Proces Poissona. Wykład Proces zliczajacy

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Proces Poissona. Wykład 4. 4.1 Proces zliczajacy"

Transkrypt

1 Wykład 4 roces oissona 4.1 roces zliczajacy roces stochastyczny {N t ;t } nazywamy zliczaj acym, gdy N t jest równe całkowitej ilości zdarzeń które zdarzyły się do momentu t. rzekładami procesów zliczajacychn t s a: 1. ilośćosób, któreweszłydopewnegomagazynuprzedlubwmomenciet; N t oznaczatuwówczasilośćosóbktóreweszłydomagazynu, 2. ilośćosóbktóresięurodziłyprzedlubwokreślonymczasiet,n t oznacza wówczas ilość urodzeń do momentu t. 3. ilość bramek które zgromadził dany piłkarz itd. Zauważmy, że każdy proces zliczajacy musi spełniać następujace warunki (i N t, (ii wartościamin t s a liczby całkowite (iii dlas<t,n t N s równasięilości zdarzeń którezdarzyłysięwprzedziale czasu(s,t>. Uwaga rocesy zliczajaces a czasem nazywane strumieniami zgłoszeń. roces zliczajacy nazywa się procesem o przyrostach niezależnych, jeśli w rozł acznych przedziałach czasu przyrosty procesu sa niezależne. Uwaga W przekładzie 1. prawdopodobnie spełnione jest założenie niezależności przyrostów procesu. Natomiast w przykładzie 2. wydaje się, ze nie jest. Jeśli bowiem N t jest duże to mamy dużo ludzi a to znaczy, że w następnych chwilachwinnobyćdużourodzeńczyli wartośćn t+s N t byłabydużajeślin t jestduże(brakniezależnościodn t. roces zliczajacy ma stacjonarne przyrosty, gdy ilość zdarzeń które zdarzyły się w przedziale czasu (s,t > zależy tylko od długości tego przedziału tj. od wielkościt s. roces zliczajacy {N t ;t } nazywa się pojedynczym jeśli a t > s :(N t N s 1 λ(t s+o( t s, b t > s :(N t N s 2 o( t s. 21

2 22 WYKŁAD 4. ROCES OISSONA Definicja roces zliczajacy{n t ;t }nazywasię,procesemoissonaz intensywnościaλ,gdy: in, ii ma niezależne i stacjonarne przyrosty iii ilość zdarzeń w przedziale o długości t ma rozkład oissona z parametrem λt, tzn. t,s :(N t+s N s ke λt(λtk. k! Twierdzenie roces zliczajacy, pojedynczy o stacjonarnych, niezależnych przyrostach jest procesem oissona. Dowód. Oznaczmy Mamy: g(teexp( vn t. g(t+h Eexp( vn t+h Eexp( vn t Eexp( v(n t+t N t g(teexp( vn h. Wykorzystaliśmy tu niezależność przyrostów i stacjonarność. Mamy dalej: Eexp( vn h E(exp( vn h N h (N h +E(exp( vn h N h 1(N h 1 +E(exp( vn h N h 2(N h 2 1 λh+o 1 (h+e v (λh+o 2 (h+o 3 (h 1 λh+λhe v +o(h. Zatem g(t+h g(t g(tλ ( e v 1 + o(h h h. Niech h. Dostaniemy wówczas: St ad już łatwo dostać: g (tg(tλ ( e v 1. g(texp ( λt ( e v 1. Jest to transformata Laplace a rozkładu oissona z parametrem λt. 4.2 Okresy między zgłoszeniami Niech dany będzie proces oissona {N t ;t } i niech T 1 będzie momentem pierwszego zdarzenia. Dalej niech dla n > T n oznacza czas jaki upłyn ał międzyn 1yman-tymzdarzeniem. Ci ag{t i } i 1 nazywasięci agiem czasów międzyzgłoszeniami(przybyciami. Zauważmy,że{T 1 >t}{n t } (T 1 >t(n t exp( λt.

