SYLABUS. Cele zajęć z przedmiotu

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "SYLABUS. Cele zajęć z przedmiotu"

Transkrypt

1 Załącznik nr 1 do Zarządzenia Rektora UR Nr 4/2012 z dnia r. SYLABUS Nazwa przedmiotu Nazwa jednostki prowadzącej przedmiot Analiza matematyczna Wydział Matematyczno-Przyrodniczy, Instytut Fizyki Kod przedmiotu Studia Kierunek studiów Poziom kształcenia Forma studiów Fizyka techniczna studia inżynierskie stacjonarne pierwszego stopnia Rodzaj przedmiotu podstawowy Rok i semestr studiów 1 rok, I semestr Imię i nazwisko koordynatora przedmiotu dr Krzysztof Kucab Imię i nazwisko osoby prowadzącej ( osób dr Krzysztof Kucab (wykład, ćwiczenia) prowadzących) zajęcia z przedmiotu Cele zajęć z przedmiotu Celem zajęć jest przekazanie wiedzy na temat podstawowych narzędzi analizy matematycznej; wykształcenie umiejętności intuicyjnego rozumienia omawianych narzędzi; nauczenie formułowania zagadnień i problemów fizycznych w języku matematyki oraz nabycie umiejętności praktycznego posługiwania się nimi w rozwiązywaniu prostych zagadnień matematycznych i fizycznych. Wymagania wstępne Znajomość matematyki na poziomie szkoły średniej Efekty kształcenia Wiedza: - ma wiedzę w zakresie matematyki obejmującą matematykę elementarną, algebrę liniową z geometrią, analizę oraz elementy matematyki dyskretnej, w tym metody matematyczne fizyki oraz metody numeryczne FT_W01. Umiejętności: - potrafi pozyskiwać informacje z literatury i innych źródeł; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie FT_U01 - ma umiejętność samokształcenia się, m.in. w celu podnoszenia kompetencji zawodowych FT_U06 Kompetencje społeczne: - rozumie potrzebę i zna możliwości ciągłego dokształcania się (studia drugiego i trzeciego stopnia, studia podyplomowe, kursy) - podnoszenia kompetencji zawodowych, osobistych i społecznych FT_K01

2 - ma świadomość roli społecznej absolwenta uniwersytetu, a zwłaszcza rozumie potrzebę formułowania i przekazywania społeczeństwu m.in. poprzez środki masowego przekazu informacji i opinii dotyczących osiągnięć fizyki technicznej; podejmuje starania, aby przekazać takie informacje i opinie w sposób powszechnie zrozumiały FT_K03 wykład 45 godzin ćwiczenia 45 godzin Problematyka wykładu: Forma(y) zajęć, liczba realizowanych godzin Treści programowe Wiadomości wstępne: elementy logiki (oznaczenia logiczne, podstawowe prawa rachunku zdań, tabele wartości logicznych); kwantyfikatory (ogólny, szczegółowy, operowanie kwantyfikatorami); elementy rachunku zbiorów (definicja zbioru, element zbioru, rachunek zbiorów, zbiory ograniczone, kresy zbiorów); rozszerzony zbiór liczb rzeczywistych (zbiór liczb rzeczywistych i jego podzbiory, odcinek, rozszerzony zbiór liczb rzeczywistych); funkcje jednej zmiennej (definicja, dziedzina, przeciwdziedzina, zbiór wartości, wykres funkcji, funkcja różnowartościowa, funkcja na, bijekcja, funkcja parzysta i nieparzysta, funkcja ograniczona, funkcja monotoniczna, funkcja odwrotna, funkcje złożone, przegląd funkcji elementarnych niektóre funkcje nieelementarne) 6 godz. Ciągi: definicja (definicja ciągu, ciąg ograniczony, monotoniczność ciągu); granica ciągu liczb rzeczywistych (definicja granicy właściwej i niewłaściwej, granica ciągu geometrycznego, twierdzenia dotyczące granic ciągów zbieżnych, arytmetyka granic ciągów, tw. o trzech ciągach, liczba e, logarytm naturalny, tw. o dwóch ciągach, symbole oznaczone i nieoznaczone, podciągi i ich granice, punkty skupienia ciągu, granica górna i dolna ciągu). 3 godz. Granice funkcji (sąsiedztwo, definicja Heinego i Cauchy ego granicy właściwej funkcji w punkcie, definicja Heinego i Cauchy ego granicy niewłaściwej funkcji w punkcie, warunek konieczny i wystarczający istnienia funkcji w punkcie, definicja Heinego i Cauchy ego granicy właściwej funkcji w nieskończoności, definicja Heinego i Cauchy ego granicy niewłaściwej funkcji w nieskończoności, arytmetyka granic funkcji, granica funkcji złożonej, tw. o trzech funkcjach, twierdzenia o granicach niewłaściwych funkcji, wyrażenia nieoznaczone, granice podstawowych wyrażeń nieoznaczonych, granice jednostronne funkcji, asymptoty wykresu funkcji (pionowa, pozioma ukośna)) 6 godz. Funkcje ciągłe (otoczenie punktu, definicja, ciągłość lewo- i prawo-stronna, ciągłość na zbiorze, nieciągłości pierwszego i drugiego rodzaju, ciągłość funkcji elementarnych, działania na funkcjach ciągłych, twierdzenia o funkcjach ciągłych) 3 godz. Rachunek różniczkowy funkcji jednej zmiennej (iloraz różnicowy, definicja pochodnej właściwej funkcji, interpretacja geometryczna i fizyczna, warunek konieczny istnienia

