Rozkład temperatury na powierzchni grzejnika podłogowego przy wykorzystaniu MEB

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rozkład temperatury na powierzchni grzejnika podłogowego przy wykorzystaniu MEB"

Transkrypt

1 Rozkład temperatury na powierzchni grzejnika podłogowego przy wykorzystaniu MEB W artykule przedstawiono wyniki eksperymentu numerycznego - pola temperatury na powierzchni płyty grzejnej dla wybranych warunków pracy. Zagadnienie inżynierskie sprowadzono do ustalonego, dwuwymiarowego pola temperatury z wewnętrznymi źródłami. Obliczenia wykonano przy użyciu metody elementów brzegowych, z pośrednią dyskretyzacją obszaru do wyznaczania całek obszarowych. Wewnętrzne źródła ciepłe przewody grzejne są opisane jako źródło ciepła dodatnie, natomiast moc cieplna oddawana przez płytę grzejną do otoczenia źródła ujemne. Uzyskanie jednolitego pola temperatury na powierzchni płyty grzejnej podczas pracy instalacji centralnego ogrzewania wpływa na komfort użytkowania pomieszczenia. Na etapie projektowania instalacji c.o. znane jest zapotrzebowanie na moc cieplną poszczególnych pomieszczeń. Instalatorzy dobierają długość elementów grzejnych w odniesieniu do powierzchni ogrzewanej, uwzględniając zagęszczenie przewodów w strefach, gdzie jest wzmożona wymiana ciepła. Istnieje możliwość przewymiarowania lub niedoszacowania mocy cieplnej grzejnika podłogowego dla poszczególnych stref grzewczych, co może powodować wyczuwalne różnice temperatur na poszczególnych powierzchniach grzewczych. Przy wykorzystaniu symulacji komputerowych istnieje możliwość na etapie wykonywania projektu zoptymalizowania pracy płyty grzejnej, zwłaszcza w narożach ścian, przy przegrodach zewnętrznych. Przedstawiona w artykule symulacja przedstawia pole temperatury na powierzchni płyty grzejnej. Problem inżynierski sformułowano jako ustalone, zagadnienie płaskie, w których działają wewnętrzne źródła ciepła: źródła dodatnie elektryczne przewody grzejne oraz źródła ujemne moc cieplna oddawana przez płytę grzejną do otoczenia. Zagadnienie rozwiązano przy użyciu metody brzegowych równań całkowych z pośrednią dyskretyzacją obszaru. Przedstawiono przykładowe pola temperatury dla wybranych warunków pracy płyty grzejnej. Równania opisujące ustalone pole temperatury w obszarze płaskim dla rozpatrywanego zagadnienia. Równania różniczkowe opisujące ustalone pole temperatury w obszarze płaskim. Warunki brzegowe. W zagadnieniu przyjęto, że procesy przewodzenia ciepła są bliskie stanom ustalonym oraz w układzie występują wewnętrzne źródła ciepła. Dwuwymiarowe, ustalone pole temperatury z wewnętrznymi źródłami q υ opisane jest równaniem różniczkowym Poisson a: Zagadnienia brzegowe dla równań różniczkowych opisujących procesy ustalonego przewodzenia

2 ciepła formułuje się w postaci [1]: warunku brzegowego I rodzaju warunek Dirichleta zakładającego na brzegu obszaru wartości temperatury, warunku brzegowego II rodzaju warunek Neumanna zakładającego na brzegu obszaru wartości strumienia ciepła, Rys. 1. Szkic do rozważań zagadnień brzegowych w jednospójnym obszarze płaskim warunku brzegowego III rodzaju warunek Robina opisującego równość strumienia ciepła na brzegu obszaru dopływającego z wnętrza obszaru i strumienia ciepła przejmowanego przez medium otaczające rozważany obszar. Zagadnienie brzegowe pierwszego rodzaju w przestrzeni dwuwymiarowej R 2 Zagadnienie brzegowe drugiego rodzaju w przestrzeni dwuwymiarowej R 2 Zagadnienie brzegowe trzeciego rodzaju w przestrzeni dwuwymiarowej R 2

3 Brzegowe równania całkowe opisujące ustalone przewodzenie ciepła w przestrzeni dwuwymiarowej Przy założeniu, że w obszarze płaskim (Λ) ograniczonym zamkniętą krzywą (L) (rys. 1) na części powierzchni są zadane wartości temperatury opisane warunkiem brzegowym (2), natomiast na części powierzchni są zadane wartości strumienia ciepła opisane warunkiem brzegowym (3) całkowe równanie opisujące ustalone pole temperatury na brzegu obszaru ma postać [2]: gdzie jądra całkowe (rozwiązania podstawowe) KT(p, q) i KQ(p, q) mają postać:

4 Współczynnik χ(p) jest zale żny od krzywizny krzywej (L) punkcie (p) i dla gładkiego fragmentu brzegu jest równy χ(p) = 1/2. Po wyznaczeniu niewiadomych wartości T(p) i q(p) odpowiednio na częściach linii brzegowej (Lf) i (Lg) przez rozwiązanie równania całkowego (5) temperaturę T(u) w dowolnym punkcie (u) obszaru płaskiego(λ) można wyznaczyć ze związku: Wyznaczanie całek po wnętrzu obszaru W rozpatrywanym zagadnieniu występuje całka po wnętrzu obszaru (7).

