Proces Poissona. Wykład Proces zliczajacy

Wielkość: px
Rozpocząć pokaz od strony:

Download "Proces Poissona. Wykład 4. 4.1 Proces zliczajacy"

Transkrypt

1 Wykład 4 roces oissona 4.1 roces zliczajacy roces stochastyczny {N t ;t } nazywamy zliczaj acym, gdy N t jest równe całkowitej ilości zdarzeń które zdarzyły się do momentu t. rzekładami procesów zliczajacychn t s a: 1. ilośćosób, któreweszłydopewnegomagazynuprzedlubwmomenciet; N t oznaczatuwówczasilośćosóbktóreweszłydomagazynu, 2. ilośćosóbktóresięurodziłyprzedlubwokreślonymczasiet,n t oznacza wówczas ilość urodzeń do momentu t. 3. ilość bramek które zgromadził dany piłkarz itd. Zauważmy, że każdy proces zliczajacy musi spełniać następujace warunki (i N t, (ii wartościamin t s a liczby całkowite (iii dlas<t,n t N s równasięilości zdarzeń którezdarzyłysięwprzedziale czasu(s,t>. Uwaga rocesy zliczajaces a czasem nazywane strumieniami zgłoszeń. roces zliczajacy nazywa się procesem o przyrostach niezależnych, jeśli w rozł acznych przedziałach czasu przyrosty procesu sa niezależne. Uwaga W przekładzie 1. prawdopodobnie spełnione jest założenie niezależności przyrostów procesu. Natomiast w przykładzie 2. wydaje się, ze nie jest. Jeśli bowiem N t jest duże to mamy dużo ludzi a to znaczy, że w następnych chwilachwinnobyćdużourodzeńczyli wartośćn t+s N t byłabydużajeślin t jestduże(brakniezależnościodn t. roces zliczajacy ma stacjonarne przyrosty, gdy ilość zdarzeń które zdarzyły się w przedziale czasu (s,t > zależy tylko od długości tego przedziału tj. od wielkościt s. roces zliczajacy {N t ;t } nazywa się pojedynczym jeśli a t > s :(N t N s 1 λ(t s+o( t s, b t > s :(N t N s 2 o( t s. 21

2 22 WYKŁAD 4. ROCES OISSONA Definicja roces zliczajacy{n t ;t }nazywasię,procesemoissonaz intensywnościaλ,gdy: in, ii ma niezależne i stacjonarne przyrosty iii ilość zdarzeń w przedziale o długości t ma rozkład oissona z parametrem λt, tzn. t,s :(N t+s N s ke λt(λtk. k! Twierdzenie roces zliczajacy, pojedynczy o stacjonarnych, niezależnych przyrostach jest procesem oissona. Dowód. Oznaczmy Mamy: g(teexp( vn t. g(t+h Eexp( vn t+h Eexp( vn t Eexp( v(n t+t N t g(teexp( vn h. Wykorzystaliśmy tu niezależność przyrostów i stacjonarność. Mamy dalej: Eexp( vn h E(exp( vn h N h (N h +E(exp( vn h N h 1(N h 1 +E(exp( vn h N h 2(N h 2 1 λh+o 1 (h+e v (λh+o 2 (h+o 3 (h 1 λh+λhe v +o(h. Zatem g(t+h g(t g(tλ ( e v 1 + o(h h h. Niech h. Dostaniemy wówczas: St ad już łatwo dostać: g (tg(tλ ( e v 1. g(texp ( λt ( e v 1. Jest to transformata Laplace a rozkładu oissona z parametrem λt. 4.2 Okresy między zgłoszeniami Niech dany będzie proces oissona {N t ;t } i niech T 1 będzie momentem pierwszego zdarzenia. Dalej niech dla n > T n oznacza czas jaki upłyn ał międzyn 1yman-tymzdarzeniem. Ci ag{t i } i 1 nazywasięci agiem czasów międzyzgłoszeniami(przybyciami. Zauważmy,że{T 1 >t}{n t } (T 1 >t(n t exp( λt.

3 4.3. SUMOWANIE ROCESÓW OISSONA 23 odobniemamy: (T 2 >te((t 2 >t T 1.Ale (T 2 >t T 1 s (brakzdarzeńwprzedziale(s,s+t> T 1 s (brakzdarzeńwprzedziale(s,s+t>exp( λt. W ostatnich równościach wykorzystaliśmy niezależność i stacjonarność. przyrostów. Mamy więc: Stwierdzenie Ciag{T n } n 1 czasówmiędzyprzybyciamistanowi aniezależne zmienne losowe o jednakowych rozkładach wykładniczych ze średnia 1 λ. DalejoznaczmyprzezS n czasprzybycien tegozgłoszenialubinaczejczas oczekiwania na n te zgłoszenie. Łatwo wydedukować, że n S n T i, awięc,żes n marozkładgammazparametraminiλ.innymisłowy,żerozkład S n magęstośćrówn a: f Sn (tλexp( λt (λtn 1 (n 1! ;t. owyższa gęstość można było otrzymać zauważajac, że n te zgłoszenie się zdarzy przed momentem t wtedy i tylko wtedy, gdy ilość zdarzeń przed momentem t była przynajmniej n. Tzn. awięc N t n S n t, F Sn (t + (S n t(n t n St ad różniczkujac po t dostaniemy: f Sn (t λ jn e λt(λtj j! λe λt(λtn 1 (n 1!. + jn jn e λt(λtj. j! λe λt(λtj 1 (j 1! 4.3 Sumowanie procesów oissona Niechdanybędzieprocesoissona{N t ;t }zintensywności aλ.iprzypuśćmy, że każde zdarzenie(zgłoszenie jest klasyfikowane jako I badź II typu. Załóżmy dalej, że zgłoszenie jest klasyfikowane jako typu I lub II z prawdopodobieństwami odpowiednio p i 1 p niezależnie od innych zdarzeń (zgłoszeń. (Na przykład załóżmy, że klienci przebywajadosklepuikażdyznichokazujesiębyć mężczyzna z prawdopodobieństwem 1/2 badźkobiet a z prawdopodobieństwem 1/2. Niech N (1 t i N (2 t oznaczaj a odpowiednio ilości zdarzeń odpowiednio typu I b adź II w czasie [,t]. Zauważmy, że N t N (1 t +N (2 t. Mamy następuj ace stwierdzenie:

