IDENTIFICATION OF PARAMETERS OF THE SET THE VEHICLE-THE LIGHTWEIGHT SEMITRAILER GN2000 BY MEANS OF THE EXPERIMENTAL MODAL ANALYSIS METHOD

Wielkość: px
Rozpocząć pokaz od strony:

Download "IDENTIFICATION OF PARAMETERS OF THE SET THE VEHICLE-THE LIGHTWEIGHT SEMITRAILER GN2000 BY MEANS OF THE EXPERIMENTAL MODAL ANALYSIS METHOD"

Transkrypt

1 Tadeusz PAWŁOWSKI Pzemysłowy Instytut Maszyn Rolniczych ul. Staołęca 31, Poznań IDENTIFICATION OF PARAMETERS OF THE SET THE VEHICLE-THE LIHTWEIHT SEMITRAILER N000 BY MEANS OF THE EXPERIMENTAL MODAL ANALYSIS METHOD Summay This pape pesents esults of expeimental modal analysis of the set the vehicle - the lightweight semitaile N-000. These method can be successfully used in the pocess of identification of esonant fequencies and visualization of modal shape of the set. Obtained expeimental modal models can be used fo updating FE models of agicultual machines. IDENTYFIKACJA PARAMETRÓW AREATU POJAZD-LEKKA NACZEPA ROLNICZA N000 Z ZASTOSOWANIEM METODY EKSPERYMENTALNEJ ANALIZY MODALNEJ Steszczenie Pzedstawiono wynii identyfiacji agegatu pojazd-lea naczepa olnicza metodami espeymentalnej analizy modalnej, Metody te pozwalają na identyfiację częstotliwości dgań własnych i wizualizację postaci dgań własnych agegatu. Uzysane modele modalne mogą być stosowane do weyfiacji i walidacji modeli analitycznych, uzysanych metodami elementów sończonych. 1. Wstęp Powadzone w Pzemysłowym Instytucie Maszyn Rolniczych (PIMR) w Poznaniu pace badawczo-ozwojowe nad popawą jaości i bezpieczeństwa tanspotu w setoze olniczym i leśnym pozwoliły na opacowanie oncepcji systemu tanspotowego, opatego na nowych sposobach spzęgania zestawów pojazdów oaz zastosowaniu nowych bezpieczniejszych uładów steujących pacą hamulców w holowanych pojazdach. Najważniejszą z nich jest opcja pozwalająca pzy użyciu spzęgu ulowego spzęgać samochód szyniowy z naczepą typu gęsia szyja. PIMR twóczo adaptował istniejące w świecie ozwiązania, bowiem opatentował własne onstucje wsponia, ja i mechanizmu bloującego/yglującego spzęg ulowy, a w naczepach typu gęsia szyja powadzi pace nad wdożeniem nowoczesnego uładu hamulcowego, steującego pacą hydaulicznych hamulców [3]. Pzedstawiono wynii badań, tóe powadzono dla potzeb badania bezpieczeństwa uchu agegatu pojazd-naczepa olnicza, na modelu zeczywistym naczepy N000 metodami espeymentalnej analizy modalnej.. Metoda espeymentalnej analizy modalnej Metody espeymentalnej analizy modalnej doonują identyfiacji paametów modalnych uładu na postawie analizy zależności pomiędzy sygnałami wymuszenia (siła wymuszająca) i odpowiedzi uładu na wymuszenie (np. pzyspieszenie dgań mechanicznych) [1, ]. Stosowalność metod analizy modalnej jest oganiczona do uładów liniowych. Jednym z podstawowych wymagań, tóe musi spełnić uład, aby można do jego identyfiacji zastosować apaat espeymentalnej analizy modalnej jest spełnienie zasady liniowości. Uład uważa się za liniowy, gdy spełnia następujące wymagania: - amplituda odpowiedzi uładu na wymuszenie jest popocjonalna do amplitudy wymuszenia, - funcja tansmitancji widmowej uładu nie zależy od odzaju i od amplitudy wymuszenia stosowanego w celu jej uzysania (zasada supepozycji i homogeniczności), - funcja tansmitancji widmowej, wyznaczona pomiędzy dwoma puntami uładu, jest niezależna od tego, w tóym puncie było pzyłożone wymuszenie i w tóym puncie wyznaczano odpowiedź (zasada wzajemności Maxwella). Ułady fizyczne są na ogół uładami nieliniowymi. Można je jedna pzybliżyć uładem liniowym w pewnych zaesach częstotliwości lub dla pewnych zaesów amplitud sił wymuszających. Zachowanie dynamiczne uładu mechanicznego opisuje maciezowe ównanie óżniczowe dugiego zędu: M x& + Cx& + Kx = F(, (1) M - maciez mas, C - maciez tłumienia, K - maciez sztywności, F( - weto sił wymuszających, x, x&,& x& odpowiednio: wetoy pzemieszczeń, pędości i pzyspieszeń. Rozwiązując jego zagadnienie własne uzysamy ównanie: M Ψ Λ + C Ψ Λ + KΨ = 0, () Ψ wetoy własne, Λ watości własne. Równanie (1) można tansfomować do ównań piewszego zędu opisujących uład w pzestzeni stanów: x &( = Ax( + Bu(, y ( = Cx( + Du(, (3) u( -weto wymuszeń (m x 1), y( - weto odpowiedzi (l x 1) (miezonych pzez czujnii pomiaowe), x( - weto stanu (N x 1) (mogą to być, np. pzemieszczenia i pędości w puntach swobody uładu). T. Pawłowsi Jounal of Reseach and Applications in Agicultual Engineeing 011, Vol. 56(4) 6

2 Maciez A (N x N) jest nazywana maciezą stanu, maciez B (N x m) maciezą wymuszeń, maciez C (l x N) maciezą wyjść, natomiast maciez D (l x m) maciezą bezpośedniego wpływu wymuszeń na wyjście. Pzepowadzając tansfomację Laplacea uzysuje się zależności, opisujące funcję tansmitancji widmowej pzy pomocy maciezy A,B,C,D: 1 y( s) = C( si A) Bu( s). (4) Espeymentalnie wyznaczane są dysetny weto wymuszeń i odpowiedzi uładu na wymuszenie. Ogólne ównanie opisujące model uładu w pzestzeni stanów dla dysetnych watości czasu można pzedstawić w postaci [5]: x ( + 1) = Ax( + Bu( + w(, y ( = Cx( + Du( + v(, (5) w( oaz v( szumy załócające uład i szumy pomiaowe, tatowane są jao szum biały (śednia = 0). Częstotliwości własne uładu i tłumienia ξ mogą być wyznaczone na podstawie znajomości maciezy stanu A. = log(λ ) / f, (6) s Re(log( λ )) f s ξ / =, (7) (A) f - częstotliwość póbowania, s λ - watości własne maciezy stanu A. Maciez tłumienia modalnego Ξ można wyazić w postaci: Ξ = diag( ξ ini, i=1,...,n), (8) ξ i - współczynni tłumienia modalnego dla modu i (pzyjmuje on watości od 0% (dla pzypadu dgań nietłumionych) do 100% (w pzypadu całowicie tłumionych dgań). Relacja między wejściem i wyjściem uładu może być wyażona w postaci maciezowej jao: y(s) = H(s) u(s). (9) Równanie opisujące funcję odpowiedzi częstotliwościowej (FRF - Fequency Response Function) można wyazić w postaci: Y(f) = H(f) U(f). (10) W espeymentalnej analizie modalnej w częstotliwości miezona jest funcja tansmitancji widmowej pomiędzy wejściem a wyjściem uładu. Analiza numeyczna wyznaczonych espeymentalnie funcji tansmitancji widmowych pozwala wyznaczyć z nich paamety modalne uładu. Tansmitancję uładu można ównież wyznaczyć na podstawie znajomości ównania maciezowego: ( s M + sc + ) 1 H ( s) = K, (11) s=i. Tansmitancję (FRF) widmową dowolnego uładu mechanicznego można wyznaczyć na podstawie znajomości jego paametów modalnych. Znając częstotliwości ezonansowe uładu, tłumienia dla częstotliwości ezonansowych oaz maciez i masę modalną maciez tansmitancji można wyznaczyć z zależności: H i, j ( ) = n i j = 1 ( ) + φ φ / m, (1) (ξ ) φi -postać modalna w puncie i dla -tej częstotliwości modalnej, ξ - tłumienie dla -tej częstotliwości modalnej, m - masa modalna dla -tej częstotliwości modalnej, - -ta częstotliwość modalna. Danymi wejściowymi do obliczeń pełnej maciezy tansmitancji mogą być wynii identyfiacji uzysane z espeymentalnej analizy modalnej, np. z systemu analizy modalnej. Funcja odpowiedzi częstotliwościowej dla uładu z jednym wejściem i jednym wyjściem pzyjmuje postać: X = H F. (13) p pq q W zależności od zastosowanego algoytmu estymacji funcji odpowiedzi częstotliwościowej wyznaczamy następujące estymaty H XF ( ) : H1( ) = FX FF ( ) ( ) XX ( ) H ( ) =. (14) ( ) Estymata H ( ) jest nieważliwa na załócenia niesoelowane z sygnałami na wyjściu uładu, natomiast estymata tansmitancji widmowej H jest nieważliwa na załócenia niesoelowane z sygnałami na wejściu. Funcję odpowiedzi częstotliwościowej najczęściej pzedstawia się w postaci: Y() = H() X(), (15) Y() widmo sygnału odpowiedzi pzy wymuszeniu X(). 1 Rozóżnia się dwa odzaje funcji tansmitancji w zależności od położenia puntu wymuszenia i puntu odbiou w maszynie. Jeżeli punty wymuszenia i odbiou poywają się jest to tansmitancja własna (w puncie). dy punty wymuszenia i odbiou óżnią się mówi się o tansmitancji wzajemnej. W uładzie o wielu stopniach swobody ich chaateystyę stanowi wówczas maciez funcji tansmitancji. 3. Apaatua do identyfiacji paametów modalnych naczepy metodami espeymentalnymi W celu opacowania modelu modalnego pzyczepy pzepowadzono badania espeymentalne na stanowisu laboatoyjnym. Model obliczeniowy zbudowano w systemie LMS Test.Lab 8B fimy LMS Intenational Leuven Belgia. Danymi wejściowymi do obliczeń były wynii badań zaejestowane w systemie LMS Test.Xpess. Metody espeymentalnej analizy modalnej doonują identyfiacji paametów modalnych uładu na postawie analizy zależności pomiędzy sygnałami wymuszenia (siła wymuszająca) i odpowiedzi uładu na wymuszenie (np. pzyspieszenie dgań mechanicznych) zaejestowanych jednocześnie w czasie pomiau. Siłę wymuszająca zadawano młotiem do badań modalnych fimy PCB Piezotonics z czujniiem siły o zaesie pomiaowym miezonej siły miezonej ±0 000 N. Odpowiedz na wymuszenie (pzyspieszenia dgań) miezono czujniami piezoeletycznymi PCB Piezotonics typ 356A0. Czujnii były podłączone ejestatoa LMS SCADAS Mobile (ys. 1). Wyznaczano pzebiegi czasowe sygnałów wymuszenia i odpowiedzi stosując częstotliwość póbowania 00 Hz, co pozwala na wyznaczenie chaateysty częstotliwościowych do 100 Hz. XF T. Pawłowsi Jounal of Reseach and Applications in Agicultual Engineeing 011, Vol. 56(4) 63

3 Rys. 1. Mioompute z opogamowaniem LMS Test.Lab i LMS Test.Xpess współpacujący z analizatoem SCADAS Mobile Fig. 1. Micocompute with softwae LMS Test.Lab and LMS Test.Xpess connected with the SCADAS Mobile analyze 4. Identyfiacja paametów modalnych naczepy N000 Pzepowadzono identyfiację paametów modalnych naczepy N000 agegowanej z samochodem. Na ys. zamieszczono wido agegatu oaz zdjęcie agegatu podczas jazdy. Identyfiację paametów modalnych pzepowadzono metodami espeymentalnej analizy modalnej podczas postoju agegatu. Danymi wejściowymi do badań były sygnały wymuszenia (siła wymuszająca) i odpowiedzi (pzyspieszenia dgań mechanicznych) zaejestowane w wybanych puntach pzyczepy. Rejestowano jednocześnie siłę wymuszającą i pzyspieszenia dgań mechanicznych powstałe w wyniu wymuszenia w wybanych puntach onstucji. Punt wymuszenia zloalizowany był w pobliżu zaczepu ulowego. Wyznaczono chaateystyi dynamiczne uładu w postaci inetancji dynamicznych H i (punt pzyłożenia siły wymuszającej, punt i pomiau odpowiedzi). Punty te zostały odwzoowane w modelu geometycznym utwozonym dla potzeb espeymentalnej analizy modalnej. Identyfiacje paametów modalnych maszyny metodami espeymentalnej analizy modalnej pzepowadzono za pomocą systemu LMS Test.Lab. Wyznaczanie częstotliwości modalnych uładu metodami esploatacyjnej analizy modalnej odbywa się na podstawie znajomości diagamu stabilizacyjnego biegunów tego uładu. Diagam stabilizacyjny (stabilization diagam) umożliwia, bowiem wybó biegunów badanego uładu. Na podstawie pzedstawionych diagamów stabilizacyjnych (ys. 3, 4), można zauważyć, iż wyestymowane bieguny dla pewnych częstotliwości twozą stabilne pionowe linie. Linie te występują pzy częstotliwościach, dla tóych na chaateystyce częstotliwościowej pojawiają się masima. Można pzyjąć, że wyznaczony biegun jest zeczywistym biegunem badanego uładu, gdy [5]: jest stabilny ze względu na częstotliwość, współczynni tłumienia i weto modalny (na diagamie stabilizacyjnym oznaczone jest to symbolem s), występuje pzy częstotliwości dla tóej na chaateystyce częstotliwościowej znajduje się masimum. Znaczenie symboli na diagamie stabilizacyjnym jest następujące: s biegun jest stabilny, v ustabilizowana jest częstotliwość i weto modalny, d stabilna jest częstotliwość modalna i tłumienie, f stabilna jest jedynie częstotliwość modalna, o biegun jest niestabilny. Po wybaniu symbolu dla bieguna następuje wpowadzenie jego paametów do pocedu obliczeniowych wyznaczających paamety modalne uładu. Rys.. Wido samochodu agegowanego z pzyczepą Fig.. The view of the ca taile combination T. Pawłowsi Jounal of Reseach and Applications in Agicultual Engineeing 011, Vol. 56(4) 64

4 13.0e-3 Unnown () Amplitude ooo o sdo so o o fo of f fdfd do d fd df ff f v dd dff fsdf ds fo df dfv ff f f d f d f d f dd df fdf d sf fffd ff ff oo fddfff fdd d d ddd o 100 oo o o fd so o d o f o do f d d v df sdff f s fdf f o dfdd df fd df ffd fd d fd df ff oo df d d df o f vff dff ff fd d fdd dff f d fffs f 99 o ooo ooo do o o o of do f fd sf f od dofdf f f vfo fd f ff d ff ff d o ff ff f fd fd df off d f fdf f sf ffff f ffdf d ff f ff fd o f o fdd 97 oo o o do fdo fo ooof o do sf f o f df dff d f df ff o f fdd sf d f ffdvf fd d f dff vd dff f ddo f df f fff do df d fdfff f df sf d f ffd 96 oo o o oo os o o o o f o v d f ov f o f df fdf d f d d fd doddf ddf df df dff d f fd f f dff d ff o fdf dff f f df d dff d df fd df dfs f 94 od o d so os o o ff ff fo do d fd oo fdf fo f f d o d f dd d ffff fodsf ff f d fff f o f fd fff ff ffddf ff ff f df f df df ff d d f 93 oo o o sd os fo o o of v df so of d fffdf d d fsf d f df fo df d fff f f d d ff df offd f fd ff dfff ff ff d dvf o ff f f f df f 91 oo o o vf vff o ff fd f fdo f o d f odo fd f odf f of df f df f fvff f o f f f fd f fd d fff f fdf fdd d dff d dfd f fdf fo d ddf o 90 o o ofo so oo f o os f od vf fo o fd fd d f fdo d o o fdf ffd o ffdf d ff s fff f o fffd f f ff ff fdf f fff f df f f fff f f df o 88 o o o so so f ff ov od d dd f o d o f d f ff ff o f d o dd fdfdd f f f v dd o f fff f f d f df f df df os fd vddd ddfd f o sff 87 o o f f so o o o o oo d d fd ff o df dd d d fd o df o fdd dd fdff o s f f d ff f ff f d f f f f f s dfd df s df o ff v fd f df ff 85 o of o vo f o f o f o d sf oo o vf od dv fd o s o fdd dd ffff of f o d fd d o d d f fd o d s fdfd f o d f f ff ff fd d fd fff 84 o o fv ff f o o o f f df so f o ff f f ff dv s o fdd df dfvv o fd ffdd f d ff d o df d d dsf d vfdf f df f fffd d dfvf 8 o ofo do f o f fs o f osf o f fd o d ff df fo o fdd fdd fddf dd sf fd f o f f f fff f s ddf f f f o fdf f f dff f fd f 81 o oo o do o d f so f d sff o f ff v sd df v o ffdo ff ffff f f sf dd f f ff d fd o d v dd f f f fd f vfd ff ddf f df o 79 o oo o fo o f v do s dfoo o f f df f f fo fd fdd fddf f d v ddf od f d ff f v ddo f ff f f df f o fd f f fd f 78 o fo o sf o o o d f doodo o fdo f ffo f d o fdd fdd ddfd f d f dfo df f f f d df f s ds f f f f o o ff v fd d d vd 76 o vo ovo o o o s o do vf o f fd do fv f d ffd fff ddvf d f f fd o f d d d f f f d ddd d f d f ffd d dd f f fs d 75 f od voo f o d d fd ff o o ff d ffd f f dff ffd fff d o d f ff o f f d f f oo s f d f f f do fff f fd f df f o 73 o of s o ooo f o od fd o fd ff f dfo f fdfo fd o f f f f f f ff fdf f d df fv d dd d ff fd d fd d do d d f 7 o of od o f o v df d df o ff so f fo o d ddo ofs o dfo d f f dd o f d d df o s d fd f d d df d o ddf d f f f 70 o oo od oo f s o od fs o fd fs fdf od fd ff fd fdf f d d ff o o f f dd f vf f df dd f df d fd f d ff 69 f o f oo v o o sf df fs o ff df ffd o d d ff ff fdf f dd f f o f fd d d fd fdf ff f f f d f f d df 67 oo doo d f o fd f ods sd od o vdo d dfo d df o dvd o d f f f df d fd d fv ffd ffff d ff d fff d f d 66 o f fo s o o os so fs fdf f fdfd d d od f dff o f f d o f o f f d d fs fdd ff ff fd d f ff f f f 64 o f f vf o o v od fs off d fdf f d ddo d fdo ff o fd f dd d d s f f f fdf fd f d dd d ff d d f d63 oo o f o o o s df ff ff s o ff o f dd f ff ffd f dd d d f d dd fsf s fd f f d dvf f f f f f fd 61 o o o o o o o d do os ff d ffo d dd fof f fff f ff f f o d ff f f ffff f f d ff d f o o f f 60 o o v o o of f so df v ff f f dd f df fffd f f v o f f f d f ff o fff f f f f f f o df of f 58 o o o f f oso d sf odv d ff o f df f f o fdf o f f d f f ff f f fd d fd o ff f f f f fo 57 o o dv o o v d fv o f ff d ff f f ds f f o ffd o o f f o fd f o f f ddo f ff df f f f o d 55 o o fo o f f d vs o df v o d o o fs f fo o f df f ff f f f o f od f df o o d ff ff ff 54 o doo o v d sv o dff of f o fd df f f df s dd o f df d o f df f f o f of d o f df 5 o o o s d ff o f ff o d d o dd do d d f f ff o o dd f o d ff o df ff ff ff f f 51 o o ov o o d os o f off o f o fd d ff o f o f fo f f ff v df f fd f f ff d o o f 49 oo s o o f dd do df d f fo df f o fd d f f d o o d oo v f ff o f f f s d f ff 48 o o o o f d oo fodf o f o od ff o f d o f f o o f f o o f o f f f f f df f f 46 o do o ov o o f dd f d oo f d f o f d f o f f f o fdf o fd o o f o o f 45 o oo o fo o f o f o ff o dff d d f d d o d d o f df f f f f f f d o d 43 o o o o o d d o d d ff o o d f f f fo fo f f d o o fd d o d d f d o f f 4 o of f of o d of oo fo do f o o f o o f o ff fd d f o f o f f f e Linea 99.8 Rys. 3. Naczepa N000. Diagam stabilizacyjny uzysany z systemu espeymentalnej analizy modalnej Fig. 3. The semitaile N000. Stabilization diagam obtained by applying classical expeimental modal analysis Hz 7.50e-3 Unnown () Amplitude s s s s v s s s s s s s s s s s v s s s s s s s s s s s o s s s s s s d s s s s s s s s s s s s s s s v s s s s s s s s s s s o s s s s s s d s s s s s f s s s v s s s s v s s s s s v s s s s v s v s s s s s s s s v s f s s s f s s s s s s vs s s f s s s s s s vs s s d s s s s s s vs s s v s s s s s v f s s ss s s s s s s s vs s s v d s s s v s v d s ds o s s s ss s v s s s s f s s vv v f v d s ds v s f s f v o f d s ds v s s vf s d s ds v s s sf s v s s ds s s s v v o d s ds v s s s f v d s ds f s f d f s s ss d s d s s s s ss d s v v v d s ds d s f s s df s ss f s f v f sf s ds d s o f o d s fs v s d d s f f s d v s s fs e Linea 99.8 Rys. 4. Naczepa N000. Diagam stabilizacyjny uzysany metodami PolyMAX Fig. 4. The semitaile N000. Stabilization diagam obtained by applying the polyefeence LSCF method (PolyMAX) Hz Na podstawie analizy pzebiegu diagamu stabilizacyjnego wyznaczono częstotliwości modalne uładu. Uzysane częstotliwości własne i odpowiadające im tłumienia modalne zestawiono w tab. 1. Postacie modalne i fazy dla częstotliwości modalnych i poszczególnych puntów pomiaowych znajdują się w bazie danych achiwum PIMR-DC/JK (jao pzyład na ys. 5 pzedstawiono postać modalną dla częstotliwości 9.63 Hz). Zebane dane będą służyć w pzyszłości dla potzeb analiz poównawczych, np. pawidłowości wyonania olejnych modeli witualnych naczepy oaz do oceny stanu technicznego naczepy N000, w tacie dalszego oesu jej użytowania. Jest to tym badziej ważne, że podwozie naczepy zostało pzebudowane z podwozia pzyczepy, tóe zaupiono w 1998 ou, sucesywnie modenizowane i badane z óżnymi wesjami wyposażenia często też poddawane badaniom na stanowisu twałościowym. Stąd też możliwość ontoli stanu amy pzy użyciu EAM daje szansę szybszego zdiagnozowania jej stanu technicznego i tym samym napawy pzed zaistnieniem więszej awaii, np. pęnięcie amy. Tab. 1. Pzyczepa N000 częstotliwości własne i tłumienia wyznaczone z diagamu stabilizacyjnego Table 1. The taile N000 natual fequencies and damping appointed fom the stabilization diagam Lp Częstotliwości modalne [Hz] Tłumienia dla częstotliwości modalnych [%] Biegun część uojona Biegun część zeczywista T. Pawłowsi Jounal of Reseach and Applications in Agicultual Engineeing 011, Vol. 56(4) 65

5 Rys. 5. Pzyładowa postać modalna dla częstotliwości 9.63 Hz Fig. 5. Example of modal shape fo the fequency 9.63 Hz 5. Wniosi 1. Uzysane z badań częstotliwości dgań własnych mieszczą się w ganicach dopuszczalnych dla pojazdów samochodowych pouszających się z pędością do 90 m/godz. Są one poza pasmem częstotliwości niebezpiecznych dla pojazdów (4-8 Hz dla dgań w ieunu pionowym, 1.5- Hz dla dgań w ieunu poziomym).. Badania metodami EAM stanowią ważne nazędzie badawcze dla potzeb diagnostyi onstucji i walidacji witualnych modeli. 3. Dane pomiaowe z badań modeli zeczywistych naczep będą służyć na bieżąco do ontoli stanu technicznego tych pojazdów metodami EAM. 6. Liteatua [1] Allemang R. J., Bown D. L.: A unified matix polynomial appoach to modal identification. Jounal of Sound and Vibation, 1998, 11(3), s [] Analysis and stuctual design. Mateiały fimy LMS Intenational. [3] Komulsi J., Dubowsi A.: Badania chaateysty dynamicznych zestawu: samochód Lublin3 -lea naczepa, metodami wibometii laseowej, Jounal of Reseach and Applications in Agicultual Engineeing, 001, Vol. 46(4), s [4] Komulsi J., Pawłowsi T., Szczepania J.: Espeymentalna identyfiacja paametów modalnych niestacjonanych uładów mechanicznych z zastosowaniem esploatacyjnej analizy modalnej. Modelowanie Inżyniesie, 006, Tom 1, n 3, Politechnia Śląsa. [5] Uhl T., Komputeowo wspomagana identyfiacja modeli onstucji mechanicznych, Waszawa: WNT, T. Pawłowsi Jounal of Reseach and Applications in Agicultual Engineeing 011, Vol. 56(4) 66

Rama płaska metoda elementów skończonych.

Rama płaska metoda elementów skończonych. Pzyład. Rama płasa metoda elementów sończonych. M p l A, EJ P p l A, EJ l A, EJ l l,5 l. Dysetyzacja Podział na elementy i węzły x st. sw. M 5 P Z X, M, V, H 7, M, H Y, V Element amy płasiej węzły, x stopni

Bardziej szczegółowo

LINIA PRZESYŁOWA PRĄDU STAŁEGO

LINIA PRZESYŁOWA PRĄDU STAŁEGO oitechnia Białostoca Wydział Eetyczny Kateda Eetotechnii Teoetycznej i Metoogii nstucja do zajęć aboatoyjnych Tytuł ćwiczenia LNA RZEYŁOWA RĄD TAŁEGO Nume ćwiczenia E Auto: mg inŝ. Łuasz Zaniewsi Białysto

Bardziej szczegółowo

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA

WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POLITECHNIKI KRAKOWSKIEJ Instytut Fizyki LABORATORIUM PODSTAW ELEKTROTECHNIKI, ELEKTRONIKI I MIERNICTWA WYDZIAŁ FIZYKI, MATEMATYKI I INFORMATYKI POITEHNIKI KRAKOWSKIEJ Instytut Fizyki ABORATORIUM PODSTAW EEKTROTEHNIKI, EEKTRONIKI I MIERNITWA ĆWIZENIE 7 Pojemność złącza p-n POJĘIA I MODEE potzebne do zozumienia

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH

MIERNICTWO WIELKOŚCI ELEKTRYCZNYCH I NIEELEKTRYCZNYCH Politechnika Białostocka Wydział Elektyczny Kateda Elektotechniki Teoetycznej i Metologii nstukcja do zajęć laboatoyjnych z pzedmiotu MENCTWO WEKOŚC EEKTYCZNYCH NEEEKTYCZNYCH Kod pzedmiotu: ENSC554 Ćwiczenie

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie D - 4 Temat: Zastosowanie teoretycznej analizy modalnej w dynamice maszyn Opracowanie: mgr inż. Sebastian Bojanowski Zatwierdził:

Bardziej szczegółowo

Ocena siły oddziaływania procesów objaśniających dla modeli przestrzennych

Ocena siły oddziaływania procesów objaśniających dla modeli przestrzennych Michał Benad Pietzak * Ocena siły oddziaływania pocesów objaśniających dla modeli pzestzennych Wstęp Ekonomiczne analizy pzestzenne są ważnym kieunkiem ozwoju ekonometii pzestzennej Wynika to z faktu,

Bardziej szczegółowo

Systemy. Krzysztof Patan

Systemy. Krzysztof Patan Systemy Krzysztof Patan Systemy z pamięcią System jest bez pamięci (statyczny), jeżeli dla dowolnej chwili t 0 wartość sygnału wyjściowego y(t 0 ) zależy wyłącznie od wartości sygnału wejściowego w tej

Bardziej szczegółowo

REZONATORY DIELEKTRYCZNE

REZONATORY DIELEKTRYCZNE REZONATORY DIELEKTRYCZNE Rezonato dielektyczny twozy małostatny, niemetalizowany dielektyk o dużej pzenikalności elektycznej ( > 0) i dobej stabilności tempeatuowej, zwykle w kształcie cylindycznych dysków

Bardziej szczegółowo

ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania

ĆWICZENIE 5. Badanie przekaźnikowych układów sterowania ĆWICZENIE 5 Badanie zekaźnikowych układów steowania 5. Cel ćwiczenia Celem ćwiczenia jest badanie zekaźnikowych układów steowania obiektem całkującoinecyjnym. Ćwiczenie dotyczy zekaźników dwu- i tójołożeniowych

Bardziej szczegółowo

LABORATORIUM: Sterowanie rzeczywistym serwomechanizmem z modułem przemieszczenia liniowego Wprowadzenie

LABORATORIUM: Sterowanie rzeczywistym serwomechanizmem z modułem przemieszczenia liniowego Wprowadzenie Utwozenie: PRz, 1, Żabińsi Tomasz Modyfiacja: PRz, 15, Michał Maiewicz LABORATORIUM: Steowanie zeczywistym sewomechanizmem z modułem zemieszczenia liniowego Wowadzenie Celem ćwiczenia jest identyfiacja

Bardziej szczegółowo

ZESZYTY NAUKOWE NR 5(77) AKADEMII MORSKIEJ W SZCZECINIE. Identyfikacja a diagnostyka. Identification versus Diagnosis

ZESZYTY NAUKOWE NR 5(77) AKADEMII MORSKIEJ W SZCZECINIE. Identyfikacja a diagnostyka. Identification versus Diagnosis ISSN 1733-8670 Bogdan Żółtowski ZESZYTY NAUKOWE NR 5(77) AKADEMII MORSKIEJ W SZCZECINIE OBSŁUGIWANIE MASZYN I URZĄDZEŃ OKRĘTOWYCH O M i U O 2 0 0 5 Identyfikacja a diagnostyka Słowa kluczowe: diagnostyka

Bardziej szczegółowo

Energia kinetyczna i praca. Energia potencjalna

Energia kinetyczna i praca. Energia potencjalna negia kinetyczna i paca. negia potencjalna Wykład 4 Wocław Univesity of Technology 1 NRGIA KINTYCZNA I PRACA 5.XI.011 Paca Kto wykonał większą pacę? Hossein Rezazadeh Olimpiada w Atenach 004 WR Podzut

Bardziej szczegółowo

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM

PRZEMIANA ENERGII ELEKTRYCZNEJ W CIELE STAŁYM PRZEMIANA ENERGII ELEKTRYCZNE W CIELE STAŁYM Anaizowane są skutki pzepływu pądu pzemiennego o natężeniu I pzez pzewodnik okągły o pomieniu. Pzyęto wstępne założenia upaszcząace: - kształt pądu est sinusoidany,

Bardziej szczegółowo

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ

Projektowanie układów regulacji w dziedzinie częstotliwości. dr hab. inż. Krzysztof Patan, prof. PWSZ Projektowanie układów regulacji w dziedzinie częstotliwości dr hab. inż. Krzysztof Patan, prof. PWSZ Wprowadzenie Metody projektowania w dziedzinie częstotliwości mają wiele zalet: stabilność i wymagania

Bardziej szczegółowo

WYZNACZANIE SIŁ MIĘŚNIOWYCH I REAKCJI W STAWACH KOŃCZYNY DOLNEJ PODCZAS NASKOKU I ODBICIA

WYZNACZANIE SIŁ MIĘŚNIOWYCH I REAKCJI W STAWACH KOŃCZYNY DOLNEJ PODCZAS NASKOKU I ODBICIA MODELOWANIE INŻYNIERSKIE ISSN 896-77X 44, s. 49-56, Gliwice 0 WYZNACZANIE SIŁ MIĘŚNIOWYCH I REAKCJI W SAWACH KOŃCZYNY DOLNEJ PODCZAS NASKOKU I ODBICIA KRZYSZO DRAPAŁA, KRZYSZO DZIEWIECKI, ZENON MAZUR,

Bardziej szczegółowo

Rodzajowy rachunek kosztów Wycena zuŝycia materiałów

Rodzajowy rachunek kosztów Wycena zuŝycia materiałów Rodzajowy achunek kosztów (wycena zuŝycia mateiałów) Wycena zuŝycia mateiałów ZuŜycie mateiałów moŝe być miezone, wyceniane, dokumentowane i ewidencjonowane w óŝny sposób. Stosowane metody wywieają jednak

Bardziej szczegółowo

PRÓBA OCENY KIERUNKÓW I TEMPA ZMIAN INFRASTRUKTURY TRANSPORTOWEJ W KRAJACH NOWO PRZYJĘTYCH I ASPIRUJĄCYCH DO UNII EUROPEJSKIEJ

PRÓBA OCENY KIERUNKÓW I TEMPA ZMIAN INFRASTRUKTURY TRANSPORTOWEJ W KRAJACH NOWO PRZYJĘTYCH I ASPIRUJĄCYCH DO UNII EUROPEJSKIEJ B A D A N I A O P E A C Y J N E I D E C Y Z J E N 006 Kaol KUKUŁA*, Jacek STOJNY* PÓBA OCENY KIEUNKÓW I TEMPA ZMIAN INFASTUKTUY TANSPOTOWEJ W KAJACH NOWO PZYJĘTYCH I ASPIUJĄCYCH DO UNII EUOPEJSKIEJ Pzedstawiono

Bardziej szczegółowo

KALIBRACJA WIZYJNEGO SYSTEMU POZYCJONOWANIA PRZEDMIOTU OBRABIANEGO NA OBRABIARCE CNC

KALIBRACJA WIZYJNEGO SYSTEMU POZYCJONOWANIA PRZEDMIOTU OBRABIANEGO NA OBRABIARCE CNC MODELOWANIE INŻYNIERSKIE n 46, ISSN 1896-771X KALIBRACJA WIZYJNEGO SYSTEMU POZYCJONOWANIA PRZEDMIOTU OBRABIANEGO NA OBRABIARCE CNC 1a Stefan Domek, 2b Miosław Pajo, 2c Maek Gudziński, 3d Kzysztof Okama,

Bardziej szczegółowo

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO LABORATORIUM ELEKTRONIKI I ELEKTROTECHNIKI BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO Opacował: d inŝ. Aleksande Patyk 1.Cel i zakes ćwiczenia. Celem ćwiczenia jest zapoznanie się z budową, właściwościami

Bardziej szczegółowo

X. PODSTAWOWA MATEMATYKA REKONSTRUKCJI TOMOGRAFICZNYCH

X. PODSTAWOWA MATEMATYKA REKONSTRUKCJI TOMOGRAFICZNYCH X. PODSTAWOWA MATEMATYKA REKONSTRUKCJI TOMOGRAFICZNYCH 1.1 Definice; metoda wsteczne poeci w tomogafii tansmisyne Rys. 1.1 Pzyład dwóch zutów pzedmiotu złożonego z dwóch cylindycznych obietów Z czysto

Bardziej szczegółowo

OPTYMALIZACJA KSZTAŁTU WIELOKĄTNYCH OBSZARÓW

OPTYMALIZACJA KSZTAŁTU WIELOKĄTNYCH OBSZARÓW MODELOWANIE INśYNIERSKIE ISSN 896-77X 35, s. 63-68, Gliwice 008 OPTYMALIZACJA KSZTAŁTU WIELOKĄTNYCH OBSZARÓW MODELOWANYCH RÓWNANIAMI NAVIERA-LAMEGO NA PODSTAWIE PURC I ALGORYTMÓW GENETYCZNYCH EUGENIUSZ

Bardziej szczegółowo

Skojarzone wytwarzanie energii elektrycznej i ciepła na bazie elektrowni jądrowej w Polsce

Skojarzone wytwarzanie energii elektrycznej i ciepła na bazie elektrowni jądrowej w Polsce onfeencja nauowo-techniczna 13 15 lutego 2013. NAUA I TECHNIA WOBEC WYZWANIA BUDOWY ELETROWNI JĄDROWEJ MĄDRALIN 2013 Wazawa, Intytut Technii Cieplnej Politechnii Wazawiej D hab. inż. azimiez Duziniewicz

Bardziej szczegółowo

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metody optymalizacji. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metody optymalizacji d inż. Paweł Zalewski kademia Moska w Szczecinie Optymalizacja - definicje: Zadaniem optymalizacji jest wyznaczenie spośód dopuszczalnych ozwiązań danego polemu ozwiązania najlepszego

Bardziej szczegółowo

WYKORZYSTANIE METOD OPTYMALIZACJI DO ESTYMACJI ZASTĘPCZYCH WŁASNOŚCI MATERIAŁOWYCH UZWOJENIA MASZYNY ELEKTRYCZNEJ

WYKORZYSTANIE METOD OPTYMALIZACJI DO ESTYMACJI ZASTĘPCZYCH WŁASNOŚCI MATERIAŁOWYCH UZWOJENIA MASZYNY ELEKTRYCZNEJ MODELOWANIE INŻYNIERSKIE ISNN 1896-771X 3, s. 71-76, Gliwice 006 WYKORZYSTANIE METOD OPTYMALIZACJI DO ESTYMACJI ZASTĘPCZYCH WŁASNOŚCI MATERIAŁOWYCH UZWOJENIA MASZYNY ELEKTRYCZNEJ TOMASZ CZAPLA MARIUSZ

Bardziej szczegółowo

SEWAGE SLUDGE DRYING BASED ON A HEAT PUMP WITH CARBON DIOXIDE AS REFRIGERANT

SEWAGE SLUDGE DRYING BASED ON A HEAT PUMP WITH CARBON DIOXIDE AS REFRIGERANT SUSZENIE OSADÓW ŚCIEKOWYCH W UKŁADZIE Z POMPĄ CIEPŁA PRACUJĄCĄ Z DWUTLENKIEM WĘGLA JAKO CZYNNIKIEM ZIĘBNICZYM SEWAGE SLUDGE DRYING BASED ON A HEAT PUMP WITH CARBON DIOIDE AS REFRIGERANT Agnieszka Flaga-Mayańczyk,

Bardziej szczegółowo

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań

Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na okres drgań KAEDRA FIZYKI SOSOWANEJ PRACOWNIA 5 FIZYKI Ćw. 5. Badanie ruchu wahadła sprężynowego sprawdzenie wzoru na ores drgań Wprowadzenie Ruch drgający naeży do najbardziej rozpowszechnionych ruchów w przyrodzie.

Bardziej szczegółowo

DYNAMICZNE DZIAŁANIE PÓL: ELEKTRYCZNEGO I MAGNETYCZNEGO W ELEKTROTECHNOLOGIACH (NA PRZYKŁADZIE SEPARACJI) *)

DYNAMICZNE DZIAŁANIE PÓL: ELEKTRYCZNEGO I MAGNETYCZNEGO W ELEKTROTECHNOLOGIACH (NA PRZYKŁADZIE SEPARACJI) *) Antoni CIEŚLA DYNAMICZNE DZIAŁANIE PÓL: ELEKTRYCZNEGO I MAGNETYCZNEGO W ELEKTROTECHNOLOGIACH (NA PRZYKŁADZIE SEPARACJI) *) STRESZCZENIE Statyczne pola elektyczne i magnetyczne są wykozystywane m. in. w

Bardziej szczegółowo

Ćwiczenie nr 65. Badanie wzmacniacza mocy

Ćwiczenie nr 65. Badanie wzmacniacza mocy Ćwiczenie nr 65 Badanie wzmacniacza mocy 1. Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych parametrów wzmacniaczy oraz wyznaczenie charakterystyk opisujących ich właściwości na przykładzie wzmacniacza

Bardziej szczegółowo

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Podstawy analizy wypadów drogowych Instrucja do ćwiczenia 1 Wyznaczenie prędości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Spis treści 1. CEL ĆWICZENIA... 3. WPROWADZENIE...

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petrochemii Instytut Inżynierii Mechanicznej

POLITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petrochemii Instytut Inżynierii Mechanicznej PITECHNIKA WARSZAWSKA Wydział Budownictwa, Mechaniki i Petochemii Instytut Inżynieii Mechanicznej w Płocku Zakład Apaatuy Pzemysłowej ABRATRIUM TERMDYNAMIKI Instukcja stanowiskowa Temat: Analiza spalin

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. I. Cel ćwiczenia ĆWICZENIE 6 Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. Badanie właściwości wzmacniaczy tranzystorowych pracujących w układzie wspólnego kolektora. II.

Bardziej szczegółowo

MODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO

MODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO Pzemysław PŁONECKI Batosz SAWICKI Stanisław WINCENCIAK MODELOWANIE PRĄDÓW WIROWYCH W ŚRODOWISKACH SŁABOPRZEWODZĄCYCH PRZY WYKORZYSTANIU SKALARNEGO POTENCJAŁU ELEKTRYCZNEGO STRESZCZENIE W atykule pzedstawiono

Bardziej szczegółowo

przy warunkach początkowych: 0 = 0, 0 = 0

przy warunkach początkowych: 0 = 0, 0 = 0 MODELE MATEMATYCZNE UKŁADÓW DYNAMICZNYCH Podstawową formą opisu procesów zachodzących w członach lub układach automatyki jest równanie ruchu - równanie dynamiki. Opisuje ono zależność wielkości fizycznych,

Bardziej szczegółowo

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem:

Transformata Laplace a to przekształcenie całkowe funkcji f(t) opisane następującym wzorem: PPS 2 kartkówka 1 RÓWNANIE RÓŻNICOWE Jest to dyskretny odpowiednik równania różniczkowego. Równania różnicowe to pewne związki rekurencyjne określające w sposób niebezpośredni wartość danego wyrazu ciągu.

Bardziej szczegółowo

VII Ogólnopolska Konferencja Mostowców Konstrukcja i Wyposażenie Mostów EKSPERYMENTALNA ANALIZA MODALNA KONSTRUKCJI NA PRZYKŁADZIE PROSTEJ BELKI

VII Ogólnopolska Konferencja Mostowców Konstrukcja i Wyposażenie Mostów EKSPERYMENTALNA ANALIZA MODALNA KONSTRUKCJI NA PRZYKŁADZIE PROSTEJ BELKI VII Ogólnopolska Konferencja Mostowców Konstrukcja i Wyposażenie Mostów Stefan PRADELOK 1 Adam RUDZIK 2 Grzegorz POPRAWA 2 Wisła, 28-29 maja 2015 r. EKSPERYMENTALNA ANALIZA MODALNA KONSTRUKCJI NA PRZYKŁADZIE

Bardziej szczegółowo

Stabilność. Krzysztof Patan

Stabilność. Krzysztof Patan Stabilność Krzysztof Patan Pojęcie stabilności systemu Rozważmy obiekt znajdujący się w punkcie równowagi Po przyłożeniu do obiektu siły F zostanie on wypchnięty ze stanu równowagi Jeżeli po upłynięciu

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

CHARAKTERYSTYKI UŻYTKOWE I WZORCOWANIE SZEROKOPASMOWYCH MIERNIKÓW NADFIOLETU

CHARAKTERYSTYKI UŻYTKOWE I WZORCOWANIE SZEROKOPASMOWYCH MIERNIKÓW NADFIOLETU Jezy PIETRZYKOWSKI CHARAKTERYSTYKI UŻYTKOWE I WZORCOWANIE SZEROKOPASMOWYCH MIERNIKÓW NADFIOLETU STRESZCZENIE Okeślono haakteystyki użytkowe szeokopasmowyh mieników nadfioletu oaz ih klasyfikaję. Podano

Bardziej szczegółowo

POLITECHNIKA OPOLSKA Wydział Elektrotechniki i Automatyki

POLITECHNIKA OPOLSKA Wydział Elektrotechniki i Automatyki POLITECHNIKA OPOLSKA Wydział Elektotechniki i Automatyki Mg inż. Michał Tomaszewski MODEL PRZEDSIĘBIORSTWA DYSTRYBUCYJNEGO DZIAŁAJĄCEGO NA OTWARTYM RYNKU ENERGII ELEKTRYCZNEJ Autoefeat pacy doktoskiej

Bardziej szczegółowo

I. 1) NAZWA I ADRES: Przemysłowy Instytut Maszyn Rolniczych, ul. Starołęcka 31, 60-963 Poznań, woj. wielkopolskie, tel. 061 8712200, faks 061 8793262.

I. 1) NAZWA I ADRES: Przemysłowy Instytut Maszyn Rolniczych, ul. Starołęcka 31, 60-963 Poznań, woj. wielkopolskie, tel. 061 8712200, faks 061 8793262. Poznań: Modernizacja stanowiska do badań własności dynamicznych maszyn. Numer ogłoszenia: 285323-2010; data zamieszczenia: 13.10.2010 OGŁOSZENIE O ZAMÓWIENIU - dostawy Zamieszczanie ogłoszenia: obowiązkowe.

Bardziej szczegółowo

ANALIZA HAMBURSKIEGO PROCESU KSZTAŁTOWANIA KOLAN RUROWYCH

ANALIZA HAMBURSKIEGO PROCESU KSZTAŁTOWANIA KOLAN RUROWYCH Aademia Góniczo-Hutnicza im. Stanisława Staszica Wydział InŜynieii Metali i Infomatyi Pzemysłowej Kateda Plastycznej Pzeóbi Metali ozpawa dotosa T Y T U Ł ANALIZA HAMBUSKIEGO POCESU KSZTAŁTOWANIA KOLAN

Bardziej szczegółowo

WSTĘP DO ELEKTRONIKI

WSTĘP DO ELEKTRONIKI WSTĘP DO ELEKTRONIKI Część IV Czwórniki Linia długa Janusz Brzychczyk IF UJ Czwórniki Czwórnik (dwuwrotnik) posiada cztery zaciski elektryczne. Dwa z tych zacisków uważamy za wejście czwórnika, a pozostałe

Bardziej szczegółowo

Formularze statystyczne

Formularze statystyczne Fomulaze statystyczne pogam badań statystycznych statystyi publicznej Spotanie z pacowniami PUP ejestującymi osoby bezobotne. Spotanie pzygotowane w amach pojetu Ryne Pacy pod Lupą II Podstawa pawna USTAWA

Bardziej szczegółowo

SPIS TREŚCI WPROWADZENIE... 9

SPIS TREŚCI WPROWADZENIE... 9 SPIS TREŚCI WPROWADZENIE... 9 ZASADY BHP I REGULAMIN LABORATORIUM POJAZDÓW... 10 Bezpieczne warunki pracy zapewni przestrzeganie podstawowych zasad bhp i przepisów porządkowych........... 10 Regulamin

Bardziej szczegółowo

Symulacja ruchu układu korbowo-tłokowego

Symulacja ruchu układu korbowo-tłokowego Symulacja uchu układu kobowo-tłokowego Zbigniew Budniak Steszczenie W atykule zapezentowano wykozystanie możliwości współczesnych systemów CAD/CAE do modelowania i analizy kinematycznej układu kobowo-tłokowego

Bardziej szczegółowo

MECHANIKA BUDOWLI 12

MECHANIKA BUDOWLI 12 Olga Koacz, Kzysztof Kawczyk, Ada Łodygowski, Michał Płotkowiak, Agnieszka Świtek, Kzysztof Tye Konsultace naukowe: of. d hab. JERZY RAKOWSKI Poznań /3 MECHANIKA BUDOWLI. DRGANIA WYMUSZONE, NIETŁUMIONE

Bardziej szczegółowo

LABORATORIUM. Sterowanie rzeczywistym serwomechanizmem z modułem przemieszczenia liniowego

LABORATORIUM. Sterowanie rzeczywistym serwomechanizmem z modułem przemieszczenia liniowego PRz, 1, Żabińi Tomaz LABORATORIUM Steowanie zeczywitym ewomechanizmem z modułem zemiezczenia liniowego 1. Na odtawie ztałtu odowiedzi oowych uładu, oeśl ty teowania (ądowy, naięciowy) ewomechanizmu oaz

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

Systemy i architektura komputerów

Systemy i architektura komputerów Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Systemy i architektura komputerów Laboratorium nr 4 Temat: Badanie tranzystorów Spis treści Cel ćwiczenia... 3 Wymagania... 3 Przebieg ćwiczenia...

Bardziej szczegółowo

WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM

WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM WYKAZ TEMATÓW Z LABORATORIUM DRGAŃ MECHANICZNYCH dla studentów semestru IV WM 1. Wprowadzenie do zajęć. Równania Lagrange'a II rodzaju Ćwiczenie wykonywane na podstawie rozdziału 3 [1] 2. Drgania swobodne

Bardziej szczegółowo

FIZYCZNO-STATYSTYCZNY MODEL PRZEWODNICTWA HYDRAULICZNEGO W OŚRODKU POROWATYM

FIZYCZNO-STATYSTYCZNY MODEL PRZEWODNICTWA HYDRAULICZNEGO W OŚRODKU POROWATYM FIZYCZNO-STATYSTYCZNY MODEL PZEWODNICTWA HYDAULICZNEGO W OŚODKU POOWATYM (A new physica-statistica mode of hydaic condctivity in poos medim) Bogsław Usowicz Institte of Agophysics, Poish Academy of Sciences.

Bardziej szczegółowo

Model klasyczny gospodarki otwartej

Model klasyczny gospodarki otwartej Model klasyczny gospodaki otwatej Do tej poy ozpatywaliśmy model sztucznie zakładający, iż gospodaka danego kaju jest gospodaką zamkniętą. A zatem bak było międzynaodowych pzepływów dób i kapitału. Jeżeli

Bardziej szczegółowo

Pomiary napięć przemiennych

Pomiary napięć przemiennych LABORAORIUM Z MEROLOGII Ćwiczenie 7 Pomiary napięć przemiennych . Cel ćwiczenia Celem ćwiczenia jest poznanie sposobów pomiarów wielości charaterystycznych i współczynniów, stosowanych do opisu oresowych

Bardziej szczegółowo

CHARAKTERYSTYKI DYNAMICZNE LEKKICH KŁADEK WISZĄCYCH I PODWIESZONYCH

CHARAKTERYSTYKI DYNAMICZNE LEKKICH KŁADEK WISZĄCYCH I PODWIESZONYCH Jarosław BĘC, Andrzej FLAGA, Tomasz MICHAŁOWSKI, Jerzy PODGÓRSKI CHARAKTERYSTYKI DYNAMICZNE LEKKICH KŁADEK WISZĄCYCH I PODWIESZONYCH ABSTRACT In the paper interesting structural solutions of different

Bardziej szczegółowo

Badania doświadczalne drgań własnych nietłumionych i tłumionych

Badania doświadczalne drgań własnych nietłumionych i tłumionych Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny Politechnika Śląska www.imio.polsl.pl fb.com/imiopolsl twitter.com/imiopolsl LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Badania

Bardziej szczegółowo

MIARY DRGANIOWE W INŻYNIERII PRODUKCJI ELEMENTÓW BUDOWLANYCH

MIARY DRGANIOWE W INŻYNIERII PRODUKCJI ELEMENTÓW BUDOWLANYCH MIARY DRGANIOWE W INŻYNIERII PRODUKCJI ELEMENÓW BUDOWLANYCH Mariusz ŻÓŁOWSKI, Bogdan ŻÓŁOWSKI Streszczenie: Istnieje potrzeba ciągłego doskonalenia metod badań eksploatacyjnych elementów budowlanych i

Bardziej szczegółowo

ANALIZA MODALNA KORPUSU STOJAKA OBRABIARKI CNC 1. WPROWADZENIE

ANALIZA MODALNA KORPUSU STOJAKA OBRABIARKI CNC 1. WPROWADZENIE Inżynieria Maszyn, R. 19, z. 1, 2014 drgania, obrabiarka, modelowanie, MES Krzysztof LEHRICH 1 Krzysztof LIS 1 ANALIZA MODALNA KORPUSU STOJAKA OBRABIARKI CNC Artykuł prezentuje kompleksowe podejście do

Bardziej szczegółowo

REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzeki z wykorzystaniem sztucznych sieci neuronowych.

REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzeki z wykorzystaniem sztucznych sieci neuronowych. REFERAT PRACY MAGISTERSKIEJ Symulacja estymacji stanu zanieczyszczeń rzei z wyorzystaniem sztucznych sieci neuronowych. Godło autora pracy: EwGron. Wprowadzenie. O poziomie cywilizacyjnym raju, obo wielu

Bardziej szczegółowo

MODELOWANIE USŁUG TRANSPORTOWYCH W OBSZARZE DZIAŁANIA CENTRUM LOGISTYCZNO-DYSTRYBUCYJNEGO

MODELOWANIE USŁUG TRANSPORTOWYCH W OBSZARZE DZIAŁANIA CENTRUM LOGISTYCZNO-DYSTRYBUCYJNEGO PACE NAUKOWE POLIECHNIKI WASZAWSKIEJ z. 64 anspot 2008 Jolanta ŻAK Wydział anspotu Politechniki Waszawskie Zakład Logistyki i Systemów anspotowych ul. Koszykowa 75, 00-662 Waszawa logika@it.pw.edu.pl MODELOWANIE

Bardziej szczegółowo

OKREŚLANIE WARTOŚCI MOMENTU STATYCZNEGO DLA STANU NIERUCHOMEGO WAŁU SILNIKA INDUKCYJNEGO W PRZEKSZTAŁTNIKOWYM UKŁADZIE NAPĘDOWYM DŹWIGU

OKREŚLANIE WARTOŚCI MOMENTU STATYCZNEGO DLA STANU NIERUCHOMEGO WAŁU SILNIKA INDUKCYJNEGO W PRZEKSZTAŁTNIKOWYM UKŁADZIE NAPĘDOWYM DŹWIGU Zeszyty Poblemowe Maszyny Elektyczne N 75/6 15 Jan Anuszczyk, Maiusz Jabłoński Politechnika Łódzka, Łódź OKREŚLANE WARTOŚC MOMENTU STATYCZNEGO DLA STANU NERUCHOMEGO WAŁU SLNKA NDUKCYJNEGO W PRZEKSZTAŁTNKOWYM

Bardziej szczegółowo

Pracownia komputerowa

Pracownia komputerowa Stanisław Lampeski Ćwiczenia z chemii fizycznej Pacownia komputeowa Opis wykonania ćwiczeń WYDZIAŁ CHEMII UAM Poznań 009 Mateiały umieszczone na stonie: http://www.staff.amu.edu.pl/~slampe Spis teści Wstęp...

Bardziej szczegółowo

Wartości wybranych przedsiębiorstw górniczych przy zastosowaniu EVA *

Wartości wybranych przedsiębiorstw górniczych przy zastosowaniu EVA * ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIŃSKIEGO n 786 Finanse, Rynki Finansowe, Ubezpieczenia n 64/1 (2013) s. 269 278 Watości wybanych pzedsiębiostw góniczych pzy zastosowaniu EVA * Adam Sojda ** Steszczenie:

Bardziej szczegółowo

Równania Lagrange a II rodzaju

Równania Lagrange a II rodzaju echania Analityczna i Dgania ównania Lagange a II odzaju ównania Lagange a II odzaju g inż. Seastian Pauła Aadeia Góniczo-Hutnicza i. Stanisława Staszica w Kaowie Wydział Inżynieii echanicznej i ootyi

Bardziej szczegółowo

POLITECHNIKA KRAKOWSKA im. T. Kościuszki Wydział Inżynierii Lądowej I STYTUT MECHA IKI BUDOWLI

POLITECHNIKA KRAKOWSKA im. T. Kościuszki Wydział Inżynierii Lądowej I STYTUT MECHA IKI BUDOWLI POLITECHNIKA KRAKOWSKA im. T. Kościuszki Wydział Inżynierii Lądowej I STYTUT MECHA IKI BUDOWLI BADA IA TŁA DY AMICZ EGO W MIEJSCU PLA OWA EGO POSADOWIE IA BUDY KU ARODOWEGO CE TRUM PROMIE IOWA IA SY CHROTRO

Bardziej szczegółowo

Statyczna i dynamiczna analiza konstrukcji odciążającej typu mostowego o rozpiętości 30 m

Statyczna i dynamiczna analiza konstrukcji odciążającej typu mostowego o rozpiętości 30 m mgr inż. Marek Szafrański Katedra Mechaniki Budowli i Mostów, Politechnika Gdańska Statyczna i dynamiczna analiza konstrukcji odciążającej typu mostowego o rozpiętości 30 m WSTĘP Wymogi bezpieczeństwa

Bardziej szczegółowo

Ćwiczenie 9 ZASTOSOWANIE ŻYROSKOPÓW W NAWIGACJI

Ćwiczenie 9 ZASTOSOWANIE ŻYROSKOPÓW W NAWIGACJI 9.1. Cel ćwiczenia Ćwiczenie 9 ZASTSWANIE ŻYRSKPÓW W NAWIGACJI Celem ćwiczenia jest pezentacja paktycznego wykozystania efektu żyoskopowego w lotniczych pzyządach nawigacyjnych. 9.2. Wpowadzenie Żyoskopy

Bardziej szczegółowo

DIAGNOSTYKA STOPNIA DEGRADACJI ZMĘCZENIOWEJ STALI METODĄ SPEKTROSKOPII IMPEDANCJI I REZONANSU

DIAGNOSTYKA STOPNIA DEGRADACJI ZMĘCZENIOWEJ STALI METODĄ SPEKTROSKOPII IMPEDANCJI I REZONANSU Maszyny Elektyczne - Zeszyty Poblemowe N 2/215 (16) 153 Zbigniew Hilay Żuek, Politechnika Śląska, Katowice Daiusz Baon, EthosEnegy Poland S.A., Lubliniec DIAGNOSTYKA STOPNIA DEGRADACJI ZMĘCZENIOWEJ STALI

Bardziej szczegółowo

Modele powszechnych przesiewowych noworodków. wad słuchu'

Modele powszechnych przesiewowych noworodków. wad słuchu' Audiofonologia Tom X 1997 Henyk Skażyński Małgozata Muelle-Malesińska Kzysztof Kochanek Andzej Sendeski Joanna Ratyńska nstytut Fizjologii i Patologii Słuchu Waszawa Modele powszechnych pzesiewowych nowoodków

Bardziej szczegółowo

Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze

Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze Wład 4 Zasada achowania enegii Sił achowawce i nieachowawce Wsstie istniejące sił możem podielić na sił achowawce i sił nie achowawce. Siła jest achowawca jeżeli paca tóą wonuję ta siła nad puntem mateialnm

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTRONIKI Ćwiczenie nr 4. Czwórniki bierne - charakterystyki częstotliwościowe

POLITECHNIKA WROCŁAWSKA, WYDZIAŁ PPT I-21 LABORATORIUM Z PODSTAW ELEKTRONIKI Ćwiczenie nr 4. Czwórniki bierne - charakterystyki częstotliwościowe . el ćwiczenia elem ćwiczenia jest zapoznanie studentów z podstawowymi pojęciami dotyczącymi czwórników i pomiarem ich charakterystyk czestotliwościowych na przykładzie filtrów elektrycznych. 2. Wprowadzenie

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 504

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 504 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 504 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa ul. Szczotkarska 42 Wydanie nr 11 Data wydania: 28 kwietnia 2015 r. Nazwa i adres INSTYTUT

Bardziej szczegółowo

Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia

Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY 1. Cel ćwiczenia Przeprowadzenie izolacji drgań przekładni zębatej oraz doświadczalne wyznaczenie współczynnika przenoszenia drgań urządzenia na fundament.. Wprowadzenie

Bardziej szczegółowo

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) 8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych

Bardziej szczegółowo

Modelowanie systemów empirycznych - analiza modelu amortyzacji samochodu o dwóch stopniach swobody

Modelowanie systemów empirycznych - analiza modelu amortyzacji samochodu o dwóch stopniach swobody Zadanie Modelowanie systemów empirycznych - analiza modelu amortyzacji samochodu o dwóch stopniach swobody Na rysunku przedstawiono model amortyzacji samochodu z dwoma stopniami swobody. m y c k m y k

Bardziej szczegółowo

5 Równania różniczkowe zwyczajne rzędu drugiego

5 Równania różniczkowe zwyczajne rzędu drugiego 5 Równania różniczkowe zwyczajne rzędu drugiego Definicja 5.1. Równaniem różniczkowym zwyczajnym rzędu drugiego nazywamy równanie postaci F ( x, y, y, y ) = 0, (12) w którym niewiadomą jest funkcja y =

Bardziej szczegółowo

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej.

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej. Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Konstrukcje i Technologie w Aparaturze Elektronicznej Ćwiczenie nr 5 Temat: Przetwarzanie A/C. Implementacja

Bardziej szczegółowo

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną.

Wyznaczanie współczynnika sztywności drutu metodą dynamiczną. Ćwiczenie M- Wyznaczanie współczynnika sztywności dutu metodą dynamiczną.. Ce ćwiczenia: pomia współczynnika sztywności da stai metodą dgań skętnych.. Pzyządy: dwa kążki metaowe, statyw, dut staowy, stope,

Bardziej szczegółowo

SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA

SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA SILNIK INDUKCYJNY STEROWANY Z WEKTOROWEGO FALOWNIKA NAPIĘCIA Rys.1. Podział metod sterowania częstotliwościowego silników indukcyjnych klatkowych Instrukcja 1. Układ pomiarowy. Dane maszyn: Silnik asynchroniczny:

Bardziej szczegółowo

Notatki z II semestru ćwiczeń z elektroniki, prowadzonych do wykładu dr. Pawła Grybosia.

Notatki z II semestru ćwiczeń z elektroniki, prowadzonych do wykładu dr. Pawła Grybosia. Notatki z II semestu ćwiczeń z elektoniki, powadzonych do wykładu d. Pawła Gybosia. Wojciech Antosiewicz Wydział Fizyki i Techniki Jądowej AGH al.mickiewicza 30 30-059 Kaków email: wojanton@wp.pl 2 listopada

Bardziej szczegółowo

AKADEMIA INWESTORA INDYWIDUALNEGO CZĘŚĆ II. AKCJE.

AKADEMIA INWESTORA INDYWIDUALNEGO CZĘŚĆ II. AKCJE. uma Pzedsiębiocy /6 Lipiec 205. AKAEMIA INWESTORA INYWIUALNEGO CZĘŚĆ II. AKCJE. WYCENA AKCJI Wycena akcji jest elementem analizy fundamentalnej akcji. Następuje po analizie egionu, gospodaki i banży, w

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 150

ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 150 ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO Nr AB 150 wydany przez POLSKIE CENTRUM AKREDYTACJI 01-382 Warszawa, ul. Szczotkarska 42 Wydanie nr 9 Data wydania: 29 sierpnia 2013 r. Nazwa i adres AB 150 WOJSKOWY

Bardziej szczegółowo

Czy w przyczepach do podwózki potrzebne są hamulce?

Czy w przyczepach do podwózki potrzebne są hamulce? Czy w przyczepach do podwózki potrzebne są hamulce? Producent, Dealer: "TAK" - bezpieczeństwo - obowiązujące przepisy Kupujący "TO ZALEŻY" - cena O jakich kosztach mówimy Wartość dopłaty do hamulaców w

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów LABORATORIUM DRGANIA I WIBROAUSTYA MASZYN Wydział Budowy Maszyn i Zarządzania Zakład Wibroakustyki i Bio-Dynamiki Systemów Ćwiczenie nr WIBROIZOLACJA określanie właściwości wibroizolacyjnych materiałów

Bardziej szczegółowo

WYZNACZENIE CHARAKTERYSTYKI TŁUMIENIA KOLUMNY HYDROPNEUMATYCZNEJ CITROENA C5 DETERMINING OF DAMPING CHARACTERISTIC OF CITROEN C5 HYDROPNEUMATIC STRUT

WYZNACZENIE CHARAKTERYSTYKI TŁUMIENIA KOLUMNY HYDROPNEUMATYCZNEJ CITROENA C5 DETERMINING OF DAMPING CHARACTERISTIC OF CITROEN C5 HYDROPNEUMATIC STRUT ZESZYTY NAUKOWE POLITECHNIKI ŚLĄSKIEJ 2013 Seria: TRANSPORT z. 78 Nr kol. 1882 Łukasz KONIECZNY 1 WYZNACZENIE CHARAKTERYSTYKI TŁUMIENIA KOLUMNY HYDROPNEUMATYCZNEJ CITROENA C5 Streszczenie. W artykule przedstawiono

Bardziej szczegółowo

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI

ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Wstęp ZASTOSOWANIE PROGRAMOWANIA LINIOWEGO W ZAGADNIENIACH WSPOMAGANIA PROCESU PODEJMOWANIA DECYZJI Problem podejmowania decyzji jest jednym z zagadnień sterowania nadrzędnego. Proces podejmowania decyzji

Bardziej szczegółowo

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa

Bardziej szczegółowo

Zeszyty Problemowe Maszyny Elektryczne Nr 77/

Zeszyty Problemowe Maszyny Elektryczne Nr 77/ Zeszyty Problemowe Maszyny Elektryczne Nr 77/007 143 Arkadiusz Mężyk, Tomasz Czapla Politechnika Śląska, Gliwice WYKORZYSTANIE EKSPERYMENTALNEJ ORAZ NUMERYCZNEJ ANALIZY MODALNEJ W BADANIACH I SYMULACJI

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH

BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH BADANIA SYMULACYJNE PROCESU HAMOWANIA SAMOCHODU OSOBOWEGO W PROGRAMIE PC-CRASH Dr inż. Artur JAWORSKI, Dr inż. Hubert KUSZEWSKI, Dr inż. Adam USTRZYCKI W artykule przedstawiono wyniki analizy symulacyjnej

Bardziej szczegółowo

Wykład 17. 13 Półprzewodniki

Wykład 17. 13 Półprzewodniki Wykład 17 13 Półpzewodniki 13.1 Rodzaje półpzewodników 13.2 Złącze typu n-p 14 Pole magnetyczne 14.1 Podstawowe infomacje doświadczalne 14.2 Pąd elektyczny jako źódło pola magnetycznego Reinhad Kulessa

Bardziej szczegółowo

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie

Politechnika Wrocławska, Wydział Informatyki i Zarządzania. Modelowanie Politechnika Wrocławska, Wydział Informatyki i Zarządzania Modelowanie Zad Wyznacz transformaty Laplace a poniższych funkcji, korzystając z tabeli transformat: a) 8 3e 3t b) 4 sin 5t 2e 5t + 5 c) e5t e

Bardziej szczegółowo

Ocena skuteczności układów hamulcowych zestawów do przewozu ciężkiej techniki wojskowej

Ocena skuteczności układów hamulcowych zestawów do przewozu ciężkiej techniki wojskowej ARCHIWUM MOTORYZACJI 2, pp. 99-11 (21) Ocena skuteczności układów hamulcowych zestawów do przewozu ciężkiej techniki wojskowej GRZEGORZ MOTRYCZ, PRZEMYSŁAW SIMIŃSKI, PIOTR STRYJEK Wojskowy Instytut Techniki

Bardziej szczegółowo

Zależność natężenia oświetlenia od odległości

Zależność natężenia oświetlenia od odległości Zależność natężenia oświetlenia CELE Badanie zależności natężenia oświetlenia powiezchni wytwazanego pzez żaówkę od niej. Uzyskane dane są analizowane w kategoiach paw fotometii (tzw. pawa odwotnych kwadatów

Bardziej szczegółowo

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC

BADANIE REZONANSU W SZEREGOWYM OBWODZIE LC BADANE EZONANSU W SZEEGOWYM OBWODZE LC NALEŻY MEĆ ZE SOBĄ: kalkulator naukowy, ołówek, linijkę, papier milimetrowy. PYTANA KONTOLNE. ównanie różniczkowe drgań wymuszonych. Postać równania drgań wymuszonych

Bardziej szczegółowo

MONITORING STACJI FOTOWOLTAICZNYCH W ŚWIETLE NORM EUROPEJSKICH

MONITORING STACJI FOTOWOLTAICZNYCH W ŚWIETLE NORM EUROPEJSKICH 51 Aleksande Zaemba *, Tadeusz Rodziewicz **, Bogdan Gaca ** i Maia Wacławek ** * Kateda Elektotechniki Politechnika Częstochowska al. Amii Kajowej 17, 42-200 Częstochowa e-mail: zaemba@el.pcz.czest.pl

Bardziej szczegółowo

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU

Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza napięcia REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU REGIONALNE CENTRUM EDUKACJI ZAWODOWEJ W BIŁGORAJU R C E Z w B I Ł G O R A J U LABORATORIUM pomiarów elektronicznych UKŁADÓW ANALOGOWYCH Ćwiczenie 2: pomiar charakterystyk i częstotliwości granicznych wzmacniacza

Bardziej szczegółowo