Wnioskowanie z danych zapisanych w zewnętrznych źródłach w systemie zarządzania wiedzą

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wnioskowanie z danych zapisanych w zewnętrznych źródłach w systemie zarządzania wiedzą"

Transkrypt

1 Rozdział 26 Wnioskowanie z danych zapisanych w zewnętrznych źródłach w systemie zarządzania wiedzą Streszczenie. Rozdział prezentuje proces wnioskowania z danych przechowywanych w zewnętrznych źródłach. W procesie tym wykorzystywane są dwie nowe metody: metoda semantycznego wzbogacania źródeł SED (Semantic Enrichment of Data) oraz wykorzystująca ją metoda wnioskowania z danych zewnętrznych RED (Reasoning over External Data). Obie te metody zostały w niniejszym rozdziale przedstawione. Metoda SED służy do opisania zewnętrznych źródeł danych terminami pochodzącymi z ontologii. Opisy utworzone z wykorzystaniem metody SED są następnie stosowane w metodzie RED, w celu odwzorowania wiedzy reprezentowanej kartograficznie w zbiór zapytań skierowanych do zewnętrznych źródeł. Metoda ta dostosowuje algorytmy właściwe dla metody kartograficznej w taki sposób, aby możliwe było ich zastosowanie, kiedy opis świata musi być tworzony dynamicznie z danych nieontologicznych. W rozdziale ponadto opisano wyniki zastosowania w praktyce obu metod. 1 Wstęp W procesie integracji wiedzy [1], [2] kluczowym problemem jest zarządzanie danymi przechowywanymi w różnorodnych zewnętrznych źródłach, jak również dostarczenie mechanizmów wnioskowania z tych danych. Rozwój Sieci WWW znacząco uwydatnił ten problem, a już w sieci semantycznej (ang. Semantic Web) [3] jest on w sposób szczególny akcentowany. W sieci WWW znajdują się różnorodne źródła danych, w sieci semantycznej są one dodatkowo opisane semantycznie. Zbiór pojęć, którymi źródło danych może być opisane, jest zawarty w ontologii. W ramach inicjatywy sieci semantycznej powstał język OWL (Web Ontology Language) [4], umożliwiający formalne zapisywanie ontologii. Ustanowienie tego języka jako standard W3C jest wielkim krokiem naprzód do rozwiązania problemu integracji wiedzy, choć nie rozwiązuje go całkowicie. W rozdziale tym zaproponowano dwie metody. Pierwsza z nich metoda SED wprowadza sposób semantycznego opisu źródeł. Język OWL pozwala zapisywać ontologie, w tym ich część asercyjną, w sposób sformalizowany. W sieci semantycznej większość danych i informacji o nich nie jest niestety zapisana w takiej formie. Metoda SED pokazuje, w jaki Krzysztof Goczyła, Teresa Zawadzka, Michał Zawadzki Politechnika Gdańska, Wydział Elektroniki, Telekomunikacji i Informatyki, Katedra Inżynierii Oprogramowania, ul. G. Narutowicza 11/12, Gdańsk, Polska {kris, tegra,

2 K. Goczyła, T. Zawadzka, M. Zawadzki sposób opisać dane, aby mogły być one traktowane przez system wnioskujący identycznie jak dane zapisane bezpośrednio w formacie OWL. Metoda RED pokazuje, w jaki sposób system reprezentacji wiedzy może wnioskować z danych zawartych w zewnętrznych źródłach, których zawartość opisana jest semantycznie metodą SED, służącą do semantycznego opisu źródeł. Opis ten jest niezależny od systemu wnioskującego i algorytmów w nim użytych. Metoda RED jest natomiast dedykowana dla algorytmów wnioskujących z wiedzy reprezentowanej kartograficznie [5]. W podrozdziale 2 opisano pokrótce metodę kartograficzną i wymagania, z których wyrosły proponowane metody. Podrozdział 3 prezentuje architekturę systemu Knowledge Layer [7] odpowiedzialnego za wnioskowanie z danych zewnętrznych. Następne dwa podrozdziały 4 i 5 opisują metodę SED i RED zastosowaną we wspomnianym systemie. Wyniki testów porównujących czasy odpowiedzi w przypadku, gdy dane są bezpośrednio wczytywane do modułu wnioskującego z ontologii,i w przypadku, kiedy dane te są przechowywane w zewnętrznych źródłach, zostały opisane w podrozdziale 6. Podrozdział 7 porównuje zaproponowane rozwiązanie z istniejącymi podejściami do integracji wiedzy i danych, zaś podrozdział 8 ostatni podsumowuje rozdział. 2 Motywacje Idea systemu wnioskującego z danych zewnętrznych Knowledge Layer (KL) powstała na skutek wymagania zarządzania danymi przechowywanymi w zewnętrznych źródłach. Systemy wnioskujące, a wśród nich system KaSeA (Knowledge Signature Analyzer) [6] opracowany na Politechnice Gdańskiej, wymagają wczytania do ich wewnętrznej bazy wiedzy wszystkich danych zapisanych w ontologii. Wnioskowanie może być prowadzone tylko z tych danych. System wnioskujący KaSeA został zbudowany w taki sposób, aby efektywnie odpowiadać na zapytania w przypadku dużej liczby osobników zapisanych w ontologii. Aby sprostać tym wymaganiom, opracowano i wykorzystano kartograficzną reprezentację wiedzy. W reprezentacji tej każdy koncept ma przypisaną sygnaturę. Sygnatura jest tablicą bitów reprezentujących obszary atomowe na mapie konceptów. W rzeczywistości mapa konceptów pokazuje zależności pomiędzy konceptami w terminologii i może być reprezentowana graficznie w formie podobnej do diagramów Venna. Przykładowa mapa konceptów dla pewnej ontologii została przedstawiona na rys. 1. Rys. 1. Przykładowa mapa konceptów (a); po wprowadzeniu nowych aksjomatów (b) 284

3 Wnioskowanie z danych zapisanych w zewnętrznych źródłach w systemie zarządzania wiedzą Każdy obszar atomowy (nazywany dalej regionem), tj. obszar nie zawierający żadnego innego obszaru, reprezentuje unikalne, poprawne przecięcie konceptów atomowych. Poprzez poprawne przecięcie rozumiemy takie przecięcie, które jest spełniane w odniesieniu do zadanej terminologii. Przecięcia konceptów, które nie są dozwolone przez aksjomaty terminologiczne, są usuwane z mapy. Na mapie znajduje się n regionów, z których każdy ma przypisaną kolejną liczbę z zakresu <1, n>. Ponieważ każdy obszar na mapie składa się z pewnej liczby regionów, może być reprezentowany jako ciąg bitów o długości n, przy czym bit na i-tej pozycji jest ustawiony wtedy i tylko wtedy, gdy i-ty region jest zawarty w danym obszarze. W przeciwnym razie bit ten jest wyzerowany. Każdy koncept ma przypisany pewien obszar, co jest równoważne przypisaniu mu odpowiedniego ciągu bitów, zwanego sygnaturą. W terminach sygnatur możemy opisać dowolną kombinację dopełnienia, sumy i przecięcia konceptów poprzez odwzorowanie tych operacji w działania algebry Boole a. Analogicznie, w procesie wczytywania asercji o osobnikach każdemu z nich jest nadawana sygnatura osobnicza. Różnica między sygnaturami osobniczymi a sygnaturami konceptów polega na tym, że bit ustawiony w sygnaturze konceptu oznacza, że odpowiedni region należy do obszaru przypisanemu danemu konceptowi, natomiast w przypadku sygnatur osobniczych bit ustawiony oznacza, że osobnik może przynależeć do danego regionu. W rzeczywistości każdy osobnik należy do dokładnie jednego regionu. Jeśli więc sygnatura osobnicza zawiera więcej niż jeden ustawiony bit, oznacza to, że nie można jednoznacznie określić, do którego z tych regionów dany osobnik należy. Do systemu wnioskującego wczytywane są również wystąpienia ról. Podstawą procesu wnioskowania w systemie KaSeA jest porównywanie sygnatur. Przykładowo, problem określenia zbioru wystąpień konceptu C jest ograniczony do znalezienia wszystkich osobników, których sygnatury są zawarte w sygnaturze konceptu C (sygnatura s 1 jest zawarta w sygnaturze s 2, jeśli każdy bit sygnatury s 1 jest nie większy niż odpowiadający mu bit sygnatury s 2 ). Rozwiązanie zastosowane w systemie KaSeA ma niezaprzeczalną zaletę, jaką jest szybkość wywodzenia wszelkich wniosków. Rozwiązanie takie ma także pewne wady: długi czas ładowania danych z ontologii do systemu KaSeA, aktualizowanie danych załadowanych do bazy wiedzy wymaga zastosowania złożonych technik, nie istnieje mechanizm informujący o zmianach w źródłach danych wymagane jest zastosowanie zewnętrznego systemu analizującego ich zawartość, rozwiązanie to nie jest łatwo skalowalne zarządzanie wszystkimi danymi z zewnętrznych źródeł poprzez załadowanie ich do wewnętrznej bazy wiedzy systemu KaSeA jest w praktyce niewykonalne. W sytuacji, kiedy system zarządzania wiedzą zarządza tylko kilkoma wolno zmieniającymi się źródłami danych, rozwiązanie zastosowane w systemie KaSeA jest wystarczające. Jednak w przypadku, gdy system ma zarządzać wieloma źródłami danych, podlegającymi ciągłym zmianom, musi być zastosowane inne rozwiązanie. Taka sytuacja zachodzi również w sieci semantycznej. Odpowiedzią na te wymagania jest podsystem wnioskujący KL, wykorzystujący usługi systemu KaSeA i metodę kartograficzną do wnioskowania z danych zapisanych w zewnętrznych źródłach. 285

4 K. Goczyła, T. Zawadzka, M. Zawadzki 3 Architektura podsystemu Knowledge Layer W systemie KL użytkownik jest nieświadomy, gdzie faktycznie znajdują się dane, na podstawie których system generuje odpowiedź. Zapytanie zadawane do systemu KL jest zadawane dokładnie w taki sam sposób jak do systemu KaSeA, tj. poprzez interfejs DIGUT (Description Logic Interface by Gdańsk University of Technology [8]). Możliwości wnioskowania o osobnikach w systemie KL są bardzo podobne do możliwości systemu KaSeA (aktualna implementacja systemu nie odpowiada jedynie na zapytanie o koncepty, do jakich przynależy dany osobnik). Na rys. 2 przedstawiony został zbiór komponentów wchodzących w skład systemu KL oraz miejsce zastosowania wspomnianych wcześniej metod SED i RED. Każdy system KL (a może być ich wiele w jednym systemie zarządzania wiedzą) musi logicznie współpracować z systemem KaSeA, do którego załadowana została terminologia, której terminami zostały opisane zewnętrzne źródła danych. Podczas ładowania terminologii wyznaczane są wszystkie sygnatury dla konceptów używane później w procesie odpowiadania na zapytania skierowane do systemu KL. W wyniku zastosowania metody SED tworzony jest plik XML opisujący odwzorowania pomiędzy ontologią a zewnętrznym źródłem. Odwzorowania te są przetwarzane przez kluczowy komponent systemu (zgodnie z założeniami metody RED), którym jest moduł o nazwie Procesor. Jest on odpowiedzialny za: transformację odwzorowań zdefiniowanych w pliku na odwzorowania w terminach sygnatur, zachowanie tych odwzorowań w bazie danych modułu, odpowiadanie na pytania zadane w terminach opisanych wspomnianą wcześniej terminologią. Rys. 2. Architektura systemu KL 4 Metoda SED Możemy wyróżnić trzy typy odwzorowań: odwzorowania konceptów, odwzorowania ról oraz odwzorowania atrybutów. Odwzorowaniem opisującym koncept jest para (koncept, zapytanie), przy czym zapytanie pozwala wydobyć wszystkie osobniki przynależące do da- 286

5 Wnioskowanie z danych zapisanych w zewnętrznych źródłach w systemie zarządzania wiedzą nego konceptu. Poprzez odwzorowanie opisujące rolę rozumiemy parę: (rola, zapytanie) przy czym zapytanie pozwala na wydobycie wszystkich par osobników powiązanych daną rolą. Analogicznie, odwzorowanie opisujące atrybut to para (atrybut, zapytanie). Istotną zaletą metody SED jest jej niezależność od typu źródeł danych (SQL, XML, CSV, XLS, MDB i in.). Jedynym wymaganiem jest zdefiniowanie odpowiednich zapytań i umieszczenie ich w pliku z odwzorowaniami. Taka elastyczność wymaga jednak spełnienia jednego warunku: musi istnieć język zapytań dla dowolnego typu źródła danych, dla którego są budowane odwzorowania. Język ten musi spełniać pewne wymagania (jak na przykład musi istnieć możliwość zdefiniowania zapytania złożonego jako sumy kilku zapytań prostych). To za pomocą tego języka muszą zostać wyrażone zapytania znajdujące się w pliku z odwzorowaniami. Oczywisty jest fakt, że nie dla wszystkich wymienionych wcześniej typów źródeł istnieją takie języki. W związku z tym metoda SED zakłada, że takie języki zostaną wyspecyfikowane. Dla takich języków muszą także istnieć komponenty potrafiące takie zapytania wykonać. Komponenty te na rys. 2 zostały przedstawione jako otoczki. Jako że większość aktualnie istniejących źródeł to relacyjne bazy danych, w dalszej części rozdziału skupimy się na języku SQL, który oczywiście spełnia przedstawione wymagania, oraz na serwerze RDBMS pełniącym rolę otoczki dla tego języka. 5 Metoda RED Głównym zadaniem metody RED jest wykorzystanie utworzonych powyżej opisaną metodą odwzorowań do wnioskowania o osobnikach z wykorzystaniem algorytmów operujących na kartograficznej reprezentacji wiedzy. Zadanie to wymaga uzyskania informacji o sygnaturach konceptów ze współpracującego z Procesorem systemu KaSeA. Każda para (koncept, zapytanie) przetwarzana jest na parę postaci (sygnatura, zapytanie). Zapytanie pozostanie niezmienione, natomiast sygnatura konceptu (być może złożonego) wyliczana jest na podstawie sygnatur przechowywanych w systemie KaSeA. Takie odwzorowywanie zapisywane jest w bazie danych. Odpowiedź na zapytanie zadane w terminach używanej ontologii wymaga odnalezienia najbardziej pasującego (być może złożonego) zapytania zrozumiałego przez zewnętrzne źródło danych. Algorytm największego pokrycia MC Kluczowym problemem, jaki musi zostać rozwiązany w module Procesor, jest odnalezienie najbardziej odpowiedniego zapytania pozwalającego na wydobycie osobników przynależących do danego konceptu. Odwzorowania opisujące najbardziej odpowiednie zapytania dla konceptów zdefiniowanych są zapisane w bazie danych. Przez słowo zdefiniowanych rozumiemy tutaj koncepty bezpośrednio odwzorowane w zapytania przy użyciu metody SED. Dla wspomnianych zapytań przyjęte jest bardzo ważne założenie zapytanie odpowiadające pewnej sygnaturze zawsze zwraca wszystkie wystąpienia konceptu opisanego tą sygnaturą. W celu sformułowania najbardziej odpowiedniego zapytania dla konceptu, który nie posiada odwzorowania, a jest reprezentowany poprzez sygnaturę s (sygnatura ta jest wyliczana przez system KaSeA), Procesor musi utworzyć nową sygnaturę złożoną z pewnej liczby sygnatur podrzędnych (dla których istnieją odwzorowania), mianowicie taką, która pokrywa możliwie najwięcej regionów atomowych reprezentowanych sygnaturą s. Warto zauważyć, że użycie sygnatury pokrywającej najwięcej regionów atomowych z sygnatury s gwa- 287

6 K. Goczyła, T. Zawadzka, M. Zawadzki rantuje, iż wszystkie osobniki wydobyte z zewnętrznego źródła będą przynależały do konceptu opisanego sygnaturą s. Może się jednak zdarzyć sytuacja, w której nie jesteśmy w stanie wyznaczyć takiego złożenia istniejących (jawnie odwzorowanych) sygnatur, które w pełni pokrywa zadaną sygnaturę s. Dla przykładu przyjmijmy, że w zapytaniu chcemy się odnieść do konceptu Człowiek reprezentowanego sygnaturą s = , natomiast w zewnętrznym źródle danych istnieje tylko odwzorowanie dla konceptu Kobieta (w tym źródle nie ma zawartych informacji o mężczyznach). Załóżmy, że koncept Kobieta jest reprezentowany poprzez sygnaturę W takiej sytuacji Procesor utworzy sygnaturę , która dla danego źródła pokrywa maksymalną liczbę regionów atomowych reprezentowanych sygnaturą Lista sygnatur, które muszą zostać połączone, jest wyliczana przy użyciu algorytmu największego pokrycia MC (ang. Maximal Coverage) opisanego poniżej. Algorytm ten bazuje na algorytmie Apriori [9]. W algorytmie określenie sygnatura atomowa oznacza sygnaturę, której odwzorowanie utworzono w momencie ładowania pliku z odwzorowaniami. Każda inna sygnatura, która znajduje się w bazie danych, nie jest już sygnaturą atomową (gdyż jest złożeniem takich sygnatur). Algorytm 1. Algorytm największego pokrycia MC Wejście: Sygnatura s. Wyjście: Suma przecięć sygnatur, które pokrywają największą liczbę regionów atomowych opisanych sygnaturą s. 1. Jeżeli sygnatura s istnieje (posiada odwzorowanie): 2. Zwróć sygnaturę i odpowiadające jej zapytanie. 3. W przeciwnym wypadku: 4. Znajdź wszystkie sygnatury atomowe, które nie są rozłączne z s i nie są podrzędne w stosunku do s, a następnie zapisz je na listę l Znajdź wszystkie sygnatury atomowe, które są podrzędne w stosunku do s, a następnie zapisz je na listę l Jeżeli lista l 0 nie jest pusta: 7. Dla każdej pary (s i, s j ) takich, że s i, s j œ l 0 ; s i s j : 8. Oblicz sygnaturę s t = s i AND s j (zapamiętaj używane sygnatury) 9. Jeżeli s t = s 10. Zwróć listę sygnatur, których przecięcie utworzyło sygnaturę s t. 11. W przeciwnym wypadku: jeśli s t jest podrzędne w stosunku do s dodaj ją do listy l W przeciwnym wypadku dodaj s t do listy l Koniec {Dla każdego} 14. Dopóki lista l 2 nie jest pusta: 15. Przenieś zawartość listy l 2 na listę l 3 i wyczyść listę l Dla każdej pary (s i, s j ) takich, że s i œ l 3, s j œ l 0 : 17. Oblicz sygnaturę s t = s i AND s j (zapamiętaj używane sygnatury) 18. Jeśli s t = s 19. Zwróć listę sygnatur, których przecięcie utworzyło sygnaturę s t. 20. W przeciwnym wypadku: jeśli s t jest podrzędne w stosunku do s dodaj ją do listy l W przeciwnym wypadku dodaj s t do listy l Koniec {Dla każdego} 23. Koniec {Dopóki} 24. Koniec {Jeżeli} 288

7 Wnioskowanie z danych zapisanych w zewnętrznych źródłach w systemie zarządzania wiedzą 25. Z listy l 1 usuń te sygnatury, które są podrzędne w stosunku do dowolnej innej sygnatury na tej liście. 26. Lista l 1 zawiera listę list sygnatur. Zwróć tę listę jako sumę przecięć sygnatur z tej listy 27. Koniec {Jeżeli} Opiszemy teraz rozwiązania zastosowane w Procesorze służące udostępnieniu usług odpowiedzialnych za tworzenie odwzorowań sygnatur, zapisywaniu ich w bazie danych oraz odpowiadaniu na zapytania w terminach zdefiniowanych w ontologii. Odwzorowania dla konceptów, ról i atrybutów budowane są na podstawie pliku z odwzorowaniami. Na początku wyliczane są sygnatury dla odwzorowywanych konceptów (wyliczanie sygnatur odbywa się przy użyciu systemu KaSeA z załadowaną terminologią). W ten sposób można utworzyć listę par składających się z sygnatury i odpowiadającego jej zapytania. W dalszej części taka para (sygnatura, zapytanie) będzie nazywana odwzorowaniem sygnatury. Lista takich odwzorowań zapisywana jest do bazy danych. Następnie tworzone są odwzorowania dla konceptów postaci ŸC, gdzie C jest konceptem, dla którego utworzono odwzorowanie. Aby utworzyć zapytanie dla konceptu ŸC, wykorzystywany jest algorytm MC. Ostatnim krokiem przy budowaniu odwzorowań jest zbudowanie odwzorowań dla konceptu Top oraz konceptów postaci $R.C. Mając zdefiniowane zapytanie dla roli R i zapytanie dla konceptu C (być może wyliczone przy użyciu algorytmu MC), Procesor tworzy zapytanie zwróć wszystkie podmioty roli R, dla których dopełnienie tej roli jest wystąpieniem konceptu C. Również i te odwzorowania są zapisywane do bazy danych (jej struktura została opisana w [7]). System KL pozwala na wykonywanie zapytań dotyczących podstawowych problemów wnioskowania: problemu określenia zbioru wystąpień konceptu (ang. instance retrieval problem), problemu sprawdzenia przynależności (ang. instance check problem), problemu relacji między wystąpieniami (ang. related individuals problem), problemu dopełnień w relacji między wystąpieniami (ang. role fillers problem) oraz problemu wartości nadanej (ang. told values problem) [8]. Procesy przetwarzania i odpowiedzi na te zapytania przedstawione zostały na poniższych ogólnych algorytmach, które jednak mogą zostać zoptymalizowane pod kątem specyficznego języka zapytań i możliwości konkretnych typów otoczek. Algorytm 2. Algorytm określania zbioru wystąpień konceptu Wejście: Koncept C. Wyjście: Zbiór wystąpień należących do konceptu C. 1. Znajdź sygnaturę dla konceptu C 2. Znajdź zapytanie dla tej sygnatury: 3. Jeśli nie istnieje w bazie danych odwzorowanie sygnatury w zapytanie 4. Znajdź najbardziej odpowiednie zapytanie używając algorytmu MC 5. W przeciwnym wypadku 6. Pobierz zapytanie z bazy danych 7. Wykonaj zapytanie 8. Zwróć wynik zapytania Algorytm 3. Algorytm sprawdzania przynależności Wejście: Koncept C, osobnik i. Wyjście: True jeżeli i należy do konceptu C, false jeżeli i nie należy do konceptu C lub maybe w przeciwnym wypadku. 289

8 K. Goczyła, T. Zawadzka, M. Zawadzki 1. Znajdź sygnaturę dla konceptu C 2. Znajdź zapytanie dla tej sygnatury: 3. Jeśli nie istnieje w bazie danych odwzorowanie sygnatury w zapytanie 4. Znajdź najbardziej odpowiednie zapytanie używając algorytmu MC 5. W przeciwnym wypadku 6. Pobierz zapytanie z bazy danych 7. Wykonaj zapytanie 8. Sprawdź, czy osobnik i znajduje się wśród wyników zapytania 9. Jeśli osobnik i znajduje się wśród wyników zapytania 10. Zwróć true 11. W przeciwnym wypadku: 12. Znajdź sygnaturę dla konceptu ŸC 13. Znajdź zapytanie dla tej sygnatury: 14. Jeśli nie istnieje w bazie danych odwzorowanie sygnatury w zapytanie 15. Znajdź najbardziej odpowiednie zapytanie używając algorytmu MC 16. W przeciwnym wypadku 17. Pobierz zapytanie z bazy danych 18. Wykonaj zapytanie 19. Sprawdź, czy osobnik i znajduje się wśród wyników zapytania 20. Jeśli osobnik i znajduje się wśród wyników zapytania 21. Zwróć false 22. W przeciwnym wypadku 23. Zwróć maybe Warto zauważyć fakt, że mimo iż zewnętrzne źródła danych modelowane są zgodnie z założeniem świata zamkniętego (ang. Closed World Assumption) [10], system KL otwiera ten świat i pozwala na uzyskanie odpowiedzi zgodnych z założeniem świata otwartego (ang. Open World Assumption). Dla problemu określenia zbioru wystąpień konceptu zwracane są tylko te wystąpienia, co do których system ma pewność, że należą do danego konceptu. W przypadku problemu sprawdzenia przynależności zwracana jest wartość true wtedy i tylko wtedy, gdy system jest pewien, że dane wystąpienie należy do podanego konceptu, a false wtedy, gdy jest pewien, że nie należy, natomiast w innym wypadku (gdy nie może jednoznacznie stwierdzić przynależności lub jej braku) zwraca wartość maybe. 6 Testy wydajnościowe Przed prezentacją wyników testów wydajnościowych należy zaznaczyć zasadniczą różnicę między systemem KaSeA i system KL. System KaSeA umożliwia wnioskowanie różnego rodzaju pozwala odkrywać nowe wnioski zarówno z terminologii, jak i asercji, natomiast KL umożliwia wnioskowanie tylko z asercji. W tabeli 1 zebrane zostały porównania czasów odpowiedzi na zapytania dotyczące wystąpień należących do pewnego konceptu (czyli rozwiązywania problemu określenia zbioru wystąpień konceptu). Eksperymenty przeprowadzone zostały na ontologii leków (ontologia Drug została przygotowana przez Uniwersytet w Liverpoolu w ramach projektu PIPS [11]) oraz źródle danych Farmadati. Ontologia zawiera informacje o producentach leków, składnikach aktywnych, interakcjach, jak również o kodach ATC (ang. Anatomichal Therapeutic Code). Źródło Farmadati to relacyjna baza danych Oracle 9i, która zawiera informacje o lekach. Dane przechowywane są w 13 tablicach, które łącznie zawierają wierszy. Każdy eksperyment został powtórzony 100 razy, a czasy zostały uśrednione. W przypadku systemu KL czasy odpowiedzi mocno 290

9 Wnioskowanie z danych zapisanych w zewnętrznych źródłach w systemie zarządzania wiedzą zależą od wydajności poszczególnych otoczek. W prezentowanym przykładzie jako otoczkę umożliwiającą dostęp do danych traktujemy serwer SQL. Eksperymenty przeprowadzone zostały na komputerze klasy PC z procesorem Pentium 4 3 GHz z 1 GB RAM. Tabela 1. Czasy odpowiedzi na pytania o wystąpienia konceptu KaSeA KL Top za długo, by policzyć ms Drug ms 4656 ms Drug + DrugContainer ms ms S + U + V ms ms Dla pierwszych dwóch konceptów istnieje odwzorowanie, co oznacza, że odpowiednie zapytania dla sygnatur konceptów Top oraz Drug znajdują się w bazie. Dla pozostałych dwóch konceptów (koncepty S, U oraz V są podkonceptami konceptu ATCCode) zapytanie musi zostać sformułowane przy użyciu algorytmu MC. Pytania, które już raz zostały zadane, są w systemie KL zapamiętywane. Oznacza to, że kiedy zostanie zadane zapytanie o wystąpienia konceptów, dla którego nie istnieje w bazie danych odpowiednie odwzorowanie sygnatury w zapytanie do źródła, takie odwzorowanie jest zapamiętywane. Gdy następnym razem zostanie zadane to samo zapytanie, odpowiadające mu zapytanie zostanie bezpośrednio pobrane z bazy i nie będzie powtórnie przeliczane. Pozwala to zmniejszyć czas wykonywania dwóch ostatnich pytań o około 3 sek. 7 Porównanie z istniejącymi rozwiązaniami Rzeczywista potrzeba zarządzania danymi z zewnętrznych źródeł została doświadczona w ramach projektu PIPS (Personalised Information Platform for life and health Services), w którym autorzy niniejszego rozdziału współuczestniczą. PIPS jest projektem 6. Programu Ramowego Unii Europejskiej, którego głównym celem jest stworzenie infrastruktury sieciowej wspomagającej ochronę zdrowia i promowanie zdrowego stylu życia wśród obywateli Unii. Jednym z głównych zadań w tym projekcie jest opracowanie narzędzi do zarządzania wiedzą z wielu różnych źródeł informacji. W ramach tego projektu autorzy są współtwórcami systemu KaSeA, który pozwala na efektywne wywodzenie wniosków z danych o dużej liczbie osobników. Pewnym mankamentem tego systemu jest wymaganie, aby wszystkie dane, na których ma zostać przeprowadzone wnioskowanie, były załadowane do bazy wiedzy systemu. Problem ten uwidacznia się zwłaszcza wtedy, gdy mamy do czynienia z dużymi ilościami szybkozmiennych danych. Rozwiązanie polegające na każdorazowym czyszczeniu bazy wiedzy i ponownym wczytywaniu wszystkich danych lub stosowaniu zaawansowanych technik aktualizacji danych okazuje się efektywnościowo nieakceptowalne z punktu widzenia wymagań projektu. W związku z tym opracowano przedstawione w niniejszym rozdziale rozwiązanie wzbogacające zewnętrzne źródła danych o opis semantyczny, pozwalający na traktowanie danych z tych źródeł w taki sam sposób, jak gdyby były one fizycznie załadowane do bazy wiedzy systemu KaSeA. Innymi znanymi praktycznymi rozwiązaniami problemów integracji danych są Information Manifold [12], SIMS [13] czy PICSEL [14]. Większość tych systemów została jednak oparta na podejściu widoku globalnego, i to wówczas, gdy język OWL nie był jeszcze standardem W3C. Systemy te ukierunkowane były głównie na konkretne zastosowanie aplikacyjne, a przez to również na konkretny typ źródeł danych. Mimo, iż były one nastawione na 291

10 K. Goczyła, T. Zawadzka, M. Zawadzki wydajność, nie mogą spełnić wymagań nakładanych przez źródła internetowe, dla których to wymagań stworzony został system KL. 8 Podsumowanie Poniżej przedstawiono najważniejsze cechy rozwiązania zastosowanego w systemie KL: jest niezależne od formatu źródła danych dla strukturalnych źródeł danych takich jak XML, relacyjne bazy danych czy jakiekolwiek inne źródła, dla których istnieje język zapytań oraz procesor tych zapytań, jedynym wymaganiem jest utworzenie odpowiedniego pliku opisującego odwzorowania; może zostać użyte dla źródeł danych, dla których nie ma zdefiniowanego języka zapytań (przykładowo pliki XLS) należy wówczas opracować język zapytań (potencjalnie bardzo prosty) i zbudować odpowiednią otoczkę; wszystkie zmiany w źródle danych, które nie wpływają na strukturę samego źródła, są zawsze widoczne w systemie KL nie są wymagane żadne aktualizacje; zmiana struktury źródła danych wymaga zdefiniowania nowych odwzorowań i załadowania ich do systemu proces przetwarzania pliku z odwzorowaniami przez system KL jest jednak dużo szybszy niż proces ładowania danych do systemu KaSeA; dla przykładu: czas potrzebny do załadowania danych ze źródła Farmadati do systemu KaSeA to około 48 godzin, podczas gdy proces przetwarzania odwzorowań w systemie KL trwał tylko około 3 minut; nie są wymagane żadne zaawansowane techniki aktualizacji bazy wiedzy. Dalszy rozwój systemu Knowledge Layer obejmuje przede wszystkim jego implementację dla różnych typów źródeł strukturalnych i półstrukturalnych. W ramach tego zadania istnieje potrzeba opracowania języków zapytań dla różnych typów danych i stworzenia otoczek rozumiejących i umiejących wykonywać te zapytania. Rozwój systemu KL to także rozszerzenie zbioru obsługiwanych zapytań w pierwszej kolejności zapytanie o koncepty, do których przynależy zadany osobnik. Oprócz samego rozwoju systemu istotny jest również rozwój narzędzi wspomagających, takich jak np. edytor odwzorowań umożliwiający w wygodny, a przede wszystkim efektywny i poprawny sposób tworzyć pliki z informacjami o odwzorowaniach. Literatura 1. Pinto S., Gomez-Perez A., Martins J.: Some Issues on Ontology Integration, Proceedings of the JCAI-99 Workshop on Ontologies and Problem-Solving Methods (KRR5), Stockholm, Sweden, Calvanese D., De Giacomo G., Lenzerini M: A Framework for Ontology Integration. Proceedings of the First Semantic Web Working Symposium, 2001, pp Semantic Web Initiatives, 4. OWL Web Ontology Language Guide, W3C Recommendation 10 February 2004, 5. Goczyła K., Grabowska T., Waloszek W., Zawadzki M.: The Cartographer Algorithm for Processing and Querying Description Logics Ontologies. LNAI 3528: Advances in Web Intelligence, Third International Atlantic Web Intelligence Conference, Springer pp

11 Wnioskowanie z danych zapisanych w zewnętrznych źródłach w systemie zarządzania wiedzą 6. Goczyła K., Grabowska T., Waloszek W., Zawadzki M.: The Knowledge Cartography A new approach to reasoning over Description Logics ontologies. SOFSEM 2006: Theory and Practice of Computer Science, LNCS 3831, pp Goczyła, K., Zawadzka, T., Zawadzki, M., Managing Data from Heterogeneous data Sources using Knowledge Layer, Software Engineering Techiques: Design for Quality, IFIP International Federation for Information processing, Vol. 227, K. Sacha (red.), Boston, Springer, 2006, pp DIGUT Interface Version 1.3. Technical Report, 2005, available at 9. Wittem I. H., Frank E.: Data Mining. Practical Machine Learning Tools and Techniques with Java Implementations. Morgan Kaufmann Publisher Baader F. A., McGuiness D. L., Nardi D., Patel-Schneider P. F.: The Description Logic Handbook: Theory, implementation, and applications, Cambridge University Press, Goczyła K., Grabowska T., Waloszek W., Zawadzki M.: Inference Mechanisms for Knowledge Management System in E-health Environment, In: Software Engineering: Evolution and Emerging Technologies, Eds. K. Zieliński, and T. Szmuc, IOS Press, Series: Frontiers in Artificial Intelligence and Applications, 2005, pp Levy A. Y.: The Information Manifold Approach to Data Integration, IEEE Intelligent Systems, numer 13, Arens Y., Knoblock C. A., Shen W.: Query Reformulation for Dynamic Information Integration, Journal of Intelligent Information Systems, Lattes V., Rousset M.-C.: The use of CARIN language and algorithms for Information Integration: the PICSEL project, W: Proceedings of the ECAI-98 Workshop on Intelligent Information Integration,

METODA ELPAR ŁĄCZENIA ONTOLOGII OPARTA NA ICH KARTOGRAFICZNEJ REPREZENTACJI

METODA ELPAR ŁĄCZENIA ONTOLOGII OPARTA NA ICH KARTOGRAFICZNEJ REPREZENTACJI METODA ELPAR ŁĄCZENIA ONTOLOGII OPARTA NA ICH KARTOGRAFICZNEJ REPREZENTACJI Krzysztof GOCZYŁA*, Teresa GRABOWSKA** Streszczenie. Jednym z głównych problemów związanych z integracją wiedzy z róŝnych źródeł

Bardziej szczegółowo

Usługi analityczne budowa kostki analitycznej Część pierwsza.

Usługi analityczne budowa kostki analitycznej Część pierwsza. Usługi analityczne budowa kostki analitycznej Część pierwsza. Wprowadzenie W wielu dziedzinach działalności człowieka analiza zebranych danych jest jednym z najważniejszych mechanizmów podejmowania decyzji.

Bardziej szczegółowo

Implementacja widoków danych na bazę wiedzy

Implementacja widoków danych na bazę wiedzy Implementacja widoków danych na bazę wiedzy Piotr Piotrowski 1 Streszczenie: Niniejszy artykuł opisuje koncepcję i implementację widoków danych na bazę wiedzy. Widoki danych przesłaniają interfejs bazy

Bardziej szczegółowo

Tom 6 Opis oprogramowania

Tom 6 Opis oprogramowania Część 4 Narzędzie do wyliczania wielkości oraz wartości parametrów stanu Diagnostyka stanu nawierzchni - DSN Generalna Dyrekcja Dróg Krajowych i Autostrad Warszawa, 30 maja 2012 Historia dokumentu Nazwa

Bardziej szczegółowo

Hurtownie danych - przegląd technologii

Hurtownie danych - przegląd technologii Hurtownie danych - przegląd technologii Problematyka zasilania hurtowni danych - Oracle Data Integrator Politechnika Poznańska Instytut Informatyki Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel

Bardziej szczegółowo

Podstawowe pojęcia dotyczące relacyjnych baz danych. mgr inż. Krzysztof Szałajko

Podstawowe pojęcia dotyczące relacyjnych baz danych. mgr inż. Krzysztof Szałajko Podstawowe pojęcia dotyczące relacyjnych baz danych mgr inż. Krzysztof Szałajko Czym jest baza danych? Co rozumiemy przez dane? Czym jest system zarządzania bazą danych? 2 / 25 Baza danych Baza danych

Bardziej szczegółowo

Wykład I. Wprowadzenie do baz danych

Wykład I. Wprowadzenie do baz danych Wykład I Wprowadzenie do baz danych Trochę historii Pierwsze znane użycie terminu baza danych miało miejsce w listopadzie w 1963 roku. W latach sześcdziesątych XX wieku został opracowany przez Charles

Bardziej szczegółowo

Tom 6 Opis oprogramowania Część 8 Narzędzie do kontroli danych elementarnych, danych wynikowych oraz kontroli obmiaru do celów fakturowania

Tom 6 Opis oprogramowania Część 8 Narzędzie do kontroli danych elementarnych, danych wynikowych oraz kontroli obmiaru do celów fakturowania Część 8 Narzędzie do kontroli danych elementarnych, danych wynikowych oraz kontroli Diagnostyka stanu nawierzchni - DSN Generalna Dyrekcja Dróg Krajowych i Autostrad Warszawa, 21 maja 2012 Historia dokumentu

Bardziej szczegółowo

Alicja Marszałek Różne rodzaje baz danych

Alicja Marszałek Różne rodzaje baz danych Alicja Marszałek Różne rodzaje baz danych Rodzaje baz danych Bazy danych można podzielić wg struktur organizacji danych, których używają. Można podzielić je na: Bazy proste Bazy złożone Bazy proste Bazy

Bardziej szczegółowo

Wykorzystanie standardów serii ISO 19100 oraz OGC dla potrzeb budowy infrastruktury danych przestrzennych

Wykorzystanie standardów serii ISO 19100 oraz OGC dla potrzeb budowy infrastruktury danych przestrzennych Wykorzystanie standardów serii ISO 19100 oraz OGC dla potrzeb budowy infrastruktury danych przestrzennych dr inż. Adam Iwaniak Infrastruktura Danych Przestrzennych w Polsce i Europie Seminarium, AR Wrocław

Bardziej szczegółowo

Architektura Systemu. Architektura systemu umożliwia kontrolowanie iteracyjnego i przyrostowego procesu tworzenia systemu.

Architektura Systemu. Architektura systemu umożliwia kontrolowanie iteracyjnego i przyrostowego procesu tworzenia systemu. Architektura Systemu Architektura systemu umożliwia kontrolowanie iteracyjnego i przyrostowego procesu tworzenia systemu. Architektura jest zbiorem decyzji dotyczących: organizacji systemu komputerowego,

Bardziej szczegółowo

Instalacja SQL Server Express. Logowanie na stronie Microsoftu

Instalacja SQL Server Express. Logowanie na stronie Microsoftu Instalacja SQL Server Express Logowanie na stronie Microsoftu Wybór wersji do pobrania Pobieranie startuje, przechodzimy do strony z poradami. Wypakowujemy pobrany plik. Otwiera się okno instalacji. Wybieramy

Bardziej szczegółowo

Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl

Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl Komputerowe Systemy Przemysłowe: Modelowanie - UML Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie UML Diagram przypadków użycia Diagram klas Podsumowanie Wprowadzenie Języki

Bardziej szczegółowo

LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016

LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016 LISTA KURSÓW PLANOWANYCH DO URUCHOMIENIA W SEMESTRZE ZIMOWYM 2015/2016 INFORMATYKA I STOPNIA studia stacjonarne 1 sem. PO-W08-INF- - -ST-Ii-WRO-(2015/2016) MAP003055W Algebra z geometrią analityczną A

Bardziej szczegółowo

Katedra Inżynierii Oprogramowania Tematy prac dyplomowych inżynierskich STUDIA NIESTACJONARNE (ZAOCZNE)

Katedra Inżynierii Oprogramowania Tematy prac dyplomowych inżynierskich STUDIA NIESTACJONARNE (ZAOCZNE) Katedra Inżynierii Oprogramowania Tematy prac dyplomowych inżynierskich STUDIA NIESTACJONARNE (ZAOCZNE) Temat projektu/pracy dr inż. Wojciech Waloszek Grupowy system wymiany wiadomości. Zaprojektowanie

Bardziej szczegółowo

Baza danych. Modele danych

Baza danych. Modele danych Rola baz danych Systemy informatyczne stosowane w obsłudze działalności gospodarczej pełnią funkcję polegającą na gromadzeniu i przetwarzaniu danych. Typowe operacje wykonywane na danych w systemach ewidencyjno-sprawozdawczych

Bardziej szczegółowo

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Problem NP Problem NP (niedeterministycznie wielomianowy, ang. nondeterministic polynomial) to problem decyzyjny, dla którego rozwiązanie

Bardziej szczegółowo

CENTRUM PROJEKTÓW INFORMATYCZNYCH MINISTERSTWA SPRAW WEWNĘTRZNYCH I ADMINISTRACJI

CENTRUM PROJEKTÓW INFORMATYCZNYCH MINISTERSTWA SPRAW WEWNĘTRZNYCH I ADMINISTRACJI CENTRUM PROJEKTÓW INFORMATYCZNYCH MINISTERSTWA SPRAW WEWNĘTRZNYCH I ADMINISTRACJI Instrukcja użytkownika Narzędzie do modelowania procesów BPEL Warszawa, lipiec 2009 r. UNIA EUROPEJSKA EUROPEJSKI FUNDUSZ

Bardziej szczegółowo

Tomasz Grześ. Systemy zarządzania treścią

Tomasz Grześ. Systemy zarządzania treścią Tomasz Grześ Systemy zarządzania treścią Co to jest CMS? CMS (ang. Content Management System System Zarządzania Treścią) CMS definicje TREŚĆ Dowolny rodzaj informacji cyfrowej. Może to być np. tekst, obraz,

Bardziej szczegółowo

Praca magisterska Jakub Reczycki. Opiekun : dr inż. Jacek Rumiński. Katedra Inżynierii Biomedycznej Wydział ETI Politechnika Gdańska

Praca magisterska Jakub Reczycki. Opiekun : dr inż. Jacek Rumiński. Katedra Inżynierii Biomedycznej Wydział ETI Politechnika Gdańska System gromadzenia, indeksowania i opisu słownikowego norm i rekomendacji Praca magisterska Jakub Reczycki Opiekun : dr inż. Jacek Rumiński Katedra Inżynierii Biomedycznej Wydział ETI Politechnika Gdańska

Bardziej szczegółowo

Moduł mapowania danych

Moduł mapowania danych Moduł mapowania danych Grudzień 2013 Wszelkie prawa zastrzeżone. Dokument może być reprodukowany lub przechowywany bez ograniczeń tylko w całości. W przeciwnym przypadku, żadna część niniejszego dokumentu,

Bardziej szczegółowo

Spis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services

Spis treści. Część I Wprowadzenie do pakietu oprogramowania Analysis Services Spis treści Wstęp... ix Odkąd najlepiej rozpocząć lekturę?... ix Informacja dotycząca towarzyszącej ksiąŝce płyty CD-ROM... xi Wymagania systemowe... xi Instalowanie i uŝywanie plików przykładowych...

Bardziej szczegółowo

16MB - 2GB 2MB - 128MB

16MB - 2GB 2MB - 128MB FAT Wprowadzenie Historia FAT jest jednym z najstarszych spośród obecnie jeszcze używanych systemów plików. Pierwsza wersja (FAT12) powstała w 1980 roku. Wraz z wzrostem rozmiaru dysków i nowymi wymaganiami

Bardziej szczegółowo

Modelowanie diagramów klas w języku UML. Łukasz Gorzel 244631@stud.umk.pl 7 marca 2014

Modelowanie diagramów klas w języku UML. Łukasz Gorzel 244631@stud.umk.pl 7 marca 2014 Modelowanie diagramów klas w języku UML Łukasz Gorzel 244631@stud.umk.pl 7 marca 2014 Czym jest UML - Unified Modeling Language - Rodzina języków modelowania graficznego - Powstanie na przełomie lat 80

Bardziej szczegółowo

OLAP i hurtownie danych c.d.

OLAP i hurtownie danych c.d. OLAP i hurtownie danych c.d. Przypomnienie OLAP -narzędzia analizy danych Hurtownie danych -duże bazy danych zorientowane tematycznie, nieulotne, zmienne w czasie, wspierjące procesy podejmowania decyzji

Bardziej szczegółowo

Kostki OLAP i język MDX

Kostki OLAP i język MDX Kostki OLAP i język MDX 24 kwietnia 2015 r. Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików PDF sformatowanych jak ten. Będą się na nie składały różne rodzaje zadań,

Bardziej szczegółowo

Integracja systemu CAD/CAM Catia z bazą danych uchwytów obróbkowych MS Access za pomocą interfejsu API

Integracja systemu CAD/CAM Catia z bazą danych uchwytów obróbkowych MS Access za pomocą interfejsu API Dr inż. Janusz Pobożniak, pobozniak@mech.pk.edu.pl Instytut Technologii Maszyn i Automatyzacji produkcji Politechnika Krakowska, Wydział Mechaniczny Integracja systemu CAD/CAM Catia z bazą danych uchwytów

Bardziej szczegółowo

Tom 6 Opis oprogramowania

Tom 6 Opis oprogramowania Część 9 Narzędzie do wyliczania wskaźników statystycznych Diagnostyka Stanu Nawierzchni - DSN Generalna Dyrekcja Dróg Krajowych i Autostrad Warszawa, 31 maja 2012 Historia dokumentu Nazwa dokumentu Nazwa

Bardziej szczegółowo

Bazy Danych. C. J. Date, Wprowadzenie do systemów baz danych, WNT - W-wa, (seria: Klasyka Informatyki), 2000

Bazy Danych. C. J. Date, Wprowadzenie do systemów baz danych, WNT - W-wa, (seria: Klasyka Informatyki), 2000 Bazy Danych LITERATURA C. J. Date, Wprowadzenie do systemów baz danych, WNT - W-wa, (seria: Klasyka Informatyki), 2000 J. D. Ullman, Systemy baz danych, WNT - W-wa, 1998 J. D. Ullman, J. Widom, Podstawowy

Bardziej szczegółowo

Monitoring procesów z wykorzystaniem systemu ADONIS

Monitoring procesów z wykorzystaniem systemu ADONIS Monitoring procesów z wykorzystaniem systemu ADONIS BOC Information Technologies Consulting Sp. z o.o. e-mail: boc@boc-pl.com Tel.: (+48 22) 628 00 15, 696 69 26 Fax: (+48 22) 621 66 88 BOC Management

Bardziej szczegółowo

SZKOLENIE: Administrator baz danych. Cel szkolenia

SZKOLENIE: Administrator baz danych. Cel szkolenia SZKOLENIE: Administrator baz danych. Cel szkolenia Kurs Administrator baz danych skierowany jest przede wszystkim do osób zamierzających rozwijać umiejętności w zakresie administrowania bazami danych.

Bardziej szczegółowo

Grupy pytań na egzamin magisterski na kierunku Informatyka (dla studentów niestacjonarnych studiów II stopnia)

Grupy pytań na egzamin magisterski na kierunku Informatyka (dla studentów niestacjonarnych studiów II stopnia) Grupy pytań na egzamin magisterski na kierunku Informatyka (dla studentów niestacjonarnych studiów II stopnia) WERSJA WSTĘPNA, BRAK PRZYKŁADOWYCH PYTAŃ DLA NIEKTÓRYCH PRZEDMIOTÓW Należy wybrać trzy dowolne

Bardziej szczegółowo

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu "Podstawy baz danych"

PODSTAWY BAZ DANYCH. 19. Perspektywy baz danych. 2009/2010 Notatki do wykładu Podstawy baz danych PODSTAWY BAZ DANYCH 19. Perspektywy baz danych 1 Perspektywy baz danych Temporalna baza danych Temporalna baza danych - baza danych posiadająca informację o czasie wprowadzenia lub czasie ważności zawartych

Bardziej szczegółowo

Współczesna problematyka klasyfikacji Informatyki

Współczesna problematyka klasyfikacji Informatyki Współczesna problematyka klasyfikacji Informatyki Nazwa pojawiła się na przełomie lat 50-60-tych i przyjęła się na dobre w Europie Jedna z definicji (z Wikipedii): Informatyka dziedzina nauki i techniki

Bardziej szczegółowo

Forum Client - Spring in Swing

Forum Client - Spring in Swing Forum Client - Spring in Swing Paweł Charkowski. 0. Cel projektu Celem projektu jest próba integracji Spring Framework z różnymi technologiami realizacji interfejsu użytkownika, oraz jej ocena. Niniejszy

Bardziej szczegółowo

Proces ETL MS SQL Server Integration Services (SSIS)

Proces ETL MS SQL Server Integration Services (SSIS) Proces ETL MS SQL Server Integration Services (SSIS) 3 kwietnia 2014 Opis pliku z zadaniami Wszystkie zadania na zajęciach będą przekazywane w postaci plików PDF sformatowanych jak ten. Będą się na nie

Bardziej szczegółowo

Tom 6 Opis oprogramowania

Tom 6 Opis oprogramowania Diagnostyka Stanu Nawierzchni - DSN Generalna Dyrekcja Dróg Krajowych i Autostrad Warszawa, 21 maja 2012 Historia dokumentu Nazwa dokumentu Nazwa pliku Tom 6 Opis oprogramowania, Część 2 Generator danych

Bardziej szczegółowo

PODSTAWOWE ANALIZY I WIZUALIZACJA Z WYKORZYSTANIEM MAP W STATISTICA

PODSTAWOWE ANALIZY I WIZUALIZACJA Z WYKORZYSTANIEM MAP W STATISTICA PODSTAWOWE ANALIZY I WIZUALIZACJA Z WYKORZYSTANIEM MAP W STATISTICA Krzysztof Suwada, StatSoft Polska Sp. z o.o. Wstęp Wiele różnych analiz dotyczy danych opisujących wielkości charakterystyczne bądź silnie

Bardziej szczegółowo

KS-ZSA. Mechanizm centralnego zarządzania rolami

KS-ZSA. Mechanizm centralnego zarządzania rolami KS-ZSA Mechanizm centralnego zarządzania rolami 1. Opis funkcjonalności W KS-ZSA zostaje udostępniona funkcji centralnego zarządzania rolami. W samym programie jest możliwość tworzenia centralnej roli

Bardziej szczegółowo

KARTA KURSU. Przetwarzanie dokumentów XML i zaawansowane techniki WWW

KARTA KURSU. Przetwarzanie dokumentów XML i zaawansowane techniki WWW KARTA KURSU Nazwa Nazwa w j. ang. Przetwarzanie dokumentów XML i zaawansowane techniki WWW XML processing and advanced web technologies Kod Punktacja ECTS* 3 Koordynator dr Maria Zając Zespół dydaktyczny:

Bardziej szczegółowo

Komunikacja i wymiana danych

Komunikacja i wymiana danych Budowa i oprogramowanie komputerowych systemów sterowania Wykład 10 Komunikacja i wymiana danych Metody wymiany danych Lokalne Pliki txt, csv, xls, xml Biblioteki LIB / DLL DDE, FastDDE OLE, COM, ActiveX

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

Diagramy związków encji. Laboratorium. Akademia Morska w Gdyni

Diagramy związków encji. Laboratorium. Akademia Morska w Gdyni Akademia Morska w Gdyni Gdynia 2004 1. Podstawowe definicje Baza danych to uporządkowany zbiór danych umożliwiający łatwe przeszukiwanie i aktualizację. System zarządzania bazą danych (DBMS) to oprogramowanie

Bardziej szczegółowo

Pojęcie systemu informacyjnego i informatycznego

Pojęcie systemu informacyjnego i informatycznego BAZY DANYCH Pojęcie systemu informacyjnego i informatycznego DANE wszelkie liczby, fakty, pojęcia zarejestrowane w celu uzyskania wiedzy o realnym świecie. INFORMACJA - znaczenie przypisywane danym. SYSTEM

Bardziej szczegółowo

Bazy danych 2. Wykład 1

Bazy danych 2. Wykład 1 Bazy danych 2 Wykład 1 Sprawy organizacyjne Materiały i listy zadań zamieszczane będą na stronie www.math.uni.opole.pl/~ajasi E-mail: standardowy ajasi@math.uni.opole.pl Sprawy organizacyjne Program wykładu

Bardziej szczegółowo

JAK OPTYMALNIE DOBRAĆ ODPOWIEDNIE TECHNOLOGIE INFORMATYCZNE?

JAK OPTYMALNIE DOBRAĆ ODPOWIEDNIE TECHNOLOGIE INFORMATYCZNE? K O N F E R E N C J A I N F O S H A R E 2 0 0 7 G d a ń s k 25-26.04.2007 JAK OPTYMALNIE DOBRAĆ ODPOWIEDNIE TECHNOLOGIE INFORMATYCZNE? Zespół Zarządzania Technologiami Informatycznymi Prezentacja dr inż.

Bardziej szczegółowo

Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem. dr Jakub Boratyński. pok. A38

Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem. dr Jakub Boratyński. pok. A38 Podstawowe pakiety komputerowe wykorzystywane w zarządzaniu przedsiębiorstwem zajęcia 1 dr Jakub Boratyński pok. A38 Program zajęć Bazy danych jako podstawowy element systemów informatycznych wykorzystywanych

Bardziej szczegółowo

Generowanie raportów

Generowanie raportów 1 Generowanie raportów 1. Wprowadzenie przykładowy problem, podstawowe własności narzędzi raportujących. 2. JasperReports struktura raportu, parametry, zmienne i pola, generowanie raportu (API). 3. ireport

Bardziej szczegółowo

Projektowanie architektury systemu rozproszonego. Jarosław Kuchta Projektowanie Aplikacji Internetowych

Projektowanie architektury systemu rozproszonego. Jarosław Kuchta Projektowanie Aplikacji Internetowych Projektowanie architektury systemu rozproszonego Jarosław Kuchta Zagadnienia Typy architektury systemu Rozproszone przetwarzanie obiektowe Problemy globalizacji Problemy ochrony Projektowanie architektury

Bardziej szczegółowo

Tematy dyplomów inżynierskich 2009 Katedra Inżynierii Oprogramowania

Tematy dyplomów inżynierskich 2009 Katedra Inżynierii Oprogramowania Tematy dyplomów inżynierskich 2009 Katedra Inżynierii Oprogramowania Literatura Projekt i implementacja biblioteki tłumaczącej zapytania w języku SQL oraz OQL na zapytania w języku regułowym. dr hab. inż.

Bardziej szczegółowo

MODELOWANIE SYSTEMU OCENY WARUNKÓW PRACY OPERATORÓW STEROWNI

MODELOWANIE SYSTEMU OCENY WARUNKÓW PRACY OPERATORÓW STEROWNI Inżynieria Rolnicza 7(105)/2008 MODELOWANIE SYSTEMU OCENY WARUNKÓW PRACY OPERATORÓW STEROWNI Agnieszka Buczaj Zakład Fizycznych Szkodliwości Zawodowych, Instytut Medycyny Wsi w Lublinie Halina Pawlak Katedra

Bardziej szczegółowo

Model semistrukturalny

Model semistrukturalny Model semistrukturalny standaryzacja danych z różnych źródeł realizacja złożonej struktury zależności, wielokrotne zagnieżdżania zobrazowane przez grafy skierowane model samoopisujący się wielkości i typy

Bardziej szczegółowo

Baza danych. Baza danych to:

Baza danych. Baza danych to: Baza danych Baza danych to: zbiór danych o określonej strukturze, zapisany na zewnętrznym nośniku (najczęściej dysku twardym komputera), mogący zaspokoić potrzeby wielu użytkowników korzystających z niego

Bardziej szczegółowo

Oracle11g: Wprowadzenie do SQL

Oracle11g: Wprowadzenie do SQL Oracle11g: Wprowadzenie do SQL OPIS: Kurs ten oferuje uczestnikom wprowadzenie do technologii bazy Oracle11g, koncepcji bazy relacyjnej i efektywnego języka programowania o nazwie SQL. Kurs dostarczy twórcom

Bardziej szczegółowo

Praca w sieci z serwerem

Praca w sieci z serwerem 11 Praca w sieci z serwerem Systemy Windows zostały zaprojektowane do pracy zarówno w sieci równoprawnej, jak i w sieci z serwerem. Sieć klient-serwer oznacza podłączenie pojedynczego użytkownika z pojedynczej

Bardziej szczegółowo

Wprowadzenie do technologii Business Intelligence i hurtowni danych

Wprowadzenie do technologii Business Intelligence i hurtowni danych Wprowadzenie do technologii Business Intelligence i hurtowni danych 1 Plan rozdziału 2 Wprowadzenie do Business Intelligence Hurtownie danych Produkty Oracle dla Business Intelligence Business Intelligence

Bardziej szczegółowo

Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych

Bazy danych. Plan wykładu. Diagramy ER. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych. Podstawy modeli relacyjnych Plan wykładu Bazy danych Wykład 9: Przechodzenie od diagramów E/R do modelu relacyjnego. Definiowanie perspektyw. Diagramy E/R - powtórzenie Relacyjne bazy danych Od diagramów E/R do relacji SQL - perspektywy

Bardziej szczegółowo

Specjalizacja magisterska Bazy danych

Specjalizacja magisterska Bazy danych Specjalizacja magisterska Bazy danych Strona Katedry http://bd.pjwstk.edu.pl/katedra/ Prezentacja dostępna pod adresem: http://www.bd.pjwstk.edu.pl/bazydanych.pdf Wymagania wstępne Znajomość podstaw języka

Bardziej szczegółowo

Hurtownie danych. Ładowanie, integracja i aktualizacja danych. http://zajecia.jakubw.pl/hur INTEGRACJA DANYCH ETL

Hurtownie danych. Ładowanie, integracja i aktualizacja danych. http://zajecia.jakubw.pl/hur INTEGRACJA DANYCH ETL Hurtownie danych Ładowanie, integracja i aktualizacja danych. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur INTEGRACJA DANYCH Źródła danych ETL Centralna hurtownia danych Do hurtowni

Bardziej szczegółowo

SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ

SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE HODOWLĘ Struktura efektywnej bazy danych Zastosowanie pakietu MS Excel do tworzenia baz danych WSTĘP 1. Dane Przykłady Edycja Zarządzanie 2. Bazy danych Definicje Przykłady

Bardziej szczegółowo

Narzędzia i aplikacje Java EE. Usługi sieciowe Paweł Czarnul pczarnul@eti.pg.gda.pl

Narzędzia i aplikacje Java EE. Usługi sieciowe Paweł Czarnul pczarnul@eti.pg.gda.pl Narzędzia i aplikacje Java EE Usługi sieciowe Paweł Czarnul pczarnul@eti.pg.gda.pl Niniejsze opracowanie wprowadza w technologię usług sieciowych i implementację usługi na platformie Java EE (JAX-WS) z

Bardziej szczegółowo

SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD

SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD Dr inż. Jacek WARCHULSKI Dr inż. Marcin WARCHULSKI Mgr inż. Witold BUŻANTOWICZ Wojskowa Akademia Techniczna SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD Streszczenie: W referacie przedstawiono możliwości

Bardziej szczegółowo

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie

Hurtownie danych i business intelligence - wykład II. Zagadnienia do omówienia. Miejsce i rola HD w firmie Hurtownie danych i business intelligence - wykład II Paweł Skrobanek, C-3 pok. 321 pawel.skrobanek@pwr.wroc.pl oprac. Wrocław 2005-2012 Zagadnienia do omówienia 1. Miejsce i rola w firmie 2. Przegląd architektury

Bardziej szczegółowo

Web Services. Bartłomiej Świercz. Łódź, 2 grudnia 2005 roku. Katedra Mikroelektroniki i Technik Informatycznych. Bartłomiej Świercz Web Services

Web Services. Bartłomiej Świercz. Łódź, 2 grudnia 2005 roku. Katedra Mikroelektroniki i Technik Informatycznych. Bartłomiej Świercz Web Services Web Services Bartłomiej Świercz Katedra Mikroelektroniki i Technik Informatycznych Łódź, 2 grudnia 2005 roku Wstęp Oprogramowanie napisane w różnych językach i uruchomione na różnych platformach może wykorzystać

Bardziej szczegółowo

Systemy GIS Systemy baz danych

Systemy GIS Systemy baz danych Systemy GIS Systemy baz danych Wykład nr 5 System baz danych Skomputeryzowany system przechowywania danych/informacji zorganizowanych w pliki Użytkownik ma do dyspozycji narzędzia do wykonywania różnych

Bardziej szczegółowo

2011-11-04. Instalacja SQL Server Konfiguracja SQL Server Logowanie - opcje SQL Server Management Studio. Microsoft Access Oracle Sybase DB2 MySQL

2011-11-04. Instalacja SQL Server Konfiguracja SQL Server Logowanie - opcje SQL Server Management Studio. Microsoft Access Oracle Sybase DB2 MySQL Instalacja, konfiguracja Dr inŝ. Dziwiński Piotr Katedra InŜynierii Komputerowej Kontakt: piotr.dziwinski@kik.pcz.pl 2 Instalacja SQL Server Konfiguracja SQL Server Logowanie - opcje SQL Server Management

Bardziej szczegółowo

Grupy pytań na egzamin magisterski na kierunku Informatyka (dla studentów dziennych studiów II stopnia)

Grupy pytań na egzamin magisterski na kierunku Informatyka (dla studentów dziennych studiów II stopnia) Grupy pytań na egzamin magisterski na kierunku Informatyka (dla studentów dziennych studiów II stopnia) WERSJA WSTĘPNA, BRAK PRZYKŁADOWYCH PYTAŃ DLA NIEKTÓRYCH PRZEDMIOTÓW Należy wybrać trzy dowolne przedmioty.

Bardziej szczegółowo

Web 3.0 Sieć Pełna Znaczeń (Semantic Web) Perspektywy dla branży motoryzacyjnej i finansowej. Przyjęcie branżowe EurotaxGlass s Polska 10 luty 2012

Web 3.0 Sieć Pełna Znaczeń (Semantic Web) Perspektywy dla branży motoryzacyjnej i finansowej. Przyjęcie branżowe EurotaxGlass s Polska 10 luty 2012 Web 3.0 Sieć Pełna Znaczeń (Semantic Web) Perspektywy dla branży motoryzacyjnej i finansowej Przyjęcie branżowe EurotaxGlass s Polska 10 luty 2012 Web 3.0 - prawdziwa rewolucja czy puste hasło? Web 3.0

Bardziej szczegółowo

Program szkoleniowy Efektywni50+ Moduł V Raportowanie dla potrzeb analizy danych

Program szkoleniowy Efektywni50+ Moduł V Raportowanie dla potrzeb analizy danych Program szkoleniowy Efektywni50+ Moduł V Raportowanie dla potrzeb analizy danych 1 Wprowadzenie do technologii MS SQL Server 2012 Reporting Services. 2h Podstawowym zadaniem omawianej jednostki lekcyjnej

Bardziej szczegółowo

UML w Visual Studio. Michał Ciećwierz

UML w Visual Studio. Michał Ciećwierz UML w Visual Studio Michał Ciećwierz UNIFIED MODELING LANGUAGE (Zunifikowany język modelowania) Pozwala tworzyć wiele systemów (np. informatycznych) Pozwala obrazować, specyfikować, tworzyć i dokumentować

Bardziej szczegółowo

3.1. Na dobry początek

3.1. Na dobry początek Klasa I 3.1. Na dobry początek Regulamin pracowni i przepisy BHP podczas pracy przy komputerze Wykorzystanie komputera we współczesnym świecie Zna regulamin pracowni i przestrzega go. Potrafi poprawnie

Bardziej szczegółowo

Przestrzenne bazy danych Podstawy języka SQL

Przestrzenne bazy danych Podstawy języka SQL Przestrzenne bazy danych Podstawy języka SQL Stanisława Porzycka-Strzelczyk porzycka@agh.edu.pl home.agh.edu.pl/~porzycka Konsultacje: wtorek godzina 16-17, p. 350 A (budynek A0) 1 SQL Język SQL (ang.structured

Bardziej szczegółowo

LABORATORIUM 8,9: BAZA DANYCH MS-ACCESS

LABORATORIUM 8,9: BAZA DANYCH MS-ACCESS UNIWERSYTET ZIELONOGÓRSKI INSTYTUT INFORMATYKI I ELEKTROTECHNIKI ZAKŁAD INŻYNIERII KOMPUTEROWEJ Przygotowali: mgr inż. Arkadiusz Bukowiec mgr inż. Remigiusz Wiśniewski LABORATORIUM 8,9: BAZA DANYCH MS-ACCESS

Bardziej szczegółowo

Użycie Visual Basic for Applications ("VBA")

Użycie Visual Basic for Applications (VBA) Użycie Visual Basic for Applications ("VBA") Przegląd SEE z modułem VBA Developer SEE używa języka programowania Visual Basic for Applications (VBA) pozwalającego tworzyć krótkie programy zwane "makrami".

Bardziej szczegółowo

Badania w sieciach złożonych

Badania w sieciach złożonych Badania w sieciach złożonych Grant WCSS nr 177, sprawozdanie za rok 2012 Kierownik grantu dr. hab. inż. Przemysław Kazienko mgr inż. Radosław Michalski Instytut Informatyki Politechniki Wrocławskiej Obszar

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie. Wydział Geologii, Geofizyki i Ochrony Środowiska. Bazy danych 2

AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie. Wydział Geologii, Geofizyki i Ochrony Środowiska. Bazy danych 2 AKADEMIA GÓRNICZO-HUTNICZA im. Stanisława Staszica w Krakowie Wydział Geologii, Geofizyki i Ochrony Środowiska Wydajnośd w bazach danych Grzegorz Surdyka Informatyka Stosowana Kraków, 9 Spis treści. Wstęp...

Bardziej szczegółowo

Rejestr Jednostek Pomocy Społecznej. Spotkanie informacyjne współfinansowane ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Rejestr Jednostek Pomocy Społecznej. Spotkanie informacyjne współfinansowane ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Rejestr Jednostek Pomocy Społecznej Agenda Rejestracja i aktualizacja danych jednostki Wyszukiwanie jednostek Serwis statystyczny Analiza zróżnicowania i analiza trendów Rejestracja jednostki Rejestracja

Bardziej szczegółowo

Tematy projektów Edycja 2014

Tematy projektów Edycja 2014 Tematy projektów Edycja 2014 Robert Wrembel Poznan University of Technology Institute of Computing Science Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Reguły Projekty zespołowe max. 4

Bardziej szczegółowo

Dokumentacja projektu QUAIKE Architektura oprogramowania

Dokumentacja projektu QUAIKE Architektura oprogramowania Licencjacka Pracownia Oprogramowania Instytut Informatyki Uniwersytetu Wrocławskiego Jakub Kowalski, Andrzej Pilarczyk, Marek Kembrowski, Bartłomiej Gałkowski Dokumentacja projektu QUAIKE Architektura

Bardziej szczegółowo

Specyfikacja testów akceptacyjnych Radosław Iglantowicz, 181058 Tomasz Bruździński, 181157

Specyfikacja testów akceptacyjnych Radosław Iglantowicz, 181058 Tomasz Bruździński, 181157 Specyfikacja testów akceptacyjnych Radosław Iglantowicz, 181058 Tomasz Bruździński, 181157 Projekt: Autor: Plik: QualitySpy Informacje o dokumencie: Metryka dokumentu Radosław Iglantowicz, Tomasz Bruździński

Bardziej szczegółowo

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. dr inż. Adam Piórkowski. Jakub Osiadacz Marcin Wróbel

Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie. dr inż. Adam Piórkowski. Jakub Osiadacz Marcin Wróbel Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie Problem magazynowania i przetwarzania wielkoformatowych map i planów geologicznych. Promotor: dr inż. Adam Piórkowski Autorzy: Jakub Osiadacz

Bardziej szczegółowo

Oracle Designer. Oracle Designer jest jednym z głównych komponentów pakietu Oracle Developer Suite. Oracle Designer wspiera :

Oracle Designer. Oracle Designer jest jednym z głównych komponentów pakietu Oracle Developer Suite. Oracle Designer wspiera : Oracle Designer Oracle Designer jest jednym z głównych komponentów pakietu Oracle Developer Suite. Oracle Designer wspiera : - modelowanie procesów biznesowych - analizę systemu informatycznego - projektowanie

Bardziej szczegółowo

Zaawansowane Systemy Baz Danych

Zaawansowane Systemy Baz Danych Zaawansowane Systemy Baz Danych dr inż. Olga Siedlecka olga.siedlecka@icis.pcz.pl Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska 4 maja 2009 r. Plan seminarium Wprowadzenie Stosowane

Bardziej szczegółowo

Semantyczny Monitoring Cyberprzestrzeni

Semantyczny Monitoring Cyberprzestrzeni Semantyczny Monitoring Cyberprzestrzeni Partnerzy projektu: Katedra Informatyki Ekonomicznej Uniwersytet Ekonomiczny w Poznaniu Partnerzy projektu: Zarys problemu Źródło internetowe jako zasób użytecznych

Bardziej szczegółowo

INTERNETOWE BAZY DANYCH materiały pomocnicze - wykład X

INTERNETOWE BAZY DANYCH materiały pomocnicze - wykład X Wrocław 2006 INTERNETOWE BAZY DANYCH materiały pomocnicze - wykład X Paweł Skrobanek C-3, pok. 323 e-mail: pawel.skrobanek@pwr.wroc.pl INTERNETOWE BAZY DANYCH PLAN NA DZIŚ zajęcia 1: 2. Procedury składowane

Bardziej szczegółowo

Bazy danych. Zenon Gniazdowski WWSI, ITE Andrzej Ptasznik WWSI

Bazy danych. Zenon Gniazdowski WWSI, ITE Andrzej Ptasznik WWSI Bazy danych Zenon Gniazdowski WWSI, ITE Andrzej Ptasznik WWSI Wszechnica Poranna Trzy tematy: 1. Bazy danych - jak je ugryźć? 2. Język SQL podstawy zapytań. 3. Mechanizmy wewnętrzne baz danych czyli co

Bardziej szczegółowo

Kraków, 14 marca 2013 r.

Kraków, 14 marca 2013 r. Scenariusze i trendy rozwojowe wybranych technologii społeczeństwa informacyjnego do roku 2025 Antoni Ligęza Perspektywy rozwoju systemów eksperckich do roku 2025 Kraków, 14 marca 2013 r. Dane informacja

Bardziej szczegółowo

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH

Hurtownie danych. Wstęp. Architektura hurtowni danych. http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH Wstęp. Architektura hurtowni. Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/hur CO TO JEST HURTOWNIA DANYCH B. Inmon, 1996: Hurtownia to zbiór zintegrowanych, nieulotnych, ukierunkowanych

Bardziej szczegółowo

Temat: Ułatwienia wynikające z zastosowania Frameworku CakePHP podczas budowania stron internetowych

Temat: Ułatwienia wynikające z zastosowania Frameworku CakePHP podczas budowania stron internetowych PAŃSTWOWA WYŻSZA SZKOŁA ZAWODOWA W ELBLĄGU INSTYTUT INFORMATYKI STOSOWANEJ Sprawozdanie z Seminarium Dyplomowego Temat: Ułatwienia wynikające z zastosowania Frameworku CakePHP podczas budowania stron internetowych

Bardziej szczegółowo

Spis treści. Dzień 1. I Wprowadzenie (wersja 0906) II Dostęp do danych bieżących specyfikacja OPC Data Access (wersja 0906) Kurs OPC S7

Spis treści. Dzień 1. I Wprowadzenie (wersja 0906) II Dostęp do danych bieżących specyfikacja OPC Data Access (wersja 0906) Kurs OPC S7 I Wprowadzenie (wersja 0906) Kurs OPC S7 Spis treści Dzień 1 I-3 O czym będziemy mówić? I-4 Typowe sytuacje I-5 Klasyczne podejście do komunikacji z urządzeniami automatyki I-6 Cechy podejścia dedykowanego

Bardziej szczegółowo

Rozdział 4 KLASY, OBIEKTY, METODY

Rozdział 4 KLASY, OBIEKTY, METODY Rozdział 4 KLASY, OBIEKTY, METODY Java jest językiem w pełni zorientowanym obiektowo. Wszystkie elementy opisujące dane, za wyjątkiem zmiennych prostych są obiektami. Sam program też jest obiektem pewnej

Bardziej szczegółowo

METODY REPREZENTACJI INFORMACJI

METODY REPREZENTACJI INFORMACJI Politechnika Gdańska Wydział Elektroniki, Telekomunikacji i Informatyki Magisterskie Studia Uzupełniające METODY REPREZENTACJI INFORMACJI Ćwiczenie 1: Budowa i rozbiór gramatyczny dokumentów XML Instrukcja

Bardziej szczegółowo

DSL w środowisku Eclipse. Grzegorz Białek Architekt techniczny, Sygnity S.A.

DSL w środowisku Eclipse. Grzegorz Białek Architekt techniczny, Sygnity S.A. DSL w środowisku Eclipse Grzegorz Białek Architekt techniczny, Sygnity S.A. Agenda Wstęp do tematu (10 min) Sens tworzenia języków biznesowych UML jako język biznesu? Zintegrowane środowisko deweloperskie

Bardziej szczegółowo

Temat : SBQL 1 obiektowy język zapytań.

Temat : SBQL 1 obiektowy język zapytań. Laboratorium Języki i środowiska przetwarzania danych rozproszonych Temat : SBQL 1 obiektowy język zapytań. Historia zmian Data Wersja Autor Opis zmian 23.4.2012 1.0 Tomasz Kowalski Utworzenie dokumentu

Bardziej szczegółowo

SYSTEMY CZASU RZECZYWISTEGO STEROWNIK WIND. Dokumentacja projektu. Danilo Lakovic. Joanna Duda. Piotr Leżoń. Mateusz Pytel

SYSTEMY CZASU RZECZYWISTEGO STEROWNIK WIND. Dokumentacja projektu. Danilo Lakovic. Joanna Duda. Piotr Leżoń. Mateusz Pytel SYSTEMY CZASU RZECZYWISTEGO STEROWNIK WIND Dokumentacja projektu Danilo Lakovic Joanna Duda Piotr Leżoń Mateusz Pytel 1. Wstęp 1.1. Cel dokumentu Poniższy dokument ma na celu przybliżenie użytkownikowi

Bardziej szczegółowo

Warstwa integracji. wg. D.Alur, J.Crupi, D. Malks, Core J2EE. Wzorce projektowe.

Warstwa integracji. wg. D.Alur, J.Crupi, D. Malks, Core J2EE. Wzorce projektowe. Warstwa integracji wg. D.Alur, J.Crupi, D. Malks, Core J2EE. Wzorce projektowe. 1. Ukrycie logiki dostępu do danych w osobnej warstwie 2. Oddzielenie mechanizmów trwałości od modelu obiektowego Pięciowarstwowy

Bardziej szczegółowo

Bazy danych. Wykład IV SQL - wprowadzenie. Copyrights by Arkadiusz Rzucidło 1

Bazy danych. Wykład IV SQL - wprowadzenie. Copyrights by Arkadiusz Rzucidło 1 Bazy danych Wykład IV SQL - wprowadzenie Copyrights by Arkadiusz Rzucidło 1 Czym jest SQL Język zapytań deklaratywny dostęp do danych Składnia łatwa i naturalna Standardowe narzędzie dostępu do wielu różnych

Bardziej szczegółowo

STUDIA I MONOGRAFIE NR

STUDIA I MONOGRAFIE NR STUDIA I MONOGRAFIE NR 21 WYBRANE ZAGADNIENIA INŻYNIERII WIEDZY Redakcja naukowa: Andrzej Cader Jacek M. Żurada Krzysztof Przybyszewski Łódź 2008 3 SPIS TREŚCI WPROWADZENIE 7 SYSTEMY AGENTOWE W E-LEARNINGU

Bardziej szczegółowo

Systemy baz danych w zarządzaniu przedsiębiorstwem. W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi

Systemy baz danych w zarządzaniu przedsiębiorstwem. W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi Systemy baz danych w zarządzaniu przedsiębiorstwem W poszukiwaniu rozwiązania problemu, najbardziej pomocna jest znajomość odpowiedzi Proces zarządzania danymi Zarządzanie danymi obejmuje czynności: gromadzenie

Bardziej szczegółowo