4. NARZĘDZIA I SYSTEMY DO POMIARU DRGAŃ

Wielkość: px
Rozpocząć pokaz od strony:

Download "4. NARZĘDZIA I SYSTEMY DO POMIARU DRGAŃ"

Transkrypt

1 ...każdy ptak lubi słuchać swojego śpiewu NARZĘDZIA I SYSTEMY DO POMIARU DRGAŃ Współczesne maszyny i urządzenia to złożone układy dynamiczne zarówno pod względem funkcjonalnym, jak i konstrukcyjnym oraz przestrzennym. Proces ich wytwarzania i eksploatacji pochłania ogromne ilości pracy, surowców i energii. Szybki wzrost wymagań w stosunku do technicznych parametrów maszyn i urządzeń, przy równoczesnym dążeniu do zmniejszenia kosztów wytwarzania i eksploatacji, spowodował zasadnicze przeobrażenia w metodach projektowania, kontroli produkcji i eksploatacji. Liczne przypadkowe uszkodzenia, niespodziewane awarie oraz zagadnienia związane z uszkodzeniami spowodowanymi procesami życiowymi i starzeniowymi uzasadniają potrzebę prowadzenia badań drganiowych, stanowiących podstawowe źródło informacji o zmieniającym się stanie POMIARY I ANALIZA DRGAŃ Zasady pomiarów Pomiarem nazywa się proces poznawczy, polegający na porównaniu drogą doświadczenia fizycznego danej wielkości z pewną jej wartością przyjętą za jednostkę odniesienia. Tę definicję można rozszerzyć, uwzględniając, że niektóre automatyczne przyrządy pomiarowe spełniają także zadania wykonawcze. Pomiarem nazywa się więc proces odbioru i przekształcenia informacji o wielkości mierzonej w celu otrzymania, przez porównanie z jednostką pomiarową, ilościowego wyniku w postaci przez jej najbardziej wygodnej do odbioru przez organy czucia człowieka, przekazania w przestrzeni lub w czasie (rejestracji), matematycznego opracowania lub wykorzystania do sterowania. Przeprowadzenie takich pomiarów potrzebne jest do : - wyznaczenia przebiegów drgań i ich parametrów w czasie celem okreś1enia rodzaju drgań, ich wielkości charakterystycznych i przeprowadzenia szczegółowej analizy; - wykrywania źródeł drgań, tzn. ustalania przyczyny powstawania drgań i miejsca ich występowania; - ustalania cech charakterystycznych układów mechanicznych ( np. okreś1anie zmienności obciążeń w czasie podczas drgań i ich zależności od parametrów obiektu, jego kształtu, wymiarów, własności materiałów itp.); - izolowania i zmniejszania drgań szkodliwych d1a niezawodnej pracy urządzeń i obsługujących ludzi; - określenia szkodliwości występujących drgań d1a obsługi urządzeń mechanicznych i przeprowadzenia pewnych zabiegów profilaktycznych. Często bardzo istotne jest wyznaczenie przebiegów drgań własnych i wymuszonych układów mechanicznych. Tylko dla prostych układów można te przebiegi określić analitycznie. Dla bardziej złożonych układów przebiegi te są wynikiem superpozycji drgań własnych i trzeba je wyznaczyć eksperymentalnie na podstawie pomiarów w różnych punktach układu. Przebiegi drgań własnych zależą od warunków początkowych i parametrów mechanicznych danego układu. Przebiegi drgań wymuszonych są uzależnione od zmian wymuszenia w czasie. Na podstawie otrzymanych przebiegów drgań można określić ich rodzaj (okresowe, przypadkowe, nie ustalone itp.) i przeprowadzić analizę.

2 Celem analizy jest otrzymanie informacji o parametrach drgań danego układu. Ważnym zagadnieniem jest wyznaczenie węzłów drgań (punktów, linii lub powierzchni, które nie biorą udziału w drganiach) i punktów, których amplitudy drgań dla danej częstotliwości są największe. Zbiór amplitud drgań poszczególnych punktów układu przedstawia kształt (przebieg) drgań. Zagadnienia te są przedmiotem analizy geometrycznej. Analiza czasowa polega na określeniu, w jaki sposób zmieniają się w czasie poszczególne wielkości (przemieszczenie linearne, prędkość, przyśpieszenie, odkształcenie itp.). Jeżeli zmiany są okresowe, to wyznacza się także ich częstotliwość. Jeżeli zmiany mają charakter przypadkowy, to do analizy stosuje się metody statystyczne. Interesujące wnioski można wyciągnąć także na podstawie analizy częstotliwościowej, tzn. określeniu zmian charakterystycznych wielkości i parametrów w funkcji częstotliwości. Źródła drgań mogą powstawać z przyczyn konstrukcyjnych (np. mechanizmy korbowe, krzywkowe i inne wykonujące ruchy, napędy maszyn wibracyjnych), technologicznych (niedokładności wykonania i montażu maszyny, np. niewyważenie mas wirujących, owalizacja elementów łożysk i części obrotowych, niepożądane luzy i inne wady) lub eksploatacyjnych (w wyniku zużycia się elementów i zniekształceń powierzchni w czasie ruchu). Przeprowadzając pomiary drgań poszczególnych elementów badanego obiektu można znaleźć podzespół, który jest źródłem szkodliwych drgań. Przez jego wymianę często można zmniejszyć drgania całego obiektu. Stosunkowo łatwe jest wykrywanie drgań będących wynikiem wymuszenia kinematycznego, tzn. wywołanych wskutek ruchu danego elementu (np. drgania wskutek ruchu samochodu po nierównej drodze), lub wymuszenia dynamicznego, tzn. wskutek działania na dany element sił zewnętrznych lub sił będących wynikiem oddziaływania innych podzespołów. Wartość siły może zmieniać się (okresowo lub nie okresowo) lub być stała, a zmieniać się w czasie może tylko jej kierunek lub punkt przyłożenia (np. siły odśrodkowe powstałe w wyniku ruchu obrotowego niewyważonej masy). Trudniejsze jest wykrywanie drgań samowzbudnych, których przyczynami są przeważnie zmienne opory tarcia, siły hydro- i aerodynamiczne lub występowanie sprzężeń zwrotnych i drgań parametrycznych, których przyczyną często jest okresowa zmienność sztywności elementów. Wyznaczanie zmienności obciążeń pod wpływem drgań pozwala określić występujące naprężenia i odkształcenia będące wynikiem sił zewnętrznych i sił bezwładności. Mierząc w miejscach działania obciążeń, w miejscach połączeń itp. występujące siły i momenty można otrzymać przebieg obciążeń dynamicznych poszczególnych elementów obiektu [14,47,58,81]. Za pomocą pomiarów drgań można badać wpływ wymiarów i kształtów elementów (a tym samym masy, sztywności itp.), sposobów mocowania i materiałów na parametry drgań. Występujące drgania obiektów, z wyjątkiem układów techniki drgań, są szkodliwe. Zakłócają one prawidłową pracę urządzeń, powodując ich szybkie zużywanie oraz straty energetyczne. Jeżeli występują drgania, wówczas dąży się do ustalenia przyczyny i zlokalizowania ich, a następnie zmniejszenia. Jeżeli nie da się zmniejszyć drgań, wówczas stosuje się elementy izolacyjne, które powodują ich tłumienie. Pomiary drgań polegają na mierzeniu pewnych wielkości fizycznych, charakteryzujących drgania obiektu. Do takich wielkości zalicza się przemieszczenie, prędkość i przyspieszenie. Przemieszczenie punktu określa jednoznacznie wektor przemieszczenia s. Przy pomiarach wektora s określamy jego współrzędne s x, s y lub s z. Drgania obiektu można określić wektorem chwilowych wartości prędkości v. Dla wyznaczenia wektora v należy pomierzyć jego składowe: v x, v y, v z. Pomiary prędkości są celowe w wielu przypadkach. Należy pamiętać, że amplituda prędkości cząstki drgającej harmonicznie równa jest amplitudzie przemieszczenia pomnożonego przez częstotliwość kątową.

3 Ruch drgający można określić także wektorem chwilowego przyspieszenia a. Wektor ten można wyznaczyć przez pomiar jego współrzędnych: a x, a y, a z. Przyspieszenie jest proporcjonalne do działającej siły, w związku z tym dla jednoznacznego scharakteryzowania drgań można mierzyć przyśpieszenie wyznaczające położenie danego punktu i przyspieszenie określające oddziaływującą na obiekt siłę. Amplituda przyśpieszenia każdej składowej widma równa się amplitudzie przemieszczenia pomnożonej przez częstotliwość kątową do kwadratu. Im wyższa jest harmoniczna przebiegu drgań, tym bardziej jest ona odzwierciedlana w widmie przyspieszenia. Jak wiadomo, szeregi Fouriera dla pochodnych rozkładanej funkcji są tym wolniej zbieżne, im jest wyższy rząd pochodnej. Ponieważ amplitudy przyśpieszeń wyższych harmonicznych są duże, więc do pomiarów należy używać aparaturę posiadającą szeroki zakres częstotliwości pracy. Przy pomiarach przemieszczeń wymagania dotyczące zakresu częstotliwości są mniejsze, ponieważ amplitudy wyższych harmonicznych są pomijalne. Należy zaznaczyć, że w niektórych przypadkach przebiegi przemieszczeń mogą być prawie sinusoidalne, prędkości odkształcone, a przyśpieszenia mogą mieć charakter przypadkowych procesów. Dla każdej z trzech wyżej wymienionych wielkości można mierzyć jej wartości chwilowe, średnie lub szczytowe. Najpełniejszą informację daje zapis wartości chwilowych w funkcji czasu. Pomiary wartości średnich przeprowadza się wtedy, gdy chodzi nam o ogólne, uśrednione informacje o danych drganiach. W niektórych układach są wprowadzone ograniczenia odnośnie do maksymalnych chwilowych wartości drgań. Dla ich wyznaczenia wystarczy mierzyć szczytowe wartości drgań. Często zależy nam na określeniu częstotliwości występujących drgań. Przy drganiach harmonicznych częstotliwość można wyznaczyć bardzo łatwo, np. z widma chwilowych wartości przemieszczeń. Można także zmierzyć ją bezpośrednio miernikiem częstotliwości. Dla drgań okresowych, ale nie harmonicznych, wymagane jest często określenie częstotliwości podstawowej (drgania harmonicznego o najniższej częstotliwości). Bezpośrednie wyznaczenie jej z widma jest przeważnie niemożliwe i należy w tym celu zastosować specjalną aparaturę (filtry przestrajane lub przełączane) albo przeprowadzić analizę przebiegu analitycznie (szereg Fouriera). Dla pełnego obrazu występujących częstotliwości należy przeprowadzić szczegółową analizę i wyznaczyć dyskretne widmo drgań. Jeżeli występują drgania nieokresowe, widmo drgań jest ciągłe. Wyznaczenie tego widma wymaga skomplikowanej aparatury pomiarowej. Przy drganiach przypadkowych wymagany jest pomiar rozkładów prawdopodobieństw, który najpełniej charakteryzuje zachodzący proces. Ze względu na to, że pomiar ten jest bardzo skomplikowany, często ogranicza się do pomiaru funkcji korelacyjnej drgań. Funkcja ta pozwala wyznaczyć parametry pierwszego i drugiego rzędu drgań przypadkowych. Na podstawie przekształcenia Fouriera z funkcji korelacyjnej można wyznaczyć gęstość widmową mocy procesu. Za pomocą odpowiedniej aparatury można bezpośrednio wyznaczyć widmo amplitudowe. Pomiar widma fazowego jest rzadko wymagany. Przy drganiach wywołanych impulsami często wymaga się określenia nachylenia czoła i czasu trwania działających impulsów. Jeżeli impulsy występują okresowo, to określa się ich częstotliwość. Układ pomiarowy służy do przetworzenia ruchu drgającego badanego obiektu na wskazania miernika lub na postać dogodną do rejestracji. Na obiekcie, którego drgania mają być mierzone, mocuje się czujniki. Są one przetwornikami wielkości wejściowej (drgań) na sygnał wyjściowy informujący o mierzonej wielkości. Przetworniki przekształcają drgania mechaniczne na inną postać drgań mechanicznych lub na drgania elektryczne. Jeżeli przewody łączące czujniki z pozostałą aparaturą są długie, wówczas dla zapewnienia lepszych warunków pomiaru stosuje się wtórniki katodowe. Zadaniem ich jest