4 24 WYKŁAD 4. ROCES OISSONA Stwierdzenie N (1 t in (2 t s a oba procesami oissona o intensywnościach odpowiednioλpiλ(1 p.onadtoprocesytes a niezależne. Dowód. oliczymy prawdopodobieństwo łaczne: N (1 t n,n (2 t m N (1 t n,n (2 t m N t k (N t k. k Zauważmy,żepopierwszeabymogłobyćnzdarzeńtypuIimzdarzeńtypuII winnobyćł acznien+mzdarzeńazatem N (1 t n,n (2 t m ( N (1 t n,n (2 t m N t n+m e λt(λtn+m (n+m!. Zauważmy teraz, że jeśli zdarzyło się ł acznie n+m zdarzeń to ilość zdarzeń typuimiałarozkładdwumianowy(ilośćsukcesówwci agun+mdoświadczeń Bernoulli ego. Zatem Awięc N (1 t n,n (2 t m N t n+m ( n+m n p n (1 p m. N (1 t n,n (2 t m ( n+m n p n (1 p m e λt(λtn+m (n+m! e λpt(λptn n! e λ(1 pt(λ(1 ptm. m! onadto mamy N (1 t n N (1 t n,n (2 t m m e λpt(λptn n! m e λ(1 pt(λ(1 ptm m! e λpt(λptn. n! Widaćzatem,żeN (1 t in (2 t s a niezależnymi procesami oissona. Uwaga4.3.2 To,żeprocesyN 1 in 2 s a oissonowskie nie jest zbyt zastanawiaj ace. Można było się tego spodziewać. Niespodziewany wydaje się być fakt, że procesytes a niezależne.

5 4.4. ROZKŁAD WARUNKOWY CZASÓW RZYBYCIA Rozkład warunkowy czasów przybycia Zacznijmy od czasu przybycia pierwszego zgłoszenia pod warunkiem, że wiadomo,żenaodcinkuczasu[,t]byłojedno. Innymisłowywyznaczymy(T 1 <s N t 1. Dostaniemy wówczas: (T 1 <s N t 1 (T 1<s,N t 1 (N t 1 (1zgłoszeniena (,s izgłoszeńna[s,t] (N t 1 (1zgłoszeniena (,s(zgłoszeńna[s,t] (N t 1 λse λs e λ(t s λte λt s t. Awięcrozkładtenjestjednostajny na odcinku<,t>. Wynik tenmoże być uogólniony. Aby jednak to zrobić trzeba wprowadzić pojęcie statystyk pozycyjnych. Definicja4.4.1 Niech{X 1,...,X n }będziepróbalosow a. Wektorlosowy{Y 1,...,Y n } spełniajacywarunkiy 1 Y 2,..., Y n zprawdopodobieństwemjedeniokreślony następujaco: Y i i-tacodowielkościwartość {X 1,...,X n } nazywamywektoremstatystykpozycyjnychwektora{x 1,...,X n }. Uwaga4.4.2 Wartości współrzędnychwektora{y 1,...,Y n } oznaczamytradycyjnie{x 1:n,...,X n:n }. otrzebujemy także następujacych dwu prostych lematów Lemat4.4.3 Jeślipróba{X 1,...,X n }jestprosta(zmiennelosowe{x i } n s a niezależneiojednakowychrozkładachigęstośćx 1 jestrównaf(x,togęstość ł acznawektorastatystykpozycyjnych{x 1:n,...,X n:n }jestrówna: dlay 1 y 2... y n. g(y 1,...,y n n! n f(y i, Dowód. Zauważmy,żeabyzaobserwowaćX 1:n y 1,...,X n:n y n dowolna z n! permutacji { } X (1,...,X (n zmiennych {X1,...,X n } przyjęła wartości odpowiednio{y 1,...,y n }.onadto ( X (1 (y 1,y 1 +dy 1,...,X (n (y n,y n +dy n n f(y i dy 1,...dy n.

