 94./01 =,( +! +"#!" # $!!" Z wykonanych obliczeń wynika, iż kąt padania wiązki w tym obszarze wynosił od 37 do 75.

6 Aby opisać dokładne zachowanie się wartości intensywności odbitego promienia w zależności od kąta padania i odległości, postanowiono przeprowadzić eksperyment pomiarowy z użyciem próbki betonu. Próbkę stanowiła sześcienna kostka o boku 15 cm wykonana z betonu hydrotechnicznego o znanych właściwościach chemicznych i fizycznych. Próbkę wybrano tak aby swoją strukturą (kolor, chropowatość, proporcje materiału) przypominała powierzchnię badanej zapory wodnej w Solinie. Pomiar eksperymentalny przeprowadzono na Auli Głównej Politechniki Warszawskiej. Eksperyment podzielono na dwie części: pierwszą, podczas której zbadany został wpływ kąta na wartość intensywności oraz drugą, podczas której badano wpływ odległości. Kostka betonowa została umieszczona na konstrukcji (Rys. 3.) o wysokości 1,47 m, pokrytej czarnym, matowym materiałem celem minimalizacji artefaktów i efektów rozproszenia. Rys. 3. Konstrukcja stanowiąca podstawę i tło dla skanowanej próbki betonowej. Zmiany kąta padania wiązki laserowej na powierzchnie próbki zrealizowano przy pomocy kartki papieru z nadrukowanym kołem podziałowym (Rys 4). Kartka z kołem podziałowym została zamocowana do konstrukcji w sposób zapewniający jej niezmienną pozycję przez cały okres wykonywania pomiarów. Do kartki przykładano kalkę z krzyżem, na której spoczywała próbka. Pokrycie się kresek krzyża z podziałką ze wszystkich stron, zapewniło jednoznaczną orientację kostki, której środek obrotu pozostawał zawsze w tym samym miejscu. Rys. 4. Próbka betonowa wraz z systemem umożliwiającym zmianę położenia kostki o ustalony kąt. 95

7 Przybliżona analiza dokładności ustawienia orientacji kostki wykazała, że dla takiego postępowania powinno się uzyskać dokładność poniżej 1 przy orientowaniu prostopadłości ustawienia próbki względem osi celowej instrumentu (Rys. 5). Do analizy przyjęto, że faktyczna różnica odległości do krawędzi blatu wynikająca z błędu pomiaru oraz dokładności ustawienia może wynieść 4 mm, podczas gdy dokładność ustawienia kostki na środku blatu ustalono na 5 cm. Jeśli równoległość ustawienia kostki do krawędzi blatu zostanie zrealizowana z błędem nieprzekraczającym 45, uzyskamy dokładność orientacji poniżej Rys. 5. Analiza dokładności orientacji betonowej kostki względem osi celowej instrumentu. Ostatecznie przyjęto, że skany mające na celu dostarczenie danych do wyznaczenia wpływu odległości na zarejestrowaną intensywność, zostaną wykonane w zakresie od 4 m do 32 m i z interwałem 2 m, przy prostopadłym padaniu wiązki lasera na powierzchnię kostki betonowej. Natomiast skany związane z określeniem wpływu kąta padania na badaną powierzchnię, zostaną wykonane w zakresie od 32 do 76 o interwale 2, z odległości 20 m. Obrana odległość wynika z faktu, iż w przybliżeniu z takiej odległości zostały zarejestrowane punkty wybranego fragmentu zapory wodnej w Solinie. Do przeprowadzenia pomiaru wykorzystano skaner Z+F Imager 5006h. Wszystkie pomiary zostały wykonane w najwyższej dostępnej jakości, zdefiniowanej przez skaner jako Power: Ultra, Quality: High, Resolution: Ultrahigh. Opracowanie wyników zasadniczego eksperymentu Ostatecznie otrzymano 35 plików zawierających współrzędne X, Y, Z, informację o zarejestrowanej intensywności punktów obiektu. Wykonano podstawowe statystyki dla rozkładu wartości Intensity. Na rysunkach 6 i 7 przedstawiono zależności: intensywność kąt (Rys. 6) oraz intensywność odległość (Rys. 7). Zauważono też, że odchylenie standardowe nie zależy wyłącznie od powierzchni, na którą pada światło lasera, ale także zmienia się wraz ze zmianą kąta padania wiązki oraz odległością. Odchylenie standardowe przy kącie padania 32 wyniosło 4,4, natomiast dla

8 większych kątów systematycznie malało osiągając wartość 2,6 dla 76. Podobnie wygląda to dla zmian odległości. Przy skanerze oddalonym od próbki o 4,4 m uzyskano odchylenie standardowe na poziomie 9,4, podczas gdy dla większych odległości odchylenie malało osiągając wartość 5,6 dla 33 m. Następnie w empiryczną zależność przedstawioną na wykresie (Rys. 6) wpasowano odpowiednią funkcję analityczną. Wpasowanie wykonano przy pomocy dodatku Solver, w efekcie otrzymano równanie: gdzie: "( ) intensywność odbicia; kąt padania promienia laserowego. ( ) = 144,066!cos(0,697! ) W celu łatwiejszego wykorzystania powyższej zależności do obliczeń będących kolejnymi etapami opracowania, w te same dane wpasowano również wielomian drugiego stopnia metodą najmniejszych kwadratów: gdzie: "(#) intensywnośćodbicia; # kąt padania promienia laserowego. "(#) = $0,008# 2 $ 0,236# + 149,010 Współczynnik determinacji % 2 dla obu funkcji wyniósł 0,996, co świadczy o dobrym dopasowaniu modelu. Rys. 6.Wykres zależności intensywności od kąta padania. W celu wyznaczenia zależności intensywności odbicia I od odległości najpierw zestawiono zależność wynikającą z wykonanego pomiaru (Rys. 7), a następnie dokonano wpasowania funkcji analitycznej. Tym razem wpasowano wielomian drugiego stopnia metodą najmniejszych kwadratów. W wyniku tej operacji otrzymano równanie: gdzie: (!) intensywność odbicia;! odległość. (!) = 0,084! 2 " 4,610! + 206,172 Współczynnik determinacji # 2 wyniósł 0,936 i również świadczy o dobrym dopasowaniu modelu do danych empirycznych. 97

9 98 Rys. 7.Wykres zależności intensywności od odległości. Uzyskane wyniki zależności intensywność kąt oraz intensywność odległość stanowiły podstawę do wprowadzenia odpowiednich korekt do zarejestrowanych w czasie pomiaru na zaporze wodnej w Solinie wartości intensywności. Analiza wartości Intensity zarejestrowanych na ścianie zapory Solina Zapora Solina jest największą budowlą hydrotechniczną w Polsce. Przekrój poprzeczny zapory (Rys. 8) zbliżony jest do trójkąta, o nachyleniu ściany odwodnej 1:0,05 oraz nachyleniu ściany odpowietrznej 1:0,75. Zgodnie z art. 64 ustawy z dnia 18 lipca 2001 r. Prawo wodne [ ] budowle piętrzące stanowiące własność Skarbu Państwa, zaliczone na podstawie przepisów ustawy z dnia 7 lipca 1994 r. Prawo budowlane do I lub II klasy, poddaje się badaniom i pomiarom pozwalającym opracować ocenę stanu technicznego i stanu bezpieczeństwa dla tych budowli, wykonywanym przez państwową służbę do spraw bezpieczeństwa budowli piętrzących. Zakres oraz aspekty prawne przeprowadzania kontroli budowli wodnych zostały ujęte m.in. w ustawach Prawo budowlane i Prawo wodne, Rozporządzeniu Ministra Środowiska w sprawie warunków technicznych, jakimi powinny odpowiadać budowle hydrotechniczne i ich sytuowanie oraz wytycznych i instrukcjach branżowych m.in. wytyczne wykonywania badań, pomiarów, ocen stanu technicznego i stanu bezpieczeństwa budowli piętrzących wodę. W ramach kontroli i oceny stanu technicznego obiektów hydrotechnicznych wykonuje się m.in. zadania w zakresie: pomiaru przemieszczeń (zarówno pionowych jak i poziomych), wychyleń, rozwarcia rys, odkształceń betonu i skał, sił i naprężeń w betonie i skałach [1,4]. Opracowanie algorytmu analizy statystycznej wartości Intensity, umożliwiającego wykrywanie podobnych fragmentów betonu na powierzchni ścian masywnych konstrukcji betonowych, pozwoli na wykorzystanie naziemnego skaningu laserowego do wsparcia procesu oceny stanu konstrukcji. W celu odszukania podobnych fragmentów powierzchni betonu na wybranym do analiz obszarze zapory (Rys. 1), należało odpowiednio przygotować surowe dane pomiarowe. Zarówno odległość jak i kąt padania mają wpływ na rejestrowaną intensywność odbitego promienia laserowego. Konieczne jest zatem wprowadzenie poprawek, które uniezależniłyby wyniki analiz statystycznych wartości Intensity od wspomnianych czynników oraz wielkości obszarów testowych, które zostały poddane

10 analizom. Zaniedbano wpływ warunków zewnętrznych takich jak oświetlenie czy wilgotność i skład atmosfery, gdyż bez utraty dokładności można założyć, iż wpływ tych czynników będzie jednakowy dla każdego punktu, a przeprowadzana analiza nie będzie obarczona błędami z tego tytułu. Rys. 8. Przekrój poprzeczny zapory przelewy i upusty denne [2]. Wyeliminowanie wpływu kąta padania oraz odległości na wartość intensywności zarejestrowanej dla fragmentu zapory wodnej w Solinie dokonano wykorzystując wcześniej przygotowane funkcje. Ponieważ oba równania zostały wyznaczone niezależnie od siebie, muszą być również niezależnie rozpatrzone. Gdy do pierwszego z nich podstawimy kolejno dwie wartości kąta padania wiązki, otrzymamy modelowe wartości intensywności odpowiadające swoim argumentom. Wyznaczając różnicę powyższych wartości, możemy wyznaczyć zmianę intensywności spowodowaną zmianą kąta padania. Tę zmianę można nazwać poprawką ze względu na kąt padania. Pozwala ona zredukować wartości intensywności jednego punktu do drugiego w taki sposób, aby obie wielkości odpowiadały sytuacji, w której oba punkty zostałyby zeskanowane pod tym samym kątem padania. A zatem, poprawkę ze względu na kąt padania wyznaczono jako różnicę modelowej intensywności punktu referencyjnego i modelowej intensywności punktu redukowanego:! "# ($%) =" #&'* ($%)+" #&', ($%) gdzie:! "# ($%) poprawka ze względu na kąt padania; " #&'* ($%) modelowa wartość intensywności wyznaczona dla kąta padania na punkt referencyjny; " #&', ($%) modelowa wartość intensywności wyznaczona dla kąta padania na punkt redukowany. Drugie równanie opisujące wpływ odległości na intensywność należy rozpatrzyć w analogiczny sposób. W rezultacie otrzymamy poprawkę ze względu na odległość, którą stanowi różnica modelowej wartości intensywności punktu referencyjnego i modelowej intensywności punktu redukowanego: 99

11 ! "# ($%&) =" #'*+ ($%&)," #'*% ($%&) gdzie:! "# ($%&) poprawka ze względu na odległość; " #'*+ ($%&) modelowa wartość intensywności wyznaczona dla odległości do punktu referencyjnego; " #'*% ($%&) modelowa wartość intensywności wyznaczona dla odległości do punktu redukowanego. W rezultacie powyższego rozumowania uzyskano poprawki do rejestrowanej intensywności ze względu na względne zmiany kąta padania i względne zmiany odległości. Wobec tego, oba równania mogą być zagregowane do jednego wyznaczającego sumaryczny wpływ zmiany kąta padania oraz odległości na rejestrowaną intensywność:! =! "# (-.) +! "# ($%&) gdzie:! poprawka do intensywności redukująca wpływ kąta padania oraz odległości na wartość Intensity;! "# (-.) poprawka ze względu na kąt padania;! "# ($%&) poprawka ze względu na odległość. Należy podkreślić tu fakt, iż na tym etapie wprowadzane są poprawki, które eliminują jedynie wpływ odległości oraz kąta padania wiązki na mierzoną intensywność, a zatem nie należy spodziewać się, że po wprowadzeniu omawianych poprawek, wartości intensywności dla punktów reprezentujących powierzchnię zapory będą jednakowe czy też podobne. Przewiduje się, że wystąpią różnice, które będą odpowiadały wpływom wynikającym z odmiennych właściwości fizycznych materiału fragmentów zapory. Posiadając wyprowadzone równanie poprawki pozwalające na zredukowanie zmierzonej intensywności do takiej wartości, jaką uzyskano by w przypadku zeskanowania wszystkich punktów wybranego fragmentu zapory z jednakowej odległości i pod identycznym kątem padania wiązki światła lasera, należało wybrać punkt referencyjny, do którego będą redukowane wartości intensywności pozostałych punktów. W niniejszym przypadku wybrano punkt, do którego wiązka światła laserowego musiała przebyć najkrótszą drogę. Taki warunek spowodował, iż również kąt padania był najmniejszy. Wobec tego jest to punkt znajdujący się naprzeciwko skanera laserowego, położony w środkowej, dolnej części fragmentu zapory. Klasyfikacja nienadzorowana chmury punktów Poszukiwanie podobnych do siebie obszarów oparto na statystykach wartości Intensity. Statystyki odpowiadające każdemu kwadratowi zostały obliczone przy wykorzystaniu programu Octave. W wyniku tych operacji otrzymano plik tekstowy zawierający numery kolejnych kwadratów wraz z odpowiadającymi im statystykami. Do przeprowadzenia analizy wykorzystano jedynie następujące wartości: wartość średnią i odchylenie standardowe intensywności odbicia oraz odchylenie standardowe współrzędnej X. Uzyskanie użytecznej wiedzy z ogromnych zbiorów danych, tzw. Big Data, wymaga znajdowania zależności w (zazwyczaj) wielowymiarowych przestrzeniach danych. 100

