Proces Poissona. Wykład Proces zliczajacy

Wielkość: px
Rozpocząć pokaz od strony:

Download "Proces Poissona. Wykład 4. 4.1 Proces zliczajacy"

Transkrypt

1 Wykład 4 roces oissona 4.1 roces zliczajacy roces stochastyczny {N t ;t } nazywamy zliczaj acym, gdy N t jest równe całkowitej ilości zdarzeń które zdarzyły się do momentu t. rzekładami procesów zliczajacychn t s a: 1. ilośćosób, któreweszłydopewnegomagazynuprzedlubwmomenciet; N t oznaczatuwówczasilośćosóbktóreweszłydomagazynu, 2. ilośćosóbktóresięurodziłyprzedlubwokreślonymczasiet,n t oznacza wówczas ilość urodzeń do momentu t. 3. ilość bramek które zgromadził dany piłkarz itd. Zauważmy, że każdy proces zliczajacy musi spełniać następujace warunki (i N t, (ii wartościamin t s a liczby całkowite (iii dlas<t,n t N s równasięilości zdarzeń którezdarzyłysięwprzedziale czasu(s,t>. Uwaga rocesy zliczajaces a czasem nazywane strumieniami zgłoszeń. roces zliczajacy nazywa się procesem o przyrostach niezależnych, jeśli w rozł acznych przedziałach czasu przyrosty procesu sa niezależne. Uwaga W przekładzie 1. prawdopodobnie spełnione jest założenie niezależności przyrostów procesu. Natomiast w przykładzie 2. wydaje się, ze nie jest. Jeśli bowiem N t jest duże to mamy dużo ludzi a to znaczy, że w następnych chwilachwinnobyćdużourodzeńczyli wartośćn t+s N t byłabydużajeślin t jestduże(brakniezależnościodn t. roces zliczajacy ma stacjonarne przyrosty, gdy ilość zdarzeń które zdarzyły się w przedziale czasu (s,t > zależy tylko od długości tego przedziału tj. od wielkościt s. roces zliczajacy {N t ;t } nazywa się pojedynczym jeśli a t > s :(N t N s 1 λ(t s+o( t s, b t > s :(N t N s 2 o( t s. 21

2 22 WYKŁAD 4. ROCES OISSONA Definicja roces zliczajacy{n t ;t }nazywasię,procesemoissonaz intensywnościaλ,gdy: in, ii ma niezależne i stacjonarne przyrosty iii ilość zdarzeń w przedziale o długości t ma rozkład oissona z parametrem λt, tzn. t,s :(N t+s N s ke λt(λtk. k! Twierdzenie roces zliczajacy, pojedynczy o stacjonarnych, niezależnych przyrostach jest procesem oissona. Dowód. Oznaczmy Mamy: g(teexp( vn t. g(t+h Eexp( vn t+h Eexp( vn t Eexp( v(n t+t N t g(teexp( vn h. Wykorzystaliśmy tu niezależność przyrostów i stacjonarność. Mamy dalej: Eexp( vn h E(exp( vn h N h (N h +E(exp( vn h N h 1(N h 1 +E(exp( vn h N h 2(N h 2 1 λh+o 1 (h+e v (λh+o 2 (h+o 3 (h 1 λh+λhe v +o(h. Zatem g(t+h g(t g(tλ ( e v 1 + o(h h h. Niech h. Dostaniemy wówczas: St ad już łatwo dostać: g (tg(tλ ( e v 1. g(texp ( λt ( e v 1. Jest to transformata Laplace a rozkładu oissona z parametrem λt. 4.2 Okresy między zgłoszeniami Niech dany będzie proces oissona {N t ;t } i niech T 1 będzie momentem pierwszego zdarzenia. Dalej niech dla n > T n oznacza czas jaki upłyn ał międzyn 1yman-tymzdarzeniem. Ci ag{t i } i 1 nazywasięci agiem czasów międzyzgłoszeniami(przybyciami. Zauważmy,że{T 1 >t}{n t } (T 1 >t(n t exp( λt.

