Szybka wielobiegunowa metoda elementów brzegowych w analizie układów liniowosprężystych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Szybka wielobiegunowa metoda elementów brzegowych w analizie układów liniowosprężystych"

Transkrypt

1 Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Politechnika Śląska, Gliwice Szybka wielobiegunowa metoda elementów brzegowych w analizie układów liniowosprężystych Algorytm SWMEB. Część 1. dr inż. Jacek Ptaszny Rzeszów, dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 1/36

2 Plan prezentacji 1 Ogólny opis metody 2 Szereg wielobiegunowy 3 Transformacja W-W 4 Szereg lokalny i transformacja W-L 5 Transformacja L-L 6 Obliczanie naprężeń 7 Literatura dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 2/36

3 Plan prezentacji 1 Ogólny opis metody 2 Szereg wielobiegunowy 3 Transformacja W-W 4 Szereg lokalny i transformacja W-L 5 Transformacja L-L 6 Obliczanie naprężeń 7 Literatura dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 3/36

4 Ogólny opis metody Grupowanie i rozdział wpływu G Punkty ca³kowania Punkty rozwiniêcia wielobiegunowego W Punkty rozwiniêcia lokalnego Punkty kolokacji Transformacja W-W Transformacja W-L Transformacja L-L dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 4/36

5 Ogólny opis metody Macierzowy układ równań [H] bl {U} + {HU} odl = [G] bl {T} + {GT} odl + {B} bl + {B} odl (1) Macierze wpływu obszaru bliskiego obliczane metodą bezpośrednią Macierze wpływu obszaru odległego obliczane w sposób przybliżony, za pomocą szeregów dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 5/36

6 Ogólny opis metody Macierzowy układ równań [H] bl {U} + {HU} odl = [G] bl {T} + {GT} odl + {B} bl + {B} odl (1) Macierze wpływu obszaru bliskiego obliczane metodą bezpośrednią Macierze wpływu obszaru odległego obliczane w sposób przybliżony, za pomocą szeregów dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 5/36

7 Ogólny opis metody Macierzowy układ równań [H] bl {U} + {HU} odl = [G] bl {T} + {GT} odl + {B} bl + {B} odl (1) Macierze wpływu obszaru bliskiego obliczane metodą bezpośrednią Macierze wpływu obszaru odległego obliczane w sposób przybliżony, za pomocą szeregów dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 5/36

8 Ogólny opis metody Macierzowy układ równań W wyniku uwzględnienia warunków brzegowych przez przegrupowanie składników lewej i prawej strony równania: [A] bl {X} + {AX} odl = [D] bl {Y} + {DY} odl + {B} bl + {B} odl, (2) {X} - wektor niewiadomych, {Y} - wektor znanych wielkości, [A] bl, [D] bl - macierze utworzone przez przegrupowanie kolumn macierzy [H] bl i [G] bl. W SWMEB nie buduje się całych macierzy, lecz oblicza od razu iloczyn macierzy i wektorów wielkości brzegowych. dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 6/36

9 Ogólny opis metody Macierzowy układ równań Układ równań można rozwiązać tylko metodą iteracyjną. Równanie w i-tej iteracji: {AX i } = {Z}. (3) Najczęściej stosuje się metodę GMRES z poprawą uwarunkowania układu równań. dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 7/36

10 Plan prezentacji 1 Ogólny opis metody 2 Szereg wielobiegunowy 3 Transformacja W-W 4 Szereg lokalny i transformacja W-L 5 Transformacja L-L 6 Obliczanie naprężeń 7 Literatura dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 8/36

11 Rozwinięcia potencjałów Szereg wielobiegunowy Im x z r a c x y g x b y 1 z (4) 2 Re α - obszar z punktem całkowania x β - numer elementu brzegowego γ - numer komórki wewnętrznej x - punkt kolokacji c - punkt rozwinięcia wielobiegunowego przypisany do obszaru α dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 9/36

12 Rozwinięcia potencjałów Jądra całek Rozwiązania podstawowe: U ij (x, x) = 1 8πµ(1 ν) [(4ν 3)δ ij ln(r) + r, i r, j ], (5) { T ij (x 1 r ], x) = [(1 2ν)δ ij + 2r, i r, j 4π(1 ν)r n } (1 2ν)(r, i n j r, j n i ). (6) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 10/36

13 Rozwinięcia potencjałów Wyrażenia występujące w rozwiązaniu U ij(x, x) ln r = Re [ln(z y)] = Re r, 1 r, j = r 1 r j r 2 [ ln z + k=1 1 k = Re 1 r r j = Re 1 z y r j = Re r, 2 r, j = r 2 r j r 2 = Im 1 r r j = Im 1 z y r j = Im ( y z ) k ] (7) y k z k+1 r j (8) y k z k+1 r j (9) y < z (10) r 1 = Re (y z), r 2 = Im (y z) (11) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 11/36

14 Rozwinięcia potencjałów Wyrażenia występujące w rozwiązaniu T ij(x, x) r,1 n 2 r,2 n 1 r 1 r r n 2r,1r,2 = 1 r 2r 1 r 2 r n r 2 1 r r n = r in i r 2 = Re n r = Re n z y = Re = r 1n 2 r 2 n 1 r 2 = Im n r = Im n z y = Im n yk z k+1 (12) n yk z k+1 (13) = Re(rn) Im 1 r 2 = Re(rn) Im (k + 1) yk z k+2 (14) 1 r r n 2r,1 2 = 1 r 2r1 2 r n r 2 = 1 ( r r r2 2 r n r 2 r 2 2 r 1 2 ) r 2 1 r r n 2r,2 2 = 1 r 2r2 2 r n r 2 = 1 ( r r r2 2 r n r 2 r 1 2 r 2 2 ) r 2 1 r r1 2 r 2 2 r n r 2 (15) (16) = Re(rn) Re 1 r 2 = Re(rn) Re (k + 1) yk z k+2 (17) y < z (18) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 12/36

15 Szereg wielobiegunowy Suma potencjałów warstwy pojedynczej i objętościowego I11α(x U ) + J11α(x U 1 ) = 8πµ(1 ν) Re [ (4ν 3) A 0 1α (k)f (z, k) +A 1α (k)f Re (z, k + 1) A Re 1α(k)f (z, k + 1) ], (19) I U 12α(x ) + J U 12α(x ) = I U 21α(x ) + J U 21α(x ) = 1 8πµ(1 ν) Re [ A2α (k)f Im (z, k + 1) A Im 2α(k)f (z, k + 1) ] (20) 1 8πµ(1 ν) Re [ A1α (k)f Im (z, k + 1) A Im 1α(k)f (z, k + 1) ] (21) I22α(x U ) + J22α(x U 1 ) = {(4ν 3) Re [ A 0 8πµ(1 ν) 2α(k)f (z, k) ] Im [ A 2α (k)f Im (z, k + 1) ] + Im [ A Im 2α(k)f (z, k + 1) ]} (22) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 13/36

16 Szereg wielobiegunowy Suma potencjałów warstwy pojedynczej i objętościowego I11α(x U ) + J11α(x U 1 ) = 8πµ(1 ν) Re [ (4ν 3) A 0 1α (k)f (z, k) +A 1α (k)f Re (z, k + 1) A Re 1α(k)f (z, k + 1) ], (19) I U 12α(x ) + J U 12α(x ) = I U 21α(x ) + J U 21α(x ) = 1 8πµ(1 ν) Re [ A2α (k)f Im (z, k + 1) A Im 2α(k)f (z, k + 1) ] (20) 1 8πµ(1 ν) Re [ A1α (k)f Im (z, k + 1) A Im 1α(k)f (z, k + 1) ] (21) I22α(x U ) + J22α(x U 1 ) = {(4ν 3) Re [ A 0 8πµ(1 ν) 2α(k)f (z, k) ] Im [ A 2α (k)f Im (z, k + 1) ] + Im [ A Im 2α(k)f (z, k + 1) ]} (22) A ( ) iα(k) - momenty wielobiegunowe dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 13/36

17 Szereg wielobiegunowy Suma potencjałów warstwy pojedynczej i objętościowego I11α(x U ) + J11α(x U 1 ) = 8πµ(1 ν) Re [ (4ν 3) A 0 1α (k)f (z, k) +A 1α (k)f Re (z, k + 1) A Re 1α(k)f (z, k + 1) ], (19) I U 12α(x ) + J U 12α(x ) = I U 21α(x ) + J U 21α(x ) = 1 8πµ(1 ν) Re [ A2α (k)f Im (z, k + 1) A Im 2α(k)f (z, k + 1) ] (20) 1 8πµ(1 ν) Re [ A1α (k)f Im (z, k + 1) A Im 1α(k)f (z, k + 1) ] (21) I22α(x U ) + J22α(x U 1 ) = {(4ν 3) Re [ A 0 8πµ(1 ν) 2α(k)f (z, k) ] Im [ A 2α (k)f Im (z, k + 1) ] + Im [ A Im 2α(k)f (z, k + 1) ]} (22) f ( ) (z, k) - funkcje wielobiegunowe dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 13/36