4 dopasowanie linii do czujnika. Sygnał wyjściowy z wtórnika katodowego doprowadza się do pozostałej aparatury pomiarowej liniami połączeniowymi. Urządzenie dodatkowe może zawierać różne zespoły w zależności od wybranej metody pomiarowej, stosowanych czujników, mierzonych wielkości i parametrów, własności drgań oraz wymaganej postaci sygnału wyjściowego. Mogą tutaj wchodzić mostki, różne rodzaje wzmacniaczy, układy całkujące lub różniczkujące itp. w zależności od tego, czy przewiduje się bezpośredni odczyt, czy przebieg ma być rejestrowany, stosuje się mierniki wskazówkowe lub rejestratory. Jako rejestratorów używa się wielokanałowe oscylografy pętlicowe, wielostrumieniowe oscylografy z kamerami fotograficznymi lub magnetofony pomiarowe. w niektórych przypadkach zamiast przyrządów wskazówkowych lub rejestratorów używa się analizatorów, które przeprowadzają od razu analizę drgań i podają gotowe wyniki. Gdy są przeprowadzane pomiary układów, w pobliżu których ze względu na bezpieczeństwo nie może znajdować się człowiek, wówczas stosuje się zdalne sterowanie [3,6,14,24,25,27,34] UKŁADY POMIAROWE DRGAŃ MECHANICZNYCH Układ pomiarowy służy do przetworzenia ruchu drgającego badanego obiektu na wskazania miernika lub na postać dogodną do rejestracji. Na obiekcie, którego drgania mają być mierzone, mocuje się czujniki. Są one przetwornikami wielkości wejściowej (drgań) na sygnał wyjściowy informujący o mierzonej wielkości. Przetworniki przekształcają drgania mechaniczne na inną postać drgań mechanicznych lub na drgania elektryczne. Podstawową strukturę układu pomiarowego można otrzymać przez odpowiednie połączenie kilku przyrządów pomiarowych. Przykładowy układ pokazano na rysunku 4.1. Rys 4.1. Schemat układu pomiarowego drgań mechanicznych Zasadniczym elementem układu pomiarowego jest czujnik, który umożliwia określenie przebiegu drgań w czasie w postaci sygnału analogowego. Obecnie są stosowane do pomiaru drgań rożnego typu przetworniki wielkości mechanicznych na wielkości elektryczne. Generalnie można wyodrębnić czujniki do pomiarów drgań bezwzględnych oraz drgań względnych. Do klasy czujników do pomiaru drgań bezwzględnych należą akcelerometry piezoelektryczne i czujniki elektrodynamiczne z masą sejsmiczną. Natomiast pomiar drgań względnych wykonuje się najczęściej czujnikami bezstykowymi takimi jak: czujniki zbliżeniowe elektromagnetyczne i indukcyjne, czujniki zbliżeniowe wiroprądowe, czujniki zbliżeniowe pojemnościowe. Większość z czujników zbliżeniowych może być stosowana do pomiaru drgań elementów tylko o własnościach ferromagnetycznych.

5 Uzyskany z czujnika sygnał elektryczny jest sygnałem małej mocy rzędu mikro lub miliwatów wymagającym dużej oporności wejściowej, aby zapewnić właściwe ich działanie. Napięcie sygnału osiąga wartość od kilku do kilkudziesięciu mv. Przyrządem, który zapewni właściwe działanie czujnika i umożliwia zwiększenie napięcia wyjściowego sygnału z czujnika jest wzmacniacz ładunku (lub napięcia) sygnału elektrycznego. W najnowszych rozwiązaniach są stosowane wzmacniacze zintegrowane z czujnikiem, które umożliwiają znaczne zwiększenie stosunku poziomu sygnału pomiarowego do poziomu zakłóceń. Nie wyklucza to jednak stosowania w połączeniu kaskadowym wzmacniacza końcowego sygnału. W układzie pomiarowym stosowanym do monitorowania maszyn wirnikowych włącza się dodatkowo moduł znacznika fazy, który umożliwia zidentyfikowanie fazy drgań w odniesieniu do położenia kątowego wału, a także może posłużyć do śledzenia obrotów wału i zmian prędkości obrotowej wału. Bardzo ważnym elementem układu pomiarowego jest zespół filtrów sygnału analogowego. Filtr umożliwia eliminowanie składowych harmonicznych z widma amplitudowego sygnału w wybranym zakresie częstotliwości. Ma to duże znaczenie w badaniach spektralnych i minimalizowaniu zakłóceń. Wzmacniacze, filtry i zasilacze połączone szeregowo tworzą układ kondycjonowania sygnałów. Analogowe sygnały elektryczne z tego układu są przesyłane do elektronicznego układu przetwarzającego sygnał analogowy w dyskretny sygnał cyfrowy. Układ ten jest zwany przetwornikiem analogowo cyfrowym (konwerterem AC). Zespół, najczęściej kilkunastu przetworników mogących obsługiwać kilka kanałów analogowych, tworzy kartę analogowo-cyfrową. Możliwość, a także i potrzeba stosowania przetworników AC pojawiła się wraz z powszechną dostępnością przenośnych komputerów. Karta analogowo-cyfrowa bardzo często jest tak konstruowana aby mogła być bezpośrednio podłączona do magistrali komputera (BUS). Jest ona umieszczana w 16-bitowych złączach (ISA lub PCI) płyty głównej komputera. Najważniejszymi parametrami kart analogowo cyfrowych są częstotliwość próbkowania i szybkość transmisji danych do pamięci operacyjnej. Parametry te mają zasadnicze znaczenie przy wyborze filtrów w układzie kondycjonowania sygnału analogowego [1]. Przetwarzanie drgań na postać elektryczną, to zamiana energii drgań źródła na energię sygnału elektrycznego. Przetwarzanie to jest realizowane za pośrednictwem czujników drgań. Czujnik drgań lub wibracji jest zwykle przetwornikiem mechano - akustycznym przyspieszeniowym lub prędkościowym. Jego siła elektromotoryczna jest proporcjonalna do składowej przyspieszenia (lub prędkości), równoległej do kierunku ruchu elementu czynnego czujnika. Czujniki przyspieszeń, zwane też akcelerometrami, są najczęściej przetwornikami piezoelektrycznymi, które na zaciskach wyjściowych wytwarzają sygnał elektryczny proporcjonalny do przyspieszenia, któremu został poddany. Akcelerometry pracują w szerokim zakresie częstotliwości od ułamków herca do około 20000Hz. Czujniki prędkości są zwykle przetwornikami magnetoelektrycznymi lub elektromagnetycznymi. Odznaczają się gorszymi parametrami niż czujniki przyspieszeń i z tego powodu, w technice pomiarowej są prawie nie stosowane. Czujniki drgań muszą współpracować z odpowiednim typem przedwzmacniacza, co umożliwia zastosowanie np.: długich kabli pomiędzy przetwornikiem a stopniem wejściowym przyrządu pomiarowego lub rejestratora. Różnorodność rozwiązań konstrukcyjnych akcelerometrów może na pierwszy rzut oka utrudnić właściwy wybór przetwornika, jednakże akcelerometry uniwersalne ogólnego przeznaczenia zaspokajają dużą część zapotrzebowania na czujniki drgań systemów diagnostycznych [1]. Przy pomiarach i rejestracji drgań o bardzo niskich lub bardzo wysokich poziomach należy uwzględnić zakres dynamiki akcelerometru. Dolna granica jest spowodowana szumami przedwzmacniacza, natomiast górna jest określona wytrzymałością mechaniczną samego akcelerometru. Typowy czujnik przyspieszenia ma liniową dynamikę w zakresie 50

6 m/s 2. Tak wysoki poziom występuje przy pomiarach udarów mechanicznych. Bardzo ważnym czynnikiem, mającym wpływ na jakość przetwarzania za pomocą akcelerometru, jest jego zamocowanie. Akcelerometr powinien być zamocowany w ten sposób, by jego główna oś czułości pokrywała się z kierunkiem pomiaru. Czułość poprzeczna jest niewielka i wynosi zwykle 1 2 % poniżej czułości wzdłuż osi. Luźne zamocowanie akcelerometru powoduje obniżenie częstotliwości rezonansowej czujnika, co z kolei implikuje zmniejszenie użytecznego zakresu częstotliwości. Optymalny sposób montażu czujnika przyspieszeń polega na jego przykręceniu (o ile to możliwe) do powierzchni pomiarowej za pomocą specjalnego wkrętu. Pod wpływem drgań na wyjściu czujnika drgań pojawia się sygnał elektryczny jako odwzorowanie zmian procesu drganiowego. Sygnał na wyjściu akcelerometru może być wykorzystywany w następujący sposób: a) może być poddany przetwarzaniu i analizie w czasie rzeczywistym, co jest realizowane za pomocą przyrządów pomiarowych i analizujących współpracujących z danym przetwornikiem, b) może być zarejestrowany w oryginalnej postaci analogowej, na odpowiednim nośniku magnetycznym lub pamięci masowej typu USB flash, c) może zostać zarejestrowany w postaci cyfrowej. Ze względu na fakt, że pewna część pomiarów diagnostycznych musi być wykonywana w terenie bądź w miejscach i sytuacjach oddalonych od aparatury diagnostycznej, istnieje potrzeba rejestracji sygnału diagnostycznego w postaci analogowej. Rejestracja analogowych sygnałów diagnostycznych ma wiele zalet: a) istnieje możliwość łatwego usunięcia poprzedniego, zbędnego zapisu sygnału, b) stosowanie pamięci typu USB flash pozwala na długi czas rejestracji, c) zapis analogowy jest mało kosztowny, d) łatwy sposób archiwizowania i analizy sygnałów pomiarowych. Zarejestrowany sygnał analogowy u(t) zawiera, oprócz sygnału użytecznego, składowe zniekształcające, pochodzące od źródeł zakłócających oraz parametrów czujników. Zatem zapisany sygnał, w dalszych procedurach przetwarzania i analizy, będzie poddawany przekształceniom, mającym na celu wydobycie z niego interesujących informacji diagnostycznych a jednocześnie usunięcie informacji nadmiarowych lub szkodliwych. Należy pamiętać o podstawowej zasadzie w trakcie pomiarów, że jeśli na wyjściu przyrządu pomiarowego nie uzyskaliśmy odpowiednich informacji diagnostycznych, to dalsze operacje na tym sygnale tej informacji nie zwiększą [1]. Kolejnym etapem procesu komputerowego przetwarzania sygnału diagnostycznego, najczęściej po analogowych procedurach wstępnej obróbki, jest wprowadzenie tego sygnału do pamięci komputera. Pamięć komputera składa się z tzw. komórek, w których można umieścić kody reprezentujące np. liczby z określonego przedziału wartości odwzorowane z określoną dokładnością. Ze względu na to, że sygnał wibroakustyczny jest przebiegiem ciągłym, trwającym określony czas i przyjmującym wartości napięcia z czujnika zmieniające się też w sposób ciągły, to występuje oczywista konieczność przetworzenia informacji z postaci ciągłego sygnału do postaci kodów komputerowych. Przetwarzanie to składa się na ogół z trzech etapów: a) próbkowania, czyli dyskretyzacji czasowej sygnału, b) dyskretyzacji amplitudowej, czyli inaczej kwantyzacji, c) kodowania sygnału do postaci akceptowanej przez komputer. Realizację przetwarzania uzyskuje się za pośrednictwem ważnego urządzenia zwanego przetwornikiem analogowo-cyfrowym (A/C). Przetwornik analogowo-cyfrowy jest urządzeniem, które przetwarza wejściowy ciągły sygnał elektryczny w sygnał cyfrowy, będący sekwencją liczb aproksymujących (przybliżających) odpowiednie próbki sygnału wejściowego. W dyskretyzacji czasowej sygnału mowy (i każdego innego sygnału) istotnym problemem jest określenie tzw. kroku próbkowania, czyli przedziału czasu, co jaki mają być

7 pobierane przez komputer pomiary chwilowych wartości, ponieważ tylko te chwilowe wartości zostaną następnie zamienione na kody i wprowadzone do określonych komórek pamięci komputera. Ustalenie zbyt dużej wartości kroku próbkowania, czyli zbyt rzadkie pobieranie próbek spowoduje, że pewne informacje zostaną pominięte i nastąpi utrata informacji, niemożliwa do odrobienia przez dalsze procedury. Zbyt mały krok dyskretyzacji spowoduje z kolei wprowadzenie informacji nadmiarowych, zajmujących miejsce w nośnikach pamięci i wydłużających obliczenia. Idea przetwarzania analogowo cyfrowego przedstawiona została na rysunku 4.2. Rys.4.2. Idea przetwarzania analogowo cyfrowego [1] Przy wyborze kroku próbkowania t, wyrażanym najczęściej pod postacią częstotliwości próbkowania f p = l/ t, opieramy się na twierdzeniu Shannona. Krok próbkowania określa się na podstawie znajomości górnej częstotliwości sygnału. Częstotliwość tę ustalamy za pomocą filtru anty-aliasowego, dolnoprzepustowego o częstotliwości granicznej f n = l/2 t. Inaczej mówiąc, krok próbkowania zapewniający optymalne przeniesienie potrzebnych informacji do dalszej analizy jest równy co najwyżej połowie odwrotności maksymalnej częstotliwości sygnału mowy. Wiąże się to np. z koniecznością pobierania próbek sygnału co 0, sekundy dla częstotliwości górnej sygnału mowy (f n = 3,5 khz), a w sytuacji odwzorowywania pełnego pasma akustycznego (20 khz) co 0, s. Dyskretyzacja amplitudowa lub inaczej kwantyzacja potrzebna jest w tym celu, aby wartość próbki sygnału wyrazić w postaci liczby o skończonej liczbie cyfr, gdyż tylko taka liczba może być wprowadzona do komputera. Problem liczby cyfr, za pomocą których odwzorowuje się wartości próbek sygnału jest pod pewnymi względami podobny do problemu wyboru kroku próbkowania. Tu również obowiązuje zasada, że im więcej cyfr opisuje daną próbkę, tym dokładniej sygnał jest odwzorowany. Z kolei zajętość pamięci komputera rośnie proporcjonalnie do liczby cyfr i stąd również wynika potrzeba rozsądnego kompromisu w dokładności odwzorowania poziomów próbek. Trzeci etap kodowanie, jest przy dostępnych obecnie środkach technicznych prosty i łatwy, a wybór możliwych kodów jest bogaty. Zazwyczaj dobierając kod, kierujemy się właściwościami systemu wejściowego używanego komputera. W wyniku przetwarzania analogowo-cyfrowego powstaje charakterystyczne zakłócenie sygnału zwane szumem kwantyzacji. Poza szumem kwantyzacji przetwarzanie analogowocyfrowe może wprowadzać jeszcze inne błędy i zniekształcenia: a) migotanie, czyli efekt powstający z losowych wahań długości okresu próbkowania t, które ma wpływ na kształt widma gęstości mocy G ( f ), b) zniekształcenia aperturowe, tzn. błędy wynikające ze skończonego czas pobrania próbki, c) nieliniowość, czyli błędy powstające na skutek niedomagań przetwornika a/c, np. na skutek przekłamania bitów, złego rozmieszczania kwantyzacji itp. Zapis cyfrowy sygnałów drganiowych charakteryzuje się wysokim stopniem standaryzacji, umożliwiającym wymianę danych pomiędzy różnymi urządzeniami i systemami komputerowymi oraz ma następujące zalety:

8 a) nie wymaga dużego zakresu dynamiki (pamiętanie jedynie dwóch poziomów), b) zapisane dane mogą być odczytywane synchronicznie, co zmniejsza błędy czasowe, c) pozwala na uzyskanie bardzo dużej dokładności odwzorowania sygnału. Posługując się zapisem cyfrowym należy pamiętać, że każdy sygnał jest zapisany i odbierany jako jedna liczba, a nie jak w zapisie analogowym, że jest to wartość z ciągu zależnych wartości. W zapisie analogowym była możliwość wygładzania sygnału w przypadku zaistnienia chwilowego zakłócenia. W zapisie cyfrowym taka regeneracja jest niemożliwa [1] CZUJNIKI DRGAŃ Różnorodność celów i warunków prowadzenia eksperymentu pomiarowego, jak również żądań co do wyników metod ich opracowywania pociągają za sobą ogromną liczbę możliwych wariantów budowy informacyjnych systemów pomiarowych, przez co nie można mówić o ich unifikacji. Do podstawowych elementów pomiarowych zaliczymy przetwornik pomiarowy, który służy do przetworzenia z określoną dokładnością i według określonego prawa wartości wielkości mierzonej na wartości innej wielkości. Przetworniki zbudowane są z trzech rodzajów elementów podstawowych: elementy powodujące straty energii (generowanej przez badany obiekt) rozpraszanej na energię cieplną, np. w wyniku tarcia, występowania rezystancji w układach elektrycznych, oporu przepływu gazów i cieczy, elementy magazynujące energię z obiektu w postaci kinetycznej (masa, indukcyjność w układach elektrycznych), elementy magazynujące energię obiektu w postaci potencjalnej (sprężyny w układach mechanicznych, pojemność w układach elektrycznych, sprężony gaz). W układach pomiarowych wielkości nieelektrycznych stosowane są przetworniki, w których następuje przetworzenie tej wielkości na wielkość elektryczną. Najbardziej rozpowszechnionym przetwornikiem do pomiaru drgań jest akcelerometr piezoelektryczny. Najistotniejszą częścią piezoelektrycznego czujnika jest płytka materiału piezoelektrycznego. Element piezoelektryczny poddany działaniu sił mechanicznych (rozciąganie ściskanie) generuje ładunek elektryczny, proporcjonalny do działających sił. Sygnał wyjściowy jest proporcjonalny do przyspieszeń i mieści się w granicach od 1 do 10 mv ms -2 (czułość czujnika). Ciężar czujnika jest istotny przy pomiarze drgań lekkich konstrukcji, gdzie przyłożenie dodatkowej masy (w postaci masy czujnika) może znacząco zmienić zarówno częstotliwość, jak i poziom drgań, co ma wpływ na wnioskowanie. Stąd też do badań powinno się używać czujników, których masa nie przekracza 1/10 masy badanego elementu [32]. Element piezoelektryczny w czujniku umieszczony jest w ten sposób, że podczas wibracji poddawany jest działaniu siły reakcji masy. Siła ta jest proporcjonalna do przyspieszenia i określona drugim prawem Newtona: siła = masa x przyspieszenie. Dla częstotliwości znacznie niższych niż częstotliwość rezonansowa całkowitego układu (typu masa sprężyna) przetwornika, przyspieszenie masy równa się przyspieszeniu podstawy. Oznacza to, że wartość sygnału wyjściowego jest proporcjonalna do przyspieszenia, któremu poddawany jest przetwornik. Najbardziej rozpowszechnione są dwa rozwiązania konstrukcyjne: przetwornik działający na zasadzie kompresji, w którym masa wywiera siłę kompresji działającą na piezo-czuły element. przetwornik typu nożycowego, w którym masa wywiera siłę tnącą na piezoelektryczny element czujnika.

9 Różnorodność rozwiązań konstrukcyjnych akcelerometrów może pozornie utrudnić właściwy wybór przetwornika, jednakże akcelerometry uniwersalne ogólnego przeznaczenia zaspokajają na ogół większość wymagań pomiarowych. Czułość ich zawiera się w granicach od 1 do 10mV lub pc ms -2, a konstrukcja umożliwia zarówno boczne, jak i górne podłączenie kabla. Czułość w typach Uni Gain jest znormalizowana do okrągłej liczby 1 lub 10 pc ms -2, co znacznie ułatwia kalibrację systemu pomiarowego. Dostępne są również akcelerometry innych typów przystosowane do specjalnych wymagań, jak np. miniaturowe przetworniki przeznaczone do pomiarów wysokich poziomów wibracji lub wysokich częstotliwości delikatnych konstrukcji, paneli itp. Ich ciężar wynosi zaledwie 0,5 2 gramów. Inne typy przetworników przeznaczone do pomiarów specjalnych obejmują akcelerometry do: jednoczesnego pomiaru drgań w trzech wzajemnie prostopadłych kierunkach, pomiarów przy wysokich temperaturach, pomiarów bardzo niskich poziomów drgań, pomiarów udarów, porównawczej kalibracji innych akcelerometrów oraz ciągłego monitorowania maszyn przemysłowych. Zwykle pożądany jest wysoki poziom sygnału wyjściowego; niestety, pociąga to za sobą zwiększone wymiary fizyczne, a co za tym idzie - masę. Niezbędny jest więc pewien kompromis w trakcie doboru akcelerometru do pomiarów. Na ogół czułość nie jest parametrem krytycznym, gdyż współczesne przedwzmacniacze przystosowane są do współpracy z sygnałami o niskim poziomie. Masa akcelerometru staje się istotna przy pomiarach przeprowadzanych na lekkich strukturach. Dodatkowa masa może znacznie zmienić zarówno częstotliwość, jak i poziom wibracji w punkcie pomiarowym. Przyjmuje się, że masa akcelerometru nie powinna przewyższać 1/10 dynamicznej masy wibrującej części, do której czujnik jest przymocowany. Przy pomiarach sygnałów o bardzo niskich lub wysokich poziomach przyspieszenia należy także wziąć pod uwagę zakres dynamiczny akcelerometru. Dolna granica spowodowana jest zwykle szumami wzmacniacza oraz kabli i jest rzędu 1/100 m s -2. Górna granica określona jest poprzez wytrzymałość samego akcelerometru. Typowy czujnik uniwersalny posiada liniową dynamikę od 50 do m s -2. Tak wysokimi poziomami sygnału charakteryzują się przyspieszenia typu udarowego. Do pomiarów udarów mechanicznych stosuje się specjalnie skonstruowane akcelerometry liniowe, do 1000 km s -2 ( g) [32]. Na rysunku 4.3. przedstawiono schemat konstrukcji typowego piezoelektrycznego czujnika ICP z kwarcowymi kryształami piezoelektrycznymi, powszechnie stosowanego w laboratoriach do testów strukturalnych. Rys.4.3. Schemat czujnika piezoelektrycznego w konfiguracji nożycowej [32] Mimo, że zakres częstotliwości energii większości systemów mechanicznych wynosi od 10 do 1000Hz, to jednak bardzo często przeprowadza się pomiary do 10kHz. Zakres

10 Skuteczność częstotliwości jest istotnym parametrem przy wyborze czujnika przyspieszeń. W zakresie niskich częstotliwości na otrzymanie prawdziwego i dokładnego sygnału drgań ma wpływ przedwzmacniacz współpracujący z czujnikiem. Górna częstotliwość graniczna określona jest rezonansem mechanicznym samego akcelerometru. W praktyce maksymalna górna częstotliwość przyjmowana jest jako 1/3 częstotliwości rezonansowej przetwornika. Błąd pomiaru składowych drgań o częstotliwościach zbliżonych do tej granicy nie przekroczy wówczas 12%. Częstotliwość rezonansowa dla czujników uniwersalnych wynosi zwykle khz. Użyteczny zakres częstotliwości akcelerometru przedstawiono na rysunku 4.4 [32]. Na ogół czułość akcelerometru zwiększa się znacznie przy wysokich częstotliwościach z powodu rezonansu. Dlatego też sygnał wyjściowy otrzymany przy tych częstotliwościach nie jest prawdziwym obrazem drgań punktu pomiarowego. Przy pomiarach szerokopasmowych uzyskane wyniki są błędne, jeżeli drganie mierzone posiada składowe o częstotliwościach znajdujących się w pobliżu częstotliwości rezonansowej czujnika. W celu eliminacji błędów pomiarowych dokonuje się wyboru akcelerometru o maksymalnym zakresie częstotliwości oraz stosuje odpowiednie filtry dolnoprzepustowe. 12% Częstotliwość rezonansu Dolna częstotliwość graniczna Użyteczny zakres pomiarowy Górna częstotliwość graniczna Częstotliwość Rys Użyteczny zakres częstotliwości akcelerometru [32] Wyniki pomiarów drgań zależą od metody mocowania akcelerometru. Luźne mocowanie prowadzi do obniżenia częstotliwości rezonansowej, co z kolei równoznaczne jest ze zmniejszeniem użytecznego zakresu częstotliwości czujnika. Na rys. 4.5 przedstawiono wybrane sposób montowania czujnika piezoelektrycznego. Spośród przedstawionych przykładów mocowanie na wkręt jest rozwiązaniem optymalnym ale nie zawsze możliwym do zastosowania w praktyce. W tym rozwiązanie, specjalny wkręt przytrzymuje akcelerometr na gładkiej i płaskiej powierzchni. Maksymalną sztywność montażu otrzymuje się smarując powierzchnię pomiarową cienką warstwą smaru. Częstotliwość rezonansowa przy tego rodzaju montażu wynosi ok. 32 khz i nie odbiega od częstotliwości rezonansowej otrzymanej na stanowisku kalibracyjnym. Inną metodą jest przyklejenie czujnika za pomocą wosku pszczelego. Częstotliwość rezonansowa jest nieznacznie zredukowana. Ze względu na stopniowe topnienie wosku, maksymalna temperatura pracy wynosi 40 st. C. Czujnik można umieścić na badanym obiekcie również za pomocą kleju, magnesu, a także można przyłożyć poprzez penetrator (ręczna sonda) [32]. Istnieje wiele rozwiązań konstrukcyjnych czujników piezoelektrycznych, a jako jedne z podstawowych do zastosowań w badaniach diagnostycznych można zaliczyć jednoosiowe czujniki przyśpieszeń drgań firmy PCB Piezotronice typu ICP model 352C68, które charakteryzują się następującymi parametrami technicznymi: czułość 100 mv/g (± 10%), zakres pomiarowy: ± 50 g pk (± 491 m/s 2 pk),

11 Skuteczność Skuteczność Skuteczność Skuteczność szerokość pasma: (od 1 do Hz), zakres częstotliwości: (± 5%) 0,5 do Hz, waga: 2,0 g. a) mocowanie akcelerometru na wkręt: b) mocowanie akcelerometru na klej: 32 khz Częstotliwość Żywice epoksydowe Klej miękki c) mocowanie akcelerometru za pomocą magnesu: 28 khz Częstotliwość d) sonda ręczna: 7 khz Częstotliwość 2 khz Częstotliwość Rys.4.5. Zakresy przenoszenia w zależności od sposobu mocowania akcelerometru [32] Na rysunku 4.6 przedstawiono zdjęcie jednoosiowego czujnika przyśpieszeń drgań firmy PCB Piezotronice typu ICP model 352C68, stosowanego w trakcie badań diagnostycznych na stanowisku badawczym.

12 Rys Czujniki przyśpieszeń drgań PCB Piezotronice typu ICP model 352C68 [36] Należy zaznaczyć, iż postęp w dziedzinie projektowania, konstruowania i wdrażania do przemysłu czujników przyśpieszeń drgań jest tak duży, że nie sposób go ogarnąć syntetycznie. Nie sposób zatem w kilku słowach przedstawić wyczerpująco te zagadnienia, trzeba je śledzić na bieżąco SYSTEMY POMIAROWE Rosnący stopień złożoności nowoczesnych maszyn i pojazdów oraz rosnące wymagania bezpieczeństwa zmuszają konstruktorów i użytkowników tych obiektów do nadzorowania ich bieżącego stanu technicznego. Staje się to możliwe, jeśli już na etapie projektowania konstruktorzy zaimplementują w obiekcie urządzenia i procedury diagnostyczne. Problemy diagnostyki maszyn obejmują następujące zagadnienia: akwizycje i przetwarzanie informacji diagnostycznych, budowę modeli i relacji diagnostycznych, wnioskowanie diagnostyczne i wartości graniczne, klasyfikacja stanów maszyny, przewidywanie czasu kolejnego diagnozowania, obrazowanie informacji decyzyjnych. System pomiarowy dla celów współczesnej wibro-diagnostyki maszyn składa się z dwóch podstawowych części: - sprzętu, w którym wyróżnia się następujące moduły: podsystem kondycjonowania i przetwarzania sygnałów, podsystem przetwarzania sygnałów znacznika fazy, podsystem komputera PC, podsystem zasilania, - oprogramowania, w którego skład wchodzą następujące moduły: system operacyjny, oprogramowanie modułów przetwarzania i analizy sygnałów, oprogramowanie zapewniające komunikację pomiędzy warstwami systemu, oprogramowanie do archiwizacji i przetwarzania danych pomiarowych, oprogramowanie zarządzające pracą systemu (konfigurowanie i testowanie systemu, inicjalizacja sesji pomiarowych itp.). Przedstawiona struktura systemu pomiarowego wykorzystuje najnowsze rozwiązania zarówno sprzętowe, jak i programowe. Zastosowane rozwiązania umożliwiają łatwą rozbudowę systemu, oraz możliwości włączenia go do dowolnych systemów diagnostycznych. Różnorodność firm specjalizujących się we wdrażaniu nowoczesnych systemów pomiarowych dotyczących akwizycji i analizy drgań i hałasu nie pozwalają na kompleksowe przedstawienie wszystkich dostępnych systemów pomiarowych. Autorzy tej pracy w oparciu

13 o własne doświadczenia oraz posiadany sprzęt pomiarowy pragną przedstawić wybrane systemy zarówno przenośne jaki i stacjonarne, które sprawdzają się w trakcie badań. Pierwszym z prezentowanych systemów pomiarowych jest przenośny analizator dźwięku i drgań SVAN 912AE, który jest cyfrowym analizatorem i miernikiem poziomu dźwięku oraz drgań klasy 1 zgodnie z normami IEC 651, IEC 804, IEC [37]. Przyrząd ten jest przeznaczony do wykonywania: pomiarów akustycznych, monitorowania hałasu w środowisku, pomiaru zagrożeń w miejscu pracy, oceny wpływu drgań na człowieka oraz monitorowania stanu maszyn. Analizator wyposażony w mikrofon 1/4" umożliwia pomiar poziomu ultradźwięków w pasmach 1/3 oktawy do częstotliwości 90 khz. Analizator SVAN 912AE przedstawiono na rysunku 4.7. Dzięki wbudowanym dwóm procesorom sygnałowym SVAN 912AE może na bieżąco wykonywać analizę wąskopasmową (FFT) oraz analizę w pasmach oktawowych lub tercjowych (łącznie z analizą statystyczną w tych pasmach). Rys Przenośny analizator dźwięku i drgań SVAN 912AE [37] Przyrząd jest wyposażony we wszystkie niezbędne, wymagane przez normy, filtry korekcyjne A, C, G oraz Lin (Klasa 1: IEC 651, IEC 8041). Wyniki pomiarów mogą być przedstawiane jako wartości skuteczne, wartości szczytowe, histogramy, wykresy czasowe lub widma częstotliwości. Analizator pracuje w dwóch trybach: meter mode i analyzer mode [37]. W trybie METER MODE możliwe jest wykorzystanie standardowych i zaawansowanych funkcji całkującego miernika poziomu dźwięku oraz miernika drgań. Pozwala również na dokonywanie pomiarów zgodnie z wymaganiami tzw. norm pomiarowych (dla drgań są to normy ISO 2631 i ISO 5349). W tym trybie możliwy jest także pomiar wartości skutecznej (RMS) rys.4.8- sygnałów napięciowych [37]. Rys Widok ekranu przyrządu w trybie METER MODE [37]

14 Tryb ANALYZER MODE pozwala użytkownikowi na obserwację i pomiar przebiegu wejściowego w dziedzinie częstotliwości dla analizy oktawowej i tercjowej oraz w dziedzinie czasu. Po przełączeniu analizatora w tryb pracy ekran podzielony jest na dwie części: pole przeznaczone na graficzną prezentację sygnałów pomiarowych w obu dziedzinach (wykresy widm lub przebiegi czasowe), pole opisowe używane do wyświetlania tekstów. Wyboru głównych funkcji analizy sygnałów można dokonać w polu FUNCTION, w którym dostępne są następujące opcje: Time pomiar przebiegu czasowego, Spectrum analiza częstotliwościowa mierzonego sygnału prowadzona za pomocą algorytmu szybkiego przekształcenia Fouriera (FFT), 1/1 Oct. analiza częstotliwościowa mierzonego sygnału prowadzona za pomocą filtrów cyfrowych w pasmach oktawowych, 1/3 Oct. analiza częstotliwościowa mierzonego sygnału prowadzona za pomocą filtrów cyfrowych w pasmach 1/3-oktawowych (tercjowych). Na rysunku 4.9 przedstawiono przykładowy widok ekranu przyrządu w trybie ANALYZER MODE dla analizy przebiegów czasowych sygnału [37]. Rys.4.9. Widok ekranu w trybie ANALYZER MODE, FUNCTION, funkcja Time [37] Ponadto analizator został wyposażony w aplikację do analizy danych na stanowisku komputerowym Svan PC, która umożliwia przeprowadzenie prostej analizy otrzymanych wyników oraz eksport wyników do plików pomiarowych. Na rysunku 4.10 przedstawiono interfejs okna głównego oprogramowania Svan PC. Analizator SVAN 912AE może być stosowany do oceny stanowisk pracy oraz szkodliwego oddziaływania hałasu i drgań na środowisko naturalne. Możliwe jest również wykorzystanie analizatora w pomiarach laboratoryjnych oraz pracach związanych z opracowaniem lub udoskonalaniem nowych produktów. Rys Okno głównego oprogramowania Svan PC [37]

15 Inny system diagnostycznym stosowanym do monitorowania i diagnostyki maszyn jest system Vibex firmy EC Systems [34]. Jest to nowoczesnym systemem monitorowania i diagnostyki maszyn wirujących, ze szczególnym uwzględnieniem maszyn ułożyskowanych tocznie. Łożyska toczne nadzorowane są za pomocą techniki wyznaczania obwiedni sygnału, która pozwala na wykrycie zużycia elementu dużo szybciej niż algorytmy oparte na normalnym widmie. Schemat systemu przedstawiono na rysunku 4.11, natomiast system Vibex składa się z następujących elementów [34]: czujniki drgań ICP, moduły akwizycji VIBdin, serwera systemu, przeglądarka Vibex Browser. Rys Schemat systemu Vibex [34] Sygnały drgań mogą być pobierane z akcelerometrów (ICP) lub czujników wiroprądowych. Dodatkowo system może pobierać sygnały wolnozmienne, które są traktowane jako kanały procesowe (np. moc, prędkość obrotowa, temperatury, itp.). Po zdefiniowaniu kanałów wejściowych, definiowana jest kinematyka nadzorowanej maszyny. System automatycznie wyznacza prędkości obrotowe poszczególnych wałów i częstotliwości charakterystyczne układu (przekładnie, łożyska). Następnie należy przypisać czujniki do elementów maszyny, a system automatycznie definiuje i konfiguruje algorytmy monitorowania maszyny. Stosowany jest szereg algorytmów, od podstawowej oceny stanu, aż do zaawansowanych, jak nadzór linii harmonicznych. Łożyska toczne nadzorowane są za pomocą techniki wyznaczania obwiedni sygnału, która pozwala na wykrycie zużycia elementu dużo szybciej niż algorytmy oparte na klasycznym widmie sygnału. Na rys przedstawiono okno systemu Vibex w trakcie analizy pracy przekładni zębatej. Rys System Vibex w trakcie badań stanowiskowych [34]

16 System VIBex automatycznie tworzy progi alarmowe dla wszystkich nadzorowanych wielkości, co pozwala na zaoszczędzenie wielu godzin pracy nad konfiguracją systemu pomiarowego. W skład systemu wchodzi także narzędzie do automatycznego wyznaczania wartości progów(ostrzeżeń i alarmów). Progi te mogą być definiowane osobno dla kilku stanów maszyny. Po skonfigurowaniu i uruchomieniu systemu, można obserwować stan maszyn dzięki wielu wygodnym i funkcjonalnym wykresom. Stan systemu jest natychmiast widoczny na pasku statusu (kolorowe diody). Wszystkie wykryte przekroczenia są przedstawione na drzewie po lewej stronie ekranu i są propagowane przez drzewo aż do kanału, który był źródłem alarmu 34. VIBex jest systemem bardzo wygodnym w obsłudze. Możliwe jest otwieranie wykresu poprzez tylko jedno klikniecie myszką, przeskakiwanie między wykresami lub eksport danych z wykresu do raportu (np. do pliku MS Word albo do pliku graficznego). Podczas analizy widma sygnału możliwe jest nałożenie na wykres widma odniesienia (zapisanego w znanych warunkach poprawnej pracy maszyny). Możliwa jest zmiana jednostek, typu widma oraz jego kolorów. Możliwe jest również nanoszenie na wykres linii odpowiadających harmonicznym częstotliwości pochodzących od wybranych elementów maszyny oraz wyszukanie harmonicznych, które mogą być przyczyną wybranej linii na widmie. Przykładowe wyniki graficznej analizy danych pomiarowych przedstawiono na rysunku Rys Okno graficznej analizy danych pomiarowych systemu Vibex [34] VIBex posiada wiele innych funkcji, składających się na zaawansowane, ale proste w użyciu narzędzie do monitorowania i diagnostyki maszyn. VIBex został opracowany przez firmę EC Systems, EC Grupa we współpracy z AGH w Krakowie [34]. Do jednych z najbardziej zaawansowanych systemów pomiarowych stosowanych w badaniach diagnostycznych można zaliczyć system LMS SCADAS Recorder. LMS SCADAS Recorder to urządzenie łączące cechy analizatora i klasycznego rejestratora. Na rysunku 4.14 przedstawiono płytę czołową systemu LMS SCADAS [35]. Uniwersalność zastosowania tego rodzaju systemu pomiarowego wyróżnia się tym, że w zależności od specyfiki przeprowadzanych badań diagnostycznych użytkownik sam konfiguruje urządzenie w niezbędny zestaw kart pomiarowych z odpowiednią ilością kanałów pomiarowych. W odróżnieniu od klasycznych rejestratorów LMS SCADAS Recorder jest w pełni zautomatyzowany i nie potrzebuje sterowania poprzez komputer lub sterowania zdalnego do przeprowadzenia procesu rejestracji sygnałów pomiarowych. Dane bezpieczne zapisywane są na karcie CompactFlash. Urządzenie to jest całkowicie kompatybilne z profesjonalnym oprogramowaniem inżynierskim. Dopiero połączenie rekordera oraz

17 oprogramowania do analizy danych w pełni pokazuje możliwości zastosowania tego systemu w praktyce inżynierskiej. Na uwagę zasługuje tutaj oprogramowanie LMS Test.Lab [35]. Rys LMS SCADAS Recorder [35] LMS Test.Lab to kompletny system oferujący wszystko co jest potrzebne do prowadzenia pomiarów, akwizycji danych, ich analizy i opracowywania raportów. System zawiera procedury dedykowane do testów strukturalnych i akustycznych, testów środowiskowych i kontroli drgań oraz testów maszyn wirujących. Okno dialogowe oprogramowania przedstawione zostało na rysunku 4.15 [35]. Rys Okno dialogowe programu LMS Test.Lab [35] LMS Test.Lab używany jest do wstępnego dostarczenia danych zebranych na rzeczywistych obiektach i wkomponowania ich w proces symulacji. Może zostać użyty do dostarczenia oprogramowaniu symulacyjnemu danych na temat modeli zależnych, które są zbyt trudne do realizacji lub ich stworzenie zajęłoby zbyt wiele czasu. Po przetestowanie stworzonego na bazie symulacji prototypu możemy przeprowadzić jego testy, a LMS Test.Lab dostarczy nam danych do jego modyfikacji i poprawy. Jedyną drogą prowadzącą do uzyskania najlepszych rezultatów jest kombinacja symulacji i testów na rzeczywistych obiektach, które na bazie nich powstały [35]. Dopełnieniem systemu pomiarowego jest system LMS Virtual.Lab, który pozwala na połączenie najważniejszych aspektów symulacji i testów na istniejących obiektach. Oferuje

18 unikatowe, hybrydowe podejście do symulacji dane wejściowe pochodzące z rzeczywistych obiektów łączone są z danymi z obiektów symulowanych. Okno dialogowe systemu przedstawione zostało na rysunku Rys Okno dialogowe oprogramowania LMS Virtual.Lab [35] LMS Virtual.Lab to zintegrowane środowisko pozwalające na symulowanie zachowania systemów mechanicznych w zakresie integralności strukturalnej, drgań i hałasu, trwałości, dynamiki, zachowania w czasie jazdy i przemieszczenia oraz innych atrybutów [35]. Rozwiązaniem konkurencyjnym na rynku zaawansowanych narzędzi do akwizycji i analizy sygnałów jest system wielokanałowej rejestracji i analizy sygnałów wibroakustycznych PULSE firmy Brüel & Kjær. Unikalność na skalę światową tego urządzenia wynika z nowatorskich rozwiązań firmy Brüel & Kjær w zakresie akwizycji sygnału drgań i hałasu. Zastosowana nowoczesna technologia procesora sygnałowego pozwoliła uzyskać dynamikę pomiaru przekraczającą 160dB, co oznacza możliwość jednoczesnego rejestrowania drgań sejsmicznych aż po hałas startującego samolotu odrzutowego, czy detonacji ładunków wybuchowych. Analizator wraz ze wzbudnikiem drgań przedstawiono na rysunku Rys Wielokanałowy system PULSE ze wzbudnikiem drgań [38] Środowisko analizatora PULSE pozwala na kompleksową analizę klimatu akustycznego oraz drgań mechanicznych. System wyposażony jest w pakiet specjalistycznego oprogramowania do analizy modalnej maszyn i urządzeń. Przykładowe okno tworzenia geometrii w trakcie analizy modalnej przedstawiono na rysunku 4.18.

19 Rys Okno modułu tworzenia geometrii badanego obiektu w systemie PULSE Jako wynik w procesie analizy modalnej w systemie PULSE uzyskujemy zintegrowane okno danych pomiarowych, moduł geometrii z postaciami drgań własnych dla zidentyfikowanych częstości modalnych oraz inne dane, które przedstawiono na rys Rys Okno modułu wyników analizy modalnej w systemie PULSE System PULSE jest z powodzeniem wykorzystywany w diagnostyce maszyn i urządzeń oraz środków transportu i środowiska naturalnego, a także pomiarów normatywnych i certyfikacji wyrobów ze względu na generowany hałas i drgania. PODSUMOWANIE W rozdziale czwartym przedstawiona została problematyka prawidłowego przygotowania i przeprowadzenia testów diagnostycznych obiektów rzeczywistych. Właściwe przygotowanie do badań i przemyślenie wszystkich aspektów prowadzenia eksperymentu eliminuje błędy, skraca czas pomiarów i analizy wyników oraz wpływa na jakość stawianej diagnozy. W rozdziale tym ponadto przedstawiono wybrane systemy diagnostyczne, stanowiące jedne z najnowszych narzędzi w rękach inżynierów niezbędne do badań nowoczesnych konstrukcji maszyn i obiektów technicznych.

Struktura układu pomiarowego drgań mechanicznych

Struktura układu pomiarowego drgań mechanicznych Wstęp Diagnostyka eksploatacyjna maszyn opiera się na obserwacji oraz analizie sygnału uzyskiwanego za pomocą systemu pomiarowego. Pomiar sygnału jest więc ważnym, integralnym jej elementem. Struktura

Bardziej szczegółowo

Wymiar: Forma: Semestr: 30 h wykład VII 30 h laboratoria VII

Wymiar: Forma: Semestr: 30 h wykład VII 30 h laboratoria VII Pomiary przemysłowe Wymiar: Forma: Semestr: 30 h wykład VII 30 h laboratoria VII Efekty kształcenia: Ma uporządkowaną i pogłębioną wiedzę z zakresu metod pomiarów wielkości fizycznych w przemyśle. Zna

Bardziej szczegółowo

System monitoringu jakości energii elektrycznej

System monitoringu jakości energii elektrycznej System monitoringu jakości energii elektrycznej Pomiary oraz analiza jakości energii elektrycznej System Certan jest narzędziem pozwalającym na ciągłą ocenę parametrów jakości napięć i prądów w wybranych

Bardziej szczegółowo

Komputerowe systemy pomiarowe. Dr Zbigniew Kozioł - wykład Mgr Mariusz Woźny - laboratorium

Komputerowe systemy pomiarowe. Dr Zbigniew Kozioł - wykład Mgr Mariusz Woźny - laboratorium Komputerowe systemy pomiarowe Dr Zbigniew Kozioł - wykład Mgr Mariusz Woźny - laboratorium 1 - Cel zajęć - Orientacyjny plan wykładu - Zasady zaliczania przedmiotu - Literatura Klasyfikacja systemów pomiarowych

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn

POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN. Ćwiczenie D - 4. Zastosowanie teoretycznej analizy modalnej w dynamice maszyn POLITECHNIKA ŁÓDZKA INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN Ćwiczenie D - 4 Temat: Zastosowanie teoretycznej analizy modalnej w dynamice maszyn Opracowanie: mgr inż. Sebastian Bojanowski Zatwierdził:

Bardziej szczegółowo

Cyfrowy wzmacniacz AED dla przetworników tensometrycznych.

Cyfrowy wzmacniacz AED dla przetworników tensometrycznych. Cyfrowy wzmacniacz AED dla przetworników tensometrycznych. Zamień swoje analogowe przetworniki wagi na cyfrowe. AED sprawia, że wdrażanie systemów sterowania procesami jest łatwe i wygodne. AED przetwarza

Bardziej szczegółowo

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego

Przetworniki A/C. Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Przetworniki A/C Ryszard J. Barczyński, 2010 2015 Materiały dydaktyczne do użytku wewnętrznego Parametry przetworników analogowo cyfrowych Podstawowe parametry przetworników wpływające na ich dokładność

Bardziej szczegółowo

Dwa w jednym teście. Badane parametry

Dwa w jednym teście. Badane parametry Dwa w jednym teście Rys. Jacek Kubiś, Wimad Schemat zawieszenia z zaznaczeniem wprowadzonych pojęć Urządzenia do kontroli zawieszeń metodą Boge badają ich działanie w przebiegach czasowych. Wyniki zależą

Bardziej szczegółowo

3GHz (opcja 6GHz) Cyfrowy Analizator Widma GA4063

3GHz (opcja 6GHz) Cyfrowy Analizator Widma GA4063 Cyfrowy Analizator Widma GA4063 3GHz (opcja 6GHz) Wysoka kla sa pomiarowa Duże możliwości pomiarowo -funkcjonalne Wysoka s tabi lność Łatwy w użyc iu GUI Małe wymiary, lekki, przenośny Opis produktu GA4063

Bardziej szczegółowo

Przyrządy i przetworniki pomiarowe

Przyrządy i przetworniki pomiarowe Przyrządy i przetworniki pomiarowe Są to narzędzia pomiarowe: Przyrządy -służące do wykonywania pomiaru i służące do zamiany wielkości mierzonej na sygnał pomiarowy Znajomość zasady działania przyrządów

Bardziej szczegółowo

Rejestratory Sił, Naprężeń.

Rejestratory Sił, Naprężeń. JAS Projektowanie Systemów Komputerowych Rejestratory Sił, Naprężeń. 2012-01-04 2 Zawartość Typy rejestratorów.... 4 Tryby pracy.... 4 Obsługa programu.... 5 Menu główne programu.... 7 Pliki.... 7 Typ

Bardziej szczegółowo

SmartCheck. FAG - linia produktów do diagnostyki drganiowej. ProCheck. DTECTX1 s. SmartCheck. huta / papiernia / kopalnia. łożyska

SmartCheck. FAG - linia produktów do diagnostyki drganiowej. ProCheck. DTECTX1 s. SmartCheck. huta / papiernia / kopalnia. łożyska SmartCheck FAG - linia produktów do diagnostyki drganiowej DTECTX1 s WiPro s ProCheck SmartCheck Detector III wentylator łożyska zaawansowanie huta / papiernia / kopalnia FAG SmartCheck - zastosowanie

Bardziej szczegółowo

System monitoringu i diagnostyki drgań EH-Wibro

System monitoringu i diagnostyki drgań EH-Wibro System monitoringu i diagnostyki drgań EH-Wibro Opis działania Przetworniki drgań, wibracji i prędkości obrotowej są montowane i dobrane według wymogów producenta przekładni. Urządzenia typu EH-O/06/07.xx,

Bardziej szczegółowo

Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2

Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2 dr inż. ALEKSANDER LISOWIEC dr hab. inż. ANDRZEJ NOWAKOWSKI Instytut Tele- i Radiotechniczny Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2 W artykule przedstawiono

Bardziej szczegółowo

Pomiar prędkości obrotowej

Pomiar prędkości obrotowej 2.3.2. Pomiar prędkości obrotowej Metody: Kontaktowe mechaniczne (prądniczki tachometryczne różnych typów), Bezkontaktowe: optyczne (światło widzialne, podczerwień, laser), elektromagnetyczne (indukcyjne,

Bardziej szczegółowo

Dźwięk podstawowe wiadomości technik informatyk

Dźwięk podstawowe wiadomości technik informatyk Dźwięk podstawowe wiadomości technik informatyk I. Formaty plików opisz zalety, wady, rodzaj kompresji i twórców 1. Format WAVE. 2. Format MP3. 3. Format WMA. 4. Format MIDI. 5. Format AIFF. 6. Format

Bardziej szczegółowo

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO

WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO Mirosław KAŹMIERSKI Okręgowy Urząd Miar w Łodzi 90-132 Łódź, ul. Narutowicza 75 oum.lodz.w3@gum.gov.pl WZORCOWANIE URZĄDZEŃ DO SPRAWDZANIA LICZNIKÓW ENERGII ELEKTRYCZNEJ PRĄDU PRZEMIENNEGO 1. Wstęp Konieczność

Bardziej szczegółowo

Metrologia: organizacja eksperymentu pomiarowego

Metrologia: organizacja eksperymentu pomiarowego Metrologia: organizacja eksperymentu pomiarowego (na podstawie: Żółtowski B. Podstawy diagnostyki maszyn, 1996) dr inż. Paweł Zalewski Akademia Morska w Szczecinie Teoria eksperymentu: Teoria eksperymentu

Bardziej szczegółowo

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW.

CZWÓRNIKI KLASYFIKACJA CZWÓRNIKÓW. CZWÓRNK jest to obwód elektryczny o dowolnej wewnętrznej strukturze połączeń elementów, mający wyprowadzone na zewnątrz cztery zaciski uporządkowane w dwie pary, zwane bramami : wejściową i wyjściową,

Bardziej szczegółowo

LUPS-11ME LISTWOWY UNIWERSALNY PRZETWORNIK SYGNAŁOWY DOKUMENTACJA TECHNICZNO-RUCHOWA. Wrocław, kwiecień 2003 r.

LUPS-11ME LISTWOWY UNIWERSALNY PRZETWORNIK SYGNAŁOWY DOKUMENTACJA TECHNICZNO-RUCHOWA. Wrocław, kwiecień 2003 r. LISTWOWY UNIWERSALNY PRZETWORNIK SYGNAŁOWY DOKUMENTACJA TECHNICZNO-RUCHOWA Wrocław, kwiecień 2003 r. 50-305 WROCŁAW TEL./FAX (+71) 373-52-27 ul. S. Jaracza 57-57a TEL. 0-602-62-32-71 str.2 SPIS TREŚCI

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Energetyka Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Uzyskanie podstawowej wiedzy

Bardziej szczegółowo

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora.

Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. I. Cel ćwiczenia ĆWICZENIE 6 Tranzystory bipolarne. Właściwości wzmacniaczy w układzie wspólnego kolektora. Badanie właściwości wzmacniaczy tranzystorowych pracujących w układzie wspólnego kolektora. II.

Bardziej szczegółowo

ĆWICZENIE nr 3. Badanie podstawowych parametrów metrologicznych przetworników analogowo-cyfrowych

ĆWICZENIE nr 3. Badanie podstawowych parametrów metrologicznych przetworników analogowo-cyfrowych Politechnika Łódzka Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych WWW.DSOD.PL LABORATORIUM METROLOGII ELEKTRONICZNEJ ĆWICZENIE nr 3 Badanie podstawowych parametrów metrologicznych przetworników

Bardziej szczegółowo

Procedura techniczna wyznaczania poziomu mocy akustycznej źródeł ultradźwiękowych

Procedura techniczna wyznaczania poziomu mocy akustycznej źródeł ultradźwiękowych Procedura techniczna wyznaczania poziomu mocy akustycznej źródeł ultradźwiękowych w oparciu o pomiary poziomu ciśnienia akustycznego w punktach pomiarowych lub liniach omiatania na półkulistej powierzchni

Bardziej szczegółowo

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT)

8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) 8. Analiza widmowa metodą szybkiej transformaty Fouriera (FFT) Ćwiczenie polega na wykonaniu analizy widmowej zadanych sygnałów metodą FFT, a następnie określeniu amplitud i częstotliwości głównych składowych

Bardziej szczegółowo

PR242012 23 kwietnia 2012 Mechanika Strona 1 z 5. XTS (extended Transport System) Rozszerzony System Transportowy: nowatorska technologia napędów

PR242012 23 kwietnia 2012 Mechanika Strona 1 z 5. XTS (extended Transport System) Rozszerzony System Transportowy: nowatorska technologia napędów Mechanika Strona 1 z 5 XTS (extended Transport System) Rozszerzony System Transportowy: nowatorska technologia napędów Odwrócona zasada: liniowy silnik ruch obrotowy System napędowy XTS firmy Beckhoff

Bardziej szczegółowo

Diagnostyka stanu wibracyjnego fundamentu zespołu pomp diagonalnych.

Diagnostyka stanu wibracyjnego fundamentu zespołu pomp diagonalnych. Diagnostyka stanu wibracyjnego fundamentu zespołu pomp diagonalnych. Autorzy: mgr inż. Jan MARASZEWSKI mgr inż. Witold MARASZEWSKI 1. Zakres badań i pomiarów. Zakres badań obejmował pomiar drgań zespołu

Bardziej szczegółowo

CONSUL BUSINESS TRANSFER MARKETING

CONSUL BUSINESS TRANSFER MARKETING Firma Consul Business Transfer Marketing jest autoryzowanym Przedstawicielem Niemieckiej Firmy HAUBER ELEKTRONIK w Polsce na zasadach wyłączności. Naszym Klientom pragniemy zapewnić wysoką jakość usług,

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

TECHNOLOGIA MASZYN. Wykład dr inż. A. Kampa

TECHNOLOGIA MASZYN. Wykład dr inż. A. Kampa TECHNOLOGIA MASZYN Wykład dr inż. A. Kampa Technologia - nauka o procesach wytwarzania lub przetwarzania, półwyrobów i wyrobów. - technologia maszyn, obejmuje metody kształtowania materiałów, połączone

Bardziej szczegółowo

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO

LABORATORIUM ELEKTROTECHNIKI POMIAR PRZESUNIĘCIA FAZOWEGO POLITECHNIKA ŚLĄSKA WYDZIAŁ TRANSPORTU KATEDRA LOGISTYKI I TRANSPORTU PRZEMYSŁOWEGO NR 1 POMIAR PRZESUNIĘCIA FAZOWEGO Katowice, październik 5r. CEL ĆWICZENIA Poznanie zjawiska przesunięcia fazowego. ZESTAW

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Sensory (czujniki)

Mechatronika i inteligentne systemy produkcyjne. Sensory (czujniki) Mechatronika i inteligentne systemy produkcyjne Sensory (czujniki) 1 Zestawienie najważniejszych wielkości pomiarowych w układach mechatronicznych Położenie (pozycja), przemieszczenie Prędkość liniowa,

Bardziej szczegółowo

Karta produktu. EH-Wibro. System monitoringu i diagnostyki drgań

Karta produktu. EH-Wibro. System monitoringu i diagnostyki drgań Karta produktu OPIS DZIAŁANIA Przetworniki drgań, wibracji i prędkości obrotowej są montowane i dobrane według wymogów producenta przekładni. Urządzenia typu EH-O/06/07.xx, które analizują dane z przetworników

Bardziej szczegółowo

Transformacja wiedzy w budowie i eksploatacji maszyn

Transformacja wiedzy w budowie i eksploatacji maszyn Uniwersytet Technologiczno Przyrodniczy im. Jana i Jędrzeja Śniadeckich w Bydgoszczy Wydział Mechaniczny Transformacja wiedzy w budowie i eksploatacji maszyn Bogdan ŻÓŁTOWSKI W pracy przedstawiono proces

Bardziej szczegółowo

Interfejs analogowy LDN-...-AN

Interfejs analogowy LDN-...-AN Batorego 18 sem@sem.pl 22 825 88 52 02-591 Warszawa www.sem.pl 22 825 84 51 Interfejs analogowy do wyświetlaczy cyfrowych LDN-...-AN zakresy pomiarowe: 0-10V; 0-20mA (4-20mA) Załącznik do instrukcji obsługi

Bardziej szczegółowo

Czujniki podczerwieni do bezkontaktowego pomiaru temperatury. Czujniki stacjonarne.

Czujniki podczerwieni do bezkontaktowego pomiaru temperatury. Czujniki stacjonarne. Czujniki podczerwieni do bezkontaktowego pomiaru temperatury Niemiecka firma Micro-Epsilon, której WObit jest wyłącznym przedstawicielem w Polsce, uzupełniła swoją ofertę sensorów o czujniki podczerwieni

Bardziej szczegółowo

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7

IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE Z RDZENIEM ARM7 Łukasz Deńca V rok Koło Techniki Cyfrowej dr inż. Wojciech Mysiński opiekun naukowy IMPLEMENTATION OF THE SPECTRUM ANALYZER ON MICROCONTROLLER WITH ARM7 CORE IMPLEMENTACJA ANALIZATORA WIDMA NA MIKROKONTROLERZE

Bardziej szczegółowo

Konfiguracja parametrów sondy cyfrowo analogowej typu CS-26/RS/U

Konfiguracja parametrów sondy cyfrowo analogowej typu CS-26/RS/U Konfiguracja parametrów sondy cyfrowo analogowej typu CS-26/RS/U Ostrów Wielkopolski, 25.02.2011 1 Sonda typu CS-26/RS/U posiada wyjście analogowe napięciowe (0...10V, lub 0...5V, lub 0...4,5V, lub 0...2,5V)

Bardziej szczegółowo

Podstawy elektroniki i metrologii

Podstawy elektroniki i metrologii Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Metrologii i Optoelektroniki Podstawy elektroniki i metrologii Studia I stopnia kier. Informatyka semestr 2 Ilustracje do

Bardziej szczegółowo

Ćwiczenie: "Mierniki cyfrowe"

Ćwiczenie: Mierniki cyfrowe Ćwiczenie: "Mierniki cyfrowe" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Próbkowanie

Bardziej szczegółowo

INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ BADANIE PRZETWORNIKÓW POMIAROWYCH

INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ BADANIE PRZETWORNIKÓW POMIAROWYCH INSTYTUT ELEKTROENERGETYKI POLITECHNIKI ŁÓDZKIEJ ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH BADANIE PRZETWORNIKÓW POMIAROWYCH Instrukcja do ćwiczenia Łódź 1996 1. CEL ĆWICZENIA

Bardziej szczegółowo

Przetworniki AC i CA

Przetworniki AC i CA KATEDRA INFORMATYKI Wydział EAIiE AGH Laboratorium Techniki Mikroprocesorowej Ćwiczenie 4 Przetworniki AC i CA Cel ćwiczenia Celem ćwiczenia jest poznanie budowy i zasady działania wybranych rodzajów przetworników

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Wersja podstawowa pozwala na kompletne zarządzanie siecią, za pomocą funkcji oferowanych przez program:

Wersja podstawowa pozwala na kompletne zarządzanie siecią, za pomocą funkcji oferowanych przez program: Midas Evo został specjalnie opracowanym do komunikacji z urządzeniami pomiarowymi firmy IME takich jak: mierniki wielofunkcyjne, liczniki energii, koncentratory impulsów poprzez protokół komunikacji Modbus

Bardziej szczegółowo

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości

Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Politechnika Lubelska Wydział Elektrotechniki i Informatyki PRACA DYPLOMOWA MAGISTERSKA Zastosowanie procesorów AVR firmy ATMEL w cyfrowych pomiarach częstotliwości Marcin Narel Promotor: dr inż. Eligiusz

Bardziej szczegółowo

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH

BADANIE STATYCZNYCH WŁAŚCIWOŚCI PRZETWORNIKÓW POMIAROWYCH BADAIE STATYCZYCH WŁAŚCIWOŚCI PRZETWORIKÓW POMIAROWYCH 1. CEL ĆWICZEIA Celem ćwiczenia jest poznanie: podstawowych pojęć dotyczących statycznych właściwości przetworników pomiarowych analogowych i cyfrowych

Bardziej szczegółowo

Uniwersytet Wirtualny VU2012

Uniwersytet Wirtualny VU2012 XII Konferencja Uniwersytet Wirtualny VU2012 M o d e l N a r z ę d z i a P r a k t y k a Andrzej ŻYŁAWSKI Warszawska Wyższa Szkoła Informatyki Marcin GODZIEMBA-MALISZEWSKI Instytut Technologii Eksploatacji

Bardziej szczegółowo

POMIARY JAKOŚCI ENERGII ELEKTRYCZNEJ Z WYKORZYSTANIEM TECHNIKI

POMIARY JAKOŚCI ENERGII ELEKTRYCZNEJ Z WYKORZYSTANIEM TECHNIKI POMIARY JAKOŚCI ENERGII ELEKTRYCZNEJ Z WYKORZYSTANIEM TECHNIKI MIKROPROCESOROWEJ Krzysztof Urbański Instytut Informatyki i Elektroniki, Uniwersytet Zielonogórski 65-246 Zielona Góra, ul. Podgórna 50 e-mail:

Bardziej szczegółowo

DTR.ZSP-41.SP-11.SP-02 APLISENS PRODUKCJA PRZEMYSŁOWEJ APARATURY POMIAROWEJ I ELEMENTÓW AUTOMATYKI INSTRUKCJA OBSŁUGI

DTR.ZSP-41.SP-11.SP-02 APLISENS PRODUKCJA PRZEMYSŁOWEJ APARATURY POMIAROWEJ I ELEMENTÓW AUTOMATYKI INSTRUKCJA OBSŁUGI DTR.ZSP-41.SP-11.SP-02 APLISENS PRODUKCJA PRZEMYSŁOWEJ APARATURY POMIAROWEJ I ELEMENTÓW AUTOMATYKI INSTRUKCJA OBSŁUGI ZASILACZ SEPARATOR PRZETWORNIK SYGNAŁÓW ZSP-41 ZASILACZ SEPARATOR PRZETWORNIK SYGNAŁÓW

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl 3OF_III_D KOOF Szczecin: www.of.szc.pl XXXII OLIMPIADA FIZYCZNA (198/1983). Stopień III, zadanie doświadczalne D Źródło: Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Waldemar

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Katedra Technik Wytwarzania i Automatyzacji WYDZIAŁ BUDOWY MASZYN I LOTNICTWA INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Przedmiot: DIAGNOSTYKA I NADZOROWANIE SYSTEMÓW OBRÓBKOWYCH Temat: Pomiar charakterystyk

Bardziej szczegółowo

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32

Analiza i projektowanie oprogramowania. Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania Analiza i projektowanie oprogramowania 1/32 Analiza i projektowanie oprogramowania 2/32 Cel analizy Celem fazy określania wymagań jest udzielenie odpowiedzi na pytanie:

Bardziej szczegółowo

Dane techniczne analizatora CAT 4S

Dane techniczne analizatora CAT 4S Model CAT 4S jest typowym analizatorem CAT-4 z sondą o specjalnym wykonaniu, przystosowaną do pracy w bardzo trudnych warunkach. Dane techniczne analizatora CAT 4S Cyrkonowy Analizator Tlenu CAT 4S przeznaczony

Bardziej szczegółowo

Przedmiot: AUTOMATYKA CHŁODNICZA I KLIMATYZACYJNA

Przedmiot: AUTOMATYKA CHŁODNICZA I KLIMATYZACYJNA Przedmiot: AUTOMATYKA CHŁODNICZA I KLIMATYZACYJNA Temat: Systemy sterowania i monitoringu obiektów chłodniczych na przykładzie dużego obiektu handlowego (hipermarketu) System ADAP KOOL. Opracował: Mateusz

Bardziej szczegółowo

Jednostka centralna. Miejsca na napędy 5,25 :CD-ROM, DVD. Miejsca na napędy 3,5 : stacja dyskietek

Jednostka centralna. Miejsca na napędy 5,25 :CD-ROM, DVD. Miejsca na napędy 3,5 : stacja dyskietek Ćwiczenia 1 Budowa komputera PC Komputer osobisty (Personal Komputer PC) komputer (stacjonarny lub przenośny) przeznaczony dla pojedynczego użytkownika do użytku domowego lub biurowego. W skład podstawowego

Bardziej szczegółowo

Ultradźwiękowy miernik poziomu

Ultradźwiękowy miernik poziomu j Rodzaje IMP Opis Pulsar IMP jest ultradźwiękowym, bezkontaktowym miernikiem poziomu. Kompaktowa konstrukcja, specjalnie zaprojektowana dla IMP technologia cyfrowej obróbki echa. Programowanie ze zintegrowanej

Bardziej szczegółowo

Biomonitoring system kontroli jakości wody

Biomonitoring system kontroli jakości wody FIRMA INNOWACYJNO -WDROŻENIOWA ul. Źródlana 8, Koszyce Małe 33-111 Koszyce Wielkie tel.: 0146210029, 0146360117, 608465631 faks: 0146210029, 0146360117 mail: biuro@elbit.edu.pl www.elbit.edu.pl Biomonitoring

Bardziej szczegółowo

Oferujemy możliwość zaprojektowania i wdrożenia nietypowego czujnika lub systemu pomiarowego dedykowanego do Państwa potrzeb.

Oferujemy możliwość zaprojektowania i wdrożenia nietypowego czujnika lub systemu pomiarowego dedykowanego do Państwa potrzeb. Projekty dedykowane - wykonywane w przypadkach, gdy standardowe czujniki z oferty katalogowej ZEPWN nie zapewniają spełnienia wyjątkowych wymagań odbiorcy. Każdy projekt rozpoczyna się od zebrania informacji

Bardziej szczegółowo

Problematyka budowy skanera 3D doświadczenia własne

Problematyka budowy skanera 3D doświadczenia własne Problematyka budowy skanera 3D doświadczenia własne dr inż. Ireneusz Wróbel ATH Bielsko-Biała, Evatronix S.A. iwrobel@ath.bielsko.pl mgr inż. Paweł Harężlak mgr inż. Michał Bogusz Evatronix S.A. Plan wykładu

Bardziej szczegółowo

Instrukcja użytkownika ARSoft-WZ1

Instrukcja użytkownika ARSoft-WZ1 05-090 Raszyn, ul Gałczyńskiego 6 tel (+48) 22 101-27-31, 22 853-48-56 automatyka@apar.pl www.apar.pl Instrukcja użytkownika ARSoft-WZ1 wersja 3.x 1. Opis Aplikacja ARSOFT-WZ1 umożliwia konfigurację i

Bardziej szczegółowo

Panelowe przyrządy cyfrowe. Ogólne cechy techniczne

Panelowe przyrządy cyfrowe. Ogólne cechy techniczne DHB Panelowe przyrządy cyfrowe Panelowe przyrządy cyfrowe, pokazujące na ekranie, w zależności od modelu, wartość mierzonej zmiennej elektrycznej lub wartość proporcjonalną sygnału procesowego. Zaprojektowane

Bardziej szczegółowo

CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL

CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL CHARAKTERYSTYKI BRAMEK CYFROWYCH TTL. CEL ĆWICZENIA Celem ćwiczenia jest poznanie zasad działania, budowy i właściwości podstawowych funktorów logicznych wykonywanych w jednej z najbardziej rozpowszechnionych

Bardziej szczegółowo

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU

Katedra Technik Wytwarzania i Automatyzacji STATYSTYCZNA KONTROLA PROCESU Katedra Technik Wytwarzania i Automatyzacji METROLOGIA I KONTKOLA JAKOŚCI - LABORATORIUM TEMAT: STATYSTYCZNA KONTROLA PROCESU 1. Cel ćwiczenia Zapoznanie studentów z podstawami wdrażania i stosowania metod

Bardziej szczegółowo

Przystawka oscyloskopowa z analizatorem stanów logicznych. Seria DSO-29xxA&B. Skrócona instrukcja użytkownika

Przystawka oscyloskopowa z analizatorem stanów logicznych. Seria DSO-29xxA&B. Skrócona instrukcja użytkownika Przystawka oscyloskopowa z analizatorem stanów logicznych Seria DSO-29xxA&B Skrócona instrukcja użytkownika Zawartość zestawu: Przystawka DSO-29XXA lub DSO-29XXB Moduł analizatora stanów logicznych Sondy

Bardziej szczegółowo

Wzmacniacz jako generator. Warunki generacji

Wzmacniacz jako generator. Warunki generacji Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są

Czujniki. Czujniki służą do przetwarzania interesującej nas wielkości fizycznej na wielkość elektryczną łatwą do pomiaru. Najczęściej spotykane są Czujniki Ryszard J. Barczyński, 2010 2015 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Czujniki Czujniki służą do przetwarzania interesującej

Bardziej szczegółowo

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka

Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Projekt współfinansowany ze środków Europejskiego Funduszu Rozwoju Regionalnego w ramach Programu Operacyjnego Innowacyjna Gospodarka Poznań, 16.05.2012r. Raport z promocji projektu Nowa generacja energooszczędnych

Bardziej szczegółowo

LUZS-12 LISTWOWY UNIWERSALNY ZASILACZ SIECIOWY DOKUMENTACJA TECHNICZNO-RUCHOWA. Wrocław, kwiecień 1999 r.

LUZS-12 LISTWOWY UNIWERSALNY ZASILACZ SIECIOWY DOKUMENTACJA TECHNICZNO-RUCHOWA. Wrocław, kwiecień 1999 r. LISTWOWY UNIWERSALNY ZASILACZ SIECIOWY DOKUMENTACJA TECHNICZNO-RUCHOWA Wrocław, kwiecień 1999 r. 50-305 WROCŁAW TEL./FAX (+71) 373-52-27 ul. S. Jaracza 57-57a TEL. 602-62-32-71 str.2 SPIS TREŚCI 1.OPIS

Bardziej szczegółowo

Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia

Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY. 1. Cel ćwiczenia Ćwiczenie 6 IZOLACJA DRGAŃ MASZYNY 1. Cel ćwiczenia Przeprowadzenie izolacji drgań przekładni zębatej oraz doświadczalne wyznaczenie współczynnika przenoszenia drgań urządzenia na fundament.. Wprowadzenie

Bardziej szczegółowo

Z powyższej zależności wynikają prędkości synchroniczne n 0 podane niżej dla kilku wybranych wartości liczby par biegunów:

Z powyższej zależności wynikają prędkości synchroniczne n 0 podane niżej dla kilku wybranych wartości liczby par biegunów: Bugaj Piotr, Chwałek Kamil Temat pracy: ANALIZA GENERATORA SYNCHRONICZNEGO Z MAGNESAMI TRWAŁYMI Z POMOCĄ PROGRAMU FLUX 2D. Opiekun naukowy: dr hab. inż. Wiesław Jażdżyński, prof. AGH Maszyna synchrocznina

Bardziej szczegółowo

projekt przetwornika inteligentnego do pomiaru wysokości i prędkości pionowej BSP podczas fazy lądowania;

projekt przetwornika inteligentnego do pomiaru wysokości i prędkości pionowej BSP podczas fazy lądowania; PRZYGOTOWAŁ: KIEROWNIK PRACY: MICHAŁ ŁABOWSKI dr inż. ZDZISŁAW ROCHALA projekt przetwornika inteligentnego do pomiaru wysokości i prędkości pionowej BSP podczas fazy lądowania; dokładny pomiar wysokości

Bardziej szczegółowo

SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D

SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D 1. Wprowadzenie...3 1.1. Funkcje urządzenia...3 1.2. Charakterystyka urządzenia...3 1.3. Warto wiedzieć...3 2. Dane techniczne...4

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

OBLICZANIE KÓŁK ZĘBATYCH

OBLICZANIE KÓŁK ZĘBATYCH OBLICZANIE KÓŁK ZĘBATYCH koło podziałowe linia przyporu P R P N P O koło podziałowe Najsilniejsze zginanie zęba następuje wówczas, gdy siła P N jest przyłożona u wierzchołka zęba. Siłę P N można rozłożyć

Bardziej szczegółowo

Laboratorium Telewizji Cyfrowej

Laboratorium Telewizji Cyfrowej Laboratorium Telewizji Cyfrowej Badanie wybranych elementów sieci TV kablowej Jarosław Marek Gliwiński Robert Sadowski Przemysław Szczerbicki Paweł Urbanek 14 maja 2009 1 Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Paweł Pełczyński ppelczynski@swspiz.pl

Mechatronika i inteligentne systemy produkcyjne. Paweł Pełczyński ppelczynski@swspiz.pl Mechatronika i inteligentne systemy produkcyjne Paweł Pełczyński ppelczynski@swspiz.pl 1 Program przedmiotu Wprowadzenie definicja, cel i zastosowania mechatroniki Urządzenie mechatroniczne - przykłady

Bardziej szczegółowo

Automatyka przemysłowa na wybranych obiektach. mgr inż. Artur Jurneczko PROCOM SYSTEM S.A., ul. Stargardzka 8a, 54-156 Wrocław

Automatyka przemysłowa na wybranych obiektach. mgr inż. Artur Jurneczko PROCOM SYSTEM S.A., ul. Stargardzka 8a, 54-156 Wrocław Automatyka przemysłowa na wybranych obiektach mgr inż. Artur Jurneczko PROCOM SYSTEM S.A., ul. Stargardzka 8a, 54-156 Wrocław 2 Cele prezentacji Celem prezentacji jest przybliżenie automatyki przemysłowej

Bardziej szczegółowo

Prezentacja działalno

Prezentacja działalno Prezentacja działalno alności- usługi ugi AS INSTRUMENT POLSKA 05-075 075 Warszawa-Weso Wesoła Ul. Dzielna 21 Tel. +48 22 773 46 62 Faks +48 22 773 46 68 www.asinstrument.eu Podstawowy cel naszej działalności

Bardziej szczegółowo

PowerLab 4/35 z systemem LabChart Pro

PowerLab 4/35 z systemem LabChart Pro PowerLab 4/35 z systemem LabChart Pro ADInstrument. Systemy akwizycji danych i zestawy edukacyjne. Opis urządzenia PL3504/P PowerLab 4/35 to wysokowydajny system akwizycji danych odpowiedni do szerokiej

Bardziej szczegółowo

Mechatronika i inteligentne systemy produkcyjne. Aktory

Mechatronika i inteligentne systemy produkcyjne. Aktory Mechatronika i inteligentne systemy produkcyjne Aktory 1 Definicja aktora Aktor (ang. actuator) -elektronicznie sterowany człon wykonawczy. Aktor jest łącznikiem między urządzeniem przetwarzającym informację

Bardziej szczegółowo

AP Automatyka: Sonda do pomiaru wilgotności i temperatury HygroClip2-S

AP Automatyka: Sonda do pomiaru wilgotności i temperatury HygroClip2-S AP Automatyka: Sonda do pomiaru wilgotności i temperatury HygroClip2-S Do aplikacji związanych z kontrolą wilgotności względnej i temperatury powietrza, w których liczy się dokładność pomiarów, proponujemy

Bardziej szczegółowo

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych

Tranzystorowe wzmacniacze OE OB OC. na tranzystorach bipolarnych Tranzystorowe wzmacniacze OE OB OC na tranzystorach bipolarnych Wzmacniacz jest to urządzenie elektroniczne, którego zadaniem jest : proporcjonalne zwiększenie amplitudy wszystkich składowych widma sygnału

Bardziej szczegółowo

PROGRAM TESTOWY LCWIN.EXE OPIS DZIAŁANIA I INSTRUKCJA UŻYTKOWNIKA

PROGRAM TESTOWY LCWIN.EXE OPIS DZIAŁANIA I INSTRUKCJA UŻYTKOWNIKA EGMONT INSTRUMENTS PROGRAM TESTOWY LCWIN.EXE OPIS DZIAŁANIA I INSTRUKCJA UŻYTKOWNIKA EGMONT INSTRUMENTS tel. (0-22) 823-30-17, 668-69-75 02-304 Warszawa, Aleje Jerozolimskie 141/90 fax (0-22) 659-26-11

Bardziej szczegółowo

MIKROFALOWEJ I OPTOFALOWEJ

MIKROFALOWEJ I OPTOFALOWEJ E-LAB: LABORATORIUM TECHNIKI MIKROFALOWEJ I OPTOFALOWEJ Krzysztof MADZIAR Grzegorz KĘDZIERSKI, Jerzy PIOTROWSKI, Jerzy SKULSKI, Agnieszka SZYMAŃSKA, Piotr WITOŃSKI, Bogdan GALWAS Instytut Mikroelektroniki

Bardziej szczegółowo

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów.

Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. ĆWICZENIE 4 Tranzystory bipolarne. Podstawowe układy pracy tranzystorów. I. Cel ćwiczenia Zapoznanie się z układami zasilania tranzystorów. Wybór punktu pracy tranzystora. Statyczna prosta pracy. II. Układ

Bardziej szczegółowo

Systemy wbudowane. Paweł Pełczyński ppelczynski@swspiz.pl

Systemy wbudowane. Paweł Pełczyński ppelczynski@swspiz.pl Systemy wbudowane Paweł Pełczyński ppelczynski@swspiz.pl 1 Program przedmiotu Wprowadzenie definicja, zastosowania, projektowanie systemów wbudowanych Mikrokontrolery AVR Programowanie mikrokontrolerów

Bardziej szczegółowo

Międzynarodowe Targi Spawalnicze ExpoWELDING 2012 16-18 października 2012 NOWOŚCI TARGOWE

Międzynarodowe Targi Spawalnicze ExpoWELDING 2012 16-18 października 2012 NOWOŚCI TARGOWE Międzynarodowe Targi Spawalnicze ExpoWELDING 2012 16-18 października 2012 NOWOŚCI TARGOWE FIRMA: SOMAR S.A. ul. Karoliny 4 40-186 Katowice tel. 32 359 71 00 fax. 32 359 71 11 e-mail: biuro@somar.com.pl

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: I stopnia (inżynierskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania. Studia: I stopnia (inżynierskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Temat: Skalowanie czujników prędkości kątowej i orientacji przestrzennej 1. Analiza właściwości czujników i układów

Bardziej szczegółowo

KOOF Szczecin: www.of.szc.pl

KOOF Szczecin: www.of.szc.pl Źródło: LI OLIMPIADA FIZYCZNA (1/2). Stopień III, zadanie doświadczalne - D Nazwa zadania: Działy: Słowa kluczowe: Komitet Główny Olimpiady Fizycznej; Andrzej Wysmołek, kierownik ds. zadań dośw. plik;

Bardziej szczegółowo

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie)

Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Tematy prac dyplomowych w Katedrze Awioniki i Sterowania Studia I stopnia (inżynierskie) Temat: Pomiar prędkości kątowych samolotu przy pomocy czujnika ziemskiego pola magnetycznego 1. Analiza właściwości

Bardziej szczegółowo

Metodyka badań hałasu w zakresie słyszalnym, infradźwiękowym i ultradźwiękowym na stanowiskach pracy przy wydobyciu gazu łupkowego

Metodyka badań hałasu w zakresie słyszalnym, infradźwiękowym i ultradźwiękowym na stanowiskach pracy przy wydobyciu gazu łupkowego Metodyka badań hałasu w zakresie słyszalnym, infradźwiękowym i ultradźwiękowym na stanowiskach pracy przy wydobyciu gazu łupkowego Metodyka badań hałasu na stanowiskach pracy przy wydobyciu gazu łupkowego

Bardziej szczegółowo

Sterowanie jakością badań i analiza statystyczna w laboratorium

Sterowanie jakością badań i analiza statystyczna w laboratorium Sterowanie jakością badań i analiza statystyczna w laboratorium CS-17 SJ CS-17 SJ to program wspomagający sterowanie jakością badań i walidację metod badawczych. Może działać niezależnie od innych składników

Bardziej szczegółowo

DATAFLEX. Miernik momentu obrotowego DATAFLEX. Aktualizowany na bieżąco katalog dostępny na stronie www.ktr.com

DATAFLEX. Miernik momentu obrotowego DATAFLEX. Aktualizowany na bieżąco katalog dostępny na stronie www.ktr.com 307 Spis treści 307 Opis urządzenia 309 Typ 16/10, 16/30, 16/50 310 Akcesoria: RADEX -NC sprzęgło do serwonapędów 310 Typ 22/20, 22/50, 22/100 311 Akcesoria: RADEX -NC sprzęgło do serwonapędów 311 Typ

Bardziej szczegółowo

VÉRITÉ rzeczywistość ma znaczenie Vérité jest najnowszym, zaawansowanym technologicznie aparatem słuchowym Bernafon przeznaczonym dla najbardziej wymagających Użytkowników. Nieprzypadkowa jest nazwa tego

Bardziej szczegółowo

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE

Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1. 1. W p r owadze n ie 1 Rozdział 1 PODSTAWOWE POJĘCIA I DEFINICJE 1.1. WPROWADZENIE SYGNAŁ nośnik informacji ANALIZA SYGNAŁU badanie, którego celem jest identyfikacja własności, cech, miar sygnału; odtwarzanie

Bardziej szczegółowo

Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych

Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych ZP/UR/46/203 Zał. nr a do siwz Szczegółowy Opis Przedmiotu Zamówienia: Zestaw do badania cyfrowych układów logicznych Przedmiot zamówienia obejmuje następujące elementy: L.p. Nazwa Ilość. Zestawienie komputera

Bardziej szczegółowo