3 4.3. SUMOWANIE ROCESÓW OISSONA 23 odobniemamy: (T 2 >te((t 2 >t T 1.Ale (T 2 >t T 1 s (brakzdarzeńwprzedziale(s,s+t> T 1 s (brakzdarzeńwprzedziale(s,s+t>exp( λt. W ostatnich równościach wykorzystaliśmy niezależność i stacjonarność. przyrostów. Mamy więc: Stwierdzenie Ciag{T n } n 1 czasówmiędzyprzybyciamistanowi aniezależne zmienne losowe o jednakowych rozkładach wykładniczych ze średnia 1 λ. DalejoznaczmyprzezS n czasprzybycien tegozgłoszenialubinaczejczas oczekiwania na n te zgłoszenie. Łatwo wydedukować, że n S n T i, awięc,żes n marozkładgammazparametraminiλ.innymisłowy,żerozkład S n magęstośćrówn a: f Sn (tλexp( λt (λtn 1 (n 1! ;t. owyższa gęstość można było otrzymać zauważajac, że n te zgłoszenie się zdarzy przed momentem t wtedy i tylko wtedy, gdy ilość zdarzeń przed momentem t była przynajmniej n. Tzn. awięc N t n S n t, F Sn (t + (S n t(n t n St ad różniczkujac po t dostaniemy: f Sn (t λ jn e λt(λtj j! λe λt(λtn 1 (n 1!. + jn jn e λt(λtj. j! λe λt(λtj 1 (j 1! 4.3 Sumowanie procesów oissona Niechdanybędzieprocesoissona{N t ;t }zintensywności aλ.iprzypuśćmy, że każde zdarzenie(zgłoszenie jest klasyfikowane jako I badź II typu. Załóżmy dalej, że zgłoszenie jest klasyfikowane jako typu I lub II z prawdopodobieństwami odpowiednio p i 1 p niezależnie od innych zdarzeń (zgłoszeń. (Na przykład załóżmy, że klienci przebywajadosklepuikażdyznichokazujesiębyć mężczyzna z prawdopodobieństwem 1/2 badźkobiet a z prawdopodobieństwem 1/2. Niech N (1 t i N (2 t oznaczaj a odpowiednio ilości zdarzeń odpowiednio typu I b adź II w czasie [,t]. Zauważmy, że N t N (1 t +N (2 t. Mamy następuj ace stwierdzenie:

4 24 WYKŁAD 4. ROCES OISSONA Stwierdzenie N (1 t in (2 t s a oba procesami oissona o intensywnościach odpowiednioλpiλ(1 p.onadtoprocesytes a niezależne. Dowód. oliczymy prawdopodobieństwo łaczne: N (1 t n,n (2 t m N (1 t n,n (2 t m N t k (N t k. k Zauważmy,żepopierwszeabymogłobyćnzdarzeńtypuIimzdarzeńtypuII winnobyćł acznien+mzdarzeńazatem N (1 t n,n (2 t m ( N (1 t n,n (2 t m N t n+m e λt(λtn+m (n+m!. Zauważmy teraz, że jeśli zdarzyło się ł acznie n+m zdarzeń to ilość zdarzeń typuimiałarozkładdwumianowy(ilośćsukcesówwci agun+mdoświadczeń Bernoulli ego. Zatem Awięc N (1 t n,n (2 t m N t n+m ( n+m n p n (1 p m. N (1 t n,n (2 t m ( n+m n p n (1 p m e λt(λtn+m (n+m! e λpt(λptn n! e λ(1 pt(λ(1 ptm. m! onadto mamy N (1 t n N (1 t n,n (2 t m m e λpt(λptn n! m e λ(1 pt(λ(1 ptm m! e λpt(λptn. n! Widaćzatem,żeN (1 t in (2 t s a niezależnymi procesami oissona. Uwaga4.3.2 To,żeprocesyN 1 in 2 s a oissonowskie nie jest zbyt zastanawiaj ace. Można było się tego spodziewać. Niespodziewany wydaje się być fakt, że procesytes a niezależne.