18 Szereg wielobiegunowy Suma potencjałów warstwy pojedynczej i objętościowego Momenty wielobiegunowe: A iα (k) = y k t iβ dγ(x) + β Γ β γ A Re iα (k) = β A Im iα (k) = β dla k = 0, 1,,, oraz Re y y k t iβ dγ(x)+ Γ β γ Γ β Im y y k t iβ dγ(x)+ γ Ω γ y k b iγ dω(x) (23) Re y y k b iγ dω(x) (24) Ω γ Im y y k b iγ dω(x) (25) Ω γ A 0 iα(k) = { Aiα (k) dla k = 0, 1 k A iα(k) dla k = 1, 2,, (26) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 14/36

19 Szereg wielobiegunowy Potencjał warstwy podwójnej I T 11α(x ) = I T 12α(x ) = I T 21α(x ) = I T 22α(x ) = 1 4π(1 ν) Re { 2(ν 1) B 1α(k)f (z, k + 1) + [ B1α 2Re (k) + B1α 2Im (k) ] (k + 1)f (z, k + 2) [ B Re 1α (k)f Re (z, k + 2) + B Im 1α(k)f Im (z, k + 2) ] (k + 1) 1 4π(1 ν) Im { [ B2α 2Re (k) + B2α 2Im (k) ] (k + 1)f (z, k + 2) + [ B2α Re (k)f Re (z, k + 2) +B Im 2α(k)f Im (z, k + 2) ] (k + 1) + (1 2ν)B 2α(k)f (z, k + 1) 1 4π(1 ν) Im { [ B1α 2Re (k) + B1α 2Im (k) ] (k + 1)f (z, k + 2) + [ B1α Re (k)f Re (z, k + 2) +B Im 1α(k)f Im (z, k + 2) ] (k + 1) (1 2ν)B 1α(k)f (z, k + 1) 1 4π(1 ν) Re { 2(ν 1) B 2α(k)f (z, k + 1) [ B2α 2Re (k) + B2α 2Im (k) ] (k + 1)f (z, k + 2) + [ B Re 2α (k)f Re (z, k + 2) + B Im 2α(k)f Im (z, k + 2) ] (k + 1) } } } } (27) (28) (29) (30) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 15/36

20 Szereg wielobiegunowy Potencjał warstwy podwójnej I T 11α(x ) = I T 12α(x ) = I T 21α(x ) = I T 22α(x ) = 1 4π(1 ν) Re { 2(ν 1) B 1α(k)f (z, k + 1) + [ B1α 2Re (k) + B1α 2Im (k) ] (k + 1)f (z, k + 2) [ B Re 1α (k)f Re (z, k + 2) + B Im 1α(k)f Im (z, k + 2) ] (k + 1) 1 4π(1 ν) Im { [ B2α 2Re (k) + B2α 2Im (k) ] (k + 1)f (z, k + 2) + [ B2α Re (k)f Re (z, k + 2) +B Im 2α(k)f Im (z, k + 2) ] (k + 1) + (1 2ν)B 2α(k)f (z, k + 1) 1 4π(1 ν) Im { [ B1α 2Re (k) + B1α 2Im (k) ] (k + 1)f (z, k + 2) + [ B1α Re (k)f Re (z, k + 2) +B Im 1α(k)f Im (z, k + 2) ] (k + 1) (1 2ν)B 1α(k)f (z, k + 1) 1 4π(1 ν) Re { 2(ν 1) B 2α(k)f (z, k + 1) [ B2α 2Re (k) + B2α 2Im (k) ] (k + 1)f (z, k + 2) B ( ) iα (k) - momenty wielobiegunowe + [ B Re 2α (k)f Re (z, k + 2) + B Im 2α(k)f Im (z, k + 2) ] (k + 1) } } } } (27) (28) (29) (30) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 15/36

21 Szereg wielobiegunowy Potencjał warstwy podwójnej I T 11α(x ) = I T 12α(x ) = I T 21α(x ) = I T 22α(x ) = 1 4π(1 ν) Re { 2(ν 1) B 1α(k)f (z, k + 1) + [ B1α 2Re (k) + B1α 2Im (k) ] (k + 1)f (z, k + 2) [ B Re 1α (k)f Re (z, k + 2) + B Im 1α(k)f Im (z, k + 2) ] (k + 1) 1 4π(1 ν) Im { [ B2α 2Re (k) + B2α 2Im (k) ] (k + 1)f (z, k + 2) + [ B2α Re (k)f Re (z, k + 2) +B Im 2α(k)f Im (z, k + 2) ] (k + 1) + (1 2ν)B 2α(k)f (z, k + 1) 1 4π(1 ν) Im { [ B1α 2Re (k) + B1α 2Im (k) ] (k + 1)f (z, k + 2) + [ B1α Re (k)f Re (z, k + 2) +B Im 1α(k)f Im (z, k + 2) ] (k + 1) (1 2ν)B 1α(k)f (z, k + 1) 1 4π(1 ν) Re { 2(ν 1) B 2α(k)f (z, k + 1) [ B2α 2Re (k) + B2α 2Im (k) ] (k + 1)f (z, k + 2) f ( ) (z, k) - funkcje wielobiegunowe + [ B Re 2α (k)f Re (z, k + 2) + B Im 2α(k)f Im (z, k + 2) ] (k + 1) } } } } (27) (28) (29) (30) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 15/36

22 Szereg wielobiegunowy Potencjał warstwy podwójnej Momenty wielobiegunowe: B iα (k) = β B Re iα (k) = β B Im iα (k) = β Biα 2Re (k) = β Biα 2Im (k) = β Γ β n y k u iβ dγ(x) (31) Re n y k u iβ dγ(x) (32) Γ β Im n y k u iβ dγ(x) (33) Γ β Re y Re n y k u iβ dγ(x) (34) Γ β Im y Im n y k u iβ dγ(x) (35) Γ β dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 16/36

23 Szereg wielobiegunowy Funkcje wielobiegunowe { ln z dla k = 0, f (z, k) = z k dla k = 1, 2,, (36) f Re (z, k) = Re z z k (37) f Im (z, k) = Im z z k (38) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 17/36

24 Szereg wielobiegunowy Podsumowanie Im x c y z x g x r a b A ( ) iα (k), B( ) iα Re (k) - zależne od wektora y f ( ) (z, k) - zależne od wektora z Momenty wielobiegunowe pozwalają na obliczenie składników potencjałów dla różnych punktów kolokacji bez potrzeby ponownego całkowania wzdłuż elementów brzegowych β i po obszarze komórek γ. dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 18/36

25 Plan prezentacji 1 Ogólny opis metody 2 Szereg wielobiegunowy 3 Transformacja W-W 4 Szereg lokalny i transformacja W-L 5 Transformacja L-L 6 Obliczanie naprężeń 7 Literatura dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 19/36

26 Transformacja W-W d < 1 2 ẑ Przesunięcie punktu rozwinięcia wielobiegunowego o wektor d dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 20/36

27 Transformacja W-W Wykorzystane zależności: ln(ẑ d) = ln ẑ + l=1 ( ) 1 ḓ l, (39) l z dla d < ẑ, (ẑ d) k = l=k ( ) l 1 d l k k 1 ẑ k, (40) l ( ) = ( ). (41) l=k l=0 dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 20/36

28 Transformacja W-W Transformowane momenty Momenty potencjału warstwy pojedynczej i objętościowego: { A Â 0 0 iα (l) = iα (0) ( dla l = 0, 1 l dl A 0 iα (0) + l l 1 ) k=1 k 1 d l k A 0 (39) iα (k) dla l = 1, 2,, Â Im iα (l) : Re Im, ARe iα Â Re iα (l) = Â iα (l) = l (k) AIm iα (k) l ( l ) d l k A iα (k), (40) k ( l ) [ ] d l k A Re iα k (k) + Re d A iα(k). (41) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 20/36