12 Pomocne jest przy tym narzędzie zwane eksploracją danych (ang. data mining), którego podstawowym celem jest badanie charakteru i składu zbiorów danych. Jedną z podstawowych technik eksploracji danych jest analiza skupień. Dzieli ona zbiór danych na pewne podzbiory/skupienia zwane klastrami, w taki sposób, aby zawierały one elementy najbardziej podobne do siebie według przyjętej miary podobieństwa. Podczas tej operacji stosuje się zasadę maksymalizacji podobieństwa elementów w klastrach przy jednoczesnej minimalizacji podobieństwa między elementami z różnych klastrów. Największy wpływ na rezultat działania analizy skupień ma wspomniana miara podobieństwa, która zgodnie ze swoją nazwą jest zależnością określającą stopień podobieństwa pomiędzy elementami wielowymiarowego zbioru. Aby móc określić tę miarę, należy zdefiniować wektor cech elementu w przestrzeni danych. Opisane powyżej czynności stanowią pierwsze dwa etapy analizy skupień: 1. Definicja wektora cech (wybór reprezentacji elementu). 2. Definicja miary podobieństwa pomiędzy elementami. Trzecim, zasadniczym etapem analizy skupień jest grupowanie elementów w klastry. Etap ten jest różny dla poszczególnych algorytmów, które ponadto różnią się zestawem przyjmowanych parametrów wejściowych, co niejednokrotnie ma znaczący wpływ przy wyborze algorytmu odpowiedniego dla danego zestawu i modelu danych. Jednym z przykładowych, dostępnych algorytmów analizy skupień jest algorytm k-średnich. Algorytm centroidów (k-średnich, ang. k-means) należy do grupy algorytmów opartych na podziale (ang. Partitioning algorithms), których celem jest znalezienie optymalnego podziału danych na określoną z góry liczbę klastrów. W związku z tym, za parametry wejściowe poza danymi poddawanymi analizie przyjmuje się poszukiwaną liczbę klastrów w analizowanym zbiorze oraz warunek stopu, którym najczęściej jest wyrażona liczbowo minimalna wartość funkcji oceny lub też liczba iteracji przyporządkowywania elementów do poszczególnych klastrów. Bardzo istotnym warunkiem koniecznym do spełnienia przed wykorzystaniem tego algorytmu jest znajomość charakteru danych, w stopniu pozwalającym na określenie optymalnych parametrów, co nie zawsze jest możliwe. Funkcja oceny w algorytmie k-średnich najczęściej zdefiniowana jest jako średnia odległość (miara podobieństwa) elementów w klastrze od jego środka ciężkości. Zasada działania algorytmu (w przestrzeni dwuwymiarowej) została przedstawiona na rysunku 9[5]. Rys. 9. Zasada działania algorytmu k-średnich [7]. Pierwszy krok algorytmu polega na ustaleniu wstępnych środków skupień, tzw. centroidów. Mogą one zostać dobrane na kilka sposobów, m.in.: losowy wybór k obserwacji (gdzie k oznacza zakładaną liczbę klastrów), wybór k pierwszych obserwacji, wyznaczenie średnich (median) dla grup z poprzedniej iteracji (lub stanu początkowego). Następnie obliczane są odległości poszczególnych elementów od ustalonych środków skupień. Najczęściej stosowaną odległością jest odległość euklidesowa. Wybór miary podobieństwa jest bardzo istotnym etapem w tym algorytmie. Wpływa ona na to, które z obserwacji będą uważane za podobne, a które za zbyt różniące 101

13 się od siebie. W kolejnym kroku, dla danego elementu porównujemy odległości od wszystkich centroidów i przypisujemy go do skupienia, do którego środka ma najbliżej. W dalszym toku postępowania ustalane są nowe środki klastrów. Najczęściej nowym środkiem skupienia jest punkt, którego współrzędne są średnią arytmetyczną współrzędnych punktów należących do danego skupienia. W tym momencie następuje kolejna iteracja algorytmu. Sprawdzamy czy poszczególne elementy zmieniły swoją przynależność do klastrów wykonując poprzednie kroki (od obliczania odległości) do czasu, aż warunek zatrzymania zostanie spełniony. Najczęściej stosowanym warunkiem stopu jest ilość iteracji zadana na początku lub brak przesunięć obiektów pomiędzy skupieniami [5]. Na podstawie zgromadzonych wartości statystyk dla każdego fragmentu obszaru zapory, przeprowadzono klasyfikację obszarów algorytmem k-średnich, zaimplementowanym w pakiecie języka programowania R, służącego do obliczeń statystycznych i wizualizacji wyników. Otrzymany wynik klasyfikacji w formie kolorystycznej wizualizacji analizowanego obszaru zapory przedstawia rysunek 10. Rys. 10. Wizualizacja analizowanego fragmentu ściany odpowietrznej zapory po wykonaniu klasyfikacji obszarów algorytmem k-średnich. Otrzymany wynik klasyfikacji nie jest zgodny z oczekiwaniami autorów, a zatem wymaga komentarza oraz wyjaśnienia. Pierwszą rzeczą, która rzuca się w oczy to koncentryczny rozkład klastrów względem punktu zlokalizowanego w środku dolnej części fragmentu zapory. Położenie tego punktu nie jest przypadkowe w tym punkcie zlokalizowane było stanowisko skanera. Oznacza to, iż powyższe rozmieszczenie klastrów jest ściśle związane z umiejscowieniem skanera oraz technologią skaningu laserowego czyli niecałkowitym wyeliminowaniem wpływu kąta padania oraz odległości na wartość Intensity. Potwierdzeniem przytoczonego stwierdzenia jest fakt, iż koncentryczny rozkład nie ma charakteru okręgów, a bardziej elips. Jest to spowodowane nachyleniem zapory wodnej, które sprawia, iż szybciej zmienia się odległość i kąt padania wiązki w kierunku pionowym, niż ma to miejsce w kierunku poziomym, stąd i zmiana klas w tych kierunkach ma podobny charakter. 102 Rys. 11. Wykres zależności średniej wartości intensywności od położenia danego kwadratu na najniższym poziomie analizowanego obszaru, gdzie kwadraty ponumerowano kolejno od lewej.

14 Aby stwierdzić czy wprowadzone poprawki do intensywności były niedoszacowane czy przeszacowane sporządzono wykres (Rys. 11), na którego osi poziomej oznaczono numery kwadratów znajdujących się na jednym poziomie, natomiast na osi pionowej przedstawiono średnią intensywność zarejestrowaną dla danego fragmentu. Krzywa reprezentująca średnią intensywność po wprowadzeniu poprawek ma charakter zbliżony do (odwróconej) funkcji cosinusa, co świadczy o przeszacowaniu wprowadzonej poprawki. Pomimo dobrego dopasowania modelu do danych empirycznych na poziomie 99% wprowadzone na jego podstawie poprawki nie eliminują wpływu zewnętrznych czynników oddziaływujących na intensywność odbicia. Przyczyną tego mogą być różnice właściwości betonu, z którego wykonano ścianę zapory oraz próbkę, sprawiająca, iż charakter zmian intensywności ze względu na zmiany odległości i kątów padania przyjmuje inną właściwość. Innym wyjaśnieniem uzyskanego wyniku może być fakt, iż wraz ze zmianą odległości zmienia się również charakter zależności: intensywność kąt padania, czego nie można było stwierdzić na podstawie przeprowadzonego eksperymentu pomiarowego. Tę koncepcję potwierdza wykres przedstawiony na rysunku 12, na którym widać, że przeszacowanie poprawki dla różnych poziomów a zarazem różnych odległości jest zmienne. Istnieje także taka możliwość, że otrzymany wynik klasyfikacji jest sumą nałożenia się obu powyższych efektów. Rys. 12. Zależność średniej wartości intensywności od danego kwadratu na trzech poziomach analizowanego obszaru po wprowadzeniu poprawki. Na rysunku 10 można dodatkowo zauważyć grupy kwadratów, które zostały przydzielone do innych klas niż otaczające je fragmenty, tworząc w ten sposób pionowe linie. Ich występowanie oraz położenie nie jest przypadkowe. Otóż w tych miejscach przebiegają elementy instalacji ochrony odgromowej tzw. bednarka. Podsumowanie Zasadniczym problemem w związku z proponowanym algorytmem była eliminacja zmiennych wpływów zniekształcających informację o odbiciu wiązki lasera wpływu kąta padania oraz odległości. Założono więc, że konieczne jest przeprowadzenie odpowiednich eksperymentów pomiarowych, które dostarczą niezbędnych danych do wyjaśnienia zjawiska zmian wartości intensywności względem zmian kąta padania oraz odległości. Opracowanie wyników przeprowadzonych pomiarów pozwoliło na 103

15 wyznaczenie poprawek niwelujących wspomniane wpływy, które następnie wprowadzono do chmury punktów reprezentującej fragment odpowietrznej ściany zapory w Solinie. Przeprowadzona klasyfikacja obszarów podobnych algorytmem k-średnich wykazała, iż wpływy które starano się wyeliminować wciąż obciążają dane pomiarowe. Zaproponowane w tym artykule i rozwijane w innych publikacjach [8] [9] podejście do klasyfikacji skanów powierzchni masywnych konstrukcji hydrotechnicznych celem poszukiwania obszarów podobnych, wskazuje na duży potencjał wykorzystania naziemnych skanerów laserowych. Prowadzanie dalszych badań w tym kierunku powinno pozwolić na uznanie skaningu laserowego za dobre narzędzie wspierające ocenę stanu konstrukcji betonowych. W przypadku zapór wodnych stanowiących konstrukcje strategiczne, których eksploatacja ma duże znaczenie dla bezpieczeństwa otoczenia, włączenie skaningu laserowego jako nisko-kosztowej, bez-dotykowej metody pomiarowej do procesu oceny stanu konstrukcji, może przynieść wiele korzyści w postaci przyspieszenia i zwiększenia wiarygodności procesu oceny dodatkowymi informacjami o strukturze i stanie powierzchni materiału. Podziękowanie Autorzy dziękują Pani mgr inż. Marii Kowalskiej za pomoc w przeprowadzeniu pomiarów doświadczalnych oraz przygotowaniu pozyskanych danych do analiz. Literatura 1. Kledyński Z., Monitoring i diagnostyka budowli hydrotechnicznych, cz. 1. Nowoczesne Budownictwo Inżynieryjne (35), pp.54-61, Kozicki, Z. Zespół Elektrowni Wodnych Solina-Myczkowce. Myczkowce , Solina Zielonczyn: Agencja Paweł Janik, Pfeifer N., Dorninger P., Haring A., Fan H.,Investigating Terrestrial Laser Scanning Intensity Data: Quality and Functional Relations. Vienna, Austria: Vienna University of Technology, Proceedings of VIII International Conference on Optical 3-D Measurement Techniques, Zürich, Switzerland, ss , Sieinski E., Śliwiński P., Wytyczne wykonywania badań, pomiarów, ocen stanu technicznego i stanu bezpieczeństwa budowli piętrzących wodę. Warszawa-Katowice: Instytut Meteorologii i Gospodarki Wodnej, Stanik K., Analiza skupień w eksploracji danych. Programista, 5/2015 (36), pp , Van Genechten B., Caner H., Heine E., Lerma Garcia J.L., Poelman R., Santana Quintero M., Theory and practice on Terrestrial Laser Scanning. Training material based on practical applications. 3DRiskMapping Project. Valencia, Spain: Flemish Agency of the European Leonardo Da Vinci programme, Hamerly, G. and Elkan, C. Alternatives to the k-means algorithm that find better clusterings. Proceedings of the eleventh international conference on Information and knowledge management (CIKM), Zaczek-Peplinska J., Osińska-Skotak K., Wujanz D. [i in.] : Analysis of the possibility for using the results of terrestrial laser scanning (TLS) measurements and classification algorithms of images for the engineering structure surface condition assessment, w: Vertical geology, from remote sensing to 3D geological modelling. 104

16 Proceedings of the first Vertical Geology Conference / Humair F. [i in.] ( red. ), 2014, University of Lausanne, ss Zaczek-Peplinska J., Osińska-Skotak K., Gergont K.: Możliwości wykorzystania zmian intensywności odbicia promienia laserowego do oceny stanu konstrukcji betonowej, w: Inżynieryjne zastosowania geodezji / Plichta Artur, Wyczałek Ireneusz ( red. ), 2012, Wydawnictwo Politechniki Poznańskiej, ISBN , ss dr inż. Janina Zaczek-Peplinska, geodeta, adiunkt na Wydziale Geodezji i Kartografii w Katedrze Geodezji Inżynieryjnej i Systemów Pomiarowo-Kontrolnych, Politechnika Warszawska, pl. Politechniki 1 pok. 304, Warszawa, tel.: , j.zaczek-peplinska@gik.pw.edu.pl mgr inż. Adam Góra, geodeta, absolwent Wydziału Geodezji i Kartografii Politechniki Warszawskiej mgr inż. Michał Grzyb, geodeta, absolwent Wydziału Geodezji i Kartografii Politechniki Warszawskiej 105

Zbigniew Figiel, Piotr Dzikowicz. Skanowanie 3D przy projektowaniu i realizacji inwestycji w Koksownictwie KOKSOPROJEKT

Zbigniew Figiel, Piotr Dzikowicz. Skanowanie 3D przy projektowaniu i realizacji inwestycji w Koksownictwie KOKSOPROJEKT 1 Zbigniew Figiel, Piotr Dzikowicz Skanowanie 3D przy projektowaniu i realizacji inwestycji w Koksownictwie 2 Plan prezentacji 1. Skanowanie laserowe 3D informacje ogólne; 2. Proces skanowania; 3. Proces

Bardziej szczegółowo

Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn Laboratorium Techniki Świetlnej

Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn Laboratorium Techniki Świetlnej Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn. 29.03.2016 aboratorium Techniki Świetlnej Ćwiczenie nr 5. TEMAT: POMIAR UMIACJI MATERIAŁÓW O RÓŻYCH WŁASOŚCIACH FOTOMETRYCZYCH

Bardziej szczegółowo

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

O 2 O 1. Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego msg M 7-1 - Temat: Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Zagadnienia: prawa dynamiki Newtona, moment sił, moment bezwładności, dynamiczne równania ruchu wahadła fizycznego,

Bardziej szczegółowo

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych

Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych inż. Marek Duczkowski Metoda określania pozycji wodnicy statków na podstawie pomiarów odległości statku od głowic laserowych słowa kluczowe: algorytm gradientowy, optymalizacja, określanie wodnicy W artykule

Bardziej szczegółowo

Wyznaczanie stałej słonecznej i mocy promieniowania Słońca

Wyznaczanie stałej słonecznej i mocy promieniowania Słońca Wyznaczanie stałej słonecznej i mocy promieniowania Słońca Jak poznać Wszechświat, jeśli nie mamy bezpośredniego dostępu do każdej jego części? Ta trudność jest codziennością dla astronomii. Obiekty astronomiczne

Bardziej szczegółowo

OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA

OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA OCENA PRZYDATNOŚCI FARBY PRZEWIDZIANEJ DO POMALOWANIA WNĘTRZA KULI ULBRICHTA Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki WPROWADZENIE Całkowity

Bardziej szczegółowo

Temat: Skanowanie 3D obrazu w celu pomiaru odkształceń deski podobrazia

Temat: Skanowanie 3D obrazu w celu pomiaru odkształceń deski podobrazia Raport z przeprowadzonych badań Temat: Skanowanie 3D obrazu w celu pomiaru odkształceń deski podobrazia Spis treści Spis treści... 2 1.Cel badań... 3 2. Skanowanie 3D pozyskanie geometrii... 3 3. Praca

Bardziej szczegółowo

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński

Wstęp do teorii niepewności pomiaru. Danuta J. Michczyńska Adam Michczyński Wstęp do teorii niepewności pomiaru Danuta J. Michczyńska Adam Michczyński Podstawowe informacje: Strona Politechniki Śląskiej: www.polsl.pl Instytut Fizyki / strona własna Instytutu / Dydaktyka / I Pracownia

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2017/2018 Przedmiot: MATEMATYKA Klasa: III 60 godzin numer programu T5/O/5/12 Rozkład materiału nauczania Temat

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ.

ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. ROZKŁAD MATERIAŁU DO II KLASY LICEUM (ZAKRES ROZSZERZONY) A WYMAGANIA PODSTAWY PROGRAMOWEJ. LICZBA TEMAT GODZIN LEKCYJNYCH Potęgi, pierwiastki i logarytmy (8 h) Potęgi 3 Pierwiastki 3 Potęgi o wykładnikach

Bardziej szczegółowo

WYBÓR PUNKTÓW POMIAROWYCH

WYBÓR PUNKTÓW POMIAROWYCH Scientific Bulletin of Che lm Section of Technical Sciences No. 1/2008 WYBÓR PUNKTÓW POMIAROWYCH WE WSPÓŁRZĘDNOŚCIOWEJ TECHNICE POMIAROWEJ MAREK MAGDZIAK Katedra Technik Wytwarzania i Automatyzacji, Politechnika

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

STATYCZNA PRÓBA SKRĘCANIA

STATYCZNA PRÓBA SKRĘCANIA Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie STATYCZNA PRÓBA SKRĘCANIA Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Skręcanie pręta występuje w przypadku

Bardziej szczegółowo

GEODEZJA WYKŁAD Pomiary kątów

GEODEZJA WYKŁAD Pomiary kątów GEODEZJA WYKŁAD Pomiary kątów Katedra Geodezji im. K. Weigla ul. Poznańska 2/34 Do rozwiązywania zadań z geodezji konieczna jest znajomość kątów w figurach i bryłach obiektów. W geodezji przyjęto mierzyć:

Bardziej szczegółowo

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak

-> Średnia arytmetyczna (5) (4) ->Kwartyl dolny, mediana, kwartyl górny, moda - analogicznie jak Wzory dla szeregu szczegółowego: Wzory dla szeregu rozdzielczego punktowego: ->Średnia arytmetyczna ważona -> Średnia arytmetyczna (5) ->Średnia harmoniczna (1) ->Średnia harmoniczna (6) (2) ->Średnia

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie Nazwisko i imię: Zespół: Data: Ćwiczenie nr 9: Swobodne spadanie Cel ćwiczenia: Obserwacja swobodnego spadania z wykorzystaniem elektronicznej rejestracji czasu przelotu kuli przez punkty pomiarowe. Wyznaczenie

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

MICRON3D skaner do zastosowań specjalnych. MICRON3D scanner for special applications

MICRON3D skaner do zastosowań specjalnych. MICRON3D scanner for special applications Mgr inż. Dariusz Jasiński dj@smarttech3d.com SMARTTECH Sp. z o.o. MICRON3D skaner do zastosowań specjalnych W niniejszym artykule zaprezentowany został nowy skaner 3D firmy Smarttech, w którym do pomiaru

Bardziej szczegółowo

Charakterystyka mierników do badania oświetlenia Obiektywne badania warunków oświetlenia opierają się na wynikach pomiarów parametrów świetlnych. Podobnie jak każdy pomiar, również te pomiary, obarczone

Bardziej szczegółowo

Przemysław Kowalski Instytut Informatyki Teoretycznej i Stosowanej PAN

Przemysław Kowalski Instytut Informatyki Teoretycznej i Stosowanej PAN Opracowanie systemowych rozwiązań wspomagających zabezpieczenie miejsca zdarzenia i proces wykrywczy na podstawie materiału dowodowego utrwalonego za pomocą technik skaningu laserowego oraz satelitarnych

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej

Bardziej szczegółowo

OMÓWIENIE TECHNOLOGII NAZIEMNEGO SKANINGU SKANING LASEROWY LASEROWGO ORAZ PRAKTYCZNYCH ASPEKTÓW ZASTOSOWANIA TEJ TECHNOLOGII W POLSKICH WARUNKACH Jacek Uchański Piotr Falkowski PLAN REFERATU 1. Wprowadzenie

Bardziej szczegółowo

Wyznaczanie zależności współczynnika załamania światła od długości fali światła

Wyznaczanie zależności współczynnika załamania światła od długości fali światła Ćwiczenie O3 Wyznaczanie zależności współczynnika załamania światła od długości fali światła O3.1. Cel ćwiczenia Celem ćwiczenia jest zbadanie zależności współczynnika załamania światła od długości fali

Bardziej szczegółowo

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA

WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA Ćwiczenie 58 WYZNACZANIE MODUŁU YOUNGA METODĄ STRZAŁKI UGIĘCIA 58.1. Wiadomości ogólne Pod działaniem sił zewnętrznych ciała stałe ulegają odkształceniom, czyli zmieniają kształt. Zmianę odległości między

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM PODSTAWOWY. Etapy rozwiązania zadania Przykładowy zestaw zadań nr z matematyki ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM PODSTAWOWY Nr zadania Nr czynności Etapy rozwiązania zadania Liczba punktów Uwagi. Podanie dziedziny funkcji f:

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0..

Ćwiczenie 363. Polaryzacja światła sprawdzanie prawa Malusa. Początkowa wartość kąta 0.. Nazwisko... Data... Nr na liście... Imię... Wydział... Dzień tyg.... Godzina... Polaryzacja światła sprawdzanie prawa Malusa Początkowa wartość kąta 0.. 1 25 49 2 26 50 3 27 51 4 28 52 5 29 53 6 30 54

Bardziej szczegółowo

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania.

Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Oświetlenie. Modelowanie oświetlenia sceny 3D. Algorytmy cieniowania. Chcąc osiągnąć realizm renderowanego obrazu, należy rozwiązać problem świetlenia. Barwy, faktury i inne właściwości przedmiotów postrzegamy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc

WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc WYMAGANIA EDUKACYJNE Z MATEMATYKI 2016/2017 (zakres podstawowy) klasa 3abc 1, Ciągi zna definicję ciągu (ciągu liczbowego); potrafi wyznaczyć dowolny wyraz ciągu liczbowego określonego wzorem ogólnym;

Bardziej szczegółowo

SPOSÓB POMIARU PODSTAWOWYCH PARAMETRÓW OŚWIETLENIA

SPOSÓB POMIARU PODSTAWOWYCH PARAMETRÓW OŚWIETLENIA SPOSÓB POMIARU PODSTAWOWYCH PARAMETRÓW OŚWIETLENIA Z punktu widzenia oceny oświetlenia we wnętrzu bądź na stanowisku pracy, istotny jest pomiar natężenia oświetlenia, określenie równomierności oświetlenia

Bardziej szczegółowo

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia

Laboratorium techniki światłowodowej. Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Laboratorium techniki światłowodowej Ćwiczenie 3. Światłowodowy, odbiciowy sensor przesunięcia Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wprowadzenie

Bardziej szczegółowo

Ćwiczenie Nr 11 Fotometria

Ćwiczenie Nr 11 Fotometria Instytut Fizyki, Uniwersytet Śląski Chorzów 2018 r. Ćwiczenie Nr 11 Fotometria Zagadnienia: fale elektromagnetyczne, fotometria, wielkości i jednostki fotometryczne, oko. Wstęp Radiometria (fotometria

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Wyznaczanie prędkości dźwięku w powietrzu

Wyznaczanie prędkości dźwięku w powietrzu Imię i Nazwisko... Wyznaczanie prędkości dźwięku w powietrzu Opracowanie: Piotr Wróbel 1. Cel ćwiczenia. Celem ćwiczenia jest wyznaczenie prędkości dźwięku w powietrzu, metodą różnicy czasu przelotu. Drgania

Bardziej szczegółowo

WPŁYW METODY DOPASOWANIA NA WYNIKI POMIARÓW PIÓRA ŁOPATKI INFLUENCE OF BEST-FIT METHOD ON RESULTS OF COORDINATE MEASUREMENTS OF TURBINE BLADE

WPŁYW METODY DOPASOWANIA NA WYNIKI POMIARÓW PIÓRA ŁOPATKI INFLUENCE OF BEST-FIT METHOD ON RESULTS OF COORDINATE MEASUREMENTS OF TURBINE BLADE Dr hab. inż. Andrzej Kawalec, e-mail: ak@prz.edu.pl Dr inż. Marek Magdziak, e-mail: marekm@prz.edu.pl Politechnika Rzeszowska Wydział Budowy Maszyn i Lotnictwa Katedra Technik Wytwarzania i Automatyzacji

Bardziej szczegółowo

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi

Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Odchudzamy serię danych, czyli jak wykryć i usunąć wyniki obarczone błędami grubymi Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska D syst D śr m 1 3 5 2 4 6 śr j D 1

Bardziej szczegółowo

Statystyka opisowa. Wykład I. Elementy statystyki opisowej

Statystyka opisowa. Wykład I. Elementy statystyki opisowej Statystyka opisowa. Wykład I. e-mail:e.kozlovski@pollub.pl Spis treści Elementy statystyku opisowej 1 Elementy statystyku opisowej 2 3 Elementy statystyku opisowej Definicja Statystyka jest to nauka o

Bardziej szczegółowo

PL B BUP 12/13. ANDRZEJ ŚWIERCZ, Warszawa, PL JAN HOLNICKI-SZULC, Warszawa, PL PRZEMYSŁAW KOŁAKOWSKI, Nieporęt, PL

PL B BUP 12/13. ANDRZEJ ŚWIERCZ, Warszawa, PL JAN HOLNICKI-SZULC, Warszawa, PL PRZEMYSŁAW KOŁAKOWSKI, Nieporęt, PL PL 222132 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 222132 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 397310 (22) Data zgłoszenia: 09.12.2011 (51) Int.Cl.

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

Wyznaczanie modułu Younga metodą strzałki ugięcia

Wyznaczanie modułu Younga metodą strzałki ugięcia Ćwiczenie M12 Wyznaczanie modułu Younga metodą strzałki ugięcia M12.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie wartości modułu Younga różnych materiałów poprzez badanie strzałki ugięcia wykonanych

Bardziej szczegółowo

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne

Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne POLITECHNIKA POZNAŃSKA INSTYTUT INŻYNIERII ŚRODOWISKA PROWADZĄCY: mgr inż. Łukasz Amanowicz Systemy Ochrony Powietrza Ćwiczenia Laboratoryjne 3 TEMAT ĆWICZENIA: Badanie składu pyłu za pomocą mikroskopu

Bardziej szczegółowo

I. Potęgi. Logarytmy. Funkcja wykładnicza.

I. Potęgi. Logarytmy. Funkcja wykładnicza. WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY TRZECIEJ LICEUM OGÓLNOKSZTAŁCĄCEGO ZAKRES PODSTAWOWY I. Potęgi. Logarytmy. Funkcja wykładnicza. dobrą, bardzo - oblicza potęgi o wykładnikach wymiernych; - zna

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu

Wyznaczanie współczynnika załamania światła za pomocą mikroskopu i pryzmatu POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: MATEMATYKA Z ELEMENTAMI FIZYKI Kod przedmiotu: ISO73; INO73 Ćwiczenie Nr Wyznaczanie współczynnika

Bardziej szczegółowo

SINGLE-IMAGE HIGH-RESOLUTION SATELLITE DATA FOR 3D INFORMATIONEXTRACTION

SINGLE-IMAGE HIGH-RESOLUTION SATELLITE DATA FOR 3D INFORMATIONEXTRACTION SINGLE-IMAGE HIGH-RESOLUTION SATELLITE DATA FOR 3D INFORMATIONEXTRACTION MOŻLIWOŚCI WYDOBYCIA INFORMACJI 3D Z POJEDYNCZYCH WYSOKOROZDZIELCZYCH OBRAZÓW SATELITARNYCH J. Willneff, J. Poon, C. Fraser Przygotował:

Bardziej szczegółowo

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA

METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA METODY CHEMOMETRYCZNE W IDENTYFIKACJI ŹRÓDEŁ POCHODZENIA AMFETAMINY Waldemar S. Krawczyk Centralne Laboratorium Kryminalistyczne Komendy Głównej Policji, Warszawa (praca obroniona na Wydziale Chemii Uniwersytetu

Bardziej szczegółowo

Zadania ze statystyki, cz.6

Zadania ze statystyki, cz.6 Zadania ze statystyki, cz.6 Zad.1 Proszę wskazać, jaką część pola pod krzywą normalną wyznaczają wartości Z rozkładu dystrybuanty rozkładu normalnego: - Z > 1,25 - Z > 2,23 - Z < -1,23 - Z > -1,16 - Z

Bardziej szczegółowo

WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA

WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA KOŁA NA ZMIANĘ SZTYWNOŚCI ZAZĘBIENIA ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2009 Seria: TRANSPORT z. 65 Nr kol. 1807 Tomasz FIGLUS, Piotr FOLĘGA, Piotr CZECH, Grzegorz WOJNAR WYKORZYSTANIE MES DO WYZNACZANIA WPŁYWU PĘKNIĘCIA W STOPIE ZĘBA

Bardziej szczegółowo

Precyzyjne pozycjonowanie w oparciu o GNSS

Precyzyjne pozycjonowanie w oparciu o GNSS Precyzyjne pozycjonowanie w oparciu o GNSS Załącznik nr 2 Rozdział 1 Techniki precyzyjnego pozycjonowania w oparciu o GNSS 1. Podczas wykonywania pomiarów geodezyjnych metodą precyzyjnego pozycjonowania

Bardziej szczegółowo

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy)

Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) Tomasz Tobiasz PLAN WYNIKOWY (zakres podstawowy) klasa 3. PAZDRO Plan jest wykazem wiadomości i umiejętności, jakie powinien mieć uczeń ubiegający się o określone oceny na poszczególnych etapach edukacji

Bardziej szczegółowo

2. Charakterystyki geometryczne przekroju

2. Charakterystyki geometryczne przekroju . CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi

Bardziej szczegółowo

TEMAT: POMIAR LUMINANCJI MATERIAŁÓW O RÓśNYCH WŁAŚCIWOŚCIACH FOTOMETRYCZNYCH

TEMAT: POMIAR LUMINANCJI MATERIAŁÓW O RÓśNYCH WŁAŚCIWOŚCIACH FOTOMETRYCZNYCH Grupa: Elektrotechnika, Studia stacjonarne, II stopień, sem. 1. wersja z dn. 18.03.2011 aboratorium Techniki Świetlnej Ćwiczenie nr 2. TEMAT: POMIAR UMIACJI MATERIAŁÓW O RÓśYCH WŁAŚCIWOŚCIACH FOTOMETRYCZYCH

Bardziej szczegółowo

Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych

Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych Automatyczne tworzenie trójwymiarowego planu pomieszczenia z zastosowaniem metod stereowizyjnych autor: Robert Drab opiekun naukowy: dr inż. Paweł Rotter 1. Wstęp Zagadnienie generowania trójwymiarowego

Bardziej szczegółowo

1. Potęgi. Logarytmy. Funkcja wykładnicza

1. Potęgi. Logarytmy. Funkcja wykładnicza 1. Potęgi. Logarytmy. Funkcja wykładnicza Tematyka zajęć: WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY KL. 3 POZIOM PODSTAWOWY Potęga o wykładniku rzeczywistym powtórzenie Funkcja wykładnicza i jej własności

Bardziej szczegółowo

Hierarchiczna analiza skupień

Hierarchiczna analiza skupień Hierarchiczna analiza skupień Cel analizy Analiza skupień ma na celu wykrycie w zbiorze obserwacji klastrów, czyli rozłącznych podzbiorów obserwacji, wewnątrz których obserwacje są sobie w jakimś określonym

Bardziej szczegółowo

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10

TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10 TELEDETEKCJA Z ELEMENTAMI FOTOGRAMETRII WYKŁAD 10 Fotogrametria to technika pomiarowa oparta na obrazach fotograficznych. Wykorzystywana jest ona do opracowywani map oraz do różnego rodzaju zadań pomiarowych.

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU.

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. 0.X.00 ĆWICZENIE NR 76 A (zestaw ) WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA SZKŁA ZA POMOCĄ SPEKTROMETRU. I. Zestaw przyrządów:. Spektrometr (goniometr), Lampy spektralne 3. Pryzmaty II. Cel ćwiczenia: Zapoznanie

Bardziej szczegółowo

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu.

2) R stosuje w obliczeniach wzór na logarytm potęgi oraz wzór na zamianę podstawy logarytmu. ZAKRES ROZSZERZONY 1. Liczby rzeczywiste. Uczeń: 1) przedstawia liczby rzeczywiste w różnych postaciach (np. ułamka zwykłego, ułamka dziesiętnego okresowego, z użyciem symboli pierwiastków, potęg); 2)

Bardziej szczegółowo

Zasady oceniania karta pracy

Zasady oceniania karta pracy Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.

Bardziej szczegółowo

OPRACOWANIE KONCEPCJI BADANIA PRZEMIESZCZEŃ OSUWISK NA PODSTAWIE GEODANYCH

OPRACOWANIE KONCEPCJI BADANIA PRZEMIESZCZEŃ OSUWISK NA PODSTAWIE GEODANYCH OPRACOWANIE KONCEPCJI BADANIA PRZEMIESZCZEŃ OSUWISK NA PODSTAWIE GEODANYCH Małgorzata Woroszkiewicz Zakład Teledetekcji i Fotogrametrii, Wydział Inżynierii Lądowej i Geodezji, Wojskowa Akademia Techniczna

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

BŁĘDY W POMIARACH BEZPOŚREDNICH

BŁĘDY W POMIARACH BEZPOŚREDNICH Podstawy Metrologii i Technik Eksperymentu Laboratorium BŁĘDY W POMIARACH BEZPOŚREDNICH Instrukcja do ćwiczenia nr 2 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy Metrologii

Bardziej szczegółowo

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich

Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Podstawy Metrologii i Technik Eksperymentu Laboratorium Sprawdzenie narzędzi pomiarowych i wyznaczenie niepewności rozszerzonej typu A w pomiarach pośrednich Instrukcja do ćwiczenia nr 4 Zakład Miernictwa

Bardziej szczegółowo

BADANIE INTERFEROMETRU YOUNGA

BADANIE INTERFEROMETRU YOUNGA Celem ćwiczenia jest: BADANIE INTERFEROMETRU YOUNGA 1. poznanie podstawowych właściwości interferometru z podziałem czoła fali w oświetleniu monochromatycznym i świetle białym, 2. demonstracja możliwości

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019

WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 WYMAGANIA EDUKACYJNE Rok szkolny 2018/2019 Przedmiot Klasa Nauczyciele uczący Poziom matematyka 4e Łukasz Jurczak rozszerzony 2. Elementy analizy matematycznej ocena dopuszczająca ocena dostateczna ocena

Bardziej szczegółowo

POMIAR APERTURY NUMERYCZNEJ

POMIAR APERTURY NUMERYCZNEJ ĆWICZENIE O9 POMIAR APERTURY NUMERYCZNEJ ŚWIATŁOWODU KATEDRA FIZYKI 1 Wstęp Prawa optyki geometrycznej W optyce geometrycznej, rozpatrując rozchodzenie się fal świetlnych przyjmuje się pewne założenia

Bardziej szczegółowo

Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm.

Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. 2 Wyniki pomiarów okresu drgań dla wahadła o długości l = 1,215 m i l = 0,5 cm. Nr pomiaru T[s] 1 2,21 2 2,23 3 2,19 4 2,22 5 2,25 6 2,19 7 2,23 8 2,24 9 2,18 10 2,16 Wyniki pomiarów okresu drgań dla wahadła

Bardziej szczegółowo

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera. ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego

Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 2019/02/14 13:21 1/5 Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego Ćw. nr 1. Wyznaczenie przyspieszenia ziemskiego za pomocą wahadła prostego 1. Cel ćwiczenia Wyznaczenie przyspieszenia

Bardziej szczegółowo

Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji

Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Monitorowanie i Diagnostyka w Systemach Sterowania na studiach II stopnia specjalności: Systemy Sterowania i Podejmowania Decyzji Analiza składników podstawowych - wprowadzenie (Principal Components Analysis

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Wyznaczanie współczynnika załamania światła

Wyznaczanie współczynnika załamania światła Ćwiczenie O2 Wyznaczanie współczynnika załamania światła O2.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie współczynnika załamania światła dla przeźroczystych, płaskorównoległych płytek wykonanych z

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Pelagia BIŁKA, Magda PLUTA Dr inż. Bartosz MITKA. EPISTEME 18/2013, t. 3 s. 437-443 ISSN 1895-2241

Pelagia BIŁKA, Magda PLUTA Dr inż. Bartosz MITKA. EPISTEME 18/2013, t. 3 s. 437-443 ISSN 1895-2241 Pelagia BIŁKA, Magda PLUTA Dr inż. Bartosz MITKA EPISTEME 18/2013, t. 3 s. 437-443 ISSN 1895-2241 WYKORZYSTANIE NOWOCZESNYCH TECHNIK POMIAROWYCH W MONITOROWANIU DUŻYCH OBIEKTÓW HYDROTECHNICZNYCH THE USING

Bardziej szczegółowo

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników

Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników Instrukcja do ćwiczenia jednopłaszczyznowe wyważanie wirników 1. Podstawowe pojęcia związane z niewyważeniem Stan niewyważenia stan wirnika określony takim rozkładem masy, który w czasie wirowania wywołuje

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska

Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Opracowanie tablic: Adam Konstantynowicz, Anna Konstantynowicz, Kaja Mikoszewska Redaktor serii: Marek Jannasz Ilustracje: Magdalena Wójcik Projekt okładki: Teresa Chylińska-Kur, KurkaStudio Projekt makiety

Bardziej szczegółowo

LABORATORIUM. Pomiar poziomu mocy akustycznej w komorze pogłosowej. Instrukcja do zajęć laboratoryjnych

LABORATORIUM. Pomiar poziomu mocy akustycznej w komorze pogłosowej. Instrukcja do zajęć laboratoryjnych LABORATORIUM Pomiar poziomu mocy akustycznej w komorze pogłosowej Instrukcja do zajęć laboratoryjnych Kraków 2010 Spis treści 1. Wstęp...3 2. Wprowadzenie teoretyczne...4 2.1. Definicje terminów...4 2.2.

Bardziej szczegółowo

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET

Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET 18 Wyznaczanie profilu wiązki promieniowania używanego do cechowania tomografu PET Ines Moskal Studentka, Instytut Fizyki UJ Na Uniwersytecie Jagiellońskim prowadzone są badania dotyczące usprawnienia

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 008 Czas pracy 80 minut Instrukcja

Bardziej szczegółowo

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi

Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi Tutaj powinny znaleźć się wyniki pomiarów (tabelki) potwierdzone przez prowadzacego zajęcia laboratoryjne i podpis dyżurujacego pracownika obsługi technicznej. 1. Wstęp Celem ćwiczenia jest wyznaczenie

Bardziej szczegółowo

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej

Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej Laboratorium techniki laserowej Ćwiczenie 2. Badanie profilu wiązki laserowej 1. Katedra Optoelektroniki i Systemów Elektronicznych, WETI, Politechnika Gdaoska Gdańsk 2006 1. Wstęp Pomiar profilu wiązki

Bardziej szczegółowo

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL

ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL ZADANIE 111 DOŚWIADCZENIE YOUNGA Z UŻYCIEM MIKROFAL X L Rys. 1 Schemat układu doświadczalnego. Fala elektromagnetyczna (światło, mikrofale) po przejściu przez dwie blisko położone (odległe o d) szczeliny

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. grupa II Termin: 17 III 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła

Bardziej szczegółowo

Uwaga: Nie przesuwaj ani nie pochylaj stołu, na którym wykonujesz doświadczenie.

Uwaga: Nie przesuwaj ani nie pochylaj stołu, na którym wykonujesz doświadczenie. Mając do dyspozycji 20 kartek papieru o gramaturze 80 g/m 2 i wymiarach 297mm na 210mm (format A4), 2 spinacze biurowe o masie 0,36 g każdy, nitkę, probówkę, taśmę klejącą, nożyczki, zbadaj, czy maksymalna

Bardziej szczegółowo

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne

ĆWICZENIE 41 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO. Wprowadzenie teoretyczne ĆWICZENIE 4 POMIARY PRZY UŻYCIU GONIOMETRU KOŁOWEGO Wprowadzenie teoretyczne Rys. Promień przechodzący przez pryzmat ulega dwukrotnemu załamaniu na jego powierzchniach bocznych i odchyleniu o kąt δ. Jeżeli

Bardziej szczegółowo

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017

Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 Przedmiotowe Ocenianie Z Matematyki Liceum Ogólnokształcące obowiązuje w roku szkolnym 2016 / 2017 1. Rok szkolny dzieli się na dwa semestry. Każdy semestr kończy się klasyfikacją. 2. Na początku roku

Bardziej szczegółowo

Kształcenie w zakresie podstawowym. Klasa 3

Kształcenie w zakresie podstawowym. Klasa 3 Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego działu, aby uzyskać poszczególne stopnie. Na ocenę dopuszczającą uczeń powinien opanować

Bardziej szczegółowo

Wyznaczanie stopnia krystaliczności wybranych próbek polimerów wykorzystanie programu WAXSFIT

Wyznaczanie stopnia krystaliczności wybranych próbek polimerów wykorzystanie programu WAXSFIT 1 ĆWICZENIE 3 Wyznaczanie stopnia krystaliczności wybranych próbek polimerów wykorzystanie programu WAXSFIT Do wyznaczenia stopnia krystaliczności wybranych próbek polimerów wykorzystany zostanie program

Bardziej szczegółowo

Aerotriangulacja. 1. Aerotriangulacja z niezależnych wiązek. 2. Aerotriangulacja z niezależnych modeli

Aerotriangulacja. 1. Aerotriangulacja z niezależnych wiązek. 2. Aerotriangulacja z niezależnych modeli Aerotriangulacja 1. Aerotriangulacja z niezależnych wiązek 2. Aerotriangulacja z niezależnych modeli Definicja: Cel: Kameralne zagęszczenie osnowy fotogrametrycznej + wyznaczenie elementów orientacji zewnętrznej

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITECHNIKA OPOLSKA WYDZIAŁ MECHANICZNY Katedra Technologii Maszyn i Automatyzacji Produkcji Laboratorium Podstaw Inżynierii Jakości Ćwiczenie nr 4 Temat: Analiza korelacji i regresji dwóch zmiennych

Bardziej szczegółowo

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk

str 1 WYMAGANIA EDUKACYJNE ( ) - matematyka - poziom podstawowy Dariusz Drabczyk str 1 WYMAGANIA EDUKACYJNE (2017-2018) - matematyka - poziom podstawowy Dariusz Drabczyk Klasa 3e: wpisy oznaczone jako: (T) TRYGONOMETRIA, (PII) PLANIMETRIA II, (RP) RACHUNEK PRAWDOPODOBIEŃSTWA, (ST)

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s

Sposób wykonania ćwiczenia. Płytka płasko-równoległa. Rys. 1. Wyznaczanie współczynnika załamania materiału płytki : A,B,C,D punkty wbicia szpilek ; s WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Cel ćwiczenia: 1. Zapoznanie z budową i zasadą działania mikroskopu optycznego.. Wyznaczenie współczynnika załamania światła

Bardziej szczegółowo

WARUNKI TECHNICZNE 2. DEFINICJE

WARUNKI TECHNICZNE 2. DEFINICJE WARUNKI TECHNICZNE 1. ZAKRES WARUNKÓW TECHNICZNYCH W niniejszych WT określono wymiary i minimalne wymagania dotyczące jakości (w odniesieniu do wad optycznych i widocznych) szkła float stosowanego w budownictwie,

Bardziej szczegółowo

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia

MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia MATEMATYKA ZP Ramowy rozkład materiału na cały cykl kształcenia KLASA I (3 h w tygodniu x 32 tyg. = 96 h; reszta godzin do dyspozycji nauczyciela) 1. Liczby rzeczywiste Zbiory Liczby naturalne Liczby wymierne

Bardziej szczegółowo

Graficzne opracowanie wyników pomiarów 1

Graficzne opracowanie wyników pomiarów 1 GRAFICZNE OPRACOWANIE WYNIKÓW POMIARÓW Celem pomiarów jest bardzo często potwierdzenie związku lub znalezienie zależności między wielkościami fizycznymi. Pomiar polega na wyznaczaniu wartości y wielkości

Bardziej szczegółowo