Materiały pomocnicze do zajęć pt. Analiza MES zagadnień sprężystoplastycznych. Piotr Mika

Wielkość: px
Rozpocząć pokaz od strony:

Download "Materiały pomocnicze do zajęć pt. Analiza MES zagadnień sprężystoplastycznych. Piotr Mika"

Transkrypt

1 Materiały pomocnicze do zajęć pt. Analiza MES zagadnień sprężystoplastycznych program ABAQUS Piotr Mika Maj

2 1. Program ABAQUS typy analizy W ABAQUS są dostępne dwa rodzaje analizy liniowa i nieliniowa. Podstawowe różnice pomiędzy tymi analizami opisano poniżej Analiza liniowa Zakłada liniową relację pomiędzy przyłożonym obciążeniem a odpowiedzią układu, np. przemieszczeniem. Oznacza to, że obliczenia (agregacja macierzy sztywności i policzenie macierzy odwrotnej) muszą być wykonane tylko raz. Liniowa odpowiedź konstrukcji dla innego przypadku obciążenia może być znaleziona przez pomnożenie wektora obciążeń przez odwróconą macierz sztywności. Ponadto odpowiedź konstrukcji na kombinację obciążeń jest sumą uzyskanych rozwiązań dla prostych przypadków obciążenia z ewentualnym uwzględnieniem mnożników skalujących. Zakłada się tutaj, że warunki brzegowe są takie same dla wszystkich przypadków obciążenia. Rysunek 1 Analiza liniowa sztywność jest stała 1.2. Analiza nieliniowa Analiza nieliniowa uwzględnia zmianę sztywności konstrukcji podczas jej deformacji, co charakteryzuje praktycznie wszystkie rzeczywiste konstrukcje. Analiza liniowa jest wygodnym uproszczeniem, które jest nieadekwatne do modelowania takich procesów jak walcowanie, symulacja zderzeń, analiza elementów gumowych (np. opon). Sztywność konstrukcji jest zależna od przemieszczenia, więc początkowa odpowiedź konstrukcji nie może być wykorzystana do określenia odwiedzi konstrukcji dla innego obciążenia. Rysunek 2 Analiza nieliniowa sztywność nie jest stała Agregacja macierzy sztywności i policzenie macierzy odwrotnej muszą być wykonywane wielokrotnie podczas analizy nieliniowej, czyniąc ją znacznie bardziej złożoną i czasochłonną w porównaniu do obliczeń liniowych. Odpowiedź konstrukcji na kombinację obciążeń nie jest sumą uzyskanych rozwiązań dla prostych przypadków obciążenia i nie jest możliwe znalezienie rozwiązania przez dokonanie superpozycji wyników dla prostych stanów. Każdy przypadek obciążenia musi być zdefiniowany i rozwiązany jako osobne zadanie Źródła nieliniowości Wskazuje się na trzy rodzaje nieliniowości: Nieliniowość materiałową Nieliniowość brzegową Nieliniowość geometryczną 2

3 Zależność pomiędzy naprężeniem a odkształceniem dla materiałów nieliniowych - metali zilustrowano na sąsiednim rysunku (Rysunek 3). Materiały gumopodobne mogą być modelowane przez nieliniową, odwracalną zależność (Rysunek 4). Miarą nieliniowości materiału może być inna wielkość niż odkształcenie. Formą nieliniowości materiałowych są stałe zależne od prędkości odkształceń czy uszkodzenie materiału. Właściwości materiałowe mogą być również zależne od temperatury lub innych predefiniowanych pól. W ABAQUSie znajduje się większość modeli konstytutywnych materiałów inżynierskich, takich jak metale, tworzywa sztuczne, materiały gumowe, pianki, kompozyty, beton sprężony, grunty. Nieliniowość brzegowa jest spowodowana zmiennymi w trakcie procesu obciążania warunkami brzegowymi, co ilustruje Rysunek 5. Belka wspornikowa ugina się swobodnie pod wpływem działającej siły do momentu kontaktu z podporą. W zakresie małych przemieszczeń odpowiedź konstrukcji jest liniowa do momentu kontaktu z podporą, później następuje gwałtowna zmiana warunków brzegowych na końcu belki, blokująca dalsze swobodne ugięcie. Od tej chwili obserwujemy nieliniową odpowiedź konstrukcji Rysunek 3 Rysunek 4 Rysunek 5 Trzeci typ nieliniowości wynika ze zmiany kształtu modelu w czasie analizy. Nieliniowości geometryczne występują, jeśli wielkość przemieszczeń wpływa na odpowiedź konstrukcji, co może być spowodowane przez: duże ugięcia lub obroty przeskok (snap through) początkowe naprężenia lub zmianę sztywności konstrukcji spowodowaną obciążeniem (load stiffening) Rysunek 6 duże odkształcenia Rysunek 6 ilustruje belkę wspornikową obciążoną siłą skupioną przyłożoną na swobodnym końcu belki. Dla małych ugięć można przeprowadzić analizę liniową. Jeśli ugięcia konstrukcji są duże, jej kształt (i sztywność) się zmienia, a jeśli dodatkowo obciążenie nie pozostaje prostopadłe do osi belki, zmienia się znacząco wpływ tego obciążenia na konstrukcję. W takim przypadku obciążenie jest sumą składowej prostopadłej i stycznej do osi belki, a oba składniki wpływają na nieliniową odpowiedź tej konstrukcji (tzn. zmianę sztywności belki). 3

4 Duże ugięcia i obroty w porównaniu do rozmiarów konstrukcji nie są jedyną przyczyną stosowania analiz nieliniowych. Ilustruje to zjawisko snap-through Rysunek 7. Rysunek 7 W przypadku snap through, dotyczącego mało wyniosłych powłok, wielkość przemieszczeń jest nieznaczna w stosunku do wymiarów panela. Występuje natomiast znacząca zmiana sztywności w trakcie symulacji, co musi zostać uwzględnione w obliczeniach Rozwiązanie problemów nieliniowych ABAQUS/Standard stosuje metodę Newtona-Raphsona do otrzymania rozwiązania problemów nieliniowych. Rozwiązanie jest znajdowane w wyniku zastosowania analizy przyrostowej obciążenie jest przykładane stopniowo, w kolejnych przyrostach, w których prowadzone są obliczenia dla pewnego poziomu obciążenia, aż do osiągnięcia całej zadanej wartości. ABAQUS dzieli cały proces na pewną liczbę przyrostów obciążenia i znajduje przybliżoną z zadaną dokładnością - konfigurację równowagi na końcu każdego z przyrostów. Często, aby otrzymać akceptowalne rozwiązanie w danym przyroście, należy przeprowadzić wiele iteracji. 2. Kroki, przyrosty i iteracje (do zdefiniowania zadania patrz przykład) W programie ABAQUS historia obciążenia jest podzielona na jeden lub więcej kroków. Użytkownik definiuje krok (step), który zawiera typ analizy, obciążenie, warunki brzegowe i wymagania dotyczące wyników, które użytkownik chce analizować. Przyrost (increment) jest częścią kroku. W analizie nieliniowej obciążenie przyłożone w kroku jest podzielone na mniejsze przyrosty tak, aby można było odtworzyć ścieżkę równowagi. W programie należy zadać wielkość pierwszego przyrostu, natomiast dalsze przyrosty mogą być dobierane automatycznie przez program. Na końcu każdego z przyrostów są zapisywane wyniki, które są dostępne w postprocesingu. Iteracja (iteration) oznacza próbę zalezienia rozwiązania równowagi w danym przyroście. Jeśli model nie jest w równowadze na końcu iteracji, ABAQUS próbuje innej, poprawionej iteracji. Z każdą iteracją rozwiązanie otrzymane przez ABAQUS powinno być bliżej położenia równowagi. Po osiągnięciu położenia równowagi iteracja jest zakończona. Szczegóły doboru automatycznego przyrostu obciążenia w ABAQUS są dostępne w oknie Job Diagnostis. 4

5 2. Przykład płaska wyżłobiona płyta obciążona ciśnieniem 2.1. Budowa modelu Wykonamy obliczenia dla płyty o wymiarach 16x15x3 cm, wykonanej ze stali o E=2.0E7 N/cm 2 oraz =0.33. Konstrukcja jest obciążona nierównomiernym, zależnym od odległości od krawędzi karbu, ciśnieniem p o rozkładzie px 2 /100 oraz wartości p =383 N/cm 2 (jest to zmodyfikowany przykład zaczerpnięty z podręcznika [2]) 1. Definicja geometrii Zaczynamy w module PART Create Part i podajemy następujące dane: Name: plyta, Modeling space: 3D, Type: Deformable, Shape: Solid, Typ: Extrusion (generowanie modelu przez rozciągnięcie), Approximate size: 80. W szkicowniku rysujemy prostokąt (Create Lines: Rectangle) pomiędzy punktami o współrzędnych (0,0) i (16,3). Następnie rysujemy koło (Create Circle) o środku w punkcie (6,3) zawierające punkt (7.5, 3). Ikoną Auto-Trim usuwamy niepotrzebne fragmenty rysunku górny półokrąg i fragment prostokąta średnicę. Po wyjściu ze szkicownika podajemy szerokość konstrukcji Depth 15, otrzymując geometryczny model konstrukcji, zilustrowany obok. 5

6 2. Definicja materiału W następnym kroku tworzymy materiał (Create Material) nazwa stal, Mechanical-Elasticity- Elastic, E=2E7, = e4 Następnie zadajemy granicę plastyczności - Mechanical-Plasticity-Plastic równą 4E4 (Yield stress) i zerową wartość plastic strains. Kolejnym krokiem jest stworzenie przekroju Sections/Create Section akceptując ustawienia domyślne (Solid, homogeneous) i przypisanie przekroju do modelu polecenie Assign Section znajduje się pod nazwą zadania plyta. Po wybraniu tego polecenia wskazujemy naszą konstrukcję i akceptujemy Done. Kolejnym krokiem jest określenie globalnego układu odniesienia Assembly Instance Part, wybierając Instance Type Indepedent (Mesh on instance). 3. Definicja kroków obliczeniowych Oprócz domyślnie zdefiniowanego kroku initial musimy zdefiniować krok, w którym zadamy obciążenia - Step Create Step, Name-cisnienie, Procedure Type: General, rodzaj analizy: Static, General. Proszę sprawdzić parametry podane w karcie Incrementation kroku ciśnienie. 4. Definicja warunków brzegowych i obciążenia W kroku Initial tworzymy warunki brzegowe - Create Boundary Conditions, Name: podparcie, Step: Initial, Category: Mechanical, Types for Selected Step: Symmetry/Antisymmetry/Encastre. Następnie wybieramy Continue, po wskazaniu bocznej płaszczyzny zadajemy u1=u2=u3=0 (pinned). 6

7 W kroku cisnienie zadajemy obciążenie Loads, Name: nierownomierne, Step cisnienie, Category: Mechanical, Types for Selected Step: Pressure. Po wybraniu Continue wskazujemy górną płaszczyznę po prawej stronie karbu i wybieramy Done. Po prawej stronie okna wybieramy opcję Create i wpisujemy wyrażenie pow(x,2)/100, OK. Następnie w polu Distribution, z rozwijalnej listy wybieramy opcję (A) AnalyticalField-1, i w polu Magnitude: wpisujemy wartość 383, na koniec zatwierdzamy OK. 5. Generacja siatki MES W Module Mesh, w menu Seeds wybieramy polecenie Instance i wprowadzamy dane: Approximate global size: 2, maximum deviation factor 0.2, zatwierdzając OK. W menu Mesh/Element Type wybieramy Family: 3D Stress, Geometric Order: quadratic, natomiast w menu Mesh/Controls wybieramy Element Type: Hex, Technique: Sweep, Algorithm: Medial axis z zaznaczoną opcją Mesh transition, zatwierdzamy OK. Siatkę tworzymy poleceniem Mesh Instance z menu Mesh. Utworzona siatka składa się z 144 elementów typu C3d20R i 959 węzłów 6. Przeprowadzenie obliczeń W module Job Create Job, name: plyta, job type: Full Analysis, zatwierdzamy OK. Uruchamiając opcję monitor w managerze obliczeń, możemy śledzić ilość iteracji w poszczególnych przyrostach w obrębie danego kroku obliczeniowego. Rysunek 8 Monitor obliczeń 7

8 Pierwsza kolumna wskazuje na numer kroku w tym wypadku mamy tylko jeden krok; druga kolumna podaje numer przyrostu. Kolumna 6 Total Iter podaje ilość iteracji potrzebnych do uzyskania równowagi w każdym z przyrostów. Kolumna przedostatnia podaje całkowity czas, natomiast kolumna ostatnia przyrost czasu. Widać tutaj, że z powodu niemożności uzyskania rozwiązania w 7 przyroście, ABAQUS automatycznie redukuje przyrost czasu (dwa ostatnie wiersze tabeli) Postprocesing 3. Kontrola zbieżności iteracji Po zakończeniu obliczeń możemy w module visualisation uruchomić opcję Job Diagnostic z menu Tools. Po wskazaniu na Attempt, w karcie Summary, otrzymujemy podstawowe informacje o liczbie iteracji. Dalej rozwijając drzewo z lewej strony okna, przechodzimy do iteracji w karcie Summary sprawdzamy, czy iteracja jest zbieżna, a jeśli nie, to w karcie Residuals odczytujemy z jakiego powodu iteracja nie jest zbieżna (Rysunek 9). Są tu podane wartości największej siły rezydualnej, największego przyrostu przemieszczenia oraz największego współczynnika korygującego przemieszczenie c. Zaznaczając opcję Highlight selection in viewport możemy zobaczyć miejsce w naszym modelu, gdzie te wartości są osiągnięte (czerwony punkt). Rysunek 9 Okno Job diagnostics pierwsza iteracja Ponieważ w przyroście 1, w żadnej z siedmiu początkowych iteracji, nie zostało uzyskane rozwiązanie równowagi, ABAQUS zredukował przyrost czasu i przeprowadził kolejną próbę, gdzie rozwiązanie równowagi zostało znalezione w pierwszej iteracji (spełnienie warunków dotyczących sił rezydualnych i przemieszczeń): 8

9 Rysunek 10 Okno Job diagnostics druga próba Rysunek 11 ilustruje wartości rezydualne w pierwszej iteracji przyrostu 2, w którym zostało znalezione rozwiązanie: Rysunek 11 Job diagnostics - druga iteracja ABAQUS pozwala również wyświetlić elementy, w których wystąpiły duże przyrosty odkształceń w punktach całkowania karta Elements. Za duże przyrosty odkształceń przyjęto te, których wartość przekracza 50 razy wartość początkowych odkształceń przy uplastycznieniu, Rysunek 12 9

10 Rysunek 12 Job diagnostics karta Elements 4. Wyniki kontrolne Jako wyniki kontrolne wyświetlimy mapy konturowe wartości maksymalnych naprężeń głównych, (Rysunek 13) oraz wartości naprężeń zastępczych Misesa, (Rysunek 14) (Plot/Contours, wybór zmiennych Results/Field Output) Rysunek 13 Maksymalne naprężenia główne 10

11 Rysunek 14 Naprężenia zastępcze (Misesa) 5. Obliczenia z uwzględnieniem wzmocnienia plastycznego W module property zmieniamy wartość granicy plastyczności w pozycji Plastic, w oknie dotyczącym definicji materiału (Materials/Edit Material) oraz dodajemy dodatkowy wiersz podając wartości 4.5e4 oraz 0.3. W pierwszym wierszu zmieniamy granicę plastyczności na 3.0e Rysunek 15 Definicja materiału plastycznego ze wzmocnieniem Następnie ponownie wykonujemy obliczenia. Wyniki kontrolne dla naprężeń zastępczych Misesa dla materiału plastycznego ze wzmocnieniem są zamieszczone poniżej (Rysunek 16) 11

12 B Rysunek 16 Wyniki kontrolne dla materiału plastycznego ze wzmocnieniem A 6. Rysunki dwuwymiarowe Korzystając z menu Tools/XY data create, można wygenerować rysunki ilustrujące zmianę podczas analizy wybranych składowych, np. poszczególnych składowych naprężeń. Można tu wskazać jako źródło plik opisany jako ODB history output. Trzeba jednak pamiętać, aby w module Step, w poleceniu History Output Request wybrać odpowiednie wielkości, które mają być zapamiętywane w trakcie procesu w wybranych węzłach lub punktach całkowania. Najwygodniej wcześniej zdefiniować zbiór set aby nie pamiętać dużej ilości wyników dla całej konstrukcji. Robimy to rozwijając nazwę naszego zadania w oknie z poleceniami i wybierając polecenie Set Przykładowy rysunek znajduje się obok Rysunek 17 Zmiana przemieszczenia w p. A Rysunek 18 Zależność w p. B 12

13 3. Literatura 1. ABAQUS/STANDARD - podręczniki użytkownika 2. Skrzat A., Modelowanie liniowych i nieliniowych problemów mechaniki ciała odkształcalnego i przepływów ciepła w programie ABAQUS, Oficyna Wydawnicza Politechniki Rzeszowskiej, Rzeszów, 2010 Spis treści 1. Program ABAQUS typy analizy Analiza liniowa Analiza nieliniowa Źródła nieliniowości Rozwiązanie problemów nieliniowych Kroki, przyrosty i iteracje (do zdefiniowania zadania patrz przykład) Przykład płaska wyżłobiona płyta obciążona ciśnieniem Budowa modelu Postprocesing Kontrola zbieżności iteracji Wyniki kontrolne Obliczenia z uwzględnieniem wzmocnienia plastycznego Rysunki dwuwymiarowe Literatura

0.002 0 0.0048 0.0095 0.0143 0.019. t Rysunek 2: Wykres drgań podstawy wspornika u(t)

0.002 0 0.0048 0.0095 0.0143 0.019. t Rysunek 2: Wykres drgań podstawy wspornika u(t) Przykład dynamicznej analizy MES lekkiej konstrukcji wspornika w systemie ABAQUS Model 3D Opracował dr inż. Paweł Stąpór Sformułowanie problemu Wykonaj analizę 3D problemu zdefiniowanego w części pierwszej

Bardziej szczegółowo

Symulacja zamknięcia pojemnika PP tutorial Abaqus 6.5-1

Symulacja zamknięcia pojemnika PP tutorial Abaqus 6.5-1 Samouczek przedstawia proces tworzenia symulacji 2D (dwuwymiarowej) zamknięcią przykrywki z pojemnikiem. Obie części wykonane są z polipropylenu. Części zostały uprzednio stworzone w programie SolidWorks2005

Bardziej szczegółowo

Metoda Elementów Skończonych - Laboratorium

Metoda Elementów Skończonych - Laboratorium Metoda Elementów Skończonych - Laboratorium Analiza belki zginanej Laboratorium 2 Podstawy ABAQUS/CAE Celem ćwiczenia jest wykonanie analizy prostego modelu, zginanej belki obciążonej ciśnieniem rys. 1.

Bardziej szczegółowo

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY

ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY w Szczecinie Z ACHODNIOPOM UNIWERSY T E T T E CH OR NO SKI LOGICZNY KATEDRA MECHANIKI I PODSTAW KONSTRUKCJI MASZYN Instrukcja do ćwiczeń laboratoryjnych z metody

Bardziej szczegółowo

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów)

Analiza obciążeń baneru reklamowego za pomocą oprogramowania ADINA-AUI 8.9 (900 węzłów) Politechnika Łódzka Wydział Technologii Materiałowych i Wzornictwa Tekstyliów Katedra Materiałoznawstwa Towaroznawstwa i Metrologii Włókienniczej Analiza obciążeń baneru reklamowego za pomocą oprogramowania

Bardziej szczegółowo

1. Dostosowanie paska narzędzi.

1. Dostosowanie paska narzędzi. 1. Dostosowanie paska narzędzi. 1.1. Wyświetlanie paska narzędzi Rysuj. Rys. 1. Pasek narzędzi Rysuj W celu wyświetlenia paska narzędzi Rysuj należy wybrać w menu: Widok Paski narzędzi Dostosuj... lub

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃCZONYCH.

METODA ELEMENTÓW SKOŃCZONYCH. METODA ELEMENTÓW SKOŃCZONYCH. W programie COMSOL multiphisics 3.4 Wykonali: Łatas Szymon Łakomy Piotr Wydzał, Kierunek, Specjalizacja, Semestr, Rok BMiZ, MiBM, TPM, VII, 2011 / 2012 Prowadzący: Dr hab.inż.

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Wraz z rozwojem elektronicznych maszyn obliczeniowych jakimi są komputery zaczęły pojawiać się różne numeryczne metody do obliczeń wytrzymałości różnych konstrukcji. Jedną

Bardziej szczegółowo

17. 17. Modele materiałów

17. 17. Modele materiałów 7. MODELE MATERIAŁÓW 7. 7. Modele materiałów 7.. Wprowadzenie Podstawowym modelem w mechanice jest model ośrodka ciągłego. Przyjmuje się, że materia wypełnia przestrzeń w sposób ciągły. Możliwe jest wyznaczenie

Bardziej szczegółowo

Modelowanie mikrosystemów - laboratorium. Ćwiczenie 1. Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia

Modelowanie mikrosystemów - laboratorium. Ćwiczenie 1. Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia Modelowanie mikrosystemów - laboratorium Ćwiczenie 1 Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia Zadania i cel ćwiczenia. Celem ćwiczenia jest dobranie

Bardziej szczegółowo

Instrukcja do wykonania symulacji numerycznych CFD w programie PolyFlow 14.0 przepływu płynów nienewtonowskich o właściwościach lepkosprężystych

Instrukcja do wykonania symulacji numerycznych CFD w programie PolyFlow 14.0 przepływu płynów nienewtonowskich o właściwościach lepkosprężystych Instrukcja do wykonania symulacji numerycznych CFD w programie PolyFlow 14.0 przepływu płynów nienewtonowskich o właściwościach lepkosprężystych 1. Uruchamianie programu PolyFlow W ramach projektu symulacje

Bardziej szczegółowo

BRIDGE CAD ABT - INSTRUKCJA OBSŁUGI

BRIDGE CAD ABT - INSTRUKCJA OBSŁUGI BRIDGE CAD ABT - INSTRUKCJA OBSŁUGI 1. Wiadomości ogólne. Program ABT służy do automatycznego generowania plików *.dat, wykorzystywanych w obliczeniach statycznych i wytrzymałościowych przyczółków mostowych

Bardziej szczegółowo

Metoda Elementów Brzegowych LABORATORIUM

Metoda Elementów Brzegowych LABORATORIUM Akademia Techniczno-Humanistyczna W Bielsku-Białej Metoda Elementów Brzegowych LABORATORIUM INSTRUKCJE DO ĆWICZEŃ Ćwiczenie 1. Zapoznanie z obsługą systemu BEASY Celem ćwiczenia jest zapoznanie się z obsługą

Bardziej szczegółowo

FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki

FLAC Fast Lagrangian Analysis of Continua. Marek Cała Katedra Geomechaniki, Budownictwa i Geotechniki FLAC Fast Lagrangian Analysis of Continua Program FLAC jest oparty o metodę różnic skończonych. Metoda Różnic Skończonych (MRS) jest chyba najstarszą metodą numeryczną. W metodzie tej każda pochodna w

Bardziej szczegółowo

Temat: Komputerowa symulacja procesu wytłaczania w programie ANSYS LS-DYNA

Temat: Komputerowa symulacja procesu wytłaczania w programie ANSYS LS-DYNA Opracował: mgr inż. Paweł K. Temat: Komputerowa symulacja procesu wytłaczania w programie ANSYS LS-DYNA 1. Uruchamianie programu Po uruchomieniu ANSYS Product Launcher należy wybrać z pola License ANSYS

Bardziej szczegółowo

Date: 21.XI.07; Time: 9:57; File: Truss.tex; Page 1 of 23 BRUDNOPIS. Jarosław Latalski. Ćwiczenia laboratoryjne z metody elementów skończonych

Date: 21.XI.07; Time: 9:57; File: Truss.tex; Page 1 of 23 BRUDNOPIS. Jarosław Latalski. Ćwiczenia laboratoryjne z metody elementów skończonych Date: 21.XI.07; Time: 9:57; File: Truss.tex; Page 1 of 23 Jarosław Latalski Ćwiczenia laboratoryjne z metody elementów skończonych Date: 21.XI.07; Time: 9:57; File: Truss.tex; Page 2 of 23 Date: 21.XI.07;

Bardziej szczegółowo

ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 29

ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 29 ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 29 1.3. Płyta żelbetowa Ten przykład przedstawia definicję i analizę prostej płyty żelbetowej z otworem. Jednostki danych: (m)

Bardziej szczegółowo

Modelowanie mikrosystemów - laboratorium. Ćwiczenie 1. Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia

Modelowanie mikrosystemów - laboratorium. Ćwiczenie 1. Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia Modelowanie mikrosystemów - laboratorium Ćwiczenie 1 Modelowanie ugięcia membrany krzemowej modelowanie pracy mikromechanicznego czujnika ciśnienia Zadania i cel ćwiczenia. Celem ćwiczenia jest dobranie

Bardziej szczegółowo

Modelowanie powierzchniowe cz. 2

Modelowanie powierzchniowe cz. 2 Modelowanie powierzchniowe cz. 2 Tworzenie modelu przez obrót wokół osi SIEMENS NX Revolve Opis okna dialogowego Section wybór profilu do obrotu Axis określenie osi obrotu Limits typ i parametry geometryczne

Bardziej szczegółowo

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych

MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych MODELOWANIE ZA POMOCĄ MES Analiza statyczna ustrojów powierzchniowych PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki

Bardziej szczegółowo

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ

pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Ćwiczenie audytoryjne pt.: KOMPUTEROWE WSPOMAGANIE PROCESÓW OBRÓBKI PLASTYCZNEJ Autor: dr inż. Radosław Łyszkowski Warszawa, 2013r. Metoda elementów skończonych MES FEM - Finite Element Method przybliżona

Bardziej szczegółowo

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL

Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL Mgr inż. Wojciech Chajec Pracownia Kompozytów, CNT Mgr inż. Adam Dziubiński Pracownia Aerodynamiki Numerycznej i Mechaniki Lotu, CNT SMIL We wstępnej analizie przyjęto następujące założenia: Dwuwymiarowość

Bardziej szczegółowo

ANALIZA RAMY PRZESTRZENNEJ W SYSTEMIE ROBOT. Adam Wosatko Tomasz Żebro

ANALIZA RAMY PRZESTRZENNEJ W SYSTEMIE ROBOT. Adam Wosatko Tomasz Żebro ANALIZA RAMY PRZESTRZENNEJ W SYSTEMIE ROBOT Adam Wosatko Tomasz Żebro v. 0.1, marzec 2009 2 1. Typ zadania i materiał Typ zadania. Spośród możliwych zadań(patrz rys. 1(a)) wybieramy statykę ramy przestrzennej

Bardziej szczegółowo

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ.

Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Materiały do laboratorium Przygotowanie Nowego Wyrobu dotyczące metody elementów skończonych (MES) Opracowała: dr inŝ. Jolanta Zimmerman 1. Wprowadzenie do metody elementów skończonych Działanie rzeczywistych

Bardziej szczegółowo

ROZWIAZANIE PROBLEMU USTALONEGO PRZEPLYWU CIEPLA W SYSTEMIE ADINA 900 Nodes Version 8.2

ROZWIAZANIE PROBLEMU USTALONEGO PRZEPLYWU CIEPLA W SYSTEMIE ADINA 900 Nodes Version 8.2 1 Wstęp ROZWIAZANIE PROBLEMU USTALONEGO PRZEPLYWU CIEPLA W SYSTEMIE ADINA 900 Nodes Version 8.2 Struktura systemu ADINA (Automatic Dynamic Incremental Nonlinear Analysis) jest to system programów opartych

Bardziej szczegółowo

Piezorezystancyjny czujnik ciśnienia: modelowanie membrany krzemowej podstawowego elementu piezorezystancyjnego czujnika ciśnienia

Piezorezystancyjny czujnik ciśnienia: modelowanie membrany krzemowej podstawowego elementu piezorezystancyjnego czujnika ciśnienia MIKROSYSTEMY - laboratorium Ćwiczenie 1 Piezorezystancyjny czujnik ciśnienia: modelowanie membrany krzemowej podstawowego elementu piezorezystancyjnego czujnika ciśnienia Zadania i cel ćwiczenia. Celem

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZENIA NR 4

INSTRUKCJA DO ĆWICZENIA NR 4 KATEDRA MECHANIKI STOSOWANEJ Wydział Mechaniczny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 4 PRZEDMIOT TEMAT Wybrane zagadnienia z optymalizacji elementów konstrukcji Zastosowanie optymalizacji

Bardziej szczegółowo

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA ŚLĄSKA W GLIWICACH Wydział Mechaniczny Technologiczny PRACA DYPLOMOWA MAGISTERSKA Wykorzystanie pakietu MARC/MENTAT do modelowania naprężeń cieplnych Spis treści Pole temperatury Przykład

Bardziej szczegółowo

Definiowanie układu - czyli lekcja 1.

Definiowanie układu - czyli lekcja 1. Definiowanie układu - czyli lekcja 1. Ten krótki kurs obsługi programu chciałbym zacząć od prawidłowego zdefiniowania układu, ponieważ jest to pierwsza czynność jaką musimy wykonać po zetknięciu się z

Bardziej szczegółowo

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU

I. KARTA PRZEDMIOTU CEL PRZEDMIOTU I. KARTA PRZEDMIOTU. Nazwa przedmiotu: KOMPUTEROWE WSPOMAGANIE PROJEKTOWANIA Z CAD 2. Kod przedmiotu: Ko 3. Jednostka prowadząca: Wydział Mechaniczno-Elektryczny 4. Kierunek: Mechanika i budowa maszyn

Bardziej szczegółowo

ĆWICZENIE Nr 2 i 3. Laboratorium CAD/MES. Przedmiot: Modelowanie właściwości materiałów. Opracował: dr inż. Hubert Dębski

ĆWICZENIE Nr 2 i 3. Laboratorium CAD/MES. Przedmiot: Modelowanie właściwości materiałów. Opracował: dr inż. Hubert Dębski POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA PODSTAW KON- STRUKCJI MASZYN Przedmiot: Modelowanie właściwości materiałów Laboratorium CAD/MES ĆWICZENIE Nr 2 i 3 Opracował: dr inż. Hubert Dębski I.

Bardziej szczegółowo

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ

MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ Jarosław MAŃKOWSKI * Andrzej ŻABICKI * Piotr ŻACH * MODELOWANIE POŁĄCZEŃ TYPU SWORZEŃ OTWÓR ZA POMOCĄ MES BEZ UŻYCIA ANALIZY KONTAKTOWEJ 1. WSTĘP W analizach MES dużych konstrukcji wykonywanych na skalę

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

4.1. Dokument tekstowy (.doc lub.docx) + plan zadrzewień w programie AutoCAD (.dwg) 4.2. Prezentacja (format dowolny)

4.1. Dokument tekstowy (.doc lub.docx) + plan zadrzewień w programie AutoCAD (.dwg) 4.2. Prezentacja (format dowolny) Wytyczne do projektu zadrzewień z przedmiotu Technika hodowli lasu dla studentów II roku niestacjonarnych studiów inżynierskich na kierunku - Leśnictwo. Temat: Projekt zadrzewień w terenie wiejskim (dla

Bardziej szczegółowo

Projektowanie 3D Tworzenie modeli przez wyciągnięcie profilu po krzywej SIEMENS NX Sweep Along Guide

Projektowanie 3D Tworzenie modeli przez wyciągnięcie profilu po krzywej SIEMENS NX Sweep Along Guide Projektowanie 3D Narzędzie do tworzenia modeli bryłowych lub powierzchniowych o stałym przekroju opartych na krzywoliniowym profilu otwartym. Okno dialogowe zawiera następujące funkcje: Section wybór profilu

Bardziej szczegółowo

Transformacja współrzędnych geodezyjnych mapy w programie GEOPLAN

Transformacja współrzędnych geodezyjnych mapy w programie GEOPLAN Transformacja współrzędnych geodezyjnych mapy w programie GEOPLAN Program GEOPLAN umożliwia zmianę układu współrzędnych geodezyjnych mapy. Można tego dokonać przy udziale oprogramowania przeliczającego

Bardziej szczegółowo

MODELOWANIE WARSTWY POWIERZCHNIOWEJ O ZMIENNEJ TWARDOŚCI

MODELOWANIE WARSTWY POWIERZCHNIOWEJ O ZMIENNEJ TWARDOŚCI Dr inż. Danuta MIEDZIŃSKA, email: dmiedzinska@wat.edu.pl Dr inż. Robert PANOWICZ, email: Panowicz@wat.edu.