29 Transformacja W-W Transformowane momenty Momenty potencjału warstwy podwójnej: ˆB iα (l) = l ( l ) d l k B iα (k), (39) k ˆB Im iα (l), ˆB 2Im iα ˆB Re iα (l) = ˆB 2Re iα (l) = l (l) : Re Im, BRe iα k + 1 l + 1 l k + 1 l + 1 ( l + 1 k + 1 (k) BIm iα ( l + 1 k + 1 ) d l k Biα Re (k), (40) ) [ d l k Biα 2Re (k) + Re dbre (k)] iα. (41) (k), B2Re iα (k) B2Im iα (k) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 20/36

30 Plan prezentacji 1 Ogólny opis metody 2 Szereg wielobiegunowy 3 Transformacja W-W 4 Szereg lokalny i transformacja W-L 5 Transformacja L-L 6 Obliczanie naprężeń 7 Literatura dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 21/36

31 Rozwinięcia funkcji wielobiegunowych a x c y z z a c y < 1 2 z Im α - obszar z punktem kolokacji Re c - punkt rozwinięcia lokalnego x - punkt kolokacji dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 22/36

32 Rozwinięcia funkcji wielobiegunowych Potencjały zależne od U ij Wykorzystane zależności: dla y < z. ln(z y ) = ln z + l=1 1 l ( y ) l, (42) ( ) (z y ) k = (z ) k (y l + k 1 ) l k 1 z, (43) l=0 z dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 22/36

33 Szereg lokalny Potencjały zależne od U ij I11α(x U ) + J11α(x U 1 ) = 8πµ(1 ν) Re [ (4ν 3)E 0 1α (α, k)g(y, k) +E1α Re (α, k)g(y, k) E 1α (α, k)g Re (y, k) ], I U 12α(x ) + J U 12α(x ) = I U 21α(x ) + J U 21α(x ) = (44) 1 8πµ(1 ν) Re [ E Im 2α (α, k)g(y, k) E 2α (α, k)g Im (y, k) ], (45) 1 8πµ(1 ν) Re [ E Im 1α (α, k)g(y, k) E 1α (α, k)g Im (y, k) ], (46) I22α(x U ) + J22α(x U 1 ) = {(4ν 3)Re [ E2α 0 8πµ(1 ν) (α, k)g(y, k) ] Im [ E Im 2α (α, k)g(y, k) ] + Im [ E 2α (α, k)g Im (y, k) ]}. (47) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 23/36

34 Szereg lokalny Potencjały zależne od U ij I11α(x U ) + J11α(x U 1 ) = 8πµ(1 ν) Re [ (4ν 3)E 0 1α (α, k)g(y, k) +E1α Re (α, k)g(y, k) E 1α (α, k)g Re (y, k) ], I U 12α(x ) + J U 12α(x ) = I U 21α(x ) + J U 21α(x ) = (44) 1 8πµ(1 ν) Re [ E Im 2α (α, k)g(y, k) E 2α (α, k)g Im (y, k) ], (45) 1 8πµ(1 ν) Re [ E Im 1α (α, k)g(y, k) E 1α (α, k)g Im (y, k) ], (46) I22α(x U ) + J22α(x U 1 ) = {(4ν 3)Re [ E2α 0 8πµ(1 ν) (α, k)g(y, k) ] E ( ) iα (α, k) - momenty lokalne Im [ E Im 2α (α, k)g(y, k) ] + Im [ E 2α (α, k)g Im (y, k) ]}. (47) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 23/36

35 Szereg lokalny Potencjały zależne od U ij I11α(x U ) + J11α(x U 1 ) = 8πµ(1 ν) Re [ (4ν 3)E 0 1α (α, k)g(y, k) +E1α Re (α, k)g(y, k) E 1α (α, k)g Re (y, k) ], I U 12α(x ) + J U 12α(x ) = I U 21α(x ) + J U 21α(x ) = (44) 1 8πµ(1 ν) Re [ E Im 2α (α, k)g(y, k) E 2α (α, k)g Im (y, k) ], (45) 1 8πµ(1 ν) Re [ E Im 1α (α, k)g(y, k) E 1α (α, k)g Im (y, k) ], (46) I22α(x U ) + J22α(x U 1 ) = {(4ν 3)Re [ E2α 0 8πµ(1 ν) (α, k)g(y, k) ] g ( ) (y, k) - funkcje lokalne Im [ E Im 2α (α, k)g(y, k) ] + Im [ E 2α (α, k)g Im (y, k) ]}. (47) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 23/36

36 Transformacja W-L Transformowane momenty Momenty potencjału warstwy pojedynczej i objętościowego: E 0 iα (α, l) = { ln z A 0 iα (0) + k=1 1 l (z ) l A 0 iα (0) + k=1 E Re iα (α, l) = E iα (α, l) = ( l + k E Im iα (α, k) : Re Im, A Re iα (k) AIm iα (k) k ( l+k 1 ) k 1 (z ) k l A iα (k) dla l = 0, ( l+k 1 ) k 1 (z ) k l A iα (k) dla l = 1, 2,, ; (48) ( l + k ) (z ) k l 1 A iα (k), (49) k ) (z ) k l 1 [ Re z A iα (k) A Re iα (k) ]. (50) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 24/36

37 Szereg lokalny Funkcje lokalne g(y, k) = (y ) k, (51) g Re (y, k) = (y ) k Re y, (52) g Im (y, k) = (y ) k Im y. (53) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 25/36

38 Szereg lokalny Potencjał warstwy podwójnej I11α(x T 1 ) = 4π(1 ν) Re [ 2(ν 1) F1α (α, k)g(y, k) + F1α 2Re (α, k)g(y, k) +F1α Re (α, k)g Re (y, k) + F1α 2Im (α, k)g(y, k) + F1α Im (α, k)g Im (y, k) ], I12α(x T 1 ) = 4π(1 ν) Im [ F 2Re 2α (α, k)g(y, k) F2α Re (α, k)g Re (y, k) F2α 2Im (α, k)g(y, k) F2α Im (α, k)g Im (y, k) + (1 2ν)F 2α (α, k)g(y, k) ], I21α(x T 1 ) = 4π(1 ν) Im [ F 2Re 1α (α, k)g(y, k) F1α Re (α, k)g Re (y, k) F1α 2Im (α, k)g(y, k) F1α Im (α, k)g Im (y, k) (1 2ν)F 1α (α, k)g(y, k) ], I22α(x T 1 ) = 4π(1 ν) Re [ 2(ν 1) F2α (α, k)g(y, k) F2α 2Re (α, k)g(y, k) F2α Re (α, k)g Re (y, k) F2α 2Im (α, k)g(y, k) F2α Im (α, k)g Im (y, k) ]. (54) (55) (56) (57) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 26/36

39 Szereg lokalny Potencjał warstwy podwójnej I11α(x T 1 ) = 4π(1 ν) Re [ 2(ν 1) F1α (α, k)g(y, k) + F1α 2Re (α, k)g(y, k) +F1α Re (α, k)g Re (y, k) + F1α 2Im (α, k)g(y, k) + F1α Im (α, k)g Im (y, k) ], I12α(x T 1 ) = 4π(1 ν) Im [ F 2Re 2α (α, k)g(y, k) F2α Re (α, k)g Re (y, k) F2α 2Im (α, k)g(y, k) F2α Im (α, k)g Im (y, k) + (1 2ν)F 2α (α, k)g(y, k) ], I21α(x T 1 ) = 4π(1 ν) Im [ F 2Re 1α (α, k)g(y, k) F1α Re (α, k)g Re (y, k) F1α 2Im (α, k)g(y, k) F1α Im (α, k)g Im (y, k) (1 2ν)F 1α (α, k)g(y, k) ], I22α(x T 1 ) = 4π(1 ν) Re [ 2(ν 1) F2α (α, k)g(y, k) F2α 2Re (α, k)g(y, k) F2α Re (α, k)g Re (y, k) F2α 2Im (α, k)g(y, k) F2α Im (α, k)g Im (y, k) ]. F ( ) iα (α, k) - momenty lokalne (54) (55) (56) (57) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 26/36