5 Dyskretyzacja podlega również wnętrze obszaru płaskiego. W celu uniknięcia dyskretyzacji wnętrza obszaru zastosowano pośrednią dyskretyzację obszaru. Podstawą proponowanej metody w rozwiązywaniu całek po obszarze płaskim (lub przestrzennym) jest założenie, że narożami płaskich powierzchni cząstkowych (trójkątów) lub objętości cząstkowych (ostrosłupów) są punkty wyznaczające panele i punkty kolokacji na panelach. Korzystając z brzegowych punktów paneli i punktów kolokacji można dokonać dyskretyzacji wnętrza zarówno obszaru płaskiego jak i przestrzennego [3]. Rys. 2. Zasada dyskretyzacji wnętrza obszaru płaskiego (Λ) przy wykorzystaniu brzegowych punktów kolokacji Obszar płaski o wypukłym brzegu można podzielić na dowolną ilość płaskich powierzchni cząstkowych, z których każda jest trójkątem, którego wierzchołki leżą na linii brzegowej. Przy założeniu, że jeden wierzchołek wszystkich trójkątów jest wierzchołkiem wspólnym, suma pól powierzchni cząstkowych jest równa powierzchni zdyskretyzowanego obszaru płaskiego (rys. 2.). Dla dwuwymiarowego, ustalonego przewodzenia ciepła, przyjmując, że na powierzchniach cząstkowych o wspólnym wierzchołku na elemencie [i] wartość funkcji qυ(p [i] ) opisujących pole źródłowe w obrębie danej powierzchni obszaru jest stała, całkę (7) można zapisać w postaci [3]:

6 Numeryczne rozwiązanie równań całkowych Zastępując powierzchnię brzegową (S) układem (J) powierzchni cząstkowych i przyjmując, że wartości funkcji i w obrębie każdej powierzchni cząstkowej mają stałą wartość równanie całkowe (5) można sprowadzić do układu algebraicznych równań liniowych (J): gdzie (K) jest liczbą podobszarów elementarnych wyodrębnionych w obszarze (Ω). Pole temperatury na powierzchni płyty grzejnej Wyznaczyć pole temperatury na powierzchni płyty grzejnej dla wybranych przypadków ułożenia przewodów grzejnych. W celu wizualizacji wyników rozwiązania zagadnienia pola temperatury pokazano przypadek dla mniejszej ilości przewodów grzejnych. Moc przewodów grzejnych przyjęto w wysokości 7,5 W/mb. Moc cieplna oddawana z powierzchni grzejnej do otoczenia przyjęto w wysokości 60 W/m2. Warunki brzegowe przyjęto następujące: na krawędzi lewej i górnej przyjęto temperaturę przegrody równą 18 o C, na krawędzi prawej i dolnej przyjęto temperaturę przegrody równą 20 o C.

7 Na zdjęciu przedstawionym na rys. 3c widoczna jest wzmożona wymiana ciepła w rogu pomieszczenia oraz zdecydowanie wyższa temperatura posadzki z obniżoną temperaturą w narożu. Rys. 3a. Ułożenie przewodów grzejnych Rys. 3b. Pole temperatury na powierzchni płyty grzejnej dla jednego przewodu grzejnego (szkic rys. 3a) Rys. 3c. Zdjęcie kamerą termowizyjną naroża pomieszczenia, w którym źródłem ciepła jest ogrzewanie podłogowe

8 Rys. 4a. Ułożenie przewodów grzejnych Rys. 4b. Pole temperatury na powierzchni płyty grzejnej dla kilku przewodów (szkic rys. 4a) Rys. 5b. Pole temperatury Rys. 5a. Przesunięte na powierzchni płyty grzejnej przewody grzejne w dla kilku przewodów (szkic stosunku do układu z rys. 5a) Skala barw dla rys. rysunku 4a 4b i 5b identyczna Rys. 6a. Zmniejszenie ilości przewodów grzejnych oddalenie od przegrody ze źródłem ciepła Rys. 6b. Pole temperatury na powierzchni płyty grzejnej dla rys 6a Skala barw dla rys. 4b, 5b oraz 6b identyczna

9 Rys. 7b. Pole Rys. 7a. Zmniejszenie temperatury na ilości przewodów powierzchni płyty grzejnej grzejnych oddalenie od dla rys 6a Skala barw dla przegrody ze źródłem rys. 4b, 5b, 6b oraz 7b ciepła identyczna Wnioski Wyniki obliczeń numerycznej symulacji przedstawiają pole temperatury na powierzchni płyty grzejnej dla kilku wybranych przypadków. Komputerowa symulacja, przy wykorzystaniu metody elementów brzegowych pola temperatury pozwala na optymalne zaprojektowanie trasy przewodów grzejnych, tak by temperatura posadzki nie przekraczała wartości dopuszczalnej związanej z wymaganiami komfortu cieplnego i jednocześnie jej rozkład był jak najbardziej równomierny. Dotyczy to zwłaszcza stref, gdzie jest wzmożona wymiana wzrost zapotrzebowania na moc cieplną, na przykład strefy przy drzwiach, oknach lub narożach przegród zewnętrznych. Sposób wyznaczania nieustalonego pola temperatury w przekroju poprzecznym płyty grzejnej metodą elementów brzegowych został opisany w artykule [4] Symulacja pola temperatury w płycie grzejnika podłogowego metodą brzegowych równań całkowych [4]. Obliczenia wykonano własnym programem autorskim w języku programowania Fortran przy użyciu kompilatora firmy Intel. LITERATURA [1] Brebbia C.A., Telles J.F.C., Wrobel L.C.: Boundary Element Techniques. Theory and Applications in Engineering. Springer-Verlag NY [2] Majchrzak E.: Metoda elementów brzegowych w przepływie ciepła, Wyd. Pol. Częstochowskiej [3] Piotr Rynkowski, Tomasz Janusz Teleszewski, Numeryczne modelowanie procesów przewodzenia ciepła w obiektach z wewnętrznymi źródłami Metodą Elementów Brzegowych z Pośrednią Dyskretyzacją Obszaru, XIII Warsztaty Naukowe PTSK Symulacja w Badaniach i Rozwoju, Kazimierz Dolny n/wisłą [4] Rynkowski Piotr, Teleszewski Tomasz, Symulacja pola temperatury w płycie grzejnika podłogowego metodą brzegowych równań całkowych, XIV Warsztaty Naukowe PTSK, Symulacja w Badaniach i Rozwoju, Krynica-Zdrój [5] Press W.H., Teukolsky S.A., Vetterling W.T., Flannery B.P.: Numerical Recipes Cambridge University Press Third ed

10 Autor: dr inż. Tomasz Janusz TELESZEWSKI, dr inż. Piotr RYNKOWSKI Politechnika Białostocka, Wydział Budownictwa i Inżynierii Środowiska; Katedra Ciepłownictwa, Białystok

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE PROCESÓW ENERGETYCZNYCH Kierunek: ENERGETYKA Rodzaj przedmiotu: specjalności obieralny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 2 Numeryczne rozwiązywanie równań nieliniowych

Wprowadzenie do metod numerycznych Wykład 2 Numeryczne rozwiązywanie równań nieliniowych Wprowadzenie do metod numerycznych Wykład 2 Numeryczne rozwiązywanie równań nieliniowych Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Numeryczne

Bardziej szczegółowo

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA 1 PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA dla budynku mieszkalnego Budynek oceniany: Nazwa obiektu Zdjęcie budynku Adres obiektu Całość/ część budynku Nazwa inwestora Adres inwestora Kod, miejscowość

Bardziej szczegółowo

R = 0,2 / 0,04 = 5 [m 2 K/W]

R = 0,2 / 0,04 = 5 [m 2 K/W] ZADANIA (PRZYKŁADY OBLICZENIOWE) z komentarzem 1. Oblicz wartość oporu cieplnego R warstwy jednorodnej wykonanej z materiału o współczynniku przewodzenia ciepła = 0,04 W/mK i grubości d = 20 cm (bez współczynników

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH.

METODA ELEMENTÓW SKOŃCZONYCH. METODA ELEMENTÓW SKOŃCZONYCH. W programie COMSOL multiphisics 3.4 Wykonali: Łatas Szymon Łakomy Piotr Wydzał, Kierunek, Specjalizacja, Semestr, Rok BMiZ, MiBM, TPM, VII, 2011 / 2012 Prowadzący: Dr hab.inż.

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA Wykorzystanie pakietu MARC/MENTAT do modelowania naprężeń cieplnych Spis treści Pole temperatury Przykład

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

4. SPRZĘGŁA HYDRAULICZNE

4. SPRZĘGŁA HYDRAULICZNE 4. SPRZĘGŁA HYDRAULICZNE WYTYCZNE PROJEKTOWE www.immergas.com.pl 26 SPRZĘGŁA HYDRAULICZNE 4. SPRZĘGŁO HYDRAULICZNE - ZASADA DZIAŁANIA, METODA DOBORU NOWOCZESNE SYSTEMY GRZEWCZE Przekazywana moc Czynnik

Bardziej szczegółowo

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze

Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Wprowadzenie do metod numerycznych Wykład 3 Metody algebry liniowej I Wektory i macierze Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Wektory

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA 1 PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA dla budynku mieszkalnego nr LK&642 Budynek oceniany: Nazwa obiektu Zdjęcie budynku Adres obiektu Całość/ część budynku Nazwa inwestora Adres inwestora Kod, miejscowość

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Microsoft EXCEL SOLVER

Microsoft EXCEL SOLVER Microsoft EXCEL SOLVER 1. Programowanie liniowe z wykorzystaniem dodatku Microsoft Excel Solver Cele Po ukończeniu tego laboratorium słuchacze potrafią korzystając z dodatku Solver: formułować funkcję

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH

PROJEKT METODA ELEMENTÓW SKOŃCZONYCH Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Informatyzacja i Robotyzacja Wytwarzania Semestr 7 PROJEKT METODA ELEMENTÓW SKOŃCZONYCH Prowadzący: dr hab. Tomasz Stręk

Bardziej szczegółowo

Zadania rachunkowe z termokinetyki w programie Maxima

Zadania rachunkowe z termokinetyki w programie Maxima Zadania rachunkowe z termokinetyki w programie Maxima pliku, polecenia do wpisywania w programie Maxima zapisane są czcionką typu: zmienna_w_maximie: 10; inny przykład f(x):=x+2*x+5; Problem 1 komorze

Bardziej szczegółowo

KRAWĘDŹ G wartość temperatury w węzłach T=100 C; KRAWĘDŹ C wartość strumienia cieplnego q=15,5 W/m^2;

KRAWĘDŹ G wartość temperatury w węzłach T=100 C; KRAWĘDŹ C wartość strumienia cieplnego q=15,5 W/m^2; PODZIAŁ MODELU NA GRUPY MATERIAŁOWE ORAZ OZNACZENIE KRAWĘDZI MODELU ZALEŻNOŚĆ PRZEWODNOŚCI CIEPLNEJ MIEDZI OD TEMPERATURY Wartość temperatury Wartość przewodności cieplnej miedzi deg W/m*deg 0 386 100

Bardziej szczegółowo

III/2 INSTALACJA CENTRALNEGO OGRZEWANIA

III/2 INSTALACJA CENTRALNEGO OGRZEWANIA III/2 INSTALACJA CENTRALNEGO OGRZEWANIA I. Spis zawartości 1.1. Straty ciepła dla budynku 1.2. Instalacja centralnego ogrzewania 1.3. Przewody i rozprowadzenie instalacji 1.4. Próby, montaż, izolacja termiczna

Bardziej szczegółowo

Numeryczna symulacja opływu wokół płata o zmodyfikowanej krawędzi natarcia. Michał Durka

Numeryczna symulacja opływu wokół płata o zmodyfikowanej krawędzi natarcia. Michał Durka Numeryczna symulacja opływu wokół płata o zmodyfikowanej krawędzi natarcia Michał Durka Politechnika Poznańska Inspiracja Inspiracją mojej pracy był artykuł w Świecie Nauki opisujący znakomite charakterystyki

Bardziej szczegółowo

Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów

Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów Zajęcia: VBA TEMAT: VBA PROCEDURY NUMERYCZNE Metoda bisekcji i metoda trapezów W ramach zajęć oprogramujemy jedną, wybraną metodę numeryczną: metodę bisekcji numerycznego rozwiązywania równania nieliniowego

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

Wpływ sposobu ogrzewania na efektywność energetyczną budynku

Wpływ sposobu ogrzewania na efektywność energetyczną budynku Wpływ sposobu ogrzewania na efektywność energetyczną budynku dr inż. Adrian Trząski MURATOR 2015, JAKOŚĆ BUDYNKU: ENERGIA * KLIMAT * KOMFORT Warszawa 4-5 Listopada 2015 Charakterystyka energetyczna budynku

Bardziej szczegółowo

CENTRALNE OGRZEWANIE

CENTRALNE OGRZEWANIE CENTRALNE OGRZEWANIE CENTRALNE OGRZEWANIE urządzenie, którego zadaniem jest ogrzewanie pomieszczenia znajdującego się w pewnej odległości od źródła ciepła oraz w którym istnieje możliwość wyraźnego wyodrębnienia

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Materiały edukacyjne dla doradców Na podstawie projektu gotowego z kolekcji Muratora M03a Moje Miejsce. i audytorów energetycznych

Materiały edukacyjne dla doradców Na podstawie projektu gotowego z kolekcji Muratora M03a Moje Miejsce. i audytorów energetycznych Optymalizacja energetyczna budynków Świadectwo energetycznej Fizyka budowli dla z BuildDesk. domu jednorodzinnego. Instrukcja krok po kroku Materiały edukacyjne dla doradców Na podstawie projektu gotowego

Bardziej szczegółowo

Informacja o pracy dyplomowej

Informacja o pracy dyplomowej Informacja o pracy dyplomowej 1. Nazwisko i Imię: Duda Dawid adres e-mail: Duda.Dawid1@wp.pl 2. Kierunek studiów: Mechanika I Budowa Maszyn 3. Rodzaj studiów: inżynierskie 4. Specjalnośd: Systemy, Maszyny

Bardziej szczegółowo

INSTALACJE WODNO- KANALIZACYJNE

INSTALACJE WODNO- KANALIZACYJNE INSTALACJE WODNO- KANALIZACYJNE Dane do projektu http://riad.pk.edu.pl/~azastawna/ Instalacje i sieci miejskie Projekt http://archon.pl/projekty-domow/domy-male/1/1?per_page=100 Dla celów projektowych

Bardziej szczegółowo

Plik pobrany ze strony www.zadania.pl

Plik pobrany ze strony www.zadania.pl Plik pobrany ze strony www.zadania.pl Wpisuje zdający przed rozpoczęciem pracy PESEL ZDAJĄCEGO Miejsce na nalepkę z kodem szkoły PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Instrukcja dla zdającego Arkusz I

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132

Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Analiza wyników egzaminu gimnazjalnego 2013 r. Test matematyczno-przyrodniczy (matematyka) Test GM-M1-132 Zestaw zadań z zakresu matematyki posłużył w dniu 24 kwietnia 2013 roku do sprawdzenia u uczniów

Bardziej szczegółowo

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA

Próbny egzamin maturalny z matematyki Poziom podstawowy. Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KOD PESEL PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI We współpracy z POZIOM PODSTAWOWY 1. Sprawdź, czy arkusz egzaminacyjny

Bardziej szczegółowo

Wymiennik ciepła. Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego. Henryk Bieszk. Gdańsk 2011

Wymiennik ciepła. Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego. Henryk Bieszk. Gdańsk 2011 Henryk Bieszk Wymiennik ciepła Dane wyjściowe i materiały pomocnicze do wykonania zadania projektowego Gdańsk 2011 H. Bieszk, Wymiennik ciepła, projekt 1 PRZEDMIOT: APARATURA CHEMICZNA TEMAT ZADANIA PROJEKTOWEGO:

Bardziej szczegółowo

Materiały edukacyjne dla doradców Na podstawie projektu gotowego z kolekcji Muratora M03a Moje Miejsce. i audytorów energetycznych

Materiały edukacyjne dla doradców Na podstawie projektu gotowego z kolekcji Muratora M03a Moje Miejsce. i audytorów energetycznych Optymalizacja energetyczna budynków Świadectwo energetycznej Fizyka budowli dla z BuildDesk. domu jednorodzinnego. Instrukcja krok po kroku Materiały edukacyjne dla doradców Na podstawie projektu gotowego

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja

Bardziej szczegółowo

Ogrzewanie i chłodzenie ścienne KAN-therm

Ogrzewanie i chłodzenie ścienne KAN-therm Ogrzewanie i chłodzenie ścienne KAN-therm Kompletne, wyposażone w nowoczesną automatykę ogrzewanie i chłodzenie ścienne KAN-therm spełni oczekiwania wszystkich użytkowników, zapewniając im odpowiedni komfort

Bardziej szczegółowo

DIF SEK. Część 2 Odpowiedź termiczna

DIF SEK. Część 2 Odpowiedź termiczna Część 2 Odpowiedź termiczna Prezentowane tematy Część 1: Oddziaływanie termiczne i mechaniczne Część 3: Odpowiedź mechaniczna Część 4: Oprogramowanie inżynierii pożarowej Część 5a: Przykłady Część 5b:

Bardziej szczegółowo

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA 1 PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA dla budynku mieszkalnego nr 1 Budynek oceniany: Nazwa obiektu dom jednorodzinny Zdjęcie budynku Adres obiektu Gdańsk ul. Seleny, dz. nr 1219/10 Całość/ część

Bardziej szczegółowo

INSTRUKCJA MONTAŻU I OBSŁUGI UKŁADU MIESZAJĄCEGO UM DO OGRZEWANIA PODŁOGOWEGO

INSTRUKCJA MONTAŻU I OBSŁUGI UKŁADU MIESZAJĄCEGO UM DO OGRZEWANIA PODŁOGOWEGO INSTRUKCJA MONTAŻU I OBSŁUGI UKŁADU MIESZAJĄCEGO UM DO OGRZEWANIA PODŁOGOWEGO 1. Informacje ogólne 1.1. Zastosowanie Typoszereg układów mieszających UM jest przeznaczony do instalacji centralnego ogrzewania

Bardziej szczegółowo

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a

POLE MAGNETYCZNE. Magnetyczna siła Lorentza Prawo Ampere a POLE MAGNETYCZNE Magnetyczna siła Lorentza Prawo Ampere a 1 Doświadczenie Oersteda W 18 r. Hans C. Oersted odkrywa niezwykle interesujące zjawisko. Przepuszczając prąd elektryczny nad igiełką magnetyczną,

Bardziej szczegółowo

KNAUF Therm EXPERT FLOOR HEATING 100 λ 35 PŁYTA DO WODNEGO OGRZEWANIA PODŁOGOWEGO (TYP EPS 100)

KNAUF Therm EXPERT FLOOR HEATING 100 λ 35 PŁYTA DO WODNEGO OGRZEWANIA PODŁOGOWEGO (TYP EPS 100) PŁYTA DO WODNEGO OGRZEWANIA PODŁOGOWEGO (TYP EPS 100) Płyty styropianowe oznaczane są poniższym kodem wg normy PN-EN 13163:2009: EPS-EN 13163-T2-L2-W2-S2-P4-BS200-CS(10)100-DS(N)2-DS(70,-)1-DLT(1)5 Płyty

Bardziej szczegółowo

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA 1 PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA dla budynku mieszkalnego nr 1 Budynek oceniany: Nazwa obiektu Przebudowa pmieszczeń na lokale mieszkalne Zdjęcie budynku Adres obiektu Całość/ część budynku...

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Sufitowa folia grzewcza niewidoczne ogrzewanie komfortowe

Sufitowa folia grzewcza niewidoczne ogrzewanie komfortowe Sufitowa folia grzewcza niewidoczne ogrzewanie komfortowe Sufitowa folia grzewcza jest niewidoczna i nie zajmuje miejsca, ponieważ montowana jest wewnątrz stropu. Ogrzewanie sufitowe wraz z podłączonym

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

BADANIA OPERACYJNE PROGRAMOWANIE WIELOKRYTERIALNE

BADANIA OPERACYJNE PROGRAMOWANIE WIELOKRYTERIALNE DR ADAM SOJDA Czasem istnieje wiele kryteriów oceny. Kupno samochodu: cena prędkość maksymalna spalanie kolor typ nadwozia bagażnik najniższa najwyższa najniższe {czarny*, czerwony, } {sedan, coupe, SUV,

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

Zastosowanie termografii do weryfikacji numerycznego modelu wymiany ciepła w przegrodach budowlanych z umieszczonymi przewodami centralnego ogrzewania

Zastosowanie termografii do weryfikacji numerycznego modelu wymiany ciepła w przegrodach budowlanych z umieszczonymi przewodami centralnego ogrzewania USTROŃ-JASZOWIEC, 4-6 listopada 04 Zastosowanie termografii do weryfikacji numerycznego modelu wymiany ciepła w przegrodach budowlanych z umieszczonymi przewodami centralnego ogrzewania Z. Rymarczyk 1,

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 WPISUJE ZDAJĄCY KOD PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM

Bardziej szczegółowo

Badania właściwości dynamicznych sieci gazowej z wykorzystaniem pakietu SimNet TSGas 3

Badania właściwości dynamicznych sieci gazowej z wykorzystaniem pakietu SimNet TSGas 3 Andrzej J. Osiadacz Maciej Chaczykowski Łukasz Kotyński Badania właściwości dynamicznych sieci gazowej z wykorzystaniem pakietu SimNet TSGas 3 Andrzej J. Osiadacz, Maciej Chaczykowski, Łukasz Kotyński,

Bardziej szczegółowo

Test na koniec nauki w klasie trzeciej gimnazjum

Test na koniec nauki w klasie trzeciej gimnazjum 3 Przykładowe sprawdziany Test na koniec nauki w klasie trzeciej gimnazjum... imię i nazwisko ucznia...... data klasa Test Liczba x jest wynikiem dodawania liczb + +. Jaki warunek spełnia liczba x? 3 5

Bardziej szczegółowo

Efektywność energetyczna szansą na modernizację i rozwój polskiej gospodarki

Efektywność energetyczna szansą na modernizację i rozwój polskiej gospodarki Efektywność energetyczna szansą na modernizację i rozwój polskiej gospodarki Efektywność energetyczna w budownictwie a wdrażanie dyrektyw Tomasz Gałązka Ministerstwo Transportu, Budownictwa i Gospodarki

Bardziej szczegółowo

Obliczenia wstępne i etapy projektowania instalacji solarnych

Obliczenia wstępne i etapy projektowania instalacji solarnych Obliczenia wstępne i etapy projektowania instalacji solarnych Projektowanie instalacji solarnych I. S t o s o w a n i e k o l e k t o r ó w w b u d o w n i c t w i e 1. r o d z a j e s y s

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre

Bardziej szczegółowo

ROZDZIAŁ III INSTALACJE OGRZEWCZE I WENTYLACYJNE

ROZDZIAŁ III INSTALACJE OGRZEWCZE I WENTYLACYJNE ROZDZIAŁ III INSTALACJE OGRZEWCZE I WENTYLACYJNE ZAWARTOŚĆ OPRACOWANIA I. CZĘŚĆ OPISOWA 1. PODSTAWA OPRACOWANIA.... 105 2. OBLICZENIE ILOŚCI POWIETRZA WENTYLACYJNEGO I DOBÓR URZĄDZEŃ.... 105 2.1. BUDYNEK

Bardziej szczegółowo

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla.

MAJ 2014. Czas pracy: 170 minut. do uzyskania: Miejsce na naklejkę z kodem PESEL KOD. punktów. pióra z czarnym tuszem. liczby. cyrkla. rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 03 WPISUJE ZJĄY KO PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY Z MTEMTYKI POZIOM POSTWOWY MJ

Bardziej szczegółowo

Wprowadzenie do MES. Krzysztof Banaś. 24 października 2012

Wprowadzenie do MES. Krzysztof Banaś. 24 października 2012 Wprowadzenie do MES Krzysztof Banaś 24 października 202 MES (Metoda Elementów Skończonych 2 ) jest jednym z podstawowych narzędzi komputerowego wspomagania badań naukowych i analiz inżynierskich, o bardzo

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW

MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW 1. WSTĘP MODELOWANIE NUMERYCZNE POLA PRZEPŁYWU WOKÓŁ BUDYNKÓW mgr inż. Michał FOLUSIAK Instytut Lotnictwa W artykule przedstawiono wyniki dwu- i trójwymiarowych symulacji numerycznych opływu budynków wykonanych

Bardziej szczegółowo

Materiały edukacyjne dla doradców Na podstawie projektu gotowego z kolekcji Muratora M03a Moje Miejsce. i audytorów energetycznych

Materiały edukacyjne dla doradców Na podstawie projektu gotowego z kolekcji Muratora M03a Moje Miejsce. i audytorów energetycznych Optymalizacja energetyczna budynków Świadectwo energetycznej Fizyka budowli dla z BuildDesk. domu jednorodzinnego. Instrukcja krok po kroku Materiały edukacyjne dla doradców Na podstawie projektu gotowego

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony Próbny egzamin maturalny z matematyki. Poziom rozszerzony 1 PRÓNY EGZMIN MTURLNY Z MTEMTYKI poziom rozszerzony ZNI ZMKNIĘTE W każdym z zadań 1.. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0

Bardziej szczegółowo

WYDZIAŁ INŻYNIERII LĄDOWEJ I ŚRODOWISKA UNIWERSYTET ZIELONOGÓRSKI. Wytyczne do Programu Funkcjonalno-Użytkowego Centrum Nauki Keplera w Zielonej Górze

WYDZIAŁ INŻYNIERII LĄDOWEJ I ŚRODOWISKA UNIWERSYTET ZIELONOGÓRSKI. Wytyczne do Programu Funkcjonalno-Użytkowego Centrum Nauki Keplera w Zielonej Górze WYDZIAŁ INŻYNIERII LĄDOWEJ I ŚRODOWISKA UNIWERSYTET ZIELONOGÓRSKI Wytyczne do Programu Funkcjonalno-Użytkowego Centrum Nauki Keplera w Zielonej Górze Opracował: dr inż. Piotr Ziembicki dr inż. Jan Bernasiński

Bardziej szczegółowo

Kompatybilność grzejników niskotemperaturowych z pompami ciepła

Kompatybilność grzejników niskotemperaturowych z pompami ciepła Kompatybilność grzejników niskotemperaturowych z pompami ciepła Kompatybilność grzejników niskotemperaturowych z pompami ciepła Przyszłe uwarunkowania i trendy w technice budowlanej Poprawa standardów

Bardziej szczegółowo

PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013

PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 2013 PŁOCKA MIĘDZYGIMNAZJALNA LIGA PRZEDMIOTOWA MATEMATYKA marzec 03 KARTA PUNKTACJI ZADAŃ (wypełnia komisja konkursowa): Numer zadania Zad. Zad. SUMA PUNKTÓW Poprawna Zad. 3 Zad. 4 Zad. 5 Zad. 6 Zad. 7 odpowiedź

Bardziej szczegółowo

Aparaty słuchowe Hi-Fi z Multiphysics Modeling

Aparaty słuchowe Hi-Fi z Multiphysics Modeling Aparaty słuchowe Hi-Fi z Multiphysics Modeling POLITECHNIKA POZNAŃSKA Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Technologia Przetwarzania Materiałów Prowadzący: dr hab. Tomasz Stręk

Bardziej szczegółowo

Jak prawidłowo ustawić krzywą grzewczą w regulatorze calormatic 470?

Jak prawidłowo ustawić krzywą grzewczą w regulatorze calormatic 470? Jak prawidłowo ustawić krzywą grzewczą w regulatorze calormatic 470? Wiemy z doświadczenia, że prawidłowy dobór krzywej grzewczej na początku oraz podczas sezonu grzewczego nie zawsze bywa oczywisty. Jest

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Ekonometria - ćwiczenia 10

Ekonometria - ćwiczenia 10 Ekonometria - ćwiczenia 10 Mateusz Myśliwski Zakład Ekonometrii Stosowanej Instytut Ekonometrii Kolegium Analiz Ekonomicznych Szkoła Główna Handlowa 14 grudnia 2012 Wprowadzenie Optymalizacja liniowa Na

Bardziej szczegółowo

Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7

Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7 Tok postępowania przy projektowaniu fundamentu bezpośredniego obciążonego mimośrodowo wg wytycznych PN-EN 1997-1 Eurokod 7 I. Dane do projektowania - Obciążenia stałe charakterystyczne: V k = (pionowe)

Bardziej szczegółowo

Wymaganie do spełnienia przez budynek energooszczędny: Obliczenia i sposób ich prezentacji w projekcie jest analogiczny do pkt 3!!!

Wymaganie do spełnienia przez budynek energooszczędny: Obliczenia i sposób ich prezentacji w projekcie jest analogiczny do pkt 3!!! 4. Sporządzenie świadectwa energetycznego w Excelu dla zmodyfikowanego budynku, poprzez wprowadzenie jednej lub kilku wymienionych zmian, w celu uzyskania standardu budynku energooszczędnego, tj. spełniającego

Bardziej szczegółowo

KATEDRA APARATURY I MASZYNOZNAWSTWA CHEMICZNEGO Wydział Chemiczny POLITECHNIKA GDAŃSKA ul. G. Narutowicza 11/12 80-952 GDAŃSK

KATEDRA APARATURY I MASZYNOZNAWSTWA CHEMICZNEGO Wydział Chemiczny POLITECHNIKA GDAŃSKA ul. G. Narutowicza 11/12 80-952 GDAŃSK KATEDRA APARATURY I MASZYNOZNAWSTWA CHEMICZNEGO Wydział Chemiczny POLITECHNIKA GDAŃSKA ul. G. Narutowicza 11/12 80-952 GDAŃSK LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ 6. WYMIENNIK CIEPŁA

Bardziej szczegółowo

Modernizacja gminnych systemów grzewczych z wykorzystaniem OŹE Przygotował: Prof. dr hab. inż. Jacek Zimny Mszczonów Miasto Mszczonów leży w województwie mazowieckim, 60 km na południowy- zachód od Warszawy.

Bardziej szczegółowo

ZAKŁAD USŁUG CIEPŁOWNICZYCH TERMUS S.C. B. I H. BREGUŁA UL. OLESKA 20, 42 700 LUBLINIEC TEL.: 34 351 11 03 E-MAIL: TERMUS@TERMUS.

ZAKŁAD USŁUG CIEPŁOWNICZYCH TERMUS S.C. B. I H. BREGUŁA UL. OLESKA 20, 42 700 LUBLINIEC TEL.: 34 351 11 03 E-MAIL: TERMUS@TERMUS. SPIS TREŚCI 1.0 PODSTAWA OPRACOWANIA.... 3 2.0 PRZEDMIOT I ZAKRES OPRACOWANIA.... 3 3.0 CEL OPRACOWANIA.... 3 4.0 INSTALACJA WOD. KAN.... 3 A. URZĄDZENIA SANITARNE... 3 B. PRZEWODY... 4 C. INSTALACJA KANALIZACJI...

Bardziej szczegółowo

Analiza techniczno-ekonomiczna docieplenia poddasza nieużytkowego na przykładzie budynku jednorodzinnego

Analiza techniczno-ekonomiczna docieplenia poddasza nieużytkowego na przykładzie budynku jednorodzinnego Symulacja w Badaniach i Rozwoju Vol. 5, No. 4/2014 Piotr RYNKOWSKI Politechnika Białostocka, Katedra Ciepłownictwa ul. Wiejska 45E, Białystok E-mail: p.rynkowski@pb.edu.pl Analiza techniczno-ekonomiczna

Bardziej szczegółowo

Metoda Elementów Skończonych. Projekt: COMSOL Multiphysics 3.4.

Metoda Elementów Skończonych. Projekt: COMSOL Multiphysics 3.4. Politechnika Poznańska Metoda Elementów Skończonych Projekt: COMSOL Multiphysics 3.4. Prowadzący: dr hab. Tomasz Stręk Wykonali: Widerowski Karol Wysocki Jacek Wydział: Budowa Maszyn i Zarządzania Kierunek:

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY rkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny KE 013 KO WPISUJE ZJĄY PESEL Miejsce na naklejkę z kodem dysleksja EGZMIN MTURLNY Z MTEMTYKI Instrukcja dla zdającego

Bardziej szczegółowo

Plan wynikowy klasa 3

Plan wynikowy klasa 3 Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji

Bardziej szczegółowo

ANALIZA ROZKŁADU POLA MAGNETYCZNEGO W KADŁUBIE OKRĘTU Z CEWKAMI UKŁADU DEMAGNETYZACYJNEGO

ANALIZA ROZKŁADU POLA MAGNETYCZNEGO W KADŁUBIE OKRĘTU Z CEWKAMI UKŁADU DEMAGNETYZACYJNEGO POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 81 Electrical Engineering 2015 Mirosław WOŁOSZYN* Kazimierz JAKUBIUK* Mateusz FLIS* ANALIZA ROZKŁADU POLA MAGNETYCZNEGO W KADŁUBIE OKRĘTU Z CEWKAMI

Bardziej szczegółowo

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24)

Podstawy Automatyki. wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak. Politechnika Wrocławska. Instytut Technologii Maszyn i Automatyzacji (I-24) Podstawy Automatyki wykład 1 (26.02.2010) mgr inż. Łukasz Dworzak Politechnika Wrocławska Instytut Technologii Maszyn i Automatyzacji (I-24) Laboratorium Podstaw Automatyzacji (L6) 105/2 B1 Sprawy organizacyjne

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I

WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I WYMAGANIA EDUKACYJNE - MATEMATYKA KL. I Ocenę dopuszczającą otrzymuje uczeń, który: 1. Zna pojęcie liczby naturalnej, całkowitej, wymiernej 2. Rozumie rozszerzenie osi liczbowej na liczby ujemne 3. Umie

Bardziej szczegółowo

PRZEBUDOWA II ETAP - ADAPTACJA DZIENNEGO DOMU POMOCY SPOŁECZNEJ NR.4 PROJEKT TERMOIZOLACJI PRZEGRÓD BUDOWLANYCH DZIENNY DOM POMOCY SPOŁECZNEJ NR.

PRZEBUDOWA II ETAP - ADAPTACJA DZIENNEGO DOMU POMOCY SPOŁECZNEJ NR.4 PROJEKT TERMOIZOLACJI PRZEGRÓD BUDOWLANYCH DZIENNY DOM POMOCY SPOŁECZNEJ NR. Projekt: DDPS NR.4 - TERMOZOLACJA PRZEGRÓD Strona 1 PRZEBUDOWA II ETAP - ADAPTACJA DZIENNEGO DOMU POMOCY SPOŁECZNEJ NR.4 Temat: PROJEKT TERMOIZOLACJI PRZEGRÓD BUDOWLANYCH Obiekt: DZIENNY DOM POMOCY SPOŁECZNEJ

Bardziej szczegółowo

Krok 1 Dane ogólne Rys. 1 Dane ogólne

Krok 1 Dane ogólne Rys. 1 Dane ogólne Poniższy przykład ilustruje w jaki sposób można przeprowadzić analizę technicznoekonomiczną zastosowania w budynku jednorodzinnym systemu grzewczego opartego o konwencjonalne źródło ciepła - kocioł gazowy

Bardziej szczegółowo

Ocena stanu ochrony cieplnej budynku.

Ocena stanu ochrony cieplnej budynku. Ocena stanu ochrony cieplnej budynku. Prezentacja audiowizualna opracowana w ramach projektu Nowy Ekspert realizowanego przez Fundację Poszanowania Energii Ochrona cieplna budynku - Jej celem jest zapewnienie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY

PRÓBNY EGZAMIN MATURALNY PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI ZESTAW NR 5508 WYGENEROWANY AUTOMATYCZNIE W SERWISIE WWW.ZADANIA.INFO POZIOM PODSTAWOWY CZAS PRACY: 170 MINUT 1 Zadania zamknięte ZADANIE 1 (1 PKT) Wskaż rysunek,

Bardziej szczegółowo

Sieci obliczeniowe poprawny dobór i modelowanie

Sieci obliczeniowe poprawny dobór i modelowanie Sieci obliczeniowe poprawny dobór i modelowanie 1. Wstęp. Jednym z pierwszych, a zarazem najważniejszym krokiem podczas tworzenia symulacji CFD jest poprawne określenie rozdzielczości, wymiarów oraz ilości

Bardziej szczegółowo

Biuro Projektów ArchiPLUS Ul.Powsta ców 4, 41-400 Mysłowice Tel./fax. (0-32) 223 70 60; 604 197 247

Biuro Projektów ArchiPLUS Ul.Powsta ców 4, 41-400 Mysłowice Tel./fax. (0-32) 223 70 60; 604 197 247 ArchiPLUS 2 Biuro Projektów ArchiPLUS Ul.Powsta ców 4, 41-400 Mysłowice Tel./fax. (0-32) 223 70 60; 604 197 247 PROJEKT INSTALACJI CENTRALNEGO OGRZEWA- NIA W BUDYNKU PRZEPOMPOWNI I. OPIS TECHNICZNY: 1.

Bardziej szczegółowo

Wentylacja i klimatyzacja. Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny)

Wentylacja i klimatyzacja. Inżynieria Środowiska I stopień (I stopień / II stopień) ogólnoakademicki (ogólno akademicki / praktyczny) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Wentylacja i klimatyzacja Nazwa modułu w języku angielskim Ventilation and

Bardziej szczegółowo

Nawiew powietrza do hal basenowych przez nawiewne szyny szczelinowe

Nawiew powietrza do hal basenowych przez nawiewne szyny szczelinowe Nawiew powietrza do hal basenowych przez nawiewne szyny szczelinowe 1. Wstęp Klimatyzacja hali basenu wymaga odpowiedniej wymiany i dystrybucji powietrza, która jest kształtowana przez nawiew oraz wywiew.

Bardziej szczegółowo

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy

Wstęp. Numeryczne Modelowanie Układów Ciągłych Podstawy Metody Elementów Skończonych. Warunki brzegowe. Elementy Wstęp Numeryczne Modeowanie Układów Ciągłych Podstawy Metody Eementów Skończonych Metoda Eementów Skończonych służy do rozwiązywania probemów początkowo-brzegowych, opisywanych równaniami różniczkowymi

Bardziej szczegółowo

Excel - użycie dodatku Solver

Excel - użycie dodatku Solver PWSZ w Głogowie Excel - użycie dodatku Solver Dodatek Solver jest narzędziem używanym do numerycznej optymalizacji nieliniowej (szukanie minimum funkcji) oraz rozwiązywania równań nieliniowych. Przed pierwszym

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Optymalizacja energetyczna okien nowych i wymienianych Część 1

Optymalizacja energetyczna okien nowych i wymienianych Część 1 Optymalizacja energetyczna okien nowych i wymienianych Część 1 Co roku wymienia się w Polsce miliony okien nowe okna mają być cieplejsze i powinny zmniejszać zużycie energii potrzebnej na ogrzanie mieszkań.

Bardziej szczegółowo

OPIS DO INSTALACJI SANITARNYCH

OPIS DO INSTALACJI SANITARNYCH OPIS DO INSTALACJI SANITARNYCH 1. DANE OGÓLNE Inwestycja obejmuje przebudowę i remont budynku OSP w piotrowicach, dla prawidłowego funkcjonowania zaprojektowano wewnętrzne instalację C.O. oraz instalację

Bardziej szczegółowo