6 26 WYKŁAD 4. ROCES OISSONA Lemat NiechzmiennelosoweS 1,...,S n s ai.i.dimajarozkładu(,t -jednostajny na odcinku<,t >. Wówczas rozkład ł aczny wektora statystyk pozycyjnych(s 1:n,...,S n:n magęstośćrówn a: dlay 1 y 2... y n. g(y 1,...,y n n! tn, (4.4.1 Teraz możemy już udowodnić następujace twierdzenie: Twierdzenie od warunkiem, że N(tn tj. wiadomo iż na odcinku <,t > było n zgłoszeń, momenty zgłoszeń (S 1,...,S n s a rozłożone tak jak statystyki porzadkowe rozkładu łacznego n niezależnych zmiennych losowych o jednakowych rozkładach jednostajnych na odcinku <, t >, tj. f S1,...,S n (s 1,...,s n n! t n;dla<s 1<...,<s n <t. Dowód. Aby dostać gęstość ł aczn a wektora (S 1,...,S n przy warunku N(tnzauważmy,żedla<s 1 <,...,<s n <tzdarzenies 1 s 1,S 2 s 2,...,S n s n,n(tnznaczy,żepierwszychn+1czasówmiędzyzgłoszeniami spełnia T 1 s 1, T 2 s 2 s 2,..., T n s n s n 1, T n+1 > t s n. A więc korzystajac z niezależności czasów między zgłoszeniami mamy f(s 1,...,s n n (T 1s 1,...,T n s n s n 1,T n >t s n (N(tn λe λs1 λe λ(s2 s1...λe λ(sn sn 1 e λ(t sn e λt (λt n /n! n! t n. Uwaga4.4.6 Wyniktenmożnawyrazíctakżewnastępuj acy sposób: od warunkiem, że było ich n, momenty zgłoszeń rozpatrywanie jako nieuporzadkowane zmienne losowe s a niezależne i maj a takie same rozkłady jednostajne na odcinku <,t>. Twierdzenie powyższe może służyć do następujacego uogólnienia Stwierdzenia załóżmy teraz, że po przybyciu każde zdarzenie jest klasyfikowane jako będ ace jednego z k typów, przy czym jeśli zgłoszenie nast apiło w chwili y to będziezakwalifikowanejakotypuizprawdopodobieństwem i (y, k i(y 1.Mamynastępuj ace: Twierdzenie NiechNt;t,,...,koznaczailośćelementówtypu i iktórezgłosiłysięwczasie<,t>.wówczas Nt i s a niezależnymi zmiennymi oissona z wartościami oczekiwanymi odpowiednio: EN i t λ t i (sds.

7 4.4. ROZKŁAD WARUNKOWY CZASÓW RZYBYCIA 27 Dowód. Obliczmy łaczneprawdopodobieństwo Nt 1 n 1,...,Nt k n k. Mamy ( Nt 1 n 1,...,Nt k n k ( k k Nt 1 n 1,...,Nt k n k N t n i N t n i. Rozważmy terazdowolnezgłoszenie,którezdarzyłosięwmomencie<,t>. Jeśli zdarzyło się w momencie s, wówczas prawdopodobieństwo, że byłoby typu i wynosiłoby i (s.zatemnapodstawietwierdzenia4.4.7wynika,żezgłoszenie to przybyłoby wjednostajnierozłożonymna odcinku<,t>momencies. A więc prawdopodobieństwo, że zdarzenie to będzie typu i wynosi: p i 1 t niezależnie od innych zdarzeń. A więc ( t i (sds, N 1 t n 1,...,N k t n k N t N 1 t n 1,...,N k t n k N t k n i k n i marozkładwielomianowyzn i elementamitypuiiprawdopodobieństwamizajściap 1,...,p k,.czyli (! Awięc Nt 1 n 1,...,Nt k n k! ( k n i k n i! k p n i k [e λtpi(λtp i ni n i! i e λt(λt k ]. ( k n i k n i! ni ( k n i! k p ni i To twierdzenie zilustrujemy ciekawym nietypowym przykładem. rzykład (Minimalizacja liczby wyprzedzeń: Załóżmy, że samochody wjeżdżaja na jednokierunkowa drogę zgodnie z rozkładem oissona o intensywności λ.wjeżdżajaonewpunkcieaawyjeżdżaj awpunkcieb.każdysamochód jedziezestał a prędkościaustalan a niezależnie dla każdego samochodu zgodnie z rozkładem G. Gdy szybszy samochód spotyka wolniejszy wyprzedza go bez starty czasu. Jeśli samochód wjeżdża na rozważana drogę w momencie s i ty masz możliwość wybrania prędkości, to jaka prędkość byś wybrał aby zminimalizować średnia liczbę spodziewanych spotkań z innym samochodami. rzez spotkanie rozumiemy wydarzenie gdy nasz samochód wyprzedza badź jest wyprzedzany przez inny samochód.

8 28 WYKŁAD 4. ROCES OISSONA Rozwiazanie: okażemy, że dla dużych s, prędkościa która minimalizuje spodziewana ilość spotkań jest mediana rozkładu G. Aby to zobaczyć przypuśćmy, żewybralísmyprędkośćx.niechdb a oznaczadługośćdrogi. Wmomencie wyboru prędkości x, wynika, że twój samochód wjedzie na drogę w momencie s awyjedziewmomencies+t,gdziet d/xjestczasempodróży. rzypominamy, że inne samochody wjeżdżajanadrogęzgodniezrozkłademois- sona o intensywności λ. Każdy z nich wybiera prędkość X zgodnie z rozkładem G. SkutkujetoczasemprzejazduT d/x. NieF oznaczarozkładczasupodróży T. Tzn. F(t(T <t(d/x<t(x>d/tḡ(d/t. (gdzieoznaczylísmyprzez F(t1 F(togonrozkładuF owiemy, ze zdarzenie zdarzyło się w momencie t jeśli samochód wjeżdża na drogęwmomenciet. odobniepowiemy,żezdarzeniejesttypu1jeśliwwyniku zdarzy się spotkanie z twoim samochodem. Twój samochód wjeżdża w momencie s i wyjedzie w momencie s+t. Zatem samochód spotka twój samochód jeśli wjedzieprzedmomentemsawyjedziepos+t (wtymostatnimprzypadkutwój samochód wyprzedzi ten samochód na drodze lub jeśli wjedzie po momencie s ale wyjedzie przed momentem s+t (w tym wypadku ten samochód wyprzedzi twój. W rezultacie samochód który wjeżdża na drogę w momencie t spotka twój samochódjeślijegoczaspodróżyt jesttaki,że t+t >s+t gdy t<s t+t <s+t gdy s<t<s+t Z poprzednich rozważań widzimy, że w momencie t będzie, niezależnie od innych wydarzeń, będzie typu 1 z prawdopodobieństwem p(t danym przez: (t+t >s+t F(s+t t gdy t<s p(t (t+t <s+t F(s+t t gdy s<t<s+t gdy t>s>t Zakładajac, że zdarzenia (tzn. samochody wjeżdżajace na drogę zdarzaj a się zgodnie z rozkładem oissona to wnioskujemy, że, stosujac Twierdzenie 4.4.7, że całkowita liczba wydarzeń typu 1 które się zdarzyły ma też rozkład oissona ośredniej s s+t λ p(tdt λ F(s+t tdt+λ F(s+t tdt λ s+t t t F(ydy+λ F(ydy Abywybraćwartośćt któraminimalizujepowyższ a wielkość zróżniczkujmy ja. Dostaniemy wówczas ( d s+t t λ F(ydy+λ F(ydy λ ( F(s+t dt F(t +F(t. t rzyrównujactęwielkośćdo,iwykorzystuj ac,żef(s+t gdysjestduże, widzimy,żeoptymalnyczasprzejazdut danyjestzależności a F(t F(t 1 F(t

9 4.4. ROZKŁAD WARUNKOWY CZASÓW RZYBYCIA 29 lub F(t 1 2. Zatem optymalny czas przejazdu jest mediana rozkładu czasu przejazdu. Skoro prędkość X jest równa odległości d podzielonej przez czas przejazdu T, wnosimy stadżeoptymalnaprędkośćx d/t jesttaka,żef(d/x 1 2.Skoro F(d/x Ḡ(x widzimyżeg(x 1 2, awięcoptymalnaprędkośćjestmedian arozkładuprędkości. odsumowujac wykazalísmy, że dla dowolnej prędkości x ilość spotkań z innymi samochodami ma rozkład oissona, a średnia tego rozkładu będzie równa najmniejszagdyprędkośćszostaławybranatakabybyłamedian a rozkładu G.

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t.

Proces Poissona. Proces {N(t), t 0} nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Procesy stochastyczne WYKŁAD 5 Proces Poissona. Proces {N(t), t } nazywamy procesem zliczającym jeśli N(t) oznacza całkowitą liczbę badanych zdarzeń zaobserwowanych do chwili t. Proces zliczający musi

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe.

Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Rachunek prawdopodobieństwa MAP3040 WPPT FT, rok akad. 2010/11, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 7: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Warunkowa wartość oczekiwana.

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

Lista 1. Procesy o przyrostach niezależnych.

Lista 1. Procesy o przyrostach niezależnych. Lista. Procesy o przyrostach niezależnych.. Niech N t bedzie procesem Poissona o intensywnoci λ = 2. Obliczyć a) P (N 2 < 3, b) P (N =, N 3 = 6), c) P (N 2 = N 5 = 2), d) P (N =, N 2 = 3, N 4 < 5), e)

Bardziej szczegółowo

4 Kilka klas procesów

4 Kilka klas procesów Marek Beśka, Całka Stochastyczna, wykład 4 48 4 Kilka klas procesów 4.1 Procesy rosnące i przestrzenie V,, loc Jak poprzednio niech (Ω, F, F, P ) będzie zupełną bazą stochastyczną. Definicja 4.1 Proces

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

O ŚREDNIEJ STATYSTYCZNEJ

O ŚREDNIEJ STATYSTYCZNEJ O ŚREDNIEJ STATYSTYCZNEJ Ryszard Zieliński XII Międzynarodowe Warsztaty dla Młodych Matematyków Rachunek Prawdopodobieństwa i Statystyka Kraków, 20 26 IX 2009 r. WYNIKI OBSERWACJI X 1, X 2,..., X n WYNIKI

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład II: Zmienne losowe i charakterystyki ich rozkładów 13 października 2014 Zmienne losowe Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Definicja zmiennej losowej i jej

Bardziej szczegółowo

Pochodna funkcji: definicja, podstawowe własności wykład 6

Pochodna funkcji: definicja, podstawowe własności wykład 6 Pochodna funkcji: definicja, podstawowe własności wykład 6 dr Mariusz Grzadziel Katedra Matematyki, Uniwersytet Przyrodniczy we Wrocławiu r. akad. 2016/2017 Problem obliczanie prędkości chwilowej Droga

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Eleenty odelowania ateatycznego Systey kolejkowe. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ RZYKŁAD KOLEJKI N(t) długość kolejki w chwili t T i czas obsługi i-tego klienta Do okienka

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Statystyka i opracowanie danych W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Rozkład Poissona. Zmienna losowa ciągła Dystrybuanta i funkcja gęstości

Bardziej szczegółowo

1. Przyszła długość życia x-latka

1. Przyszła długość życia x-latka Przyszła długość życia x-latka Rozważmy osobę mającą x lat; oznaczenie: (x) Jej przyszłą długość życia oznaczymy T (x), lub krótko T Zatem x+t oznacza całkowitą długość życia T jest zmienną losową, której

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

Programowanie liniowe

Programowanie liniowe Programowanie liniowe Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW wykład z algebry liniowej Warszawa, styczeń 2015 Mirosław Sobolewski (UW) Warszawa, 2015 1 / 16 Homo oeconomicus=

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Rozkład i jego charakterystyki 22 listopada 2016 Uprzednio wprowadzone pojęcia i ich własności Definicja zmiennej losowej Zmienna losowa na przestrzeni probabilistycznej (Ω, F, P) to funkcja

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka

EGZAMIN DYPLOMOWY, część II, 20.09.2006 Biomatematyka Biomatematyka Załóżmy, że częstości genotypów AA, Aa i aa w całej populacji wynoszą p 2, 2pq i q 2. Wiadomo, że czynnik selekcyjny sprawia, że osobniki o genotypie aa nie rozmnażają się. 1. Wyznacz częstości

Bardziej szczegółowo

Zmienne losowe ciągłe i ich rozkłady

Zmienne losowe ciągłe i ich rozkłady Rachunek Prawdopodobieństwa i Statystyka - W3 Zmienne losowe ciągłe i ich rozkłady Dr Anna ADRIAN Paw B5, pok47 adan@agh.edu.pl Plan wykładu Zmienna losowa ciągła Dystrybuanta i unkcja gęstości rozkładu

Bardziej szczegółowo

Podstawy Informatyki Elementy teorii masowej obsługi

Podstawy Informatyki Elementy teorii masowej obsługi Podstawy Informatyki alina.momot@polsl.pl http://zti.polsl.pl/amomot/pi Plan wykładu 1 Wprowadzenie Źródło, kolejka, stanowisko obsługi Notacja Kendalla 2 Analiza systemu M/M/1 Wyznaczenie P n (t) Wybrane

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład VII: Metody specjalne Monte Carlo 24 listopada 2014 Transformacje specjalne Przykład - symulacja rozkładu geometrycznego Niech X Ex(λ). Rozważmy zmienną losową [X ], która przyjmuje wartości naturalne.

Bardziej szczegółowo

Modelowanie komputerowe

Modelowanie komputerowe Modelowanie komputerowe wykład 5- Klasyczne systemy kolejkowe i ich analiza dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 16,23listopada2015r. Analiza

Bardziej szczegółowo

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami:

Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Zadanie 1. Zmienne losowe X 1, X 2 są niezależne i mają taki sam rozkład z atomami: Pr(X 1 = 0) = 6/10, Pr(X 1 = 1) = 1/10, i gęstością: f(x) = 3/10 na przedziale (0, 1). Wobec tego Pr(X 1 + X 2 5/3) wynosi:

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Granica funkcji wykład 4

Granica funkcji wykład 4 Granica funkcji wykład 4 dr Mariusz Grządziel 27 października 2008 Problem obliczanie prędkości chwilowej Droga s, jaką przemierzy kulka ołowiana upuszczona z wysokiej wieży po czasie t: s = gt2 2, gdzie

Bardziej szczegółowo

Układy równań i równania wyższych rzędów

Układy równań i równania wyższych rzędów Rozdział Układy równań i równania wyższych rzędów Układy równań różniczkowych zwyczajnych Wprowadzenie W poprzednich paragrafach zajmowaliśmy się równaniami różniczkowymi y = f(x, y), których rozwiązaniem

Bardziej szczegółowo

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne.

Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Logarytmy. Funkcje logarytmiczna i wykładnicza. Równania i nierówności wykładnicze i logarytmiczne. Definicja. Niech a i b będą dodatnimi liczbami rzeczywistymi i niech a. Logarytmem liczby b przy podstawie

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA

STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA STATYSTYKA MATEMATYCZNA ZESTAW 0 (POWT. RACH. PRAWDOPODOBIEŃSTWA) ZADANIA Zadanie 0.1 Zmienna losowa X ma rozkład określony funkcją prawdopodobieństwa: x k 0 4 p k 1/3 1/6 1/ obliczyć EX, D X. (odp. 4/3;

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część III Matematyka ubezpieczeń majątkowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Komisja

Bardziej szczegółowo

Zadania o numerze 4 z zestawów licencjat 2014.

Zadania o numerze 4 z zestawów licencjat 2014. Zadania o numerze 4 z zestawów licencjat 2014. W nawiasie przy zadaniu jego występowanie w numerze zestawu Spis treści (Z1, Z22, Z43) Definicja granicy ciągu. Obliczyć granicę:... 3 Definicja granicy ciągu...

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka

EGZAMIN MAGISTERSKI, 25.06.2009 Biomatematyka Biomatematyka 80...... Zadanie 1. (8 punktów) Rozpatrzmy prawo Hardy ego Weinberga dla loci związanej z chromosomem X o dwóch allelach A 1 i A 2. Załóżmy, że początkowa częstość allelu A 2 u kobiet jest

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0

), którą będziemy uważać za prawdziwą jeżeli okaże się, że hipoteza H 0 Testowanie hipotez Każde przypuszczenie dotyczące nieznanego rozkładu badanej cechy nazywamy hipotezą statystyczną. Hipoteza określająca jedynie wartości nieznanych parametrów liczbowych badanej cechy

Bardziej szczegółowo

Rozkłady zmiennych losowych

Rozkłady zmiennych losowych Rozkłady zmiennych losowych Wprowadzenie Badamy pewną zbiorowość czyli populację pod względem występowania jakiejś cechy. Pobieramy próbę i na podstawie tej próby wyznaczamy pewne charakterystyki. Jeśli

Bardziej szczegółowo

Analiza przeżycia. Wprowadzenie

Analiza przeżycia. Wprowadzenie Wprowadzenie Przedmiotem badania analizy przeżycia jest czas jaki upływa od początku obserwacji do wystąpienia określonego zdarzenia, które jednoznacznie kończy obserwację na danej jednostce. Analiza przeżycia

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Koszyki OECD. Metodologia porównywania taryf telekomunikacyjnych. Zagadnienia prawne i ekonomiczne w telekomunikacji

Koszyki OECD. Metodologia porównywania taryf telekomunikacyjnych. Zagadnienia prawne i ekonomiczne w telekomunikacji ZAGADNIENIA PRAWNE i EKONOMICZNE w TELEKOMUNIKACJI Dr inż. Jerzy Kubasik Politechnika Poznańska Instytut Elektroniki i Telekomunikacji Zagadnienia prawne i ekonomiczne w telekomunikacji Wykład XI-XII:

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a

Programowanie nieliniowe. Badania operacyjne Wykład 3 Metoda Lagrange a Programowanie nieliniowe Badania operacyjne Wykład 3 Metoda Lagrange a Plan wykładu Przykład problemu z nieliniową funkcją celu Sformułowanie problemu programowania matematycznego Podstawowe definicje

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład II: i charakterystyki ich rozkładów 24 lutego 2014 Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa, cz. II Wartość oczekiwana Dystrybuanty Słowniczek teorii prawdopodobieństwa,

Bardziej szczegółowo

O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE

O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE Ryszard Zieliński, IMPAN Warszawa O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE XXXIX Ogólnopolska Konferencja Zastosowań Matematyki Zakopane-Kościelisko 7-14 września 2010 r Model statystyczny pomiaru: wynik pomiaru

Bardziej szczegółowo

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia

ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia Wst ep do matematyki aktuarialnej Micha l Jasiczak Wyk lad 2 Tablice trwania życia 1 Cele (na dzisiaj): Zrozumieć w jaki sposób można wyznaczyć przysz ly czas życia osoby w wieku x. Zrozumieć parametry

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,0,3,3) jest optymalnym rozwiązaniem zagadnienia programowania liniowego: Zminimalizować 8x 1 +5x 2 +3x 3 +4x 4, przy ograniczeniach

Bardziej szczegółowo

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady

WYKŁAD 2. Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady WYKŁAD 2 Zdarzenia losowe i prawdopodobieństwo Zmienna losowa i jej rozkłady Metody statystyczne metody opisu metody wnioskowania statystycznego syntetyczny liczbowy opis właściwości zbioru danych ocena

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra

Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa. P. F. Góra Wstęp do metod numerycznych Uwarunkowanie Eliminacja Gaussa P. F. Góra http://th-www.if.uj.edu.pl/zfs/gora/ 2012 Uwarunkowanie zadania numerycznego Niech ϕ : R n R m będzie pewna funkcja odpowiednio wiele

Bardziej szczegółowo

1. Wielomiany Podstawowe definicje i twierdzenia

1. Wielomiany Podstawowe definicje i twierdzenia 1. Wielomiany Podstawowe definicje i twierdzenia Definicja wielomianu. Wielomianem stopnia n zmiennej rzeczywistej x nazywamy funkcję w określoną wzorem w(x) = a n x n + a n 1 x n 1 + + a 1 x + a 0, przy

Bardziej szczegółowo

Przestrzeń probabilistyczna

Przestrzeń probabilistyczna Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty zbiór Σ rodzina podzbiorów tego zbioru P funkcja określona na Σ, zwana prawdopodobieństwem. Przestrzeń probabilistyczna (Ω, Σ, P) Ω pewien niepusty

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Model odpowiedzi i schemat oceniania do arkusza I

Model odpowiedzi i schemat oceniania do arkusza I Model odpowiedzi i schemat oceniania do arkusza I Zadanie 1 (4 pkt) n Odczytanie i zapisanie danych z wykresu: 100, 105, 100, 10, 101. n Obliczenie mediany: Mediana jest równa 101. n Obliczenie średniej

Bardziej szczegółowo

Elementy matematyki, wykład 5. Pochodna funkcji. Daniel Wójcik Szymon Łęski.

Elementy matematyki, wykład 5. Pochodna funkcji. Daniel Wójcik Szymon Łęski. Elementy matematyki, wykład 5 Pochodna funkcji Daniel Wójcik Szymon Łęski d.wojcik@nencki.gov.pl s.leski@nencki.gov.pl http://www.neuroinf.pl/members/szleski/swps/ http://www.neuroinf.pl/members/danek/homepage/swps/matematyka_wyklad_html/

Bardziej szczegółowo

Statystyka w analizie i planowaniu eksperymentu

Statystyka w analizie i planowaniu eksperymentu 5 marca 2011 Zasady 10 wyk ladów; egzamin pisemny; Literatura 1 A. Lomnicki Wprowadzenie do statystyki dla przyrodników PWN 1999. 2 W. Krysicki, J. Bartos, W. Dyczka, K. Królikowska, M. Wasilewski Rachunek

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji.

I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. I. Pochodna i różniczka funkcji jednej zmiennej. 1. Definicja pochodnej funkcji i jej interpretacja fizyczna. Istnienie pochodnej funkcji. Niech x 0 R i niech f będzie funkcją określoną przynajmniej na

Bardziej szczegółowo

Ci agło s c funkcji 2 grudnia 2014 Ci agło s c funkcji

Ci agło s c funkcji 2 grudnia 2014 Ci agło s c funkcji 2 grudnia 2014 ciagłość - zaufanie 1 Dlaczego zbliżajac się do łuku drogi nie hamujemy wiedzac, że nie zdołamy się zatrzymać na widocznym kawałku drogi? Ponieważ wierzymy, że dalej ciagnie się droga. 2

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Funkcja wykładnicza kilka dopowiedzeń

Funkcja wykładnicza kilka dopowiedzeń Funkcje i ich granice Było: Zbiór argumentów; zbiór wartości; monotoniczność; funkcja odwrotna; funkcja liniowa; kwadratowa; wielomiany; funkcje wymierne; funkcje trygonometryczne i ich odwrotności; funkcja

Bardziej szczegółowo

Matematyka 2. Metoda operatorowa Transformata Laplace a

Matematyka 2. Metoda operatorowa Transformata Laplace a Matematyka 2 Metoda operatorowa Transformata Laplace a Literatura M.Gewert, Z.Skoczylas; Równania różniczkowe zwyczajne; Oficyna Wydawnicza GiS, Wrocław, 1999 D.Mozyrska, E.Pawłuszewicz, R.Stasiewicz;

Bardziej szczegółowo

11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu.

11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu. Równania różniczkowe cząstkowe pierwszego rzędu 11 1 11 Równania różniczkowe cząstkowe. Równania różniczkowe cząstkowe pierwszego rzędu. 11.1 Równania różniczkowe cząstkowe. Definicje i oznaczenia. Równaniem

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej:

Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: Własności dystrybuanty zmiennej losowej: Definicja 7.4 (Dystrybuanta zmiennej losowej). Dystrybuantą F zmiennej losowej X nazywamy funkcję: F (t) P (X t) < t < Własności dystrybuanty zmiennej losowej: jest niemalejąca: 0 F (t) jest prawostronnie

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

Formy kwadratowe. Rozdział 10

Formy kwadratowe. Rozdział 10 Rozdział 10 Formy kwadratowe Rozważmy rzeczywistą macierz symetryczną A R n n Definicja 101 Funkcję h : R n R postaci h (x) = x T Ax (101) nazywamy formą kwadratową Macierz symetryczną A występującą w

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka

Bardziej szczegółowo

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3

Analiza Algorytmów. Informatyka, WPPT, Politechnika Wroclawska. 1 Zadania teoretyczne (ćwiczenia) Zadanie 1. Zadanie 2. Zadanie 3 Analiza Algorytmów Informatyka, WPPT, Politechnika Wroclawska 1 Zadania teoretyczne (ćwiczenia) Zadanie 1 Niech k będzie dodatnią liczbą całkowitą. Rozważ następującą zmienną losową Pr[X = k] = (6/π 2

Bardziej szczegółowo

Wykład 9: Markov Chain Monte Carlo

Wykład 9: Markov Chain Monte Carlo RAP 412 17.12.2008 Wykład 9: Markov Chain Monte Carlo Wykładowca: Andrzej Ruciński Pisarz: Ewelina Rychlińska i Wojciech Wawrzyniak Wstęp W tej części wykładu zajmiemy się zastosowaniami łańcuchów Markowa

Bardziej szczegółowo

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Elżbieta Krajewska Instytut Matematyki Politechnika Łódzka Elżbieta Krajewska Immunizacja ubezpieczycieli życiowych 1/22 Plan prezentacji

Bardziej szczegółowo

Wykład 3 Hipotezy statystyczne

Wykład 3 Hipotezy statystyczne Wykład 3 Hipotezy statystyczne Hipotezą statystyczną nazywamy każde przypuszczenie dotyczące nieznanego rozkładu obserwowanej zmiennej losowej (cechy populacji generalnej) Hipoteza zerowa (H 0 ) jest hipoteza

Bardziej szczegółowo

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna

Pochodna funkcji c.d.-wykład 5 ( ) Funkcja logistyczna Pochodna funkcji c.d.-wykład 5 (5.11.07) Funkcja logistyczna Rozważmy funkcję logistyczną y = f 0 (t) = 40 1+5e 0,5t Funkcja f może być wykorzystana np. do modelowania wzrostu masy ziaren kukurydzy (zmienna

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

Prawdopodobieństwo i statystyka

Prawdopodobieństwo i statystyka Wykład XI: Testowanie hipotez statystycznych 12 stycznia 2015 Przykład Motywacja X 1, X 2,..., X N N (µ, σ 2 ), Y 1, Y 2,..., Y M N (ν, δ 2 ). Chcemy sprawdzić, czy µ = ν i σ 2 = δ 2, czyli że w obu populacjach

Bardziej szczegółowo

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym

Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym Edward Stachowski Prawdopodobieństwo warunkowe Twierdzenie o prawdopodobieństwie całkowitym W podstawie programowej obowiązującej na egzaminie maturalnym od 05r pojawiły się nowe treści programowe Wśród

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne.

P (A B) P (B) = 1/4 1/2 = 1 2. Zakładamy, że wszystkie układy dwójki dzieci: cc, cd, dc, dd są jednakowo prawdopodobne. Wykład Prawdopodobieństwo warunkowe Dwukrotny rzut symetryczną monetą Ω {OO, OR, RO, RR}. Zdarzenia: Awypadną dwa orły, Bw pierwszym rzucie orzeł. P (A) 1 4, 1. Jeżeli już wykonaliśmy pierwszy rzut i wiemy,

Bardziej szczegółowo

Finansowe szeregi czasowe

Finansowe szeregi czasowe 24 kwietnia 2009 Modelem szeregu czasowego jest proces stochastyczny (X t ) t Z, czyli rodzina zmiennych losowych, indeksowanych liczbami całkowitymi i zdefiniowanych na pewnej przestrzeni probabilistycznej

Bardziej szczegółowo

Analiza matematyczna. 1. Ciągi

Analiza matematyczna. 1. Ciągi Analiza matematyczna 1. Ciągi Definicja 1.1 Funkcję a: N R odwzorowującą zbiór liczb naturalnych w zbiór liczb rzeczywistych nazywamy ciągiem liczbowym. Wartość tego odwzorowania w punkcie n nazywamy n

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

5. Równania różniczkowe zwyczajne pierwszego rzędu

5. Równania różniczkowe zwyczajne pierwszego rzędu 5. Równania różniczkowe zwyczajne pierwszego rzędu 5.1. Wstęp. Definicja 5.1. Niech V R 3 będzie obszarem oraz F : V R. Równaniem różniczkowym zwyczajnym rzędu pierwszego nazywamy równanie postaci Równanie

Bardziej szczegółowo

Układy równań liniowych

Układy równań liniowych Układy równań liniowych Mirosław Sobolewski Wydział Matematyki, Informatyki i Mechaniki UW 1. wykład z algebry liniowej Warszawa, październik 2015 Mirosław Sobolewski (UW) Warszawa, wrzesień 2015 1 / 1

Bardziej szczegółowo

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Aleksander Adamowski (s1869) zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut. Zadanie Statystyczna Analiza Danych - Zadania 6 Aleksander Adamowski (s869) W pewnym biurze czas losowo wybranej rozmowy telefonicznej jest zmienn ą losow ą T o rozkładzie wykładniczym o średniej 5 minut.

Bardziej szczegółowo

Działanie grupy na zbiorze

Działanie grupy na zbiorze Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 6 Ciągłe zmienne losowe ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie 1 Zmienna losowa ciągła jest

Bardziej szczegółowo

Granica funkcji. 27 grudnia Granica funkcji

Granica funkcji. 27 grudnia Granica funkcji 27 grudnia 2011 Punkty skupienia Definicja Niech D R będzie dowolnym zbiorem. Punkt x 0 R nazywamy punktem skupienia zbioru D jeżeli δ>0 x D\{x0 } : x x 0 < 0. Zbiór punktów skupienia zbioru D oznaczamy

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję.

a)dane są wartości zmiennej losowej: 2, 4, 2, 1, 1, 3, 2, 1. Obliczyć wartość średnią i wariancję. Zad Rozkład zmiennej losowej dyskretnej : a)dane są wartości zmiennej losowej: 2, 4, 2,,, 3, 2,. Obliczyć wartość średnią i wariancję. b)oceny z pracy klasowej w tabeli: Ocena 2 3 4 5 6 Liczba uczniów

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

Wyk lad 14 Formy kwadratowe I

Wyk lad 14 Formy kwadratowe I Wyk lad 14 Formy kwadratowe I Wielomian n-zmiennych x 1,, x n postaci n a ij x i x j, (1) gdzie a ij R oraz a ij = a ji dla wszystkich i, j = 1,, n nazywamy forma kwadratowa n-zmiennych Forme (1) można

Bardziej szczegółowo

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej

Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej Zmienna losowa i jej rozkład Dystrybuanta zmiennej losowej Wartość oczekiwana zmiennej losowej c Copyright by Ireneusz Krech ikrech@ap.krakow.pl Instytut Matematyki Uniwersytet Pedagogiczny im. KEN w Krakowie

Bardziej szczegółowo