40 Szereg lokalny Potencjał warstwy podwójnej I11α(x T 1 ) = 4π(1 ν) Re [ 2(ν 1) F1α (α, k)g(y, k) + F1α 2Re (α, k)g(y, k) +F1α Re (α, k)g Re (y, k) + F1α 2Im (α, k)g(y, k) + F1α Im (α, k)g Im (y, k) ], I12α(x T 1 ) = 4π(1 ν) Im [ F 2Re 2α (α, k)g(y, k) F2α Re (α, k)g Re (y, k) F2α 2Im (α, k)g(y, k) F2α Im (α, k)g Im (y, k) + (1 2ν)F 2α (α, k)g(y, k) ], I21α(x T 1 ) = 4π(1 ν) Im [ F 2Re 1α (α, k)g(y, k) F1α Re (α, k)g Re (y, k) F1α 2Im (α, k)g(y, k) F1α Im (α, k)g Im (y, k) (1 2ν)F 1α (α, k)g(y, k) ], I22α(x T 1 ) = 4π(1 ν) Re [ 2(ν 1) F2α (α, k)g(y, k) F2α 2Re (α, k)g(y, k) F2α Re (α, k)g Re (y, k) F2α 2Im (α, k)g(y, k) F2α Im (α, k)g Im (y, k) ]. g ( ) (y, k) - funkcje lokalne (54) (55) (56) (57) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 26/36

41 Transformacja W-L Transformowane momenty Momenty potencjału warstwy podwójnej: F 2Re iα (α, l) = F Im iα (α, k), F 2Im F iα (α, l) = F Re iα (α, l) = ( l + k ) (z ) k l 1 B iα (k), (58) k ( l + k + 1) (k + 1) (z ) k l 2 Biα Re (k), (59) k + 1 ( l + k + 1) (k + 1) (z ) k l 2[ Biα 2Re k + 1 iα (α, k) : Re Im, Biα Re (k) BIm iα (k), B2Re iα (k) Re z B Re iα (k)]. (60) (k) B2Im iα (k) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 27/36

42 Szereg lokalny Podsumowanie a x y c z z a c Im E ( ) iα (α, k), F ( ) g ( ) (y, k) - zależne Re od wektora y iα (α, k) - zależne od wektora z Transformacja W-L i szereg lokalny pozwalają na rozdział wpływu do wielu punktów kolokacji, za pomocą tych samych momentów lokalnych. dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 28/36

43 Plan prezentacji 1 Ogólny opis metody 2 Szereg wielobiegunowy 3 Transformacja W-W 4 Szereg lokalny i transformacja W-L 5 Transformacja L-L 6 Obliczanie naprężeń 7 Literatura dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 29/36

44 Transformacja L-L Przesunięcie punktu rozwinięcia lokalnego o wektor d dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 30/36

45 Transformacja L-L ˇX iα (α, l) = ( k ) (d ) k l X iα (α, k) l k=l { dla ˇXiα (α, l) Ě 0 iα (α, l), Ěiα (α, l), ˇF Re Im iα (α, l), ˇF iα (α, l), ˇF } iα (α, l), Ě Re iα (α, l) = ˇF 2Re iα (α, l) = ( k l k=l ( k l k=l {Ě Im iα (l), ˇF } 2Im iα (l) : Re Im, { E Re iα (k), F Re iα (k), F 2Re iα (k) } { E Im iα (k), F Im iα (k), F 2Im (61) ) (d ) k l[ E Re iα (α, k) Re d E iα (α, k) ], (62) ) (d ) k l[ F 2Re iα (α, k) Re d F Re iα (α, k) ]. (63) iα (k) } dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 31/36

46 Plan prezentacji 1 Ogólny opis metody 2 Szereg wielobiegunowy 3 Transformacja W-W 4 Szereg lokalny i transformacja W-L 5 Transformacja L-L 6 Obliczanie naprężeń 7 Literatura dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 32/36

47 Obliczanie naprężeń Potencjały równania brzegowego naprężeń Pochodne potencjałów równania przemieszczeń względem współrzędnych punktu x : x U j ik (x, x)t kβ dγ(x) β Γ β = Iikα,j(x U ), (64) k x j x j { } U ik (x, x)b kγ dω(x) = γ Ω γ k T ik (x, x)u kβ dγ(x) β Γ β = k J U ikα,j(x ), (65) I T ikα,j(x ). (66) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 33/36

48 Obliczanie naprężeń Potencjały równania brzegowego naprężeń Nowe potencjały: I U ijkα(x ) = I U ikα,j(x ), (64) J U ijkα(x ) = J U ikα,j(x ), (65) I T ijkα(x ) = J T ikα,j(x ), (66) obliczane są za pomocą szeregu lokalnego przez zastąpienie funkcji g ( ) (y, k) ich pochodnymi: { } g, j (y, k) = k(y ) k 1 1, (67) i g Re, j (y, k) = k(y ) k 1 Re (y ) { 1 0 g Im, j (y, k) = k(y ) k 1 Im (y ) { 0 1 } { + (y ) k 1 i } { + (y ) k 1 i }, (68) }. (69) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 33/36

49 Obliczanie naprężeń Potencjały równania brzegowego naprężeń Na przykład: I U 1j1α (x ) + J U 1j1α (x ) = I T 1j1α (x ) = 1 4π(1 ν) Re 1 8πµ(1 ν) Re [ (4ν 3)E 0 1α (k)g, j (y, k) ] +E Re 1α (k)g, j (y, k) E 1α (k)g, Re j (y, k), [ 2(ν 1) F1α (k)g, j (y, k) + F 2Re 1α (k)g, j (y, k) +F Re 1α (k)g Re, j (y, k) + F 2Im 1α (k)g, j (y, k) + F Im 1α (k)g Im, j (y, k) ]. (64) (65) dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 33/36

50 Obliczanie naprężeń Potencjały równania brzegowego naprężeń Ostatecznie: β U ijk (x, x)t kβ dγ(x) = Γ β { 2µν 1 2ν δ ijillkα(x U ) + µ [ Iijkα(x U ) + Ijikα(x U ) ]}. k (64) Do obliczenia potencjałów równania naprężeń można wykorzystać momenty wielobiegunowe i lokalne, oraz ich transformacje takie same jak w przypadku równania przemieszczeń. dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 33/36

51 Plan prezentacji 1 Ogólny opis metody 2 Szereg wielobiegunowy 3 Transformacja W-W 4 Szereg lokalny i transformacja W-L 5 Transformacja L-L 6 Obliczanie naprężeń 7 Literatura dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 34/36

52 Literatura Beatson R., Greengard L., A short course on fast multipole methods, Carrier J., Greengard L., Rokhlin V., A fast adaptive multipole algorithm for particle simulations, SIAM J Sci Stat Comp, 9, 4, , Dreszer J. (red.), Poradnik inżyniera. Matematyka, WNT, Warszawa, Greengard L., Rokhlin V., A fast algorithm for particle simulations, J Comput Phys, 73, , Liu Y.J., A new fast multipole boundary element method for solving large-scale two-dimensional elastostatic problems, Int J Numer Meth Eng, 65, , dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 35/36

53 Literatura Liu Y.J., Nishimura N., The fast multipole boundary element method for potential problems: A tutorial, Eng Anal Bound Elem, 30, , Nishimura N., Fast multipole accelerated boundary integral equation methods, Appl Mech Rev, 55, 4, , Rokhlin V., Rapid Solution of Integral Equations of Classical Potential Theory, J Comput Phys, 60, , Yamada Y., Hayami K., A multipole boundary element method for two dimensional elastostatics, Tech. Report, METR 95-07, Math. Eng. Section, Dept. Math. Eng., Information. Phys., Univ. Tokyo, dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 35/36

54 Koniec części I LaTeX Template based on Oxygen, dr inż. Jacek Ptaszny Algorytm SWMEB. Część 1. 36/36

Szybka wielobiegunowa metoda elementów brzegowych w analizie układów liniowosprężystych

Szybka wielobiegunowa metoda elementów brzegowych w analizie układów liniowosprężystych Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Politechnika Śląska, Gliwice Szybka wielobiegunowa metoda elementów brzegowych w analizie układów liniowosprężystych Algorytm SWMEB. Część

Bardziej szczegółowo

Szybka wielobiegunowa metoda elementów brzegowych w analizie układów liniowosprężystych

Szybka wielobiegunowa metoda elementów brzegowych w analizie układów liniowosprężystych Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Politechnika Śląska, Gliwice Szybka wielobiegunowa metoda elementów brzegowych w analizie układów liniowosprężystych Przykłady analizy.

Bardziej szczegółowo

SZYBKA WIELOBIEGUNOWA METODA ELEMENTÓW BRZEGOWYCH W ANALIZIE UKŁADÓW OBCIĄŻONYCH SIŁAMI OBJĘTOŚCIOWYMI

SZYBKA WIELOBIEGUNOWA METODA ELEMENTÓW BRZEGOWYCH W ANALIZIE UKŁADÓW OBCIĄŻONYCH SIŁAMI OBJĘTOŚCIOWYMI MODELOWANIE INŻYNIERSKIE ISSN 1896-771X 35, s. 107-114, Gliwice 2008 SZYBKA WIELOBIEGUNOWA METODA ELEMENTÓW BRZEGOWYCH W ANALIZIE UKŁADÓW OBCIĄŻONYCH SIŁAMI OBJĘTOŚCIOWYMI JACEK PTASZNY, PIOTR FEDELIŃSKI

Bardziej szczegółowo

Szybka wielobiegunowa metoda elementów brzegowych w analizie układów liniowosprężystych

Szybka wielobiegunowa metoda elementów brzegowych w analizie układów liniowosprężystych Katedra Wytrzymałości Materiałów i Metod Komputerowych Mechaniki Politechnika Śląska, Gliwice Szybka wielobiegunowa metoda elementów brzegowych w analizie układów liniowosprężystych Wprowadzenie do metody

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA

RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Dr inż. Andrzej Polka Katedra Dynamiki Maszyn Politechnika Łódzka RÓWNANIE DYNAMICZNE RUCHU KULISTEGO CIAŁA SZTYWNEGO W UKŁADZIE PARASOLA Streszczenie: W pracy opisano wzajemne położenie płaszczyzny parasola

Bardziej szczegółowo

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA

PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA POLITECHNIKA POZNAŃSKA INSTYTUT KONSTRUKCJI BUDOWLANYCH ZAKŁAD MECHANIKI BUDOWLI PROJEKT NR 2 STATECZNOŚĆ RAM WERSJA KOMPUTEROWA Dla zadanego układu należy 1) Dowolną metodą znaleźć rozkład sił normalnych

Bardziej szczegółowo

Stateczność ramy. Wersja komputerowa

Stateczność ramy. Wersja komputerowa Zakład Mechaniki Budowli Prowadzący: dr hab. inż. Przemysław Litewka Ćwiczenie projektowe 2 Stateczność ramy. Wersja komputerowa Daniel Sworek gr. KB2 Rok akademicki 1/11 Semestr 2, II Grupa: KB2 Daniel

Bardziej szczegółowo

Wykład 14. Elementy algebry macierzy

Wykład 14. Elementy algebry macierzy Wykład 14 Elementy algebry macierzy dr Mariusz Grządziel 26 stycznia 2009 Układ równań z dwoma niewiadomymi Rozważmy układ równań z dwoma niewiadomymi: a 11 x + a 12 y = h 1 a 21 x + a 22 y = h 2 a 11,

Bardziej szczegółowo

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój

METODY NUMERYCZNE. wykład. konsultacje: wtorek 10:00-11:30 środa 10:00-11:30. dr inż. Grażyna Kałuża pokój METODY NUMERYCZNE wykład dr inż. Grażyna Kałuża pokój 103 konsultacje: wtorek 10:00-11:30 środa 10:00-11:30 www.kwmimkm.polsl.pl Program przedmiotu wykład: 15 godzin w semestrze laboratorium: 30 godzin

Bardziej szczegółowo

Układy równań liniowych i metody ich rozwiązywania

Układy równań liniowych i metody ich rozwiązywania Układy równań liniowych i metody ich rozwiązywania Łukasz Wojciechowski marca 00 Dany jest układ m równań o n niewiadomych postaci: a x + a x + + a n x n = b a x + a x + + a n x n = b. a m x + a m x +

Bardziej szczegółowo

METODY KOMPUTEROWE W MECHANICE

METODY KOMPUTEROWE W MECHANICE METODY KOMPUTEROWE W MECHANICE wykład dr inż. Paweł Stąpór laboratorium 15 g, projekt 15 g. dr inż. Paweł Stąpór dr inż. Sławomir Koczubiej Politechnika Świętokrzyska Wydział Zarządzania i Modelowania

Bardziej szczegółowo

SZYBKA WIELOBIEGUNOWA METODA ELEMENTÓW BRZEGOWYCH W HOMOGENIZACJI NUMERYCZNEJ MATERIAŁÓW POROWATYCH

SZYBKA WIELOBIEGUNOWA METODA ELEMENTÓW BRZEGOWYCH W HOMOGENIZACJI NUMERYCZNEJ MATERIAŁÓW POROWATYCH MOELOWANIE INŻYNIERSKIE nr 54, ISSN 1896-771X SZYBKA WIELOBIEGUNOWA METOA ELEMENTÓW BRZEGOWYCH W HOMOGENIZACJI NUMERYCZNEJ MATERIAŁÓW POROWATYCH Jacek Ptaszny 1a, Marcin Hatłas 2b 1 Instytut Mechaniki

Bardziej szczegółowo

Stateczność ramy - wersja komputerowa

Stateczność ramy - wersja komputerowa Stateczność ramy - wersja komputerowa Cel ćwiczenia : - Obliczenie wartości obciążenia krytycznego i narysowanie postaci wyboczenia. utraty stateczności - Obliczenie przemieszczenia i sił przekrojowych

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH -Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a + a +... + ann b a + a +... + ann b... an + an+... + annn bn który

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 10 Rozkład LU i rozwiązywanie układów równań liniowych Niech będzie dany układ równań liniowych postaci Ax = b Załóżmy, że istnieją macierze L (trójkątna dolna) i U (trójkątna górna), takie że macierz

Bardziej szczegółowo

ROZWIĄZYWANIE ZADAŃ BRZEGOWYCH LINIOWEJ PIEZOELEKTRYCZNOŚCI POŚREDNIĄ METODĄ TREFFTZA

ROZWIĄZYWANIE ZADAŃ BRZEGOWYCH LINIOWEJ PIEZOELEKTRYCZNOŚCI POŚREDNIĄ METODĄ TREFFTZA MODELOWANIE INŻYNIERSKIE ISSN 896-77X 5, s. 5-22, Gliwice 2008 ROZWIĄZYWANIE ZADAŃ BRZEGOWYCH LINIOWEJ PIEZOELEKTRYCZNOŚCI POŚREDNIĄ METODĄ TREFFTZA GRZEGORZ DZIATKIEWICZ Katedra Wytrzymałości Materiałów

Bardziej szczegółowo

POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH POD- I NADOKREŚLONE UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko

Bardziej szczegółowo

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory;

dr Mariusz Grządziel 15,29 kwietnia 2014 Przestrzeń R k R k = R R... R k razy Elementy R k wektory; Wykłady 8 i 9 Pojęcia przestrzeni wektorowej i macierzy Układy równań liniowych Elementy algebry macierzy dodawanie, odejmowanie, mnożenie macierzy; macierz odwrotna dr Mariusz Grządziel 15,29 kwietnia

Bardziej szczegółowo

1. PODSTAWY TEORETYCZNE

1. PODSTAWY TEORETYCZNE 1. PODSTAWY TEORETYCZNE 1 1. 1. PODSTAWY TEORETYCZNE 1.1. Wprowadzenie W pierwszym wykładzie przypomnimy podstawowe działania na macierzach. Niektóre z nich zostały opisane bardziej szczegółowo w innych

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 8

Obliczenia naukowe Wykład nr 8 Obliczenia naukowe Wykład nr 8 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [] D. Kincaid, W. Cheney, Analiza numeryczna,

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia I stopnia rok akademicki 2011/2012 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Uwagi wstępne Układ liniowych równań algebraicznych można

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne

UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne UKŁADY RÓWNAŃ LINIOWYCH - Metody dokładne Układy równań liniowych Rozpatruje się układ n równań liniowych zawierających n niewiadomych: a11x1 a12x2... a1nxn b1 a21x1 a22x2... a2nxn b2... an 1x1 an2x2...

Bardziej szczegółowo

ROZWIĄZANIE PROBLEMU NIELINIOWEGO

ROZWIĄZANIE PROBLEMU NIELINIOWEGO Budownictwo, studia I stopnia, semestr VII przedmiot fakultatywny rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Jerzy Pamin Tematyka zajęć 1 Dyskretyzacja

Bardziej szczegółowo

Baza w jądrze i baza obrazu ( )

Baza w jądrze i baza obrazu ( ) Przykład Baza w jądrze i baza obrazu (839) Znajdź bazy jądra i obrazu odwzorowania α : R 4 R 3, gdzie α(x, y, z, t) = (x + 2z + t, 2x + y 3z 5t, x y + z + 4t) () zór ten oznacza, że α jest odwzorowaniem

Bardziej szczegółowo

Obliczenia iteracyjne

Obliczenia iteracyjne Lekcja Strona z Obliczenia iteracyjne Zmienne iteracyjne (wyliczeniowe) Obliczenia iteracyjne wymagają zdefiniowania specjalnej zmiennej nazywanej iteracyjną lub wyliczeniową. Zmienną iteracyjną od zwykłej

Bardziej szczegółowo

Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x.

Analiza numeryczna Lista nr 3 (ćwiczenia) x x 2 n x. Analiza numeryczna Lista nr 3 (ćwiczenia) Sprawdzić że macierz ma wartości własne2+ 222 2 2 Niechx R n Udowodnić że 2 0 0 x x 2 n x 3 NiechA R n n będzie macierzą symetryczną Wiadomo że wówczas istnieje

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody przybliżone Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 14 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

Karta (sylabus) przedmiotu

Karta (sylabus) przedmiotu Karta (sylabus) przedmiotu [Budownictwo] Studia I stopnia Przedmiot: Metody obliczeniowe Rok: III Semestr: VI Rodzaj zajęć i liczba godzin: Studia stacjonarne Studia niestacjonarne Wykład 15 16 Ćwiczenia

Bardziej szczegółowo

Stany związane. Andrzej Baran 18 stycznia 2017 UMCS

Stany związane. Andrzej Baran 18 stycznia 2017 UMCS Stany związane Andrzej Baran 18 stycznia 2017 UMCS Macierzowy algorytm Numerowa Algorytm macierzowy Numerowa I Algorytm Numerowa dla równania ψ (x) = f(x)ψ(x), (1) (dla równania Schroedingera f(x) = 2m(E

Bardziej szczegółowo

DYNAMIKA RAM WERSJA KOMPUTEROWA

DYNAMIKA RAM WERSJA KOMPUTEROWA DYNAMIKA RAM WERSJA KOMPTEROWA Parametry przekrojów belek: E=205MPa=205 10 6 kn m 2 =205109 N m 2 1 - IPE 220 Pręty: 1, 3, 4: I y =2770cm 4 =0,00002770 m 4 EI =5678500 Nm 2 A=33,4 cm 4 =0,00334 m 2 EA=684700000

Bardziej szczegółowo

[ A i ' ]=[ D ][ A i ] (2.3)

[ A i ' ]=[ D ][ A i ] (2.3) . WSTĘP DO TEORII SPRĘŻYSTOŚCI 1.. WSTĘP DO TEORII SPRĘŻYSTOŚCI.1. Tensory macierzy Niech macierz [D] będzie macierzą cosinusów kierunkowych [ D ]=[ i ' j ] (.1) Macierz transformowana jest równa macierzy

Bardziej szczegółowo

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH

UKŁADY ALGEBRAICZNYCH RÓWNAŃ LINIOWYCH Transport, studia niestacjonarne I stopnia, semestr I Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać układu równań liniowych Układ liniowych równań algebraicznych

Bardziej szczegółowo

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p.

Analiza numeryczna Kurs INP002009W. Wykłady 6 i 7 Rozwiązywanie układów równań liniowych. Karol Tarnowski A-1 p. Analiza numeryczna Kurs INP002009W Wykłady 6 i 7 Rozwiązywanie układów równań liniowych Karol Tarnowski karol.tarnowski@pwr.wroc.pl A-1 p.223 Plan wykładu Podstawowe pojęcia Własności macierzy Działania

Bardziej szczegółowo

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ...

a 11 a a 1n a 21 a a 2n... a m1 a m2... a mn x 1 x 2... x m ... Wykład 15 Układy równań liniowych Niech K będzie ciałem i niech α 1, α 2,, α n, β K. Równanie: α 1 x 1 + α 2 x 2 + + α n x n = β z niewiadomymi x 1, x 2,, x n nazywamy równaniem liniowym. Układ: a 21 x

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory

Bardziej szczegółowo

x y

x y Przykłady pytań na egzamin końcowy: (Uwaga! Skreślone pytania nie obowiązują w tym roku.). Oblicz wartość interpolacji funkcjami sklejanymi (przypadek (case) a), dla danych i =[- 4 5], y i =[0 4 -]. Jaka

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych

Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Rozwiązywanie układów równań liniowych metody dokładne Materiały pomocnicze do ćwiczeń z metod numerycznych Piotr Modliński Wydział Geodezji i Kartografii PW 13 stycznia 2012 P. Modliński, GiK PW Rozw.

Bardziej szczegółowo

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności:

7. ELEMENTY PŁYTOWE. gdzie [N] oznacza przyjmowane funkcje kształtu, zdefinować odkształcenia i naprężenia: zdefiniować macierz sztywności: 7. ELEMENTY PŁYTOWE 1 7. 7. ELEMENTY PŁYTOWE Rys. 7.1. Element płytowy Aby rozwiązać zadanie płytowe należy: zdefiniować geometrię płyty, dokonać podziału płyty na elementy, zdefiniować węzły, wprowadzić

Bardziej szczegółowo

Metody rozwiązania równania Schrödingera

Metody rozwiązania równania Schrödingera Metody rozwiązania równania Schrödingera Równanie Schrödingera jako algebraiczne zagadnienie własne Rozwiązanie analityczne dla skończonej i nieskończonej studni potencjału Problem rozwiązania równania

Bardziej szczegółowo

Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną.

Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną. Projekt 6: Równanie Poissona - rozwiązanie metodą algebraiczną. Tomasz Chwiej 9 sierpnia 18 1 Wstęp 1.1 Dyskretyzacja n y V V 1 V 3 1 j= i= 1 V 4 n x Rysunek 1: Geometria układu i schemat siatki obliczeniowej

Bardziej szczegółowo

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w

Kolejny krok iteracji polega na tym, że przechodzimy do następnego wierzchołka, znajdującego się na jednej krawędzi z odnalezionym już punktem, w Metoda Simpleks Jak wiadomo, problem PL z dowolną liczbą zmiennych można rozwiązać wyznaczając wszystkie wierzchołkowe punkty wielościanu wypukłego, a następnie porównując wartości funkcji celu w tych

Bardziej szczegółowo

8. PODSTAWY ANALIZY NIELINIOWEJ

8. PODSTAWY ANALIZY NIELINIOWEJ 8. PODSTAWY ANALIZY NIELINIOWEJ 1 8. 8. PODSTAWY ANALIZY NIELINIOWEJ 8.1. Wprowadzenie Zadania nieliniowe mają swoje zastosowanie na przykład w rozwiązywaniu cięgien. Przyczyny nieliniowości: 1) geometryczne:

Bardziej szczegółowo

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem

Równania liniowe. Rozdział Przekształcenia liniowe. Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem Rozdział 6 Równania liniowe 6 Przekształcenia liniowe Niech X oraz Y będą dwiema niepustymi przestrzeniami wektorowymi nad ciałem F Definicja 6 Funkcję f : X Y spełniającą warunki: a) dla dowolnych x,

Bardziej szczegółowo

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j),

ELEKTROTECHNIKA Semestr 1 Rok akad / ZADANIA Z MATEMATYKI Zestaw Przedstaw w postaci algebraicznej liczby zespolone: (3 + 2j)(5 2j), ELEKTROTECHNIKA Semestr Rok akad. / 5 ZADANIA Z MATEMATYKI Zestaw. Przedstaw w postaci algebraicznej liczby zespolone: (3 + j)(5 j) 3 j +j (5 + j) (3 + j) 3. Narysuj zbiory punktów na płaszczyźnie: +j

Bardziej szczegółowo

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska

RACHUNEK MACIERZOWY. METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6. Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska RACHUNEK MACIERZOWY METODY OBLICZENIOWE Budownictwo, studia I stopnia, semestr 6 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Czym jest macierz? Definicja Macierzą A nazywamy

Bardziej szczegółowo

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej

WEKTORY I WARTOŚCI WŁASNE MACIERZY. = λ c (*) problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej WEKTORY I WARTOŚCI WŁASNE MACIERZY Ac λ c (*) ( A λi) c nietrywialne rozwiązanie gdy det A λi problem przybliżonego rozwiązania zagadnienia własnego dla operatorów w mechanice kwantowej A - macierzowa

Bardziej szczegółowo

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi

F + R = 0, u A = 0. u A = 0. f 0 f 1 f 2. Relację pomiędzy siłami zewnętrznymi i wewnętrznymi MES Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F + R, u A R f f F R + f, f + f, f + F, u A Równania

Bardziej szczegółowo

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F

Bardziej szczegółowo

3. Macierze i Układy Równań Liniowych

3. Macierze i Układy Równań Liniowych 3. Macierze i Układy Równań Liniowych Rozważamy równanie macierzowe z końcówki ostatniego wykładu ( ) 3 1 X = 4 1 ( ) 2 5 Podstawiając X = ( ) x y i wymnażając, otrzymujemy układ 2 równań liniowych 3x

Bardziej szczegółowo

5. Rozwiązywanie układów równań liniowych

5. Rozwiązywanie układów równań liniowych 5. Rozwiązywanie układów równań liniowych Wprowadzenie (5.1) Układ n równań z n niewiadomymi: a 11 +a 12 x 2 +...+a 1n x n =a 10, a 21 +a 22 x 2 +...+a 2n x n =a 20,..., a n1 +a n2 x 2 +...+a nn x n =a

Bardziej szczegółowo

1 Zbiory i działania na zbiorach.

1 Zbiory i działania na zbiorach. Matematyka notatki do wykładu 1 Zbiory i działania na zbiorach Pojęcie zbioru jest to pojęcie pierwotne (nie definiuje się tego pojęcia) Pojęciami pierwotnymi są: element zbioru i przynależność elementu

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

6. ZWIĄZKI FIZYCZNE Wstęp

6. ZWIĄZKI FIZYCZNE Wstęp 6. ZWIĄZKI FIZYCZN 1 6. 6. ZWIĄZKI FIZYCZN 6.1. Wstęp Aby rozwiązać jakiekolwiek zadanie mechaniki ośrodka ciągłego musimy dysponować 15 niezależnymi równaniami, gdyż tyle mamy niewiadomych: trzy składowe

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Niech K będzie ciałem. Niech n, m N. Równanie liniowe nad ciałem K z niewiadomymi (lub zmiennymi) x 1, x 2,..., x n K definiujemy jako formę zdaniową zmiennej (x 1,..., x n ) K

Bardziej szczegółowo

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

PODSTAWY AUTOMATYKI. MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach. WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI Katedra Inżynierii Systemów Sterowania PODSTAWY AUTOMATYKI MATLAB - komputerowe środowisko obliczeń naukowoinżynierskich - podstawowe operacje na liczbach i macierzach.

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładów Błędy obliczeń Błędy można podzielić na: modelu, metody, wejściowe (początkowe), obcięcia, zaokrągleń..

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

Łagodne wprowadzenie do Metody Elementów Skończonych

Łagodne wprowadzenie do Metody Elementów Skończonych Łagodne wprowadzenie do Metody Elementów Skończonych dr inż. Grzegorz DZIERŻANOWSKI dr hab. inż. Wojciech GILEWSKI Katedra Mechaniki Budowli i Zastosowań Informatyki 10 XII 2009 - część I 17 XII 2009 -

Bardziej szczegółowo

Komputerowa Analiza Danych Doświadczalnych

Komputerowa Analiza Danych Doświadczalnych Komputerowa Analiza Danych Doświadczalnych Prowadząca: dr inż. Hanna Zbroszczyk e-mail: gos@if.pw.edu.pl tel: +48 22 234 58 51 konsultacje: poniedziałek, 10-11; środa: 11-12 www: http://www.if.pw.edu.pl/~gos/students/kadd

Bardziej szczegółowo

Rozwiązywanie układów równań liniowych

Rozwiązywanie układów równań liniowych Rozwiązywanie układów równań liniowych Marcin Orchel 1 Wstęp Jeśli znamy macierz odwrotną A 1, to możęmy znaleźć rozwiązanie układu Ax = b w wyniku mnożenia x = A 1 b (1) 1.1 Metoda eliminacji Gaussa Pierwszy

Bardziej szczegółowo

Numeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1

Numeryczna algebra liniowa. Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Numeryczna algebra liniowa Krzysztof Banaś Obliczenia Wysokiej Wydajności 1 Numeryczna algebra liniowa Numeryczna algebra liniowa obejmuje szereg algorytmów dotyczących wektorów i macierzy, takich jak

Bardziej szczegółowo

Przekształcenia liniowe

Przekształcenia liniowe Przekształcenia liniowe Zadania Które z następujących przekształceń są liniowe? (a) T : R 2 R 2, T (x, x 2 ) = (2x, x x 2 ), (b) T : R 2 R 2, T (x, x 2 ) = (x + 3x 2, x 2 ), (c) T : R 2 R, T (x, x 2 )

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Obliczenia symboliczne Symbolic computations Kierunek: Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Informatyka Rodzaj zajęć: wykład,

Bardziej szczegółowo

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie

Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Rozwiązywanie równań różniczkowych cząstkowych metodą elementów skończonych - wprowadzenie Wprowadzenie Metoda Elementów Skończonych (MES) należy do numerycznych metod otrzymywania przybliżonych rozwiązań

Bardziej szczegółowo

Matematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012.

Matematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012. Matematyka dla studentów ekonomii : wykłady z ćwiczeniami/ Ryszard Antoniewicz, Andrzej Misztal. Wyd. 4 popr., 6 dodr. Warszawa, 2012 Spis treści Przedmowa 9 CZĘŚĆ I. WSTĘP DO MATEMATYKI 11 Wykład 1. Rachunek

Bardziej szczegółowo

Układy równań liniowych, macierze, Google

Układy równań liniowych, macierze, Google Układ równań linowych { x+2y = 6, 3x y = 4 (0) Spotkania z Matematyka Układy równań liniowych, macierze, Google Aleksander Denisiuk denisjuk@matman.uwm.edu.pl Uniwersytet Warmińsko-Mazurski w Olsztynie

Bardziej szczegółowo

KADD Minimalizacja funkcji

KADD Minimalizacja funkcji Minimalizacja funkcji Poszukiwanie minimum funkcji Foma kwadratowa Metody przybliżania minimum minimalizacja Minimalizacja w n wymiarach Metody poszukiwania minimum Otaczanie minimum Podział obszaru zawierającego

Bardziej szczegółowo

Zaawansowane metody numeryczne

Zaawansowane metody numeryczne Wykład 11 Ogólna postać metody iteracyjnej Definicja 11.1. (metoda iteracyjna rozwiązywania układów równań) Metodą iteracyjną rozwiązywania { układów równań liniowych nazywamy ciąg wektorów zdefiniowany

Bardziej szczegółowo

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad

Elementy projektowania inzynierskiego Przypomnienie systemu Mathcad Elementy projektowania inzynierskiego Definicja zmiennych skalarnych a : [S] - SPACE a [T] - TAB - CTRL b - SHIFT h h. : / Wyświetlenie wartości zmiennych a a = b h. h. = Przykładowe wyrażenia

Bardziej szczegółowo

"Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub

Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza. Gabriel Laub "Bieda przeczy matematyce; gdy się ją podzieli na więcej ludzi, nie staje się mniejsza." Gabriel Laub Def. Macierzą odwrotną do macierzy A M(n) i deta nazywamy macierz A - M(n) taką, że A A - A - A Tw.

Bardziej szczegółowo

ANALIZA MATEMATYCZNA

ANALIZA MATEMATYCZNA ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: ALGEBRA LINIOWA Z GEOMETRIĄ ANALITYCZNĄ Linear algebra and analytical geometry Kierunek: Informatyka Rodzaj przedmiotu: obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka,

Bardziej szczegółowo

WYZNACZANIE RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI NA SIATKACH NAKŁADAJĄCYCH SIĘ

WYZNACZANIE RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI NA SIATKACH NAKŁADAJĄCYCH SIĘ MODELOWANIE INŻYNIERSKIE ISNN 896-77X 3, s. 67-7, Gliwice 006 WYZNACZANIE RUCHU CIECZY LEPKIEJ METODĄ SZTUCZNEJ ŚCIŚLIWOŚCI NA SIATKACH NAKŁADAJĄCYCH SIĘ ZBIGNIEW KOSMA BOGDAN NOGA PRZEMYSŁAW MOTYL Instytut

Bardziej szczegółowo

Równania różniczkowe liniowe wyższych rzędów o stałych współcz

Równania różniczkowe liniowe wyższych rzędów o stałych współcz Równania różniczkowe liniowe wyższych rzędów o stałych współczynnikach Katedra Matematyki i Ekonomii Matematycznej SGH 12 maja 2016 Równanie liniowe n-tego rzędu Definicja Równaniem różniczkowym liniowym

Bardziej szczegółowo

Przekształcanie równań stanu do postaci kanonicznej diagonalnej

Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przekształcanie równań stanu do postaci kanonicznej diagonalnej Przygotowanie: Dariusz Pazderski Liniowe przekształcenie równania stanu Rozważmy liniowe równanie stanu i równanie wyjścia układu niesingularnego

Bardziej szczegółowo

KARTA KURSU. Mathematics

KARTA KURSU. Mathematics KARTA KURSU Nazwa Nazwa w j. ang. Matematyka Mathematics Kod Punktacja ECTS* 4 Koordynator Dr Maria Robaszewska Zespół dydaktyczny dr Maria Robaszewska Opis kursu (cele kształcenia) Celem kursu jest zapoznanie

Bardziej szczegółowo

PROGRAMOWANIE KWADRATOWE

PROGRAMOWANIE KWADRATOWE PROGRAMOWANIE KWADRATOWE Programowanie kwadratowe Zadanie programowania kwadratowego: Funkcja celu lub/i co najmniej jedno z ograniczeń jest funkcją kwadratową. 2 Programowanie kwadratowe Nie ma uniwersalnej

Bardziej szczegółowo

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami:

Lista. Algebra z Geometrią Analityczną. Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: Lista Algebra z Geometrią Analityczną Zadanie 1 Przypomnij definicję grupy, które z podanych struktur są grupami: (N, ), (Z, +) (Z, ), (R, ), (Q \ {}, ) czym jest element neutralny i przeciwny w grupie?,

Bardziej szczegółowo

Matematyka stosowana i metody numeryczne

Matematyka stosowana i metody numeryczne Ewa Pabisek Adam Wosatko Piotr Pluciński Matematyka stosowana i metody numeryczne Konspekt z wykładu 6 Rozwiązywanie równań nieliniowych Rozwiązaniem lub pierwiastkiem równania f(x) = 0 lub g(x) = h(x)

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH

ALGEBRA Z GEOMETRIĄ MACIERZE ODWZOROWAŃ LINIOWYCH ALGEBRA Z GEOMETRIĄ 1/10 MACIERZE ODWZOROWAŃ LINIOWYCH Piotr M. Hajac Uniwersytet Warszawski Wykład 12, 08.01.2014 Typeset by Jakub Szczepanik. Motywacje 2/10 W celu wykonania obliczeń numerycznych w zagadnieniach

Bardziej szczegółowo

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI

ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Łukasz Faściszewski, gr. KBI2, sem. 2, Nr albumu: 75 201; rok akademicki 2010/11. ĆWICZENIE PROJEKTOWE NR 2 Z MECHANIKI BUDOWLI Stateczność ram wersja komputerowa 1. Schemat statyczny ramy i dane materiałowe

Bardziej szczegółowo

13 Układy równań liniowych

13 Układy równań liniowych 13 Układy równań liniowych Definicja 13.1 Niech m, n N. Układem równań liniowych nad ciałem F m równaniach i n niewiadomych x 1, x 2,..., x n nazywamy koniunkcję równań postaci a 11 x 1 + a 12 x 2 +...

Bardziej szczegółowo

Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych. P. F. Góra

Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych. P. F. Góra Wstęp do metod numerycznych Algebraiczna metoda gradientów sprzężonych P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2015 Metoda gradientów sprzężonych motywacja Rozważmy funcję f : R N R f(x) = 1 2

Bardziej szczegółowo

Rozkłady wielu zmiennych

Rozkłady wielu zmiennych Rozkłady wielu zmiennych Uogólnienie pojęć na rozkład wielu zmiennych Dystrybuanta, gęstość prawdopodobieństwa, rozkład brzegowy, wartości średnie i odchylenia standardowe, momenty Notacja macierzowa Macierz

Bardziej szczegółowo

Wykład 5. Metoda eliminacji Gaussa

Wykład 5. Metoda eliminacji Gaussa 1 Wykład 5 Metoda eliminacji Gaussa Rozwiązywanie układów równań liniowych Układ równań liniowych może mieć dokładnie jedno rozwiązanie, nieskończenie wiele rozwiązań lub nie mieć rozwiązania. Metody dokładne

Bardziej szczegółowo

1 Zacznijmy od początku... 2 Tryb tekstowy. 2.1 Wyliczenia

1 Zacznijmy od początku... 2 Tryb tekstowy. 2.1 Wyliczenia 1 Zacznijmy od początku... L A TEX 1 jest systemem składu umożliwiającym między innymi tworzenie dokumentów naukowych i technicznych o wysokiej jakości typograficznej. Oczywiście oprócz tego L A TEXumożliwia

Bardziej szczegółowo

Metody Obliczeniowe Mikrooptyki i Fotoniki

Metody Obliczeniowe Mikrooptyki i Fotoniki Metody Obliczeniowe Mikrooptyki i Fotoniki https://www.igf.fuw.edu.pl/pl/courses/lectures/metody-obliczen-95-021c/ Podstawy metody różnic skończonych (Basics of finite-difference methods) Podstawy metody

Bardziej szczegółowo

Politechnika Białostocka

Politechnika Białostocka Politechnika Białostocka WYDZIAŁ BUDOWNICTWA I INŻYNIERII ŚRODOWISKA Katedra Geotechniki i Mechaniki Konstrukcji Wytrzymałość Materiałów Instrukcja do ćwiczeń laboratoryjnych Ćwiczenie nr 6 Temat ćwiczenia:

Bardziej szczegółowo

Własności wyznacznika

Własności wyznacznika Własności wyznacznika Rozwinięcie Laplace a względem i-tego wiersza: n det(a) = ( 1) i+j a ij M ij (A), j=1 gdzie M ij (A) to minor (i, j)-ty macierzy A, czyli wyznacznik macierzy uzyskanej z macierzy

Bardziej szczegółowo

Algebra linowa w pigułce

Algebra linowa w pigułce Algebra Algebra linowa w pigułce Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045 Gdańsk Algebra p. 1 Algebra

Bardziej szczegółowo

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I

2 1 3 c c1. e 1, e 2,..., e n A= e 1 e 2...e n [ ] M. Przybycień Matematyczne Metody Fizyki I Liniowa niezależno ność wektorów Przykład: Sprawdzić czy następujące wektory z przestrzeni 3 tworzą bazę: e e e3 3 Sprawdzamy czy te wektory są liniowo niezależne: 3 c + c + c3 0 c 0 c iei 0 c + c + 3c3

Bardziej szczegółowo

1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t )

1 Symulacja procesów cieplnych 1. 2 Algorytm MES 2. 3 Implementacja rozwiązania 2. 4 Całkowanie numeryczne w MES 3. k z (t) t ) k y (t) t ) pis treści ymulacja procesów cieplnych Algorytm ME 3 Implementacja rozwiązania 4 Całkowanie numeryczne w ME 3 ymulacja procesów cieplnych Procesy cieplne opisuje równanie różniczkowe w postaci: ( k x (t)

Bardziej szczegółowo

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań.

Zestaw zadań 5: Sumy i sumy proste podprzestrzeni. Baza i wymiar. Rzędy macierzy. Struktura zbioru rozwiązań układu równań. Zestaw zadań : Sumy i sumy proste podprzestrzeni Baza i wymiar Rzędy macierzy Struktura zbioru rozwiązań układu równań () Pokazać, że jeśli U = lin(α, α,, α k ), U = lin(β, β,, β l ), to U + U = lin(α,

Bardziej szczegółowo

Modele kp Studnia kwantowa

Modele kp Studnia kwantowa Modele kp Studnia kwantowa Przegląd modeli pozwalających obliczyć strukturę pasmową materiałów półprzewodnikowych. Metoda Fal płaskich Transformata Fouriera Przykładowe wyniki Model Kaine Hamiltonian z

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych

Mechatronika i inteligentne systemy produkcyjne. Modelowanie systemów mechatronicznych Platformy przetwarzania danych Mechatronika i inteligentne systemy produkcyjne Modelowanie systemów mechatronicznych Platformy przetwarzania danych 1 Sterowanie procesem oparte na jego modelu u 1 (t) System rzeczywisty x(t) y(t) Tworzenie

Bardziej szczegółowo

III TUTORIAL Z METOD OBLICZENIOWYCH

III TUTORIAL Z METOD OBLICZENIOWYCH III TUTORIAL Z METOD OBLICZENIOWYCH ALGORYTMY ROZWIĄZYWANIA UKŁADÓW RÓWNAŃ LINIOWYCH Opracowanie: Agata Smokowska Marcin Zmuda Trzebiatowski Koło Naukowe Mechaniki Budowli KOMBO Spis treści: 1. Wstęp do

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1

Bardziej szczegółowo

Wykład III Układy równań liniowych i dekompozycje macierzy

Wykład III Układy równań liniowych i dekompozycje macierzy Wykład III Układy równań liniowych i dekompozycje macierzy Metody eliminacji i podstawienia wstecz Metoda dekompozycji LU i jej zastosowania Metody dla macierzy specjalnych i rzadkich Metody iteracyjne

Bardziej szczegółowo