5 4.4. ROZKŁAD WARUNKOWY CZASÓW RZYBYCIA Rozkład warunkowy czasów przybycia Zacznijmy od czasu przybycia pierwszego zgłoszenia pod warunkiem, że wiadomo,żenaodcinkuczasu[,t]byłojedno. Innymisłowywyznaczymy(T 1 <s N t 1. Dostaniemy wówczas: (T 1 <s N t 1 (T 1<s,N t 1 (N t 1 (1zgłoszeniena (,s izgłoszeńna[s,t] (N t 1 (1zgłoszeniena (,s(zgłoszeńna[s,t] (N t 1 λse λs e λ(t s λte λt s t. Awięcrozkładtenjestjednostajny na odcinku<,t>. Wynik tenmoże być uogólniony. Aby jednak to zrobić trzeba wprowadzić pojęcie statystyk pozycyjnych. Definicja4.4.1 Niech{X 1,...,X n }będziepróbalosow a. Wektorlosowy{Y 1,...,Y n } spełniajacywarunkiy 1 Y 2,..., Y n zprawdopodobieństwemjedeniokreślony następujaco: Y i i-tacodowielkościwartość {X 1,...,X n } nazywamywektoremstatystykpozycyjnychwektora{x 1,...,X n }. Uwaga4.4.2 Wartości współrzędnychwektora{y 1,...,Y n } oznaczamytradycyjnie{x 1:n,...,X n:n }. otrzebujemy także następujacych dwu prostych lematów Lemat4.4.3 Jeślipróba{X 1,...,X n }jestprosta(zmiennelosowe{x i } n s a niezależneiojednakowychrozkładachigęstośćx 1 jestrównaf(x,togęstość ł acznawektorastatystykpozycyjnych{x 1:n,...,X n:n }jestrówna: dlay 1 y 2... y n. g(y 1,...,y n n! n f(y i, Dowód. Zauważmy,żeabyzaobserwowaćX 1:n y 1,...,X n:n y n dowolna z n! permutacji { } X (1,...,X (n zmiennych {X1,...,X n } przyjęła wartości odpowiednio{y 1,...,y n }.onadto ( X (1 (y 1,y 1 +dy 1,...,X (n (y n,y n +dy n n f(y i dy 1,...dy n.

6 26 WYKŁAD 4. ROCES OISSONA Lemat NiechzmiennelosoweS 1,...,S n s ai.i.dimajarozkładu(,t -jednostajny na odcinku<,t >. Wówczas rozkład ł aczny wektora statystyk pozycyjnych(s 1:n,...,S n:n magęstośćrówn a: dlay 1 y 2... y n. g(y 1,...,y n n! tn, (4.4.1 Teraz możemy już udowodnić następujace twierdzenie: Twierdzenie od warunkiem, że N(tn tj. wiadomo iż na odcinku <,t > było n zgłoszeń, momenty zgłoszeń (S 1,...,S n s a rozłożone tak jak statystyki porzadkowe rozkładu łacznego n niezależnych zmiennych losowych o jednakowych rozkładach jednostajnych na odcinku <, t >, tj. f S1,...,S n (s 1,...,s n n! t n;dla<s 1<...,<s n <t. Dowód. Aby dostać gęstość ł aczn a wektora (S 1,...,S n przy warunku N(tnzauważmy,żedla<s 1 <,...,<s n <tzdarzenies 1 s 1,S 2 s 2,...,S n s n,n(tnznaczy,żepierwszychn+1czasówmiędzyzgłoszeniami spełnia T 1 s 1, T 2 s 2 s 2,..., T n s n s n 1, T n+1 > t s n. A więc korzystajac z niezależności czasów między zgłoszeniami mamy f(s 1,...,s n n (T 1s 1,...,T n s n s n 1,T n >t s n (N(tn λe λs1 λe λ(s2 s1...λe λ(sn sn 1 e λ(t sn e λt (λt n /n! n! t n. Uwaga4.4.6 Wyniktenmożnawyrazíctakżewnastępuj acy sposób: od warunkiem, że było ich n, momenty zgłoszeń rozpatrywanie jako nieuporzadkowane zmienne losowe s a niezależne i maj a takie same rozkłady jednostajne na odcinku <,t>. Twierdzenie powyższe może służyć do następujacego uogólnienia Stwierdzenia załóżmy teraz, że po przybyciu każde zdarzenie jest klasyfikowane jako będ ace jednego z k typów, przy czym jeśli zgłoszenie nast apiło w chwili y to będziezakwalifikowanejakotypuizprawdopodobieństwem i (y, k i(y 1.Mamynastępuj ace: Twierdzenie NiechNt;t,,...,koznaczailośćelementówtypu i iktórezgłosiłysięwczasie<,t>.wówczas Nt i s a niezależnymi zmiennymi oissona z wartościami oczekiwanymi odpowiednio: EN i t λ t i (sds.

7 4.4. ROZKŁAD WARUNKOWY CZASÓW RZYBYCIA 27 Dowód. Obliczmy łaczneprawdopodobieństwo Nt 1 n 1,...,Nt k n k. Mamy ( Nt 1 n 1,...,Nt k n k ( k k Nt 1 n 1,...,Nt k n k N t n i N t n i. Rozważmy terazdowolnezgłoszenie,którezdarzyłosięwmomencie<,t>. Jeśli zdarzyło się w momencie s, wówczas prawdopodobieństwo, że byłoby typu i wynosiłoby i (s.zatemnapodstawietwierdzenia4.4.7wynika,żezgłoszenie to przybyłoby wjednostajnierozłożonymna odcinku<,t>momencies. A więc prawdopodobieństwo, że zdarzenie to będzie typu i wynosi: p i 1 t niezależnie od innych zdarzeń. A więc ( t i (sds, N 1 t n 1,...,N k t n k N t N 1 t n 1,...,N k t n k N t k n i k n i marozkładwielomianowyzn i elementamitypuiiprawdopodobieństwamizajściap 1,...,p k,.czyli (! Awięc Nt 1 n 1,...,Nt k n k! ( k n i k n i! k p n i k [e λtpi(λtp i ni n i! i e λt(λt k ]. ( k n i k n i! ni ( k n i! k p ni i To twierdzenie zilustrujemy ciekawym nietypowym przykładem. rzykład (Minimalizacja liczby wyprzedzeń: Załóżmy, że samochody wjeżdżaja na jednokierunkowa drogę zgodnie z rozkładem oissona o intensywności λ.wjeżdżajaonewpunkcieaawyjeżdżaj awpunkcieb.każdysamochód jedziezestał a prędkościaustalan a niezależnie dla każdego samochodu zgodnie z rozkładem G. Gdy szybszy samochód spotyka wolniejszy wyprzedza go bez starty czasu. Jeśli samochód wjeżdża na rozważana drogę w momencie s i ty masz możliwość wybrania prędkości, to jaka prędkość byś wybrał aby zminimalizować średnia liczbę spodziewanych spotkań z innym samochodami. rzez spotkanie rozumiemy wydarzenie gdy nasz samochód wyprzedza badź jest wyprzedzany przez inny samochód.

8 28 WYKŁAD 4. ROCES OISSONA Rozwiazanie: okażemy, że dla dużych s, prędkościa która minimalizuje spodziewana ilość spotkań jest mediana rozkładu G. Aby to zobaczyć przypuśćmy, żewybralísmyprędkośćx.niechdb a oznaczadługośćdrogi. Wmomencie wyboru prędkości x, wynika, że twój samochód wjedzie na drogę w momencie s awyjedziewmomencies+t,gdziet d/xjestczasempodróży. rzypominamy, że inne samochody wjeżdżajanadrogęzgodniezrozkłademois- sona o intensywności λ. Każdy z nich wybiera prędkość X zgodnie z rozkładem G. SkutkujetoczasemprzejazduT d/x. NieF oznaczarozkładczasupodróży T. Tzn. F(t(T <t(d/x<t(x>d/tḡ(d/t. (gdzieoznaczylísmyprzez F(t1 F(togonrozkładuF owiemy, ze zdarzenie zdarzyło się w momencie t jeśli samochód wjeżdża na drogęwmomenciet. odobniepowiemy,żezdarzeniejesttypu1jeśliwwyniku zdarzy się spotkanie z twoim samochodem. Twój samochód wjeżdża w momencie s i wyjedzie w momencie s+t. Zatem samochód spotka twój samochód jeśli wjedzieprzedmomentemsawyjedziepos+t (wtymostatnimprzypadkutwój samochód wyprzedzi ten samochód na drodze lub jeśli wjedzie po momencie s ale wyjedzie przed momentem s+t (w tym wypadku ten samochód wyprzedzi twój. W rezultacie samochód który wjeżdża na drogę w momencie t spotka twój samochódjeślijegoczaspodróżyt jesttaki,że t+t >s+t gdy t<s t+t <s+t gdy s<t<s+t Z poprzednich rozważań widzimy, że w momencie t będzie, niezależnie od innych wydarzeń, będzie typu 1 z prawdopodobieństwem p(t danym przez: (t+t >s+t F(s+t t gdy t<s p(t (t+t <s+t F(s+t t gdy s<t<s+t gdy t>s>t Zakładajac, że zdarzenia (tzn. samochody wjeżdżajace na drogę zdarzaj a się zgodnie z rozkładem oissona to wnioskujemy, że, stosujac Twierdzenie 4.4.7, że całkowita liczba wydarzeń typu 1 które się zdarzyły ma też rozkład oissona ośredniej s s+t λ p(tdt λ F(s+t tdt+λ F(s+t tdt λ s+t t t F(ydy+λ F(ydy Abywybraćwartośćt któraminimalizujepowyższ a wielkość zróżniczkujmy ja. Dostaniemy wówczas ( d s+t t λ F(ydy+λ F(ydy λ ( F(s+t dt F(t +F(t. t rzyrównujactęwielkośćdo,iwykorzystuj ac,żef(s+t gdysjestduże, widzimy,żeoptymalnyczasprzejazdut danyjestzależności a F(t F(t 1 F(t

9 4.4. ROZKŁAD WARUNKOWY CZASÓW RZYBYCIA 29 lub F(t 1 2. Zatem optymalny czas przejazdu jest mediana rozkładu czasu przejazdu. Skoro prędkość X jest równa odległości d podzielonej przez czas przejazdu T, wnosimy stadżeoptymalnaprędkośćx d/t jesttaka,żef(d/x 1 2.Skoro F(d/x Ḡ(x widzimyżeg(x 1 2, awięcoptymalnaprędkośćjestmedian arozkładuprędkości. odsumowujac wykazalísmy, że dla dowolnej prędkości x ilość spotkań z innymi samochodami ma rozkład oissona, a średnia tego rozkładu będzie równa najmniejszagdyprędkośćszostaławybranatakabybyłamedian a rozkładu G.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

4 Kilka klas procesów

4 Kilka klas procesów Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces

Bardziej szczegółowo

O ŚREDNIEJ STATYSTYCZNEJ

O ŚREDNIEJ STATYSTYCZNEJ O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla Młodych Matematyków Rachunek Prawdopodobieństwa i Statystyka Kraków, 20 26 IX 2009 r. WYNIKI OBSERWACJI X 1, X 2,..., X n WYNIKI

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Eleenty odelowania ateatycznego Systey kolejkowe. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ RZYKŁAD KOLEJKI N(t) długość kolejki w chwili t T i czas obsługi i-tego klienta Do okienka

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

1. Przyszła długość życia x-latka

1. Przyszła długość życia x-latka Przyszła długość życia x-latka Rozważmy osobę mającą x lat; oznaczenie: (x) Jej przyszłą długość życia oznaczymy T (x), lub krótko T Zatem x+t oznacza całkowitą długość życia T jest zmienną losową, której

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w całej populacji wynoszą p 2, 2pq i q 2. Wiadomo, że czynnik selekcyjny sprawia, że osobniki o genotypie aa nie rozmnażają się. 1. Wyznacz częstości

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Modelowanie komputerowe

Modelowanie komputerowe Modelowanie komputerowe wykład 5- Klasyczne systemy kolejkowe i ich analiza dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 16,23listopada2015r. Analiza

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Granica funkcji wykład 4

Granica funkcji wykład 4 Granica funkcji wykład 4 dr Mariusz Grządziel 27 października 2008 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Matematyka ubezpieczeń majątkowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Komisja

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka Biomatematyka 80...... Zadanie 1. (8 punktów) Rozpatrzmy prawo Hardy ego Weinberga dla loci związanej z chromosomem X o dwóch allelach A 1 i A 2. Załóżmy, że początkowa częstość allelu A 2 u kobiet jest

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Analiza przeżycia. Wprowadzenie

Analiza przeżycia. Wprowadzenie Wprowadzenie Przedmiotem badania analizy przeżycia jest czas jaki upływa od początku obserwacji do wystąpienia określonego zdarzenia, które jednoznacznie kończy obserwację na danej jednostce. Analiza przeżycia

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Koszyki OECD. Metodologia porównywania taryf telekomunikacyjnych. Zagadnienia prawne i ekonomiczne w telekomunikacji

Koszyki OECD. Metodologia porównywania taryf telekomunikacyjnych. Zagadnienia prawne i ekonomiczne w telekomunikacji ZAGADNIENIA PRAWNE i EKONOMICZNE w TELEKOMUNIKACJI Dr inż. Jerzy Kubasik Politechnika Poznańska Instytut Elektroniki i Telekomunikacji Zagadnienia prawne i ekonomiczne w telekomunikacji Wykład XI-XII:

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Formy kwadratowe. Rozdział 10

Formy kwadratowe. Rozdział 10 Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,0,3,3) jest optymalnym rozwiązaniem zagadnienia programowania liniowego: Zminimalizować 8x 1 +5x 2 +3x 3 +4x 4, przy ograniczeniach

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

Granica funkcji. 27 grudnia Granica funkcji

Granica funkcji. 27 grudnia Granica funkcji 27 grudnia 2011 Punkty skupienia Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < 0. Zbiór punktów skupienia zbioru D oznaczamy

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka

Bardziej szczegółowo

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej: Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: F (t) P (X t) < t < Własności dystrybuanty zmiennej losowej: jest niemalejąca: 0 F (t) jest prawostronnie

Bardziej szczegółowo

Działanie grupy na zbiorze

Działanie grupy na zbiorze Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Elżbieta Krajewska Instytut Matematyki Politechnika Łódzka Elżbieta Krajewska Immunizacja ubezpieczycieli życiowych 1/22 Plan prezentacji

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i )

Rachunek prawdopodobieństwa - Teoria - Przypomnienie.. A i B są niezależne, gdy P(A B) = P(A)P(B). P(A B i )P(B i ) Rachunek prawdopodobieństwa - Teoria - Przypomnienie Podstawy Definicja 1. Schemat klasyczny - wszystkie zdarzenia elementarne są równo prawdopodobne, licząc prawdopodobieństwo liczymy stosunek liczby

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne.

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne. Wykład Prawdopodobieństwo warunkowe Dwukrotny rzut symetryczną monetą Ω {OO, OR, RO, RR}. Zdarzenia: Awypadną dwa orły, Bw pierwszym rzucie orzeł. P (A) 1 4, 1. Jeżeli już wykonaliśmy pierwszy rzut i wiemy,

Bardziej szczegółowo

Finansowe szeregi czasowe

Finansowe szeregi czasowe 24 kwietnia 2009 Modelem szeregu czasowego jest proces stochastyczny (X t ) t Z, czyli rodzina zmiennych losowych, indeksowanych liczbami całkowitymi i zdefiniowanych na pewnej przestrzeni probabilistycznej

Bardziej szczegółowo

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3 Analiza Algorytmów Informatyka, WPPT, Politechnika Wroclawska 1 Zadania teoretyczne (ćwiczenia) Zadanie 1 Niech k będzie dodatnią liczbą całkowitą. Rozważ następującą zmienną losową Pr[X = k] = (6/π 2

Bardziej szczegółowo

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut. Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Bardziej szczegółowo

W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule.

W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule. W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule. Jeśli obie wylosowane kule są tego samego koloru to zwycięża G

Bardziej szczegółowo

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję. Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski

Funkcje charakteryzujące proces. Dr inż. Robert Jakubowski Funkcje charakteryzujące proces eksploatacji Dr inż. Robert Jakubowski Niezawodność Niezawodność Rprawdopodobieństwo, że w przedziale czasu od do t cechy funkcjonalne statku powietrznego Ubędą się mieścić

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas:

b) Niech: - wśród trzech wylosowanych opakowań jest co najwyżej jedno o dawce 15 mg. Wówczas: ROZWIĄZANIA I ODPOWIEDZI Zadanie A1. Można założyć, że przy losowaniu trzech kul jednocześnie kolejność ich wylosowania nie jest istotna. A więc: Ω = 20 3. a) Niech: - wśród trzech wylosowanych opakowań

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

Działania na przekształceniach liniowych i macierzach

Działania na przekształceniach liniowych i macierzach Działania na przekształceniach liniowych i macierzach Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 5 wykład z algebry liniowej Warszawa, listopad 2013 Mirosław Sobolewski (UW) Warszawa,

Bardziej szczegółowo

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy

istocie dziedzina zajmująca się poszukiwaniem zależności na podstawie prowadzenia doświadczeń jest o wiele starsza: tak na przykład matematycy MODEL REGRESJI LINIOWEJ. METODA NAJMNIEJSZYCH KWADRATÓW Analiza regresji zajmuje się badaniem zależności pomiędzy interesującymi nas wielkościami (zmiennymi), mające na celu konstrukcję modelu, który dobrze

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 23.09.2008 Biomatematyka Biomatematyka W 200-elementowej próbie losowej z diploidalnej populacji wystąpiło 89 osobników genotypu AA, 57 osobników genotypu Aa oraz 54 osobników genotypu aa. Na podstawie tych danych (a) dokonaj

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

1 Ciągłe operatory liniowe

1 Ciągłe operatory liniowe 1 Ciągłe operatory liniowe Załóżmy, że E, F są przestrzeniami unormowanymi. Definicja 1.1. Operator liniowy T : E F nazywamy ograniczonym, jeżeli zbiór T (B) F jest ograniczony dla dowolnego zbioru ograniczonego

Bardziej szczegółowo

Rozwiązanie Ad 1. Model zadania jest następujący:

Rozwiązanie Ad 1. Model zadania jest następujący: Przykład. Hodowca drobiu musi uzupełnić zawartość dwóch składników odżywczych (A i B) w produktach, które kupuje. Rozważa cztery mieszanki: M : M, M i M. Zawartość składników odżywczych w poszczególnych

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

1 Zmienne losowe wielowymiarowe.

1 Zmienne losowe wielowymiarowe. 1 Zmienne losowe wielowymiarowe. 1.1 Definicja i przykłady. Definicja1.1. Wektorem losowym n-wymiarowym(zmienna losowa n-wymiarowa )nazywamywektorn-wymiarowy,któregoskładowymisązmiennelosowex i dlai=1,,...,n,

Bardziej szczegółowo

Klasyfikacja metodą Bayesa

Klasyfikacja metodą Bayesa Klasyfikacja metodą Bayesa Tadeusz Pankowski www.put.poznan.pl/~tadeusz.pankowski warunkowe i bezwarunkowe 1. Klasyfikacja Bayesowska jest klasyfikacją statystyczną. Pozwala przewidzieć prawdopodobieństwo

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a

Bardziej szczegółowo

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ).

Jak łatwo zauważyć, zbiór form symetrycznych (podobnie antysymetrycznych) stanowi podprzestrzeń przestrzeni L(V, V, K). Oznaczamy ją Sym(V ). Odwzorowania n-liniowe; formy n-liniowe Definicja 1 Niech V 1,..., V n, U będą przestrzeniami liniowymi nad ciałem K. Odwzorowanie G: V 1 V n U nazywamy n-liniowym, jeśli dla każdego k [n] i wszelkich

Bardziej szczegółowo

Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013

Iloczyn skalarny. Mirosław Sobolewski. Wydział Matematyki, Informatyki i Mechaniki UW. 10. wykład z algebry liniowej Warszawa, grudzień 2013 Iloczyn skalarny Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 10. wykład z algebry liniowej Warszawa, grudzień 2013 Mirosław Sobolewski (UW) Warszawa, grudzień 2013 1 / 14 Standardowy

Bardziej szczegółowo

Sympozjum Trwałość Budowli

Sympozjum Trwałość Budowli Sympozjum Trwałość Budowli Andrzej ownuk ROJEKTOWANIE UKŁADÓW Z NIEEWNYMI ARAMETRAMI Zakład Mechaniki Teoretycznej olitechnika Śląska pownuk@zeus.polsl.gliwice.pl URL: http://zeus.polsl.gliwice.pl/~pownuk

Bardziej szczegółowo

Propozycje rozwiązań zadań z matematyki - matura rozszerzona

Propozycje rozwiązań zadań z matematyki - matura rozszerzona Jacek Kredenc Propozycje rozwiązań zadań z matematyki - matura rozszerzona Zadanie 1 Zastosujmy trójkąt Paskala 1 1 1 1 2 1 1 3 3 1 Przy iloczynie będzie stał współczynnik 3. Zatem Odpowiedź : C Zadanie

Bardziej szczegółowo

6. Granica funkcji. Funkcje ciągłe.

6. Granica funkcji. Funkcje ciągłe. 6. Granica funkcji. Funkcje ciągłe. 6.1. Sformułować definicję w sensie Heinego granicy (właściwej) funkcji w punkcie (właściwym). Podać ilustrację graficzną w różnych sytuacjach. Definicja Heinego granicy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZĘCIA EGZAMINU! Miejsce na naklejkę MMA-R_P-08 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 008 Czas pracy 80 minut Instrukcja

Bardziej szczegółowo

LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r.

LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe

Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Statystyka i opracowanie danych W4 Rozkład normalny Parametry rozkładu zmiennej losowej Zmienne losowe wielowymiarowe Dr Anna ADRIAN Paw B5, pok407 adan@agh.edu.pl Rozkład normalny wykres funkcji gęstości

Bardziej szczegółowo

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4.

Testowanie hipotez. Hipoteza prosta zawiera jeden element, np. H 0 : θ = 2, hipoteza złożona zawiera więcej niż jeden element, np. H 0 : θ > 4. Testowanie hipotez Niech X = (X 1... X n ) będzie próbą losową na przestrzeni X zaś P = {P θ θ Θ} rodziną rozkładów prawdopodobieństwa określonych na przestrzeni próby X. Definicja 1. Hipotezą zerową Θ

Bardziej szczegółowo

Granica funkcji. 16 grudnia Wykład 5

Granica funkcji. 16 grudnia Wykład 5 Granica funkcji 16 grudnia 2010 Tw. o trzech funkcjach Twierdzenie Niech f, g, h : R D R będa funkcjami takimi, że lim f (x) = lim h(x), x x 0 x x0 gdzie x 0 D. Jeżeli istnieje otoczenie punktu x 0 w którym

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Marek Ptak 21 października 2013 Marek Ptak Statystyka 21 października 2013 1 / 70 Część I Wstęp Marek Ptak Statystyka 21 października 2013 2 / 70 LITERATURA A. Łomnicki, Wprowadzenie

Bardziej szczegółowo

Matematyka 2. dr inż. Rajmund Stasiewicz

Matematyka 2. dr inż. Rajmund Stasiewicz Matematyka 2 dr inż. Rajmund Stasiewicz Skala ocen Punkty Ocena 0 50 2,0 51 60 3,0 61 70 3,5 71 80 4,0 81 90 4,5 91-5,0 Zwolnienie z egzaminu Ocena z egzaminu liczba punktów z ćwiczeń - 5 Warunki zaliczenia

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

Priorytetowy system obsługi zgłoszeń niejednorodnych z mechanizmem odrzucania pakietów opartym o AQM

Priorytetowy system obsługi zgłoszeń niejednorodnych z mechanizmem odrzucania pakietów opartym o AQM Priorytetowy system obsługi zgłoszeń niejednorodnych z mechanizmem odrzucania pakietów opartym o AQM prof. dr hab. Oleg Tikhonenko, dr Marcin Ziółkowski, mgr inż. Jacek Małek Instytut Matematyki, Politechnika

Bardziej szczegółowo

1. Ubezpieczenia życiowe

1. Ubezpieczenia życiowe 1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas

Bardziej szczegółowo

Finanse i Rachunkowość studia stacjonarne lista nr 9 zastosowania metod teorii funkcji rzeczywistych w ekonomii (część II)

Finanse i Rachunkowość studia stacjonarne lista nr 9 zastosowania metod teorii funkcji rzeczywistych w ekonomii (część II) dr inż. Ryszard Rębowski 1 FUNKCJA KOSZTU Finanse i Rachunkowość studia stacjonarne lista nr 9 zastosowania metod teorii funkcji rzeczywistych w ekonomii (część II) 1 Funkcja kosztu Z podstaw mikroekonomii

Bardziej szczegółowo

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.)

Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. 2 godz. = 76 godz.) Rozkład materiału z matematyki dla II klasy technikum zakres podstawowy I wariant (38 tyg. godz. = 76 godz.) I. Funkcja i jej własności.4godz. II. Przekształcenia wykresów funkcji...9 godz. III. Funkcja

Bardziej szczegółowo

XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r.

XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut Warszawa, 6

Bardziej szczegółowo

Granica funkcji. 8 listopada Wykład 4

Granica funkcji. 8 listopada Wykład 4 Granica funkcji 8 listopada 2011 Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < δ. Zbiór punktów skupienia zbioru D oznaczamy

Bardziej szczegółowo

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN

Bardziej szczegółowo

Kombinacje liniowe wektorów.

Kombinacje liniowe wektorów. Kombinacje liniowe wektorów Definicja: Niech V będzie przestrzenią liniową nad ciałem F, niech A V Zbiór wektorów A nazywamy liniowo niezależnym, jeżeli m N v,, v m A a,, a m F [a v + + a m v m = θ a =

Bardziej szczegółowo

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii

Plan wykładu. Statystyka opisowa. Statystyka matematyczna. Dane statystyczne miary położenia miary rozproszenia miary asymetrii Plan wykładu Statystyka opisowa Dane statystyczne miary położenia miary rozproszenia miary asymetrii Statystyka matematyczna Podstawy estymacji Testowanie hipotez statystycznych Żródła Korzystałam z ksiażek:

Bardziej szczegółowo

Ach te trójkąty, czyli dwa interesujące twierdzenia i mnóstwo przemyśleń.

Ach te trójkąty, czyli dwa interesujące twierdzenia i mnóstwo przemyśleń. Ach te trójkąty, czyli dwa interesujące twierdzenia i mnóstwo przemyśleń. Justyna Stefaniak V Liceum Ogólnokształcące Spis treści: 1. Twierdzenie Harcourt a 2. Dowód twierdzenia Harcourt a 3. Twierdzenie

Bardziej szczegółowo