3 4.3. SUMOWANIE ROCESÓW OISSONA 23 odobniemamy: (T 2 >te((t 2 >t T 1.Ale (T 2 >t T 1 s (brakzdarzeńwprzedziale(s,s+t> T 1 s (brakzdarzeńwprzedziale(s,s+t>exp( λt. W ostatnich równościach wykorzystaliśmy niezależność i stacjonarność. przyrostów. Mamy więc: Stwierdzenie Ciag{T n } n 1 czasówmiędzyprzybyciamistanowi aniezależne zmienne losowe o jednakowych rozkładach wykładniczych ze średnia 1 λ. DalejoznaczmyprzezS n czasprzybycien tegozgłoszenialubinaczejczas oczekiwania na n te zgłoszenie. Łatwo wydedukować, że n S n T i, awięc,żes n marozkładgammazparametraminiλ.innymisłowy,żerozkład S n magęstośćrówn a: f Sn (tλexp( λt (λtn 1 (n 1! ;t. owyższa gęstość można było otrzymać zauważajac, że n te zgłoszenie się zdarzy przed momentem t wtedy i tylko wtedy, gdy ilość zdarzeń przed momentem t była przynajmniej n. Tzn. awięc N t n S n t, F Sn (t + (S n t(n t n St ad różniczkujac po t dostaniemy: f Sn (t λ jn e λt(λtj j! λe λt(λtn 1 (n 1!. + jn jn e λt(λtj. j! λe λt(λtj 1 (j 1! 4.3 Sumowanie procesów oissona Niechdanybędzieprocesoissona{N t ;t }zintensywności aλ.iprzypuśćmy, że każde zdarzenie(zgłoszenie jest klasyfikowane jako I badź II typu. Załóżmy dalej, że zgłoszenie jest klasyfikowane jako typu I lub II z prawdopodobieństwami odpowiednio p i 1 p niezależnie od innych zdarzeń (zgłoszeń. (Na przykład załóżmy, że klienci przebywajadosklepuikażdyznichokazujesiębyć mężczyzna z prawdopodobieństwem 1/2 badźkobiet a z prawdopodobieństwem 1/2. Niech N (1 t i N (2 t oznaczaj a odpowiednio ilości zdarzeń odpowiednio typu I b adź II w czasie [,t]. Zauważmy, że N t N (1 t +N (2 t. Mamy następuj ace stwierdzenie:

4 24 WYKŁAD 4. ROCES OISSONA Stwierdzenie N (1 t in (2 t s a oba procesami oissona o intensywnościach odpowiednioλpiλ(1 p.onadtoprocesytes a niezależne. Dowód. oliczymy prawdopodobieństwo łaczne: N (1 t n,n (2 t m N (1 t n,n (2 t m N t k (N t k. k Zauważmy,żepopierwszeabymogłobyćnzdarzeńtypuIimzdarzeńtypuII winnobyćł acznien+mzdarzeńazatem N (1 t n,n (2 t m ( N (1 t n,n (2 t m N t n+m e λt(λtn+m (n+m!. Zauważmy teraz, że jeśli zdarzyło się ł acznie n+m zdarzeń to ilość zdarzeń typuimiałarozkładdwumianowy(ilośćsukcesówwci agun+mdoświadczeń Bernoulli ego. Zatem Awięc N (1 t n,n (2 t m N t n+m ( n+m n p n (1 p m. N (1 t n,n (2 t m ( n+m n p n (1 p m e λt(λtn+m (n+m! e λpt(λptn n! e λ(1 pt(λ(1 ptm. m! onadto mamy N (1 t n N (1 t n,n (2 t m m e λpt(λptn n! m e λ(1 pt(λ(1 ptm m! e λpt(λptn. n! Widaćzatem,żeN (1 t in (2 t s a niezależnymi procesami oissona. Uwaga4.3.2 To,żeprocesyN 1 in 2 s a oissonowskie nie jest zbyt zastanawiaj ace. Można było się tego spodziewać. Niespodziewany wydaje się być fakt, że procesytes a niezależne.

5 4.4. ROZKŁAD WARUNKOWY CZASÓW RZYBYCIA Rozkład warunkowy czasów przybycia Zacznijmy od czasu przybycia pierwszego zgłoszenia pod warunkiem, że wiadomo,żenaodcinkuczasu[,t]byłojedno. Innymisłowywyznaczymy(T 1 <s N t 1. Dostaniemy wówczas: (T 1 <s N t 1 (T 1<s,N t 1 (N t 1 (1zgłoszeniena (,s izgłoszeńna[s,t] (N t 1 (1zgłoszeniena (,s(zgłoszeńna[s,t] (N t 1 λse λs e λ(t s λte λt s t. Awięcrozkładtenjestjednostajny na odcinku<,t>. Wynik tenmoże być uogólniony. Aby jednak to zrobić trzeba wprowadzić pojęcie statystyk pozycyjnych. Definicja4.4.1 Niech{X 1,...,X n }będziepróbalosow a. Wektorlosowy{Y 1,...,Y n } spełniajacywarunkiy 1 Y 2,..., Y n zprawdopodobieństwemjedeniokreślony następujaco: Y i i-tacodowielkościwartość {X 1,...,X n } nazywamywektoremstatystykpozycyjnychwektora{x 1,...,X n }. Uwaga4.4.2 Wartości współrzędnychwektora{y 1,...,Y n } oznaczamytradycyjnie{x 1:n,...,X n:n }. otrzebujemy także następujacych dwu prostych lematów Lemat4.4.3 Jeślipróba{X 1,...,X n }jestprosta(zmiennelosowe{x i } n s a niezależneiojednakowychrozkładachigęstośćx 1 jestrównaf(x,togęstość ł acznawektorastatystykpozycyjnych{x 1:n,...,X n:n }jestrówna: dlay 1 y 2... y n. g(y 1,...,y n n! n f(y i, Dowód. Zauważmy,żeabyzaobserwowaćX 1:n y 1,...,X n:n y n dowolna z n! permutacji { } X (1,...,X (n zmiennych {X1,...,X n } przyjęła wartości odpowiednio{y 1,...,y n }.onadto ( X (1 (y 1,y 1 +dy 1,...,X (n (y n,y n +dy n n f(y i dy 1,...dy n.