3 pochodnej właściwej, pochodne ważniejszych funkcji elementarnych, pochodna funkcji na zbiorze, pochodna niewłaściwa funkcji, twierdzenia o pochodnej, pochodna funkcji wektorowej, tw. Rolle a, Lagrange a, Cauchy ego, tw. o granicach nieoznaczonych - reguły de L Hospitala, pochodne wyższych rzędów, różniczka funkcji, wzór Taylora i jego zastosowania do wyznaczania ekstremów funkcji oraz obliczeń przybliżonych. 9 godz. Badanie funkcji (ekstrema lokalne funkcji; warunek konieczny Fermata, warunki wystarczające istnienia ekstremum, algorytm szukania wartości ekstremalnych na przedziale, funkcje wypukłe i wklęsłe; punkty przegięcia wykresu funkcji. Badanie przebiegu zmienności funkcji) 3 godz. Całki nieoznaczone (funkcje pierwotne, całka nieoznaczona, związki całek z pochodnymi, całki nieoznaczone ważniejszych funkcji elementarnych, tw. o liniowości całki nieoznaczonej, całkowanie efektywne (twierdzenie o całkowaniu przez części i o całkowaniu przez podstawienie), całkowanie funkcji wymiernych; rozkład na ułamki proste. Całkowanie łatwych niewymierności; podstawienia Eulera i metoda współczynników nieoznaczonych. Całkowanie funkcji trygonometrycznych. Przykłady całek nieelementarnych. 6 godz. Całka oznaczona Riemanna (suma całkowa, definicja całki oznaczonej Riemanna, interpretacja geometryczna całki, wybrane zastosowania fizyczne, całka z funkcji wektorowej, obliczanie całek przy pomocy sumy całkowej podziału równomiernego, tw. Newtona Leibniza, tw. o liniowości całki oznaczonej, tw. o całkowaniu przez części i całkowaniu przez podstawienie, przybliżone metody obliczania całek) 6 godz. Całki niewłaściwe (całki niewłaściwe pierwszego rodzaju, całka niewłaściwa na prostej, kryteria zbieżności całek niewłaściwych pierwszego rodzaju, całki niewłaściwe drugiego rodzaju, kryteria zbieżności całek niewłaściwych drugiego rodzaju 3 godz. Suma godzin: 45 Problematyka ćwiczeń: Na ćwiczeniach poruszana jest problematyka zgodna z problematyką wykładu. Szacowana liczba godzin przypadających na poszczególne zagadnienia jest taka sama jak dla wykładu. Suma godzin: 45 Metody dydaktyczne Sposób(y) i forma(y) zaliczenia wykład z prezentacją multimedialną; ćwiczenia rozwiązywanie zadań przy tablicy Sposób zaliczenia wykładu egzamin; Sposób zaliczenia ćwiczeń zaliczenie z oceną; Forma zaliczenia wykładu egzamin pisemny i ustny; Forma zaliczenia ćwiczeń ustalenie oceny zaliczeniowej na podstawie ocen cząstkowych z trzech kolokwiów. Metody i kryteria oceny Wykład egzamin pisemny składa się z pięciu zadań

4 podzielonych na część teoretyczną i obliczeniową. Każdemu zadaniu odpowiada punktacja 0 3pkt. Część pisemna egzaminu jest zaliczona po zdobyciu przez studenta minimum 8 punktów Liczba punktów Ocena Ćwiczenia ocena końcowa jest średnią arytmetyczną ocen z trzech kolokwiów śródsemestralnych. Brana jest także pod uwagę aktywność studenta na zajęciach. Sposób punktacji kolokwium ustalany jest z odpowiednim wyprzedzeniem. Wymagania odpowiadające poszczególnym ocenom: Ocena bardzo dobra Student opanował pełny zakres wiedzy i umiejętności określony programem ćwiczeń. Sprawnie posługuje się zdobytymi wiadomościami, umie korzystać z różnych źródeł wiedzy, rozwiązuje samodzielnie zadania rachunkowe i problemowe. Potrafi zastosować zdobytą wiedzę w nowych sytuacjach. Ocena dobra Student opanował w dużym zakresie wiadomości i umiejętności bardziej złożone, poszerzające relacje między elementami treści. Nie opanował jednak w pełni wiadomości określonych programem ćwiczeń. Poprawnie stosuje wiadomości do rozwiązywania typowych zadań lub problemów. Ocena dostateczna Student opanował wiadomości najważniejsze z punktu widzenia przedmiotu, proste, łatwe do opanowania. Rozwiązuje typowe zadania z pomocą prowadzącego ćwiczenia, zna podstawowe twierdzenia i wzory. Całkowity nakład pracy studenta potrzebny do osiągnięcia założonych efektów w godzinach oraz punktach ECTS Aktywność wykład ćwiczenia przygotowanie do ćwiczeń udział w konsultacjach przygotowanie do egzaminu udział w egzaminie Liczba godzin/ nakład pracy studenta 6 godz. 60 godz. 3 godz.

5 SUMA GODZIN 204 LICZBA PUNKTÓW ECTS 7 Język wykładowy Praktyki zawodowe w ramach przedmiotu Literatura polski nie Literatura podstawowa: 1. M. Gewert, Z. Skoczylas, Analiza matematyczna 1,2 GiS, Wrocław M. Gewert, Z. Skoczylas, Równania różniczkowe zwyczajne, GiS, Wrocław W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, PWN, Warszawa G. Fichtenholz, Rachunek różniczkowy i całkowy I, II, PWN, Warszawa Literatura uzupełniająca: 5. L. Górniewicz, R.S. Ingarden, Analiza matematyczna dla fizyków, UMK, Toruń H.J. Musielakowie, Analiza matematyczna, tom 1, UAM, Poznań Podpis koordynatora przedmiotu Podpis kierownika jednostki

SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia

SYLABUS. Studia Kierunek studiów Poziom kształcenia Forma studiów. stopnia SYLABUS Nazwa przedmiotu Analiza matematyczna Nazwa jednostki prowadzącej Wydział Matematyczno-Przyrodniczy, przedmiot Instytut Fizyki Kod przedmiotu Studia Kierunek studiów Poziom kształcenia Forma studiów

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 201/15 (1) Nazwa Rachunek różniczkowy i całkowy I (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Matematyka I Mathematics I Kierunek: biotechnologia Rodzaj przedmiotu: Poziom przedmiotu: obowiązkowy dla wszystkich I stopnia specjalności Rodzaj zajęć: Liczba godzin/tydzień: wykład,

Bardziej szczegółowo

Opis poszczególnych przedmiotów (Sylabus)

Opis poszczególnych przedmiotów (Sylabus) Opis poszczególnych przedmiotów (Sylabus) Nazwa Przedmiotu: Analiza matematyczna Kod przedmiotu: Typ przedmiotu: obowiązkowy Poziom przedmiotu: podstawowy Rok studiów, semestr: rok pierwszy, semestr I

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza matematyczna I Mathematical analysis I Kierunek: Kod przedmiotu: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Poziom kwalifikacji:

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 WYDZIAŁ ARCHITEKTURY KARTA PRZEDMIOTU Nazwa w języku polskim Matematyka 1 Nazwa w języku angielskim Mathematics 1 Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów i forma:

Bardziej szczegółowo

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza matematyczna 1.1 A Nazwa w języku angielskim: Mathematical Analysis 1.1

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: Obowiązkowy w ramach treści wspólnych z kierunkiem Matematyka, moduł kierunku obowiązkowy Rodzaj zajęć: wykład, ćwiczenia I KARTA PRZEDMIOTU CEL

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Analiza matematyczna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. Nazwa w języku angielskim Mathematical Analysis. Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Matematyka I i II - opis przedmiotu

Matematyka I i II - opis przedmiotu Matematyka I i II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka I i II Kod przedmiotu Matematyka 02WBUD_pNadGenB11OM Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska

Bardziej szczegółowo

AiRZ-0531 Analiza matematyczna Mathematical analysis

AiRZ-0531 Analiza matematyczna Mathematical analysis KARTA MODUŁU / KARTA PRZEDMIOTU Kod Nazwa Nazwa w języku angielskim Obowiązuje od roku akademickiego 2013/2014 AiRZ-0531 Analiza matematyczna Mathematical analysis A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA 1.1 A Nazwa w języku angielskim Mathematical Analysis 1A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra

Analiza matematyczna. Wzornictwo Przemysłowe I stopień Ogólnoakademicki studia stacjonarne wszystkie specjalności Katedra Matematyki dr Monika Skóra Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Analiza matematyczna Nazwa modułu w języku angielskim Calculus Obowiązuje

Bardziej szczegółowo

ANALIZA SYLABUS. A. Informacje ogólne

ANALIZA SYLABUS. A. Informacje ogólne ANALIZA SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów

Bardziej szczegółowo

WYDZIAŁ ***** KARTA PRZEDMIOTU

WYDZIAŁ ***** KARTA PRZEDMIOTU 9815Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot (3)

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/ /20 (skrajne daty) SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016/17 2019/20 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Analiza matematyczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Rachunek różniczkowy i całkowy II (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod (4) Studia

Bardziej szczegółowo

Z-LOG-476I Analiza matematyczna I Calculus I. Przedmiot podstawowy Obowiązkowy polski Semestr I

Z-LOG-476I Analiza matematyczna I Calculus I. Przedmiot podstawowy Obowiązkowy polski Semestr I KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/2018 Z-LOG-476I Analiza matematyczna I Calculus I A. USYTUOWANIE MODUŁU W

Bardziej szczegółowo

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS)

20 zorganizowanych w Uczelni (ZZU) Liczba godzin całkowitego 150 nakładu pracy studenta (CNPS) Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.3 A Nazwa w języku angielskim Mathematical Analysis Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

KARTA PRZEDMIOTU CELE PRZEDMIOTU

KARTA PRZEDMIOTU CELE PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI Zał. nr do ZW KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA.1 A Nazwa w języku angielskim Mathematical Analysis.1 A Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Załącznik nr do Uchwały Senatu nr 30/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Rachunek różniczkowy i całkowy

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim Analiza matematyczna Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Inżynieria zarządzania

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1 KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Analiza Matematyczna III Mathematical Analysis III Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom przedmiotu: I

Bardziej szczegółowo

MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1

MATEMATYKA MATHEMATICS. Forma studiów: studia niestacjonarne. Liczba godzin/zjazd: 3W E, 3Ćw. PRZEWODNIK PO PRZEDMIOCIE semestr 1 Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: Podstawowy obowiązkowy Rodzaj zajęć: wykład, ćwiczenia Inżynieria Materiałowa Poziom studiów: studia I stopnia MATEMATYKA MATHEMATICS Forma studiów: studia

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów)

Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Przedmiot: Matematyka I Karta (sylabus) modułu/przedmiotu ELEKTROTECHNIKA (Nazwa kierunku studiów) Kod przedmiotu: E05_1_D Typ przedmiotu/modułu: obowiązkowy X obieralny Rok: pierwszy Semestr: pierwszy

Bardziej szczegółowo

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne

SYLABUS. 4.Studia Kierunek studiów/specjalność Poziom kształcenia Forma studiów Ekonomia Studia pierwszego stopnia Studia stacjonarne i niestacjonarne SYLABUS 1.Nazwa Matematyka 2.Nazwa jednostki prowadzącej Katedra Metod Ilościowych i Informatyki przedmiot Gospodarczej 3.Kod E/I/A.3 4.Studia Kierunek studiów/specjalność Poziom Forma studiów Ekonomia

Bardziej szczegółowo

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

Sylabus - Matematyka

Sylabus - Matematyka Sylabus - Matematyka 1. Metryczka Nazwa Wydziału: Program kształcenia: Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Farmacja, jednolite studia magisterskie Forma studiów: stacjonarne i niestacjonarne

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Funkcje zespolone Complex functions Kierunek: Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Matematyka Poziom kwalifikacji: I stopnia Liczba

Bardziej szczegółowo

Z-EKO-476 Analiza matematyczna Calculus. Ekonomia. I stopień ogólnoakademicki. studia stacjonarne Wszystkie Katedra Matematyki dr Mateusz Masternak

Z-EKO-476 Analiza matematyczna Calculus. Ekonomia. I stopień ogólnoakademicki. studia stacjonarne Wszystkie Katedra Matematyki dr Mateusz Masternak KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 Z-EKO-476 Analiza matematyczna Calculus A. USYTUOWANIE MODUŁU W SYSTEMIE

Bardziej szczegółowo

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 Nazwa w języku polskim: Analiza matematyczna.1 Nazwa w języku angielskim: Mathematical analysis.1 Kierunek

Bardziej szczegółowo

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka I nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

Z-ETI-1002-W1 Analiza Matematyczna I Calculus I. stacjonarne (stacjonarne / niestacjonarne) Katedra Matematyki dr Marcin Stępień

Z-ETI-1002-W1 Analiza Matematyczna I Calculus I. stacjonarne (stacjonarne / niestacjonarne) Katedra Matematyki dr Marcin Stępień Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego Z-ETI-1002-W1

Bardziej szczegółowo

KARTA KURSU. Kod Punktacja ECTS* 4

KARTA KURSU. Kod Punktacja ECTS* 4 Załącznik nr 4 do Zarządzenia Nr.. KARTA KURSU Nazwa Analiza matematyczna 3 Nazwa w j. ang. Mathematical Analysis 3 Kod Punktacja ECTS* 4 Koordynator Prof. M. C. Zdun Zespół dydaktyczny dr Z. Powązka,

Bardziej szczegółowo

Uniwersytet Śląski w Katowicach str. 1 Wydział Informatyki i Nauki o Materiałach. opis efektu kształcenia

Uniwersytet Śląski w Katowicach str. 1 Wydział Informatyki i Nauki o Materiałach. opis efektu kształcenia Uniwersytet Śląski w Katowicach str.. Nazwa kierunku informatyka 2. Cykl rozpoczęcia 207/208Z 3. Poziom kształcenia studia pierwszego stopnia (inżynierskie) 4. Profil kształcenia ogólnoakademicki 5. Forma

Bardziej szczegółowo

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu

Matematyki i Nauk Informacyjnych, Zakład Procesów Stochastycznych i Matematyki Finansowej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.SIK103 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Stacjonarne

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 (1) Nazwa Równania różniczkowe zwyczajne i cząstkowe (2) Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot

Bardziej szczegółowo

MATEMATYKA SYLABUS. A. Informacje ogólne

MATEMATYKA SYLABUS. A. Informacje ogólne MATEMATYKA SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok studiów

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 45 45 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: ANALIZA MATEMATYCZNA M3 Nazwa w języku angielskim: MATHEMATICAL ANALYSIS M3 Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2015-2017 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Analiza matematyczna Kod przedmiotu/ modułu* Wydział (nazwa jednostki

Bardziej szczegółowo

Opis przedmiotu: Matematyka I

Opis przedmiotu: Matematyka I 24.09.2013 Karta - Matematyka I Opis : Matematyka I Kod Nazwa Wersja TR.NIK102 Matematyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność

Bardziej szczegółowo

SYLABUS PRZEDMIOTU - Matematyka

SYLABUS PRZEDMIOTU - Matematyka SYLABUS PRZEDMIOTU - Matematyka I. Informacje ogólne 1. Nazwa przedmiotu: Matematyka 2. Kod przedmiotu: 02-MATB, 02-MATL, 02-MATLM 3. Rodzaj modułu kształcenia obowiązkowy 4. Kierunek studiów: Chemia (specjalności:

Bardziej szczegółowo

KARTA KURSU. Mathematics

KARTA KURSU. Mathematics KARTA KURSU Nazwa Nazwa w j. ang. Matematyka Mathematics Kod Punktacja ECTS* 4 Koordynator Dr Maria Robaszewska Zespół dydaktyczny dr Maria Robaszewska Opis kursu (cele kształcenia) Celem kursu jest zapoznanie

Bardziej szczegółowo

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne.

Treści programowe. Matematyka 1. Efekty kształcenia. Literatura. Warunki zaliczenia. Ogólne własności funkcji. Definicja 1. Funkcje elementarne. Treści programowe Matematyka 1 Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Załącznik nr 1 do procedury nr W_PR_12 Nazwa przedmiotu: Matematyka II Mathematics II Kierunek: inżynieria środowiska Rodzaj przedmiotu: Poziom kształcenia: nauk ścisłych, moduł 1 I stopnia Rodzaj zajęć:

Bardziej szczegółowo

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNO-ENERGETYCZNY KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Calculus Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień

Bardziej szczegółowo

Z-LOG-530I Analiza matematyczna II Calculus II

Z-LOG-530I Analiza matematyczna II Calculus II KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2017/18 Z-LOG-530I Analiza matematyczna II Calculus II A. USYTUOWANIE MODUŁU W

Bardziej szczegółowo

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne

Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Matematyka II nazwa przedmiotu SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod przedmiotu

Bardziej szczegółowo

Koordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu

Koordynator przedmiotu dr Artur Bryk, wykł., Wydział Transportu Politechniki Warszawskiej B. Ogólna charakterystyka przedmiotu Kod przedmiotu TR.NIK102 Nazwa przedmiotu Matematyka I Wersja przedmiotu 2015/16 A. Usytuowanie przedmiotu w systemie studiów Poziom kształcenia Studia I stopnia Forma i tryb prowadzenia studiów Niestacjonarne

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki ze szkoły średniej KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Matematyka A (0310-CH-S1-001)

Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Matematyka A (0310-CH-S1-001) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, pierwszy Sylabus modułu: Matematyka A (001) 1. Informacje ogólne koordynator modułu rok akademicki 2013/2014 semestr forma studiów

Bardziej szczegółowo

Zastosowania matematyki w analityce medycznej

Zastosowania matematyki w analityce medycznej Zastosowania matematyki w analityce medycznej 1. Metryczka Nazwa Wydziału: Program kształcenia (kierunek studiów, poziom i profil kształcenia, forma studiów, np. Zdrowie publiczne I stopnia profil praktyczny,

Bardziej szczegółowo

REPETYTORIUM Z ANALIZY MATEMATYCZNEJ FUNKCJE JEDNEJ ZMIENNEJ

REPETYTORIUM Z ANALIZY MATEMATYCZNEJ FUNKCJE JEDNEJ ZMIENNEJ MONIKA FABIJAŃCZYK ANNA WARĘŻAK REPETYTORIUM Z ANALIZY MATEMATYCZNEJ FUNKCJE JEDNEJ ZMIENNEJ DEFINICJE TWIERDZENIA PRZYKŁADY I KOMENTARZE Skrypt dla studentów przygotowujących się do egzaminu licencjackiego

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna II (ANA012) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna II (ANA012) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza matematyczna II (ANA012) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 11 6. LICZBA GODZIN: 60

Bardziej szczegółowo

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26

2.1. Postać algebraiczna liczb zespolonych Postać trygonometryczna liczb zespolonych... 26 Spis treści Zamiast wstępu... 11 1. Elementy teorii mnogości... 13 1.1. Algebra zbiorów... 13 1.2. Iloczyny kartezjańskie... 15 1.2.1. Potęgi kartezjańskie... 16 1.2.2. Relacje.... 17 1.2.3. Dwa szczególne

Bardziej szczegółowo

E-N-1112-s1 MATEMATYKA Mathematics

E-N-1112-s1 MATEMATYKA Mathematics KARTA MODUŁU / KARTA PRZEDMIOTU E-N-1112-s1 MATEMATYKA Mathematics Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA realizacja w roku akademickim 2016/2017 Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2018 realizacja w roku akademickim 2016/2017 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu

Bardziej szczegółowo

Z-ZIP-0530 Analiza Matematyczna II Calculus II

Z-ZIP-0530 Analiza Matematyczna II Calculus II KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013 Z-ZIP-0530 Analiza Matematyczna II Calculus II A. USYTUOWANIE MODUŁU

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Efekty kształcenia. Warunki zaliczenia. Literatura. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 3W E, 3C PRZEWODNIK PO PRZEDMIOCIE

Poziom przedmiotu: II stopnia. Liczba godzin/tydzień: 3W E, 3C PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Matematyka Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Rodzaj zajęć: wykład, ćwiczenia Teoria miary i całki Measure and Integration Theory Kod przedmiotu: Poziom

Bardziej szczegółowo

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH

WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH WYKŁADY Z MATEMATYKI DLA STUDENTÓW UCZELNI EKONOMICZNYCH Pod redakcją Anny Piweckiej Staryszak Autorzy poszczególnych rozdziałów Anna Piwecka Staryszak: 2-13; 14.1-14.6; 15.1-15.4; 16.1-16.3; 17.1-17.6;

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Analiza matematyczna 2 Rok akademicki: 2014/2015 Kod: EME-1-202-s Punkty ECTS: 5 Wydział: Elektrotechniki, Automatyki, Informatyki i Inżynierii Biomedycznej Kierunek: Mikroelektronika w technice

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe

Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

ANALIZA MATEMATYCZNA DLA FIZYKÓW

ANALIZA MATEMATYCZNA DLA FIZYKÓW Lech Górniewicz Roman Stanisław Ingarden ANALIZA MATEMATYCZNA DLA FIZYKÓW Wydanie piąte Toruń 2012 SPIS TREŚCI WSPOMNIENIE O PROFESORZE ROMANIE STANISŁAWIE INGARDENIE (Miłosz Michalski)... ix PRZEDMOWA

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Mechatronika Linear algebra and analytical geometry Kod przedmiotu: A01 Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Poziom

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów (jeśli dotyczy): Automatyka

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Inżynieria biomedyczna Linear algebra and analytical geometry forma studiów: studia stacjonarne Kod przedmiotu: IB_mp_ Rodzaj przedmiotu:

Bardziej szczegółowo

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol) KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Równania różniczkowe (RRO020) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/4 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 / 30

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: Wiadomości i umiejętności z zakresu matematyki ze szkoły średniej.

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: Wiadomości i umiejętności z zakresu matematyki ze szkoły średniej. KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza matematyczna I (ANA011) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/1 5. LICZBA PUNKTÓW ECTS: 11 6. LICZBA GODZIN: 60 /

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 Sylabus do programu kształcenia obowiązującego od roku akademickiego 2012/13 (1) Nazwa Algebra liniowa z geometrią (2) Nazwa jednostki prowadzącej Instytut Matematyki przedmiot (3) Kod () Studia Kierunek

Bardziej szczegółowo

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol) KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Geometria analityczna (GAN010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30

Bardziej szczegółowo

Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

Zaliczenie na ocenę 1 0,5 WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ ****** KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE I FUNKCJE ZESPOLONE Nazwa w języku angielskim Differential equations and complex functions Kierunek studiów (jeśli

Bardziej szczegółowo

Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie):

Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie): Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ Geoinżynierii, Górnictwa i Geologii KARTA PRZEDMIOTU Nazwa w języku polskim Wstęp do analizy i algebry Nazwa w języku angielskim Introduction to analysis and algebra Kierunek studiów

Bardziej szczegółowo

Kierunek i poziom studiów: Matematyka, studia I stopnia, rok I Sylabus modułu: Wstęp do analizy matematycznej (03-MO1S-12-WAMa)

Kierunek i poziom studiów: Matematyka, studia I stopnia, rok I Sylabus modułu: Wstęp do analizy matematycznej (03-MO1S-12-WAMa) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia, rok I Sylabus modułu: Wstęp do analizy matematycznej (03-MO1S-12-WAMa) 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I

Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Matematyka, studia I stopnia (licencjackie), rok I Sylabus modułu: Analiza matematyczna 1A (03-MO1S-12-AMa1A) 1. Informacje ogólne koordynator

Bardziej szczegółowo

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44

Spis treści. Rozdział I. Wstęp do matematyki Rozdział II. Ciągi i szeregi... 44 Księgarnia PWN: Ryszard Rudnicki, Wykłady z analizy matematycznej Spis treści Rozdział I. Wstęp do matematyki... 13 1.1. Elementy logiki i teorii zbiorów... 13 1.1.1. Rachunek zdań... 13 1.1.2. Reguły

Bardziej szczegółowo

Zajęcia fakultatywne z matematyki (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Zajęcia fakultatywne z matematyki (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Architektura

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU WYDZIAŁ MECHANICZNY PWR KARTA PRZEDMIOTU Zał. nr 4 do ZW Nazwa w języku polskim: FUNKCJE ZESPOLONE Nazwa w języku angielskim: Complex functions Kierunek studiów (jeśli dotyczy): Automatyka i Robotyka Specjalność

Bardziej szczegółowo

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław

Treści programowe. Matematyka. Literatura. Warunki zaliczenia. Funkcje elementarne. Katarzyna Trąbka-Więcław Treści programowe Matematyka Katarzyna Trąbka-Więcław Funkcje elementarne. Granica funkcji, własności granic, wyrażenia nieoznaczone, ciągłość funkcji. Pochodna funkcji w punkcie i w przedziale, pochodne

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M dr hab. inż. Stanisław Cudziło, prof. WAT Dziekan Wydziału Nowych Technologii i Chemii Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: MATEMATYKA Wersja anglojęzyczna:

Bardziej szczegółowo

Kod przedmiotu: PLPILA02-IEEKO-L-1p5-2012NS Pozycja planu: B5

Kod przedmiotu: PLPILA02-IEEKO-L-1p5-2012NS Pozycja planu: B5 Kod przedmiotu: PLPILA0-IKO-L-1p5-01N Pozycja planu: B5 INFORMACJ O PRZDMIOCI A. Podstawowe dane 1 Nazwa przedmiotu Matematyka I Rodzaj przedmiotu Podstawowy/Obowiązkowy 3 Kierunek studiów konomia 4 Poziom

Bardziej szczegółowo

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka

Treści programowe. Matematyka. Efekty kształcenia. Literatura. Terminy wykładów i ćwiczeń. Warunki zaliczenia. tnij.org/ktrabka Treści programowe Matematyka Katarzyna Trąbka-Więcław Elementy algebry liniowej. Macierze i wyznaczniki. Ciągi liczbowe, granica ciągu i granica funkcji, rachunek granic, wyrażenia nieoznaczone, ciągłość

Bardziej szczegółowo

OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów)

OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów) OPIS MODUŁU KSZTAŁCENIA (przedmiot lub grupa przedmiotów) Nazwa modułu/ przedmiotu Przedmioty podstawowe - matematyka Przedmioty: Nazwa jednostki prowadzącej przedmiot Instytut Matematyki kierunek specjalność

Bardziej szczegółowo

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jarosław Kotowicz, dr

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jarosław Kotowicz, dr SYLLABUS na rok akademicki 009/010 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr Rok I/ I i II semestr Specjalność Bez specjalności Kod

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Analiza matematyczna III (ANA023) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: II/3 5. LICZBA PUNKTÓW ECTS: 11 6. LICZBA GODZIN: 60

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1 Student ma wiedzę z matematyki wyższej Kolokwium Wykład, ćwiczenia L_K01(+) doskonalącą profesjonalny L_K03(+) warsztat logistyka.

KARTA PRZEDMIOTU. 1 Student ma wiedzę z matematyki wyższej Kolokwium Wykład, ćwiczenia L_K01(+) doskonalącą profesjonalny L_K03(+) warsztat logistyka. (pieczęć wydziału) KARTA PRZEDMIOTU 1. Nazwa przedmiotu: MATEMATYKA 2. Kod przedmiotu: ROZ-L1-3 3. Karta przedmiotu ważna od roku akademickiego: 2012/2013 4. Forma kształcenia: studia pierwszego stopnia

Bardziej szczegółowo

Opis przedmiotu: Matematyka II

Opis przedmiotu: Matematyka II 24.09.2013 Karta - Matematyka II Opis : Matematyka II Kod Nazwa Wersja TR.NIK203 Matematyka II 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów

Bardziej szczegółowo

SYLABUS. Nazwa jednostki prowadzącej przedmiot Wydział Socjologiczno-Historyczny Katedra Politologii

SYLABUS. Nazwa jednostki prowadzącej przedmiot Wydział Socjologiczno-Historyczny Katedra Politologii Rzeszów, 1 październik 014 r. SYLABUS Nazwa przedmiotu Statystyka i demografia Nazwa jednostki prowadzącej przedmiot Wydział Socjologiczno-Historyczny Katedra Politologii Kod przedmiotu MK_8 Studia Kierunek

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Matematyka dyskretna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

KIERUNEK STUDIÓW: ELEKTROTECHNIKA

KIERUNEK STUDIÓW: ELEKTROTECHNIKA 1. PROGRAM NAUCZANIA KIERUNEK STUDIÓW: ELEKTROTECHNIKA PRZEDMIOT: MATEMATYKA (Stacjonarne: 105 h wykład, 120 h ćwiczenia rachunkowe) S t u d i a I s t o p n i a semestr: W Ć L P S I 2 E 2 II 3 E 4 III

Bardziej szczegółowo

1. Algebra 2. Analiza Matematyczna. Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

1. Algebra 2. Analiza Matematyczna. Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim FUNKCJE ANALITYCZNE Nazwa w języku angielskim Analytic Functions Kierunek studiów (jeśli dotyczy): Matematyka

Bardziej szczegółowo

KARTA PRZEDMIOTU. w języku polskim Analiza Matematyczna 2 w języku angielskim Mathematical Analysis 2 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW

KARTA PRZEDMIOTU. w języku polskim Analiza Matematyczna 2 w języku angielskim Mathematical Analysis 2 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kod przedmiotu Nazwa przedmiotu KARTA PRZEDMIOTU AM2_M w języku polskim Analiza Matematyczna 2 w języku angielskim Mathematical Analysis 2 USYTUOWANIE PRZEDMIOTU W SYSTEMIE STUDIÓW Kierunek studiów Forma

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo