Zastosowanie transformacji Hougha do tworzenia mapy i lokalizacji robota mobilnego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zastosowanie transformacji Hougha do tworzenia mapy i lokalizacji robota mobilnego"

Transkrypt

1 Zastosowanie transformacji Hougha do tworzenia mapy i lokalizacji robota mobilnego Barbara Siemiatkowska 1 Streszczenie W niniejszej pracy przedstawiono zastosowanie transformacji Hougha w określeniu zmian położenia robota w środowisku, które nie jest znane. Robot wyposażony w laserowy czujnik odległości porusza się we wnętrzu budynku. Znajdowane są cechy charakterystyczne otoczenia - fragmenty ścian, łuki i obiekty nieregularne. Określenie przemieszczenia robota odbywa się na podstawie określenia zmian położenia pojazdu względem wykrytych obiektów charakterystycznych - znaczników, wykrywanych przy pomocy transformacji Hougha. Zaletą opisywanej metody jest możliwość realizacji w sposób wielorównoległy. W referacie przedstawione będą wyniki eksperymentów prowadzonych w środowisku typu budynek. Metoda może być także stosowana w przestrzeniach otwartych. 1. WSTEP Systemy nawigacyjne robotów mobilnych składają się z trzech podstawowych elementów: określenia położenia otaczających pojazd przeszkód, planowania bezkolizyjnej trasy oraz lokalizacji. Metody lokalizacji dzielone są na dwie podstawowe grupy. W pierwszej grupie znajdują się systemy umożliwiające określenie przemieszczenia robota między kolejnymi punktami pomiarowymi. W drugiej obliczane jest położenie pojazdu w pewnym globalnym układzie współrzędnych. Podstawową metodą określenia przemieszczeń robota jest odometria. Istotną wadą odometrii jest jednak to, że niedokładności pomiarów kumulują się w czasie. Powstanie błędów może być spowodowane wadami urządzenia np. nierównościami kół, ograniczoną rozdzielczością enkoderów lub przypadkowymi zaburzeniami np. poślizgami kół, nierównością powierzchni [1]. Układy odometryczne są wzbogacane o zewnętrzne układ lokalizacji. Najstarsze systemy polegały na badaniu przemieszczenia robota względem sztucznych znaczników aktywnych [5] lub pasywnych (obiektów o określonym kolorze i kształcie [6]). Wadą takich systemów jest to, że układ znaczników musi być znany i ich położenie nie może się zmieniać. Inną dużo bardziej elastyczną metodą jest określenie przemieszczenia na podstawie tworzonych przez robota map lokalnych. W literaturze opisywane są trzy grupy tych metod: Dopasowywanie map[2] - algorytmy umożliwiają określenie przemieszczenia robota z dużą dokładnością, ale są czasochłonne obliczeniowo. 1 Instytut Podstawowych Problemów Techniki PAN, ul. Świętokrzyska 21, Warszawa,

2 B. Siemiatkowska Dopasowywanie skanów - do tej grupy należą np. metody określanie kierunków głównych [8][4] - metoda może być stosowana wewnątrz budynków posiadających regularny układ ścian. Wykrywanie i dopasowywanie elementów charakterystycznych - robot znajduje w środowisku znaczniki - elementy charakterystyczne, niezmienne i odporne na przypadkowe zakłócenia [3][10]. Znaczniki są najczęściej opisywane w postaci zbioru cech. Metoda ta jest metodą uniwersalną tzn. może być stosowana zarówno w pomieszczeniach jak i w otwartej przestrzeni. Jej efektywność zależy głównie od sposobu wykrywania i dopasowywania charakterystycznych elementów otoczenia. Przedstawiona w poniższej pracy metoda lokalizacji robota należy do ostatniej z opisywanych grup. W prowadzonych eksperymentach stosowano dalmierz laserowy firmy SICK, a parametry znaczników są obliczane przy pomocy zmodyfikowanej transformacji Hougha. Opisywane w poniższym artykule badania są rozszerzeniem i uzupełnieniem metody przedstawionej w [9]. 2. DALMIERZ LASEROWY Dalmierz laserowy LMS 200 firmy SICK jest urządzeniem pierwszej klasy bezpieczeństwa umożliwiającym dokonywanie pomiarów w pomieszczeniach zamkniętych. Dostarcza ciąg odczytów postaci: (R i,φ i ), gdzie R i jest wskazaną przez laser odległością od przeszkody, a φ i kątem skanowania. Sensor wykrywa przeszkody w odległości nie przekraczającej 30 m. Statystyczny błąd pomiaru wynosi ok. 15mm dla R i < 800cm i ok. 4 cm dla R i > 800cm. LMS umożliwia wykrywanie przeszkód w sektorze 180 o z rozdzielczością kątową 0.5 lub 1. Czas dokonania skanu wynosi 26ms (dla 0.5 ) i 13ms dla rozdzielczości 1. Jeśli przyjmiemy że dalmierz laserowy znajduje się w początku układu współrzędnych, to współrzędne punktów należących do krawędzi przeszkody możemy obliczyć na podstawie równania (1). x i = R i cosφ i y i = R i sinφ i (1) R i jest wskazaną przez laser odległością od przeszkody, a φ i jest kątem skanowania. 3. SCHEMAT ALGORYTMU Algorytm określania przemieszczenia robota między kolejnymi punktami pomiarowymi składa się z następujących etapów: Dokonanie pomiarów przy pomocy dalmierza laserowego. Ciąg odległości jest zapamiętany w jednowymiarowej tablicy. Indeks tablicy w sposób jednoznaczny określa kąt skanowania. Indeksowi o wartości i odpowiada kąt skanowania i ϕ, gdzie ϕ jest rozdzielczością skanera. W prowadzonych eksperymentach przyjęto ϕ = 1.0 0

3 Zastosowanie transformacji Hougha w lokalizacji... Filtracja danych Dane pochodzące ze skanera są często zaszumiane. Błędy odczytów powstają najczęściej w sytuacji, gdy wiązka świetlna pada na granicę dwóch przeszkód. W celu zredukowania występujących szumów dane są filtrowane przy pomocy filtru medianowego. Filtr ten jest realizowany przy pomocy sieci komórkowej. Umożliwia to realizację algorytmu w sposób wielorównoległy. Na rys. 1 przedstawiono wynik filtracji danych. Linią przerywaną zaznaczono odczyty ze skanera, a linią ciągłą wynik zastosowania filtru medianowego. Rys. 1. Dane pochodzące ze skanera laserowego Wyodrębnienie obiektów Obiekty są wyodrębniane prz pomocy transformacji Hougha. Poszukujemy odcinków dłuższych niż zadany próg ( naszym wypadku 20cm). Po wyodrębnieniu długich odcinków analizujemy pozostałe punkty. Przyjmujemy, że dwa kolejne odczyty skanera (R i,φ i ) i (R i+1,φ i+1 ) wskazują na ten sam obiekt, jeśli spełniony jest warunek: R 2 i+1 + R 2 i 2 R i+1 R i cos ϕ R 2 (2) W prowadzonych eksperymentach przyjęto R = 25cm. Na rys. 2 przedstawiono wynik segmentacji danych. Na rys. 3 przedstawiono mapę utworzoną na podstawie odczytów z lasera. Klasyfikacja i określenie cech obiektu. W algorytmach określenia przemieszczenia robota na podstawie wskazań dalmierz laserowego jako cechy charakterystyczne przyjmuje się fragmenty ścian i naroża. W opisywanej w poniższej pracy metodzie zbiór cech rozszerzono o łuki i elementy nieregularne. Postępowanie to umożliwia dokonywanie lokalizacji w środowisku, w którym nie występuje regularny układ ścian.

4 B. Siemiatkowska Rys. 2. Segmentacja danych Określenie zmiany położenia robota Po określeniu parametrów i dopasowaniu znaczników wykrytych w kolejnych punktach pomiarowych, obliczane jest przesunięcie robota oraz zmiana jego orientacji. Metoda obliczania zmian położenia pojazdu na podstawie zaobserwowanych zmian położenia punktów charakterystycznych jest przedstawiona w pracach: [3][7]. 4. TRANSFORMACJA HOUGHA Transformacja Hougha jest od wielu lat stosowana w przetwarzaniu obrazów, zwykle do znajdowania najdłuższych odcinków linii występujących w obrazie rastrowym Równanie prostej można zapisać w postaci normalnej: c = x cosα + y sinα (3) gdzie α jest kątem między normalną do danej prostej a osią OX, c - jest minimalną odległością danej prostej od punktu (0,0). Jeśli przyjmiemy pewną dyskretyzację przestrzeni, to dla każdego punktu płaszczyzny (x, y) możemy wyznaczyć rodzinę prostych do których punkt należy, a więc także rodzinę par (α, c). Jeśli utworzymy tablicę dwuwymiarową i elementowi (α, c) przyporządkowujemy ilość pikseli obrazu leżących na wyznaczonej przez tę parę prostej, to element o największej wartości w sposób jednoznaczny wyznacza najdłuższy odcinek na obrazie. W przypadku, gdy dane pochodzą z lasera równanie (3) może być zastąpione równaniem:

5 Zastosowanie transformacji Hougha w lokalizacji... Rys. 3. Lokalna mapa otoczenia c = R i cos(α φ i ) (4) Z równania (4) wynika, że aby dokonać transformacji Hougha obrazu otrzymanego na podstawie wskazań dalmierza laserowego nie musimy obliczać współrzędnych (x,y), wystarczą dane o odległości od przeszkody i kącie skanowania. Dwa kolejne odczyty (R i,φ i ) i (R i+1,φ i+1 ) należą do tej samej prostej wyznaczonej przez parametry (α,c), jeśli spełnione są warunki (5)-(6). R i cos(α φ i ) R i+1 cos(α φ i+1 ) ε (5) R i cos(α φ i ) c ε (6) Wartość parametru ε jest dopuszczalnym błędem. W eksperymentach przyjęto ε 1.5cm. Analiza powstałego w wyniku transformacji Hougha histogramu umożliwia określenie typu obiektu, który jest obserwowany. W przypadku ścian występuje jedno wyraźne maksimum, w przypadku naroży występują dwa maksima odpowiadające kierunkom ścian. W przypadku obiektów nieregularnych brak jest wyraźnych maksimów. Dla zbioru odczytów współliniowych (R i,φ), należy znaleźć takie wartości parametrów (α, c), dla których błąd średniokwadratowy γ opisany równaniem (7) jest najmniejszy: γ = N i=1 (R i cos(α φ i ) c) 2 (7) gdzie N - jest ilością odczytów współliniowych. Wartości optymalne są obliczane zgodnie ze wzorem (8)

6 B. Siemiatkowska Rys. 4. Określenie zakresu parametrów α α = 1 2 atan( p q ) c = 1 N N i=1 R i cos(φ i α) p = N i=1 N j=1 R i R j sin(φ i + φ j ) + N N i=1 R2 i sin(2 φ i) q = N i=1 N j=1 R i R j cos(φ i + φ j ) + N N i=1 R2 i cos(2 φ i) (8) Naroża są reprezentowane jako punkt (x,y). Punkt ten powstaje w wyniku przecięcia się dwóch ścian. Wyniki metody opisywanej metody są przedstawione w pracy [9]. W prowadzonych obecnie badaniach nie zmieniono koncepcji przedstawionej metody, skoncentrowano się jedynie na stworzeniu algorytmu, który umożliwia przeprowadzenie obliczeń w sposób bardziej efektywny. Wprowadzono następujące modyfikacje: analiza położenia dwóch kolejnych punktów umożliwia określenie zakresu współczynników α dla których warto obliczać wartości parametrów c. Ideę metody przedstawia rys. 4. Czarne koła reprezentują dwa kolejne odczyty dalmierza laserowego. Okręgami zaznaczono obszar błędu odczytu. Zaznaczone proste wyznaczają zakres współczynników α, dla których przeprowadzana będzie transformacja Hougha. W wyniku stosowania opisanej metody następuje kilkukrotne skrócenie czasu obliczeń. Transformacja Hougha może być stosowana także do wykrywania dowolnych krzywych, które mogą być opisywane w sposób parametryczny. W przypadku punktów znajdujących się na okręgu opisanym równaniem (9) musimy wyznaczyć parametry x 0, y 0 i parametr r. (x x 0 ) 2 + (y y 0 ) 2 = r 2 (9) Zwykle stosowanie transformacji Hougha do wykrywania krzywych opisywanych więcej niż dwoma parametrami jest czasochłonne. W tej pracy przedstawiony zostanie algorytm określania parametrów obiektów, które z punktu widzenia sensora wyglądają jak fragmenty okręgu. Okrąg będzie opisywany przez następujące parametry: d - odległość punktu (x 0,y 0 ) od środka układu współrzędnych, α - kąt nachylenia prostej przechodzącej przez (x 0,y 0 ) i (0,0) do osi OX oraz r - promień okręgu. W

7 Zastosowanie transformacji Hougha w lokalizacji... Rys. 5. Parametryczny opis okręgu klasycznej metodzie dla każdego punktu (r i,φ i ) wskazanego przez laser i dla każdego α [0,180], należałoby obliczyć zbiór dopuszczalnych wartości d i r. Równanie (9) możemy zapisać w następujący sposób: (x d cosα) 2 + (y d sinα) 2 = r 2 (10) Ponieważ w opisywanej metodzie spełniony jest warunek (1), to podstawiając wartości x i y do równania (10) otrzymujemy: r 2 i + d 2 2 r i d cos(α φ i ) = r 2 (11) Jeśli zbiór odczytów (r i,ϕ i ) i=0,..,n leży na jednym okręgu to spełnione są następujące warunki: 1. Zbiór r i jest symetryczny względem k = 1+N 2 2. Kąt β = N i=1 ϕ i N jest przybliżoną wartością α. W kolejnym kroku generowane jest przybliżone równanie okręgu, przyjmujemy, że przybliżoną wartością parametru α jest parametr β. Trzy punkty (r i,φ i ),(r k,φ k ),(r j,φ j ) należą do jednego okręgu, którego środek leży na prostej wyznaczonej przez kąt α, jeśli spełniony jest warunek (12). ri 2 r2 r 2 k j = r2 k (12) r i cosφ i r k cosφ k r j cosφ j r k cosφ k Wartości parametrów d i r wyznaczane są zgodnie ze wzorem (13).

8 B. Siemiatkowska r 2 j r2 k r j cosφ j r k cosφ k d = 1 2 r 2 = ri 2 + d2 2 r i d cos(α φ i ) (13) Warunek 12 jest niestabilny numerycznie dla punktów takich, że ϕ i α ϕ k α, dlatego przyjmujemy, że i, j są indeksami odczytów skrajnych, a k indeksem odczytu środkowego. Mając obliczone przybliżone wartości d i α dla każdego punktu (r i,ϕ i ) obliczamy odległość od wyznaczonego środka okręgu. Uznajemy, że zbiór punktów leży na jednym okręgu, jeśli dla każdego z punktów wartość R nie różni się od poprzednio wyznaczonej wartości więcej niż zadany próg. Na rysunku 6a) przedstawiono odczyty z lasera, otrzymane gdy obserwowany jest okrąg o parametrach α = 45 o, d=100cm, R=20cm. Rozdzielczość skanera wynosiła 1 o. Rysunek 6b) przedstawia wyniki pomiarów w układzie biegunowym. Przybliżona wartość kąta wynosi 45 o, a parametru d= Rysunek 7 przedstawia obliczone wartości parametru R dla kolejnych punktów. Kolejny krok polega na wyznaczeniu optymalnych wartości parametrów. W tym przypadku podobnie jak poprzednio szukamy minimum funkcji f (α,d,r) opisanej wzorem 14 f (α,d,r) = N i=1 (d 2 + r 2 i 2 d r i cos(α ϕ i ) R 2 ) 2 (14) a) b) Rys. 6. Odczyty z dalmierza Wyniki przeprowadzonych eksperymentów przedstawia rys. 8. Na wykresie przedstawiono błąd określenia parametru d dla okręgów o promieniu r = 10cm, r = 20cm i r = 30cm. Okręgi były umieszczane w odległościach od 0.5m do 3.0m od

9 Zastosowanie transformacji Hougha w lokalizacji... Rys. 7. Wartości parametru R dalmierza laserowego. Błąd jest tym większy im mniejszy jest obiekt i im dalej znajduje się od robota. Parametr błąd określenia parametru r jest ściśle skorelowany z d i rozkład błędu jest zbliżony do rozkładu błędu dla d. Czas określenia parametrów nie przekroczył 10ms. Obliczenia były prowadzone na komputerze z zegarem 1.2GHz. 5. WNIOSKI W pracy przedstawiono implementację transformacji Hougha umożliwiającą wykrywanie fragmentów ścian i łuków. Metoda umożliwia określenie zmian orientacji i położenia robota wyposażonego w dalmierz laserowy. Przyjęto założenie, że robot porusza się w otoczeniu typu wnętrze. Mapa pomieszczenia nie jest znana. Algorytm jest bardzo efektywny. Opisywana metoda może być stosowana także do określania położenia robota w znanym pomieszczeniu, a także może ułatwiać tworzenie mapy metrycznej otoczenia, które nie jest znane. Czas działania algorytmu nie przekracza 20ms. Wyniki prezentowane w tej pracy zostay zrealizowane w ramach grantu MEiN 3 T11C LITERATURA [1] J. Borenstein, L. Feng. Measurement and Correction of Systematic Odometry Errors in Mobile Robots. Trans. on Robotics and Automation, Vol. 12, No.6,

10 B. Siemiatkowska Rys. 8. Błąd określenia parametru d [2] F. Dellaert, D. Fox, W. Burgard, and S. Thrun. Monte Carlo localization for mobile robots. In IEEE Int. Conf. on Robotics and Automation. s , [3] G. Dissanayake, H. Durrant-Whyte, and T. Bailey. A computationally effcient solution to the simultaneous localisation and map building (SLAM) problem. In: IEEE Int. Conf. on Robotics and Automation. Proceedings. Vol. 2, 2000, s [4] A. Dubrawski, B. Siemiątkowska. A Neural Method for Self-Localization of a Mobile Robot Equipped with a 2-D Scanning Laser Range Finder, In: IEEE Conf. on Robotics and Automation, Leuven. Proceedings. 1998, s [5] G. Giralt, R. Sobek, and R. Chatila. A multi-level planning and navigation system for a mobile robot. A first approach to Hilare. In: Sixth Int. Joint Conf. on Robotics and Automation [6] I. Hallmann, B. Siemiątkowska. Artificial landmark navigation system. In: 9th Int. Symposium Intelligent Robotic Systems. Proceedings. 2001, s [7] E. Mennegatti, M. Zoccarato, E. Pagell, H. Ishiguro. Hierarchical image-based localization for mobile robot with Monte-Carlo Localisation. In: European Conf. on Mobile Robotics Proceedings. 1995, s [8] B. Siemiatkowska, R. Chojecki. Mobile Robot Localization Based on Omnicamera 5th IFAC/EURON Symposium on Intelligent Autonomous Vehicles. Elsevier Proceedings, [9] B. Siemiątkowska, A. Dubrawski. Cellular Neural Networks for a Mobile Robot, Rough Sets and Current Trends in Computing, Springer. s , [10] A. Stevens, M. Stevens, and H.F. Durrant-Whyte. OxNav: Reliable autonomous navigation. In: IEEE Int. Conf. on Robotics and Automation. 1995, s HOUGH TRANSFORM FOR MAP BUILDING AND LOCALIZATION OF A MOBILE ROBOT

11 Zastosowanie transformacji Hougha w lokalizacji... The paper presents the application of Hough transform for mobile robot localization. It is assumed that the robot acts in an unknown environment. It is equipped with the SICK laser range finder. The robot looks for segments, edges and circles, which are features of the environment. Comparing the robot position relatively to the landmarks the displacement of the vehicle is computed. In this paper a certain modification of Hough transform is proposed in order to detect features and to compute their parameters. Experiments show the efficiency of the proposed approach.

METODY NAWIGACJI LASEROWEJ W AUTOMATYCZNIE KIEROWANYCH POJAZDACH TRANSPORTOWYCH

METODY NAWIGACJI LASEROWEJ W AUTOMATYCZNIE KIEROWANYCH POJAZDACH TRANSPORTOWYCH METODY NAWIGACJI LASEROWEJ W AUTOMATYCZNIE KIEROWANYCH POJAZDACH TRANSPORTOWYCH Mirosław ŚMIESZEK 1, Paweł DOBRZAŃSKI 2, Magdalena DOBRZAŃSKA 3 W pracy przedstawiono najczęściej wykorzystywane metody służące

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Zastosowanie laserów w nawigacji automatycznie kierowanych pojazdów transportowych

Zastosowanie laserów w nawigacji automatycznie kierowanych pojazdów transportowych DOBRZAŃSKI Paweł 1 ŚMIESZEK Mirosław 2 DOBRZAŃSKA Magdalena 3 Zastosowanie laserów w nawigacji automatycznie kierowanych pojazdów transportowych WSTĘP Szybki rozwój przemysłu, a w szczególności sektorów

Bardziej szczegółowo

Koncepcja pomiaru i wyrównania przestrzennych ciągów tachimetrycznych w zastosowaniach geodezji zintegrowanej

Koncepcja pomiaru i wyrównania przestrzennych ciągów tachimetrycznych w zastosowaniach geodezji zintegrowanej Koncepcja pomiaru i wyrównania przestrzennych ciągów tachimetrycznych w zastosowaniach geodezji zintegrowanej Krzysztof Karsznia Leica Geosystems Polska XX Jesienna Szkoła Geodezji im Jacka Rejmana, Polanica

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009

MATEMATYKA - CYKL 5 GODZINNY. DATA : 8 czerwca 2009 MATURA EUROPEJSKA 2009 MATEMATYKA - CYKL 5 GODZINNY DATA : 8 czerwca 2009 CZAS TRWANIA EGZAMINU: 4 godziny (240 minut) DOZWOLONE POMOCE : Europejski zestaw wzorów Kalkulator (bez grafiki, bez możliwości

Bardziej szczegółowo

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI

AUTORKA: ELŻBIETA SZUMIŃSKA NAUCZYCIELKA ZESPOŁU SZKÓŁ OGÓLNOKSZTAŁCĄCYCH SCHOLASTICUS W ŁODZI ZNANE RÓWNANIA PROSTEJ NA PŁASZCZYŹNIE I W PRZESTRZENI UTORK: ELŻBIET SZUMIŃSK NUCZYCIELK ZESPOŁU SZKÓŁ OGÓLNOKSZTŁCĄCYCH SCHOLSTICUS W ŁODZI ZNNE RÓWNNI PROSTEJ N PŁSZCZYŹNIE I W PRZESTRZENI SPIS TREŚCI: PROST N PŁSZCZYŻNIE Str 1. Równanie kierunkowe prostej

Bardziej szczegółowo

Zastosowanie kołowej transformaty Hougha w zadaniu zliczania monet

Zastosowanie kołowej transformaty Hougha w zadaniu zliczania monet Zbigniew GOMÓŁKA Uniwersytet Rzeszowski, Polska Ewa ŻESŁAWSKA Wyższa Szkoła Informatyki i Zarządzania w Rzeszowie, Polska Zastosowanie kołowej transformaty Hougha w zadaniu zliczania monet Transformata

Bardziej szczegółowo

Definicja obrotu: Definicja elementów obrotu:

Definicja obrotu: Definicja elementów obrotu: 5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu

WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI. Robot do pokrycia powierzchni terenu WYDZIAŁ ELEKTROTECHNIKI I AUTOMATYKI KATEDRA AUTOMATYKI Robot do pokrycia powierzchni terenu Zadania robota Zadanie całkowitego pokrycia powierzchni na podstawie danych sensorycznych Zadanie unikania przeszkód

Bardziej szczegółowo

Zadanie 21. Stok narciarski

Zadanie 21. Stok narciarski KLUCZ DO ZADAŃ ARKUSZA II Jeżeli zdający rozwiąże zadanie inną, merytorycznie poprawną metodą otrzymuje maksymalną liczbę punktów Numer zadania Zadanie. Stok narciarski Numer polecenia i poprawna odpowiedź.

Bardziej szczegółowo

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2).

11. Znajdż równanie prostej prostopadłej do prostej k i przechodzącej przez punkt A = (2;2). 1. Narysuj poniższe figury: a), b), c) 2. Punkty A = (0;1) oraz B = (-1;0) należą do okręgu którego środek należy do prostej o równaniu x-2 = 0. Podaj równanie okręgu. 3. Znaleźć równanie okręgu przechodzącego

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

Rysowanie precyzyjne. Polecenie:

Rysowanie precyzyjne. Polecenie: 7 Rysowanie precyzyjne W ćwiczeniu tym pokazane zostaną różne techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2010, między innymi wykorzystanie punktów charakterystycznych. Z uwagi na

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

MATURA PRÓBNA - odpowiedzi

MATURA PRÓBNA - odpowiedzi MATURA PRÓBNA - odpowiedzi Zadanie 1. (1pkt) Zbiorem wartości funkcji = + 6 7 jest przedział: A., B., C., D., Zadanie. (1pkt) Objętość kuli wpisanej w sześcian o krawędzi długości 6 jest równa: A. B. 4

Bardziej szczegółowo

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012 Rysowanie precyzyjne 7 W ćwiczeniu tym pokazane zostaną wybrane techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2012, między innymi wykorzystanie punktów charakterystycznych. Narysować

Bardziej szczegółowo

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015

Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 Praca kontrolna z matematyki nr 1 Liceum Ogólnokształcące dla Dorosłych Semestr 5 Rok szkolny 2014/2015 2 6 + 3 1. Oblicz 3. 3 x 1 3x 2. Rozwiąż nierówność > x. 2 3 3. Funkcja f przyporządkowuje każdej

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

Funkcja liniowa i prosta podsumowanie

Funkcja liniowa i prosta podsumowanie Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych.

Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów optycznych. msg O 7 - - Temat: Badanie soczewek, wyznaczanie odległości ogniskowej. Zagadnienia: równanie soczewki, ogniskowa soczewki, powiększenie, geometryczna konstrukcja obrazu, działanie prostych przyrządów

Bardziej szczegółowo

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Ćwiczenia z Geometrii I, czerwiec 2006 r. Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,

Bardziej szczegółowo

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA

7. PLANIMETRIA.GEOMETRIA ANALITYCZNA 7. PLANIMETRIA.GEOMETRIA ANALITYCZNA ZADANIA ZAMKNIĘTE 1. Okrąg o równaniu : A) nie przecina osi, B) nie przecina osi, C) przechodzi przez początek układu współrzędnych, D) przechodzi przez punkt. 2. Stosunek

Bardziej szczegółowo

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013 Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 013 3.4.1 Inwersja względem okręgu. Inwersja względem okręgu jest przekształceniem płaszczyzny

Bardziej szczegółowo

Metody kodowania wybranych cech biometrycznych na przykładzie wzoru naczyń krwionośnych dłoni i przedramienia. Mgr inż.

Metody kodowania wybranych cech biometrycznych na przykładzie wzoru naczyń krwionośnych dłoni i przedramienia. Mgr inż. Metody kodowania wybranych cech biometrycznych na przykładzie wzoru naczyń krwionośnych dłoni i przedramienia Mgr inż. Dorota Smorawa Plan prezentacji 1. Wprowadzenie do zagadnienia 2. Opis urządzeń badawczych

Bardziej szczegółowo

Algorytm SAT. Marek Zając 2012. Zabrania się rozpowszechniania całości lub fragmentów niniejszego tekstu bez podania nazwiska jego autora.

Algorytm SAT. Marek Zając 2012. Zabrania się rozpowszechniania całości lub fragmentów niniejszego tekstu bez podania nazwiska jego autora. Marek Zając 2012 Zabrania się rozpowszechniania całości lub fragmentów niniejszego tekstu bez podania nazwiska jego autora. Spis treści 1. Wprowadzenie... 3 1.1 Czym jest SAT?... 3 1.2 Figury wypukłe...

Bardziej szczegółowo

9. Podstawowe narzędzia matematyczne analiz przestrzennych

9. Podstawowe narzędzia matematyczne analiz przestrzennych Waldemar Izdebski - Wykłady z przedmiotu SIT 75 9. odstawowe narzędzia matematyczne analiz przestrzennych Niniejszy rozdział służy ogólnemu przedstawieniu metod matematycznych wykorzystywanych w zagadnieniu

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYKŁADOWY ZESTAW ZADAŃ DLA OSÓB SŁABOSŁYSZĄCYCH (A3) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych,

Bardziej szczegółowo

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE

FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Umiejętności opracowanie: Maria Lampert LISTA MOICH OSIĄGNIĘĆ FIGURY I PRZEKSZTAŁCENIA GEOMETRYCZNE Co powinienem umieć Umiejętności znam podstawowe przekształcenia geometryczne: symetria osiowa i środkowa,

Bardziej szczegółowo

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO.

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. WYKŁAD 6 1 8. TRYGONOMETRIA. 8.1. FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. SINUSEM kąta nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta do przeciwprostokątnej w trójkącie prostokątnym : =. COSINUSEM

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe

FUNKCJA LINIOWA - WYKRES. y = ax + b. a i b to współczynniki funkcji, które mają wartości liczbowe FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (postać kierunkowa) Funkcja liniowa to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości liczbowe Szczególnie ważny w postaci

Bardziej szczegółowo

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2

Politechnika Poznańska Instytut Technologii Mechanicznej. Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH. Nr 2 Politechnika Poznańska Instytut Technologii Mechanicznej Laboratorium MASZYN I URZĄDZEŃ TECHNOLOGICZNYCH Nr 2 POMIAR I KASOWANIE LUZU W STOLE OBROTOWYM NC Poznań 2008 1. CEL ĆWICZENIA Celem ćwiczenia jest

Bardziej szczegółowo

Temat 1. Wprowadzenie do nawigacji robotów mobilnych. Dariusz Pazderski Opracowanie w ramach programu ERA Inżyniera

Temat 1. Wprowadzenie do nawigacji robotów mobilnych. Dariusz Pazderski Opracowanie w ramach programu ERA Inżyniera Kurs: Algorytmy Nawigacji Robotów Mobilnych Temat 1 Wprowadzenie do nawigacji robotów mobilnych 1 Pojęcia podstawowe Dariusz Pazderski Opracowanie w ramach programu ERA Inżyniera Na początku wprowadzimy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

8. Analiza danych przestrzennych

8. Analiza danych przestrzennych 8. naliza danych przestrzennych Treścią niniejszego rozdziału będą analizy danych przestrzennych. naliza, ogólnie mówiąc, jest procesem poszukiwania (wydobywania) informacji ukrytej w zbiorze danych. Najprostszym

Bardziej szczegółowo

WYBÓR PUNKTÓW POMIAROWYCH

WYBÓR PUNKTÓW POMIAROWYCH Scientific Bulletin of Che lm Section of Technical Sciences No. 1/2008 WYBÓR PUNKTÓW POMIAROWYCH WE WSPÓŁRZĘDNOŚCIOWEJ TECHNICE POMIAROWEJ MAREK MAGDZIAK Katedra Technik Wytwarzania i Automatyzacji, Politechnika

Bardziej szczegółowo

Pomiar ogniskowych soczewek metodą Bessela

Pomiar ogniskowych soczewek metodą Bessela Ćwiczenie O4 Pomiar ogniskowych soczewek metodą Bessela O4.1. Cel ćwiczenia Celem ćwiczenia jest wyznaczenie ogniskowych soczewek skupiających oraz rozpraszających z zastosowaniem o metody Bessela. O4.2.

Bardziej szczegółowo

KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ

KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ KLASA II TECHNIKUM POZIOM PODSTAWOWY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające (W).

Bardziej szczegółowo

Aerotriangulacja. 1. Aerotriangulacja z niezależnych wiązek. 2. Aerotriangulacja z niezależnych modeli

Aerotriangulacja. 1. Aerotriangulacja z niezależnych wiązek. 2. Aerotriangulacja z niezależnych modeli Aerotriangulacja 1. Aerotriangulacja z niezależnych wiązek 2. Aerotriangulacja z niezależnych modeli Definicja: Cel: Kameralne zagęszczenie osnowy fotogrametrycznej + wyznaczenie elementów orientacji zewnętrznej

Bardziej szczegółowo

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,

Bardziej szczegółowo

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne:

Poniżej przedstawiony został podział wymagań na poszczególne oceny szkolne: Prosto do matury klasa d Rok szkolny 014/015 WYMAGANIA EDUKACYJNE Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i wykraczające

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony Próbny egzamin maturalny z matematyki. Poziom rozszerzony 1 PRÓNY EGZMIN MTURLNY Z MTEMTYKI poziom rozszerzony ZNI ZMKNIĘTE W każdym z zadań 1.. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 204/205 MATEMATYKA POZIOM PODSTAWOWY PRZYKŁADOWY ZESTAW ZADAŃ (A) W czasie trwania egzaminu zdający może korzystać z zestawu wzorów matematycznych, linijki i cyrkla

Bardziej szczegółowo

MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań

MATEMATYKA Przed próbną maturą. Sprawdzian 1. (poziom podstawowy) Rozwiązania zadań MTEMTYK Przed próbną maturą. Sprawdzian. (poziom podstawowy) Rozwiązania zadań Zadanie. ( pkt) III... Uczeń posługuje się w obliczeniach pierwiastkami i stosuje prawa działań na pierwiastkach. 7 6 6 =

Bardziej szczegółowo

SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD

SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD Dr inż. Jacek WARCHULSKI Dr inż. Marcin WARCHULSKI Mgr inż. Witold BUŻANTOWICZ Wojskowa Akademia Techniczna SPOSOBY POMIARU KĄTÓW W PROGRAMIE AutoCAD Streszczenie: W referacie przedstawiono możliwości

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła

Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Ćwiczenie z fizyki Doświadczalne wyznaczanie ogniskowej soczewki oraz współczynnika załamania światła Michał Łasica klasa IIId nr 13 22 grudnia 2006 1 1 Doświadczalne wyznaczanie ogniskowej soczewki 1.1

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 14

RÓWNANIA RÓŻNICZKOWE WYKŁAD 14 RÓWNANIA RÓŻNICZKOWE WYKŁAD 14 Wybrane przykłady krzywych płaskich Wybrane przykłady krzywych Cykloida Okrąg o promieniu a toczy sie bez poslizgu po prostej. Ustalony punkt tego okręgu porusza się po krzywej

Bardziej szczegółowo

Przypadki toczenia okręgu

Przypadki toczenia okręgu ul. Konarskiego 2, 30-049 Kraków Tel. 12 633 13 83 lub 12 633 02 47 Przypadki toczenia okręgu Arkadiusz Biel Kraków 2012 Motywem do napisania pracy była obserwacja przyczepionej do szprychy roweru kolorowej

Bardziej szczegółowo

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia

Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Doświadczenie: Ruch jednostajnie przyspieszony wyznaczenie przyspieszenia Cele doświadczenia Celem doświadczenia jest zbadanie zależności drogi przebytej w ruchu przyspieszonym od czasu dla kuli bilardowej

Bardziej szczegółowo

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II

Wymagania edukacyjne, kontrola i ocena. w nauczaniu matematyki w zakresie. podstawowym dla uczniów technikum. część II Wymagania edukacyjne, kontrola i ocena w nauczaniu matematyki w zakresie podstawowym dla uczniów technikum część II Figury na płaszczyźnie kartezjańskiej L.p. Temat lekcji Uczeń demonstruje opanowanie

Bardziej szczegółowo

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r )

Ćwiczenie nr 254. Badanie ładowania i rozładowywania kondensatora. Ustawiony prąd ładowania I [ ma ]: t ł [ s ] U ł [ V ] t r [ s ] U r [ V ] ln(u r ) Nazwisko... Data... Wydział... Imię... Dzień tyg.... Godzina... Ćwiczenie nr 254 Badanie ładowania i rozładowywania kondensatora Numer wybranego kondensatora: Numer wybranego opornika: Ustawiony prąd ładowania

Bardziej szczegółowo

10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu.

10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu. Waldemar Izdebski - Wykłady z przedmiotu SIT 91 10.3. Typowe zadania NMT W niniejszym rozdziale przedstawimy podstawowe zadania do jakich może być wykorzystany numerycznego modelu terenu. 10.3.1. Wyznaczanie

Bardziej szczegółowo

Dopasowanie prostej do wyników pomiarów.

Dopasowanie prostej do wyników pomiarów. Dopasowanie prostej do wyników pomiarów. Graficzna analiza zależności liniowej Założenie: każdy z pomiarów obarczony jest taką samą niepewnością pomiarową (takiej samej wielkości prostokąty niepewności).

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taken from Pattern Classification (2nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wiley & Sons, 2000 with the permission of the authors

Bardziej szczegółowo

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA

3. PŁASKI STAN NAPRĘŻENIA I ODKSZTAŁCENIA 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA 1 3. 3. PŁASKI STAN NAPRĘŻNIA I ODKSZTAŁCNIA Analizując płaski stan naprężenia posługujemy się składowymi tensora naprężenia w postaci wektora {,,y } (3.1) Za dodatnie

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej

Bardziej szczegółowo

FUNKCJA LINIOWA, OKRĘGI

FUNKCJA LINIOWA, OKRĘGI FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o

Bardziej szczegółowo

ZASTOSOWANIE ALGORYTMÓW ICP I SIFT W LOKALIZACJI ROBOTÓW MOBILNYCH

ZASTOSOWANIE ALGORYTMÓW ICP I SIFT W LOKALIZACJI ROBOTÓW MOBILNYCH mgr Arkadiusz Zychewicz dr Barbara Siemi tkowska Instytut Podstawowych Problemów Techniki PAN ZASTOSOWANIE ALGORYTMÓW ICP I SIFT W LOKALIZACJI ROBOTÓW MOBILNYCH W pracy zaprezentowano zastosowanie algorytmów

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

22. CAŁKA KRZYWOLINIOWA SKIEROWANA

22. CAŁKA KRZYWOLINIOWA SKIEROWANA CAŁA RZYWOLINIOWA SIEROWANA Niech łuk o równaniach parametrycznych: x x(t), y y(t), a < t < b, będzie łukiem regularnym skierowanym, tzn łukiem w którym przyjęto punkt A(x(a), y(a)) za początek łuku, zaś

Bardziej szczegółowo

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II

Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Grafika komputerowa Wykład 8 Modelowanie obiektów graficznych cz. II Instytut Informatyki i Automatyki Państwowa Wyższa Szkoła Informatyki i Przedsiębiorczości w Łomży 2 0 0 9 Spis treści Spis treści 1

Bardziej szczegółowo

(54) Sposób pomiaru cech geometrycznych obrzeża koła pojazdu szynowego i urządzenie do

(54) Sposób pomiaru cech geometrycznych obrzeża koła pojazdu szynowego i urządzenie do RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)167818 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 2 9 3 7 2 5 (22) Data zgłoszenia: 0 6.0 3.1 9 9 2 (51) Intcl6: B61K9/12

Bardziej szczegółowo

Prof. Eugeniusz RATAJCZYK. Makrogemetria Pomiary odchyłek kształtu i połoŝenia

Prof. Eugeniusz RATAJCZYK. Makrogemetria Pomiary odchyłek kształtu i połoŝenia Prof. Eugeniusz RATAJCZYK Makrogemetria Pomiary odchyłek kształtu i połoŝenia Rodzaje odchyłek - symbole Odchyłki kształtu okrągłości prostoliniowości walcowości płaskości przekroju wzdłuŝnego Odchyłki

Bardziej szczegółowo

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03

METODY OBLICZENIOWE. Projekt nr 3.4. Dariusz Ostrowski, Wojciech Muła 2FD/L03 METODY OBLICZENIOWE Projekt nr 3.4 Dariusz Ostrowski, Wojciech Muła 2FD/L03 Zadanie Nasze zadanie składało się z dwóch części: 1. Sformułowanie, przy użyciu metody Lagrange a II rodzaju, równania różniczkowego

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie. a) Wiadomości i rozumienie Matematyka poziom rozszerzony Wykorzystanie pojęcia wartości argumentu i wartości

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Ćwiczenie audytoryjne pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Autor: dr inż. Radosław Łyszkowski Warszawa, 2013r. Metoda elementów skończonych MES FEM - Finite Element Method przybliżona

Bardziej szczegółowo

WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów

WYKŁAD 12. Analiza obrazu Wyznaczanie parametrów ruchu obiektów WYKŁAD 1 Analiza obrazu Wyznaczanie parametrów ruchu obiektów Cel analizy obrazu: przedstawienie każdego z poszczególnych obiektów danego obrazu w postaci wektora cech dla przeprowadzenia procesu rozpoznania

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Kinematyka robotów mobilnych

Kinematyka robotów mobilnych Kinematyka robotów mobilnych Maciej Patan Uniwersytet Zielonogórski Instytut Sterowania i Systemów Informatycznych Adaptacja slajdów do wykładu Autonomous mobile robots R. Siegwart (ETH Zurich Master Course:

Bardziej szczegółowo

PRO/ENGINEER. ĆW. Nr. MODELOWANIE SPRĘŻYN

PRO/ENGINEER. ĆW. Nr. MODELOWANIE SPRĘŻYN PRO/ENGINEER ĆW. Nr. MODELOWANIE SPRĘŻYN 1. Śruba walcowa o stałym skoku W programie Pro/Engineer modelowanie elementów typu sprężyny można realizować poleceniem Insert/Helical Sweep/Protrusin. Dla prawozwojnej

Bardziej szczegółowo

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO

TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA SKIEROWANEGO TRYGONOMETRIA Trygonometria to dział matematyki, którego przedmiotem badań są związki między bokami i kątami trójkątów oraz tzw. funkcje trygonometryczne. Trygonometria powstała i rozwinęła się głównie

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Miejsce na naklejkę ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU

Bardziej szczegółowo

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY

Zakres na egzamin poprawkowy w r. szk. 2013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY MATEMATYKA Klasa TMB Zakres na egzamin poprawkowy w r. szk. 013/14 /nauczyciel M.Tatar/ Podręcznik klasa 1 ZAKRES PODSTAWOWY i ROZSZERZONY (zakres rozszerzony - czcionką pogrubioną) Hasła programowe Wymagania

Bardziej szczegółowo

WYBRANE ELEMENTY CYFROWEGO PRZETWARZANIA SYGNAŁÓW W RADARZE FMCW

WYBRANE ELEMENTY CYFROWEGO PRZETWARZANIA SYGNAŁÓW W RADARZE FMCW kpt. dr inż. Mariusz BODJAŃSKI Wojskowy Instytut Techniczny Uzbrojenia WYBRANE ELEMENTY CYFROWEGO PRZETWARZANIA SYGNAŁÓW W RADARZE FMCW W artykule przedstawiono zasadę działania radaru FMCW. Na przykładzie

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej. LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 3 Temat: Wyznaczenie ogniskowej soczewek za pomocą ławy optycznej.. Wprowadzenie Soczewką nazywamy ciało przezroczyste ograniczone

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4

RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 RÓWNANIA RÓŻNICZKOWE WYKŁAD 4 Obszar określoności równania Jeżeli występująca w równaniu y' f ( x, y) funkcja f jest ciągła, to równanie posiada rozwiązanie. Jeżeli f jest nieokreślona w punkcie (x 0,

Bardziej szczegółowo

Reprezentacja i analiza obszarów

Reprezentacja i analiza obszarów Cechy kształtu Topologiczne Geometryczne spójność liczba otworów liczba Eulera szkielet obwód pole powierzchni środek cięŝkości ułoŝenie przestrzenne momenty wyŝszych rzędów promienie max-min centryczność

Bardziej szczegółowo

Podstawowe pojęcia geometryczne

Podstawowe pojęcia geometryczne PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

Geometryczne podstawy obróbki CNC. Układy współrzędnych, punkty zerowe i referencyjne. Korekcja narzędzi

Geometryczne podstawy obróbki CNC. Układy współrzędnych, punkty zerowe i referencyjne. Korekcja narzędzi Geometryczne podstawy obróbki CNC. Układy współrzędnych, punkty zerowe i referencyjne. Korekcja narzędzi 1 Geometryczne podstawy obróbki CNC 1.1. Układy współrzędnych. Układy współrzędnych umożliwiają

Bardziej szczegółowo

Kryteria ocen z matematyki w klasie I gimnazjum

Kryteria ocen z matematyki w klasie I gimnazjum 1. Zbieranie, porządkowanie i prezentowanie danych 1. Liczby naturalne 1. Cechy podzielności 1. Działania na liczbach naturalnych 1. Algorytmy działań pisemnych odczytywać informacje przedstawione w tabelach

Bardziej szczegółowo

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ

KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ KRYTERIA OCENIANIA Z MATEMATYKI W OPARCIU O PODSTAWĘ PROGRAMOWĄ I PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLASY DRUGIEJ TREŚCI KSZTAŁCENIA WYMAGANIA PODSTAWOWE WYMAGANIA PONADPODSTAWOWE Liczby wymierne i

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 53: Soczewki Nazwisko i imię: Zespół: Data: Ćwiczenie nr : Soczewki Cel ćwiczenia: Wyznaczenie ogniskowych soczewki skupiającej i układu soczewek (skupiającej i rozpraszającej) oraz ogniskowej soczewki rozpraszającej

Bardziej szczegółowo

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

K. Rochowicz, M. Sadowska, G. Karwasz i inni, Toruński poręcznik do fizyki Gimnazjum I klasa Całość: http://dydaktyka.fizyka.umk.

K. Rochowicz, M. Sadowska, G. Karwasz i inni, Toruński poręcznik do fizyki Gimnazjum I klasa Całość: http://dydaktyka.fizyka.umk. 3.2 Ruch prostoliniowy jednostajny Kiedy obserwujemy ruch samochodu po drodze między dwoma tunelami, albo ruch bąbelka powietrza ku górze w szklance wody mineralnej, jest to ruch po linii prostej. W przypadku

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 200 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

= sin. = 2Rsin. R = E m. = sin

= sin. = 2Rsin. R = E m. = sin Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i

Bardziej szczegółowo

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI

SPIS TREŚCI WSTĘP... 8 1. LICZBY RZECZYWISTE 2. WYRAŻENIA ALGEBRAICZNE 3. RÓWNANIA I NIERÓWNOŚCI SPIS TREŚCI WSTĘP.................................................................. 8 1. LICZBY RZECZYWISTE Teoria............................................................ 11 Rozgrzewka 1.....................................................

Bardziej szczegółowo

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie

Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie Planimetria poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/) 1. W trójkącie prostokątnym wysokość poprowadzona na przeciwprostokątną ma długość 10 cm, a promień okręgu

Bardziej szczegółowo