6 26 WYKŁAD 4. ROCES OISSONA Lemat NiechzmiennelosoweS 1,...,S n s ai.i.dimajarozkładu(,t -jednostajny na odcinku<,t >. Wówczas rozkład ł aczny wektora statystyk pozycyjnych(s 1:n,...,S n:n magęstośćrówn a: dlay 1 y 2... y n. g(y 1,...,y n n! tn, (4.4.1 Teraz możemy już udowodnić następujace twierdzenie: Twierdzenie od warunkiem, że N(tn tj. wiadomo iż na odcinku <,t > było n zgłoszeń, momenty zgłoszeń (S 1,...,S n s a rozłożone tak jak statystyki porzadkowe rozkładu łacznego n niezależnych zmiennych losowych o jednakowych rozkładach jednostajnych na odcinku <, t >, tj. f S1,...,S n (s 1,...,s n n! t n;dla<s 1<...,<s n <t. Dowód. Aby dostać gęstość ł aczn a wektora (S 1,...,S n przy warunku N(tnzauważmy,żedla<s 1 <,...,<s n <tzdarzenies 1 s 1,S 2 s 2,...,S n s n,n(tnznaczy,żepierwszychn+1czasówmiędzyzgłoszeniami spełnia T 1 s 1, T 2 s 2 s 2,..., T n s n s n 1, T n+1 > t s n. A więc korzystajac z niezależności czasów między zgłoszeniami mamy f(s 1,...,s n n (T 1s 1,...,T n s n s n 1,T n >t s n (N(tn λe λs1 λe λ(s2 s1...λe λ(sn sn 1 e λ(t sn e λt (λt n /n! n! t n. Uwaga4.4.6 Wyniktenmożnawyrazíctakżewnastępuj acy sposób: od warunkiem, że było ich n, momenty zgłoszeń rozpatrywanie jako nieuporzadkowane zmienne losowe s a niezależne i maj a takie same rozkłady jednostajne na odcinku <,t>. Twierdzenie powyższe może służyć do następujacego uogólnienia Stwierdzenia załóżmy teraz, że po przybyciu każde zdarzenie jest klasyfikowane jako będ ace jednego z k typów, przy czym jeśli zgłoszenie nast apiło w chwili y to będziezakwalifikowanejakotypuizprawdopodobieństwem i (y, k i(y 1.Mamynastępuj ace: Twierdzenie NiechNt;t,,...,koznaczailośćelementówtypu i iktórezgłosiłysięwczasie<,t>.wówczas Nt i s a niezależnymi zmiennymi oissona z wartościami oczekiwanymi odpowiednio: EN i t λ t i (sds.

7 4.4. ROZKŁAD WARUNKOWY CZASÓW RZYBYCIA 27 Dowód. Obliczmy łaczneprawdopodobieństwo Nt 1 n 1,...,Nt k n k. Mamy ( Nt 1 n 1,...,Nt k n k ( k k Nt 1 n 1,...,Nt k n k N t n i N t n i. Rozważmy terazdowolnezgłoszenie,którezdarzyłosięwmomencie<,t>. Jeśli zdarzyło się w momencie s, wówczas prawdopodobieństwo, że byłoby typu i wynosiłoby i (s.zatemnapodstawietwierdzenia4.4.7wynika,żezgłoszenie to przybyłoby wjednostajnierozłożonymna odcinku<,t>momencies. A więc prawdopodobieństwo, że zdarzenie to będzie typu i wynosi: p i 1 t niezależnie od innych zdarzeń. A więc ( t i (sds, N 1 t n 1,...,N k t n k N t N 1 t n 1,...,N k t n k N t k n i k n i marozkładwielomianowyzn i elementamitypuiiprawdopodobieństwamizajściap 1,...,p k,.czyli (! Awięc Nt 1 n 1,...,Nt k n k! ( k n i k n i! k p n i k [e λtpi(λtp i ni n i! i e λt(λt k ]. ( k n i k n i! ni ( k n i! k p ni i To twierdzenie zilustrujemy ciekawym nietypowym przykładem. rzykład (Minimalizacja liczby wyprzedzeń: Załóżmy, że samochody wjeżdżaja na jednokierunkowa drogę zgodnie z rozkładem oissona o intensywności λ.wjeżdżajaonewpunkcieaawyjeżdżaj awpunkcieb.każdysamochód jedziezestał a prędkościaustalan a niezależnie dla każdego samochodu zgodnie z rozkładem G. Gdy szybszy samochód spotyka wolniejszy wyprzedza go bez starty czasu. Jeśli samochód wjeżdża na rozważana drogę w momencie s i ty masz możliwość wybrania prędkości, to jaka prędkość byś wybrał aby zminimalizować średnia liczbę spodziewanych spotkań z innym samochodami. rzez spotkanie rozumiemy wydarzenie gdy nasz samochód wyprzedza badź jest wyprzedzany przez inny samochód.

8 28 WYKŁAD 4. ROCES OISSONA Rozwiazanie: okażemy, że dla dużych s, prędkościa która minimalizuje spodziewana ilość spotkań jest mediana rozkładu G. Aby to zobaczyć przypuśćmy, żewybralísmyprędkośćx.niechdb a oznaczadługośćdrogi. Wmomencie wyboru prędkości x, wynika, że twój samochód wjedzie na drogę w momencie s awyjedziewmomencies+t,gdziet d/xjestczasempodróży. rzypominamy, że inne samochody wjeżdżajanadrogęzgodniezrozkłademois- sona o intensywności λ. Każdy z nich wybiera prędkość X zgodnie z rozkładem G. SkutkujetoczasemprzejazduT d/x. NieF oznaczarozkładczasupodróży T. Tzn. F(t(T <t(d/x<t(x>d/tḡ(d/t. (gdzieoznaczylísmyprzez F(t1 F(togonrozkładuF owiemy, ze zdarzenie zdarzyło się w momencie t jeśli samochód wjeżdża na drogęwmomenciet. odobniepowiemy,żezdarzeniejesttypu1jeśliwwyniku zdarzy się spotkanie z twoim samochodem. Twój samochód wjeżdża w momencie s i wyjedzie w momencie s+t. Zatem samochód spotka twój samochód jeśli wjedzieprzedmomentemsawyjedziepos+t (wtymostatnimprzypadkutwój samochód wyprzedzi ten samochód na drodze lub jeśli wjedzie po momencie s ale wyjedzie przed momentem s+t (w tym wypadku ten samochód wyprzedzi twój. W rezultacie samochód który wjeżdża na drogę w momencie t spotka twój samochódjeślijegoczaspodróżyt jesttaki,że t+t >s+t gdy t<s t+t <s+t gdy s<t<s+t Z poprzednich rozważań widzimy, że w momencie t będzie, niezależnie od innych wydarzeń, będzie typu 1 z prawdopodobieństwem p(t danym przez: (t+t >s+t F(s+t t gdy t<s p(t (t+t <s+t F(s+t t gdy s<t<s+t gdy t>s>t Zakładajac, że zdarzenia (tzn. samochody wjeżdżajace na drogę zdarzaj a się zgodnie z rozkładem oissona to wnioskujemy, że, stosujac Twierdzenie 4.4.7, że całkowita liczba wydarzeń typu 1 które się zdarzyły ma też rozkład oissona ośredniej s s+t λ p(tdt λ F(s+t tdt+λ F(s+t tdt λ s+t t t F(ydy+λ F(ydy Abywybraćwartośćt któraminimalizujepowyższ a wielkość zróżniczkujmy ja. Dostaniemy wówczas ( d s+t t λ F(ydy+λ F(ydy λ ( F(s+t dt F(t +F(t. t rzyrównujactęwielkośćdo,iwykorzystuj ac,żef(s+t gdysjestduże, widzimy,żeoptymalnyczasprzejazdut danyjestzależności a F(t F(t 1 F(t

9 4.4. ROZKŁAD WARUNKOWY CZASÓW RZYBYCIA 29 lub F(t 1 2. Zatem optymalny czas przejazdu jest mediana rozkładu czasu przejazdu. Skoro prędkość X jest równa odległości d podzielonej przez czas przejazdu T, wnosimy stadżeoptymalnaprędkośćx d/t jesttaka,żef(d/x 1 2.Skoro F(d/x Ḡ(x widzimyżeg(x 1 2, awięcoptymalnaprędkośćjestmedian arozkładuprędkości. odsumowujac wykazalísmy, że dla dowolnej prędkości x ilość spotkań z innymi samochodami ma rozkład oissona, a średnia tego rozkładu będzie równa najmniejszagdyprędkośćszostaławybranatakabybyłamedian a rozkładu G.

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012

Statystyka. Wykład 2. Krzysztof Topolski. Wrocław, 11 października 2012 Wykład 2 Wrocław, 11 października 2012 Próba losowa Definicja. Zmienne losowe X 1, X 2,..., X n nazywamy próba losową rozmiaru n z rozkładu o gęstości f (x) (o dystrybuancie F (x)) jeśli X 1, X 2,...,

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

8 Całka stochastyczna względem semimartyngałów

8 Całka stochastyczna względem semimartyngałów M. Beśka, Całka Stochastyczna, wykład 8 148 8 Całka stochastyczna względem semimartyngałów 8.1 Całka stochastyczna w M 2 Oznaczmy przez Ξ zbiór procesów postaci X t (ω) = ξ (ω)i {} (t) + n ξ i (ω)i (ti,

Bardziej szczegółowo

1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach.

1 Wykład 3 Generatory liczb losowych o dowolnych rozkładach. Wykład 3 Generatory liczb losowych o dowolnych rozkładach.. Metoda odwracania Niech X oznacza zmienna losowa o dystrybuancie F. Oznaczmy F (t) = inf (x : t F (x)). Uwaga Zauważmy, że t [0, ] : F ( F (t)

Bardziej szczegółowo

4 Kilka klas procesów

4 Kilka klas procesów Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces

Bardziej szczegółowo

1 Warunkowe wartości oczekiwane

1 Warunkowe wartości oczekiwane Warunkowe wartości oczekiwane W tej serii zadań rozwiążemy różne zadania związane z problemem warunkowania.. (Eg 48/) Załóżmy, że X, X, X 3, X 4 są niezależnymi zmiennymi losowymi o jednakowym rozkładzie

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

O ŚREDNIEJ STATYSTYCZNEJ

O ŚREDNIEJ STATYSTYCZNEJ O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla Młodych Matematyków Rachunek Prawdopodobieństwa i Statystyka Kraków, 20 26 IX 2009 r. WYNIKI OBSERWACJI X 1, X 2,..., X n WYNIKI

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski

Modelowanie zależności. Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski Modelowanie zależności pomiędzy zmiennymi losowymi Matematyczne podstawy teorii ryzyka i ich zastosowanie R. Łochowski P Zmienne losowe niezależne - przypomnienie Dwie rzeczywiste zmienne losowe X i Y

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

Wybrane rozkłady zmiennych losowych. Statystyka

Wybrane rozkłady zmiennych losowych. Statystyka Wybrane rozkłady zmiennych losowych Statystyka Rozkład dwupunktowy Zmienna losowa przyjmuje tylko dwie wartości: wartość 1 z prawdopodobieństwem p i wartość 0 z prawdopodobieństwem 1- p x i p i 0 1-p 1

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Eleenty odelowania ateatycznego Systey kolejkowe. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ RZYKŁAD KOLEJKI N(t) długość kolejki w chwili t T i czas obsługi i-tego klienta Do okienka

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

F t+ := s>t. F s = F t.

F t+ := s>t. F s = F t. M. Beśka, Całka Stochastyczna, wykład 1 1 1 Wiadomości wstępne 1.1 Przestrzeń probabilistyczna z filtracją Niech (Ω, F, P ) będzie ustaloną przestrzenią probabilistyczną i niech F = {F t } t 0 będzie rodziną

Bardziej szczegółowo

1. Przyszła długość życia x-latka

1. Przyszła długość życia x-latka Przyszła długość życia x-latka Rozważmy osobę mającą x lat; oznaczenie: (x) Jej przyszłą długość życia oznaczymy T (x), lub krótko T Zatem x+t oznacza całkowitą długość życia T jest zmienną losową, której

Bardziej szczegółowo

Prawa wielkich liczb, centralne twierdzenia graniczne

Prawa wielkich liczb, centralne twierdzenia graniczne , centralne twierdzenia graniczne Katedra matematyki i ekonomii matematycznej 17 maja 2012, centralne twierdzenia graniczne Rodzaje zbieżności ciągów zmiennych losowych, centralne twierdzenia graniczne

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XIV: Metody Monte Carlo 19 stycznia 2016 Przybliżone obliczanie całki oznaczonej Rozważmy całkowalną funkcję f : [0, 1] R. Chcemy znaleźć przybliżoną wartość liczbową całki 1 f (x) dx. 0 Jeden ze

Bardziej szczegółowo

Pochodna funkcji: definicja, podstawowe własności wykład 6

Pochodna funkcji: definicja, podstawowe własności wykład 6 Pochodna funkcji: definicja, podstawowe własności wykład 6 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu r. akad. 2016/2017 Problem obliczanie prędkości chwilowej Droga

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład IV: 27 października 2014 Współczynnik korelacji Brak korelacji a niezależność Definicja współczynnika korelacji Współczynnikiem korelacji całkowalnych z kwadratem zmiennych losowych X i Y nazywamy

Bardziej szczegółowo

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =.

Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX = 4 i EY = 6. Rozważamy zmienną losową Z =. Prawdopodobieństwo i statystyka 3..00 r. Zadanie Niech X i Y będą niezależnymi zmiennymi losowymi o rozkładach wykładniczych, przy czym Y EX 4 i EY 6. Rozważamy zmienną losową Z. X + Y Wtedy (A) EZ 0,

Bardziej szczegółowo

Modelowanie komputerowe

Modelowanie komputerowe Modelowanie komputerowe wykład 5- Klasyczne systemy kolejkowe i ich analiza dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 16,23listopada2015r. Analiza

Bardziej szczegółowo

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS

Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS Wstęp do Rachunku Prawdopodobieństwa, IIr. WMS przykładowe zadania na. kolokwium czerwca 6r. Poniżej podany jest przykładowy zestaw zadań. Podczas kolokwium na ich rozwiązanie przeznaczone będzie ok. 85

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

6.4 Podstawowe metody statystyczne

6.4 Podstawowe metody statystyczne 156 Wstęp do statystyki matematycznej 6.4 Podstawowe metody statystyczne Spóbujemy teraz w dopuszczalnym uproszczeniu przedstawić istotę analizy statystycznej. W szczególności udzielimy odpowiedzi na postawione

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych

METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład 3-4. Parametry i wybrane rozkłady zmiennych losowych METODY BADAŃ NA ZWIERZĘTACH ze STATYSTYKĄ wykład - Parametry i wybrane rozkłady zmiennych losowych Parametry zmiennej losowej EX wartość oczekiwana D X wariancja DX odchylenie standardowe inne, np. kwantyle,

Bardziej szczegółowo

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki.

Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. 3. Funkcje borelowskie. Rodzinę F złożoną z podzbiorów zbioru X będziemy nazywali ciałem zbiorów, gdy spełnione są dwa następujące warunki. (1): Jeśli zbiór Y należy do rodziny F, to jego dopełnienie X

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA

STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1 STATYSTYKA MATEMATYCZNA dla ZPM I dr inż Krzysztof Bryś wyk lad 1,2 KLASYCZNY RACHUNEK PRAWDOPODOBIEŃSTWA 1. Pojȩcia wstȩpne. Doświadczeniem losowym nazywamy doświadczenie, którego wynik nie jest znany.

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w całej populacji wynoszą p 2, 2pq i q 2. Wiadomo, że czynnik selekcyjny sprawia, że osobniki o genotypie aa nie rozmnażają się. 1. Wyznacz częstości

Bardziej szczegółowo

Podstawy Informatyki Elementy teorii masowej obsługi

Podstawy Informatyki Elementy teorii masowej obsługi Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Wprowadzenie Źródło, kolejka, stanowisko obsługi Notacja Kendalla 2 Analiza systemu M/M/1 Wyznaczenie P n (t) Wybrane

Bardziej szczegółowo

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

Zadanie 1. są niezależne i mają rozkład z atomami: ( ), Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych

Przykład 1 W przypadku jednokrotnego rzutu kostką przestrzeń zdarzeń elementarnych Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Niech Ω będzie przestrzenią zdarzeń elementarnych. Definicja 1 Rodzinę S zdarzeń losowych (zbiór S podzbiorów zbioru

Bardziej szczegółowo

Wykład 2: Szeregi Fouriera

Wykład 2: Szeregi Fouriera Rachunek prawdopodobieństwa MAP64 Wydział Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab. A. Jurlewicz Wykład : Szeregi Fouriera Definicja. Niech f(t) będzie funkcją określoną na R, okresową

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N =

HISTOGRAM. Dr Adam Michczyński - METODY ANALIZY DANYCH POMIAROWYCH Liczba pomiarów - n. Liczba pomiarów - n k 0.5 N = N = HISTOGRAM W pewnych przypadkach interesuje nas nie tylko określenie prawdziwej wartości mierzonej wielkości, ale także zbadanie całego rozkład prawdopodobieństwa wyników pomiarów. W takim przypadku wyniki

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Granica funkcji wykład 4

Granica funkcji wykład 4 Granica funkcji wykład 4 dr Mariusz Grządziel 27 października 2008 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie

Bardziej szczegółowo

Układy stochastyczne

Układy stochastyczne Instytut Informatyki Uniwersytetu Śląskiego 21 stycznia 2009 Definicja Definicja Proces stochastyczny to funkcja losowa, czyli funkcja matematyczna, której wartości leżą w przestrzeni zdarzeń losowych.

Bardziej szczegółowo

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126

21 maja, Mocna własność Markowa procesu Wienera. Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 Mocna własność Markowa procesu Wienera Procesy Stochastyczne, wykład 13, T. Byczkowski, Procesy Stochastyczne, PPT, Matematyka MAP1126 21 maja, 2012 Mocna własność Markowa W = (W 1,..., W d ) oznaczać

Bardziej szczegółowo

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa

Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Spis treści Elementy Modelowania Matematycznego Wykład 4 Regresja i dyskryminacja liniowa Romuald Kotowski Katedra Informatyki Stosowanej PJWSTK 2009 Spis treści Spis treści 1 Wstęp Bardzo często interesujący

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t)

Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t) Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t) Wycena opcji Dynamika cen akcji: ds(t) = as(t)dt + σs(t)dw (t) Figure 1: Aproksymacja drzewem dwumianowym Wycena opcji Dynamika cen akcji:

Bardziej szczegółowo

Ubezpieczenia majątkowe

Ubezpieczenia majątkowe Funkcje użyteczności a składki Uniwersytet Przyrodniczy we Wrocławiu Instytut Nauk Ekonomicznych i Społecznych 2016/2017 Funkcja użyteczności Niech ω wielkość majątku decydenta wyrażona w j.p., u (ω) stopień

Bardziej szczegółowo

Zagadnienia brzegowe dla równań eliptycznych

Zagadnienia brzegowe dla równań eliptycznych Temat 7 Zagadnienia brzegowe dla równań eliptycznych Rozważmy płaski obszar R 2 ograniczony krzywą. la równania Laplace a (Poissona) stawia się trzy podstawowe zagadnienia brzegowe. Zagadnienie irichleta

Bardziej szczegółowo

Estymacja parametrów w modelu normalnym

Estymacja parametrów w modelu normalnym Estymacja parametrów w modelu normalnym dr Mariusz Grządziel 6 kwietnia 2009 Model normalny Przez model normalny będziemy rozumieć rodzine rozkładów normalnych N(µ, σ), µ R, σ > 0. Z Centralnego Twierdzenia

Bardziej szczegółowo

Systemy masowej obsługi

Systemy masowej obsługi Systemy masowej obsługi Celem niniejszego ćwiczenia jest: zapoznanie się z podstawowymi właściwościami najprostszego systemu analizowanego w ramach teorii masowej obsługi, systemu M/M/ zapoznanie się z

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych:

W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: W rachunku prawdopodobieństwa wyróżniamy dwie zasadnicze grupy rozkładów zmiennych losowych: Zmienne losowe skokowe (dyskretne) przyjmujące co najwyżej przeliczalnie wiele wartości Zmienne losowe ciągłe

Bardziej szczegółowo

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013

Zdzisław Dzedzej. Politechnika Gdańska. Gdańsk, 2013 Zdzisław Dzedzej Politechnika Gdańska Gdańsk, 2013 1 PODSTAWY 2 3 Definicja. Przestrzeń metryczna (X, d) jest zwarta, jeśli z każdego ciągu {x n } w X można wybrać podciąg zbieżny {x nk } w X. Ogólniej

Bardziej szczegółowo

Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga

Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga RAP 412 21.01.2009 Wykład 11: Martyngały: Twierdzenie o zbieżności i Hoeffdinga Wykładowca: Andrzej Ruciński Pisarz: Łukasz Waszak 1 Wstęp Na ostatnim wykładzie przedstawiliśmy twierdzenie o zbieżności

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Matematyka ubezpieczeń majątkowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Komisja

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem

Bardziej szczegółowo

Ważne rozkłady i twierdzenia

Ważne rozkłady i twierdzenia Ważne rozkłady i twierdzenia Rozkład dwumianowy i wielomianowy Częstość. Prawo wielkich liczb Rozkład hipergeometryczny Rozkład Poissona Rozkład normalny i rozkład Gaussa Centralne twierdzenie graniczne

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka Biomatematyka 80...... Zadanie 1. (8 punktów) Rozpatrzmy prawo Hardy ego Weinberga dla loci związanej z chromosomem X o dwóch allelach A 1 i A 2. Załóżmy, że początkowa częstość allelu A 2 u kobiet jest

Bardziej szczegółowo

jest ciągiem elementów z przestrzeni B(R, R)

jest ciągiem elementów z przestrzeni B(R, R) Wykład 2 1 Ciągi Definicja 1.1 (ciąg) Ciągiem w zbiorze X nazywamy odwzorowanie x: N X. Dla uproszczenia piszemy x n zamiast x(n). Przykład 1. x n = n jest ciągiem elementów z przestrzeni R 2. f n (x)

Bardziej szczegółowo

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω)

PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) PROCESY STOCHASTYCZNE. PEWNE KLASY PROCESÓW STOCHASTYCZNYCH Definicja. Procesem stochastycznym nazywamy rodzinę zmiennych losowych X(t) = X(t, ω) określonych na tej samej przestrzeni probabilistycznej

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Statystyka w przykładach

Statystyka w przykładach w przykładach Tomasz Mostowski Zajęcia 10.04.2008 Plan Estymatory 1 Estymatory 2 Plan Estymatory 1 Estymatory 2 Własności estymatorów Zazwyczaj w badaniach potrzebujemy oszacować pewne parametry na podstawie

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera

Wyk lad 4 Macierz odwrotna i twierdzenie Cramera Wyk lad 4 Macierz odwrotna i twierdzenie Cramera 1 Odwracanie macierzy I n jest elementem neutralnym mnożenia macierzy w zbiorze M n (R) tzn A I n I n A A dla dowolnej macierzy A M n (R) Ponadto z twierdzenia

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.3 Rozkłady warunkowe i warunkowa wartość oczekiwana Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2015/2016 Prawdopodobieństwo wyraża postawę

Bardziej szczegółowo

1. Definicja granicy właściwej i niewłaściwej funkcji.

1. Definicja granicy właściwej i niewłaściwej funkcji. V. Granica funkcji jednej zmiennej. 1. Definicja granicy właściwej i niewłaściwej funkcji. Definicja 1.1. (sąsiedztwa punktu i sąsiedztwa nieskończoności) Niech x 0 R, r > 0, a, b R. Definiujemy S(x 0,

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 31 marca 2014 Przestrzeń statystyczna - podstawowe zadania statystyki Zdarzeniom losowym określonym na pewnej przestrzeni zdarzeń elementarnych Ω można zazwyczaj na wiele różnych sposobów przypisać jakieś

Bardziej szczegółowo

Analiza przeżycia. Wprowadzenie

Analiza przeżycia. Wprowadzenie Wprowadzenie Przedmiotem badania analizy przeżycia jest czas jaki upływa od początku obserwacji do wystąpienia określonego zdarzenia, które jednoznacznie kończy obserwację na danej jednostce. Analiza przeżycia

Bardziej szczegółowo

Wykłady 11 i 12: Całka oznaczona

Wykłady 11 i 12: Całka oznaczona Wykłady 11 i 12: Całka oznaczona dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu semestr zimowy; rok akademicki 2016/2017 Pole trójkata parabolicznego Problem. Chcemy obliczyć

Bardziej szczegółowo

Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne

Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne Rachunek Prawdopodobieństwa Rozdział 5. Rozkłady łączne 5.0 Definicje Katarzyna Rybarczyk-Krzywdzińska Wprowadzenie Przykład 1 Bolek, Lolek i Tola wstąpili do kasyna. (A) Bolek postawił na czerwone, (B)

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

Granice funkcji-pojęcie pochodnej

Granice funkcji-pojęcie pochodnej Granice funkcji-pojęcie pochodnej Oznaczenie S(x 0 ) = S(x 0, r) dla pewnego r > 0 Definicja 1 Niech x 0 R oraz niech funkcja f będzie funkcja określona przynajmniej na sasiedztwie S(x 0, r) dla pewnego

Bardziej szczegółowo

Na podstawie dokonanych obserwacji:

Na podstawie dokonanych obserwacji: PODSTAWOWE PROBLEMY STATYSTYKI MATEMATYCZNEJ Niech mamy próbkę X 1,..., X n oraz przestrzeń prób X n, i niech {X i } to niezależne zmienne losowe o tym samym rozkładzie P θ P. Na podstawie obserwacji chcemy

Bardziej szczegółowo

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III.

Literatura. Leitner R., Zacharski J., Zarys matematyki wyŝszej dla studentów, cz. III. Literatura Krysicki W., Bartos J., Dyczka W., Królikowska K, Wasilewski M., Rachunek Prawdopodobieństwa i Statystyka Matematyczna w Zadaniach, cz. I. Leitner R., Zacharski J., Zarys matematyki wyŝszej

Bardziej szczegółowo

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej

Rozdział 1. Zmienne losowe, ich rozkłady i charakterystyki. 1.1 Definicja zmiennej losowej Rozdział 1 Zmienne losowe, ich rozkłady i charakterystyki 1.1 Definicja zmiennej losowej Zbiór możliwych wyników eksperymentu będziemy nazywać przestrzenią zdarzeń elementarnych i oznaczać Ω, natomiast

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów

Treść wykładu. Pierścienie wielomianów. Dzielenie wielomianów i algorytm Euklidesa Pierścienie ilorazowe wielomianów Treść wykładu Pierścienie wielomianów. Definicja Niech P będzie pierścieniem. Wielomianem jednej zmiennej o współczynnikach z P nazywamy każdy ciąg f = (f 0, f 1, f 2,...), gdzie wyrazy ciągu f są prawie

Bardziej szczegółowo

1 Pochodne wyższych rzędów

1 Pochodne wyższych rzędów 1 Pochodne wyższych rzędów Definicja 1.1 (Pochodne cząstkowe drugiego rzędu) Niech f będzie odwzorowaniem o wartościach w R m, określonym na zbiorze G R k. Załóżmy, że zbiór tych x G, dla których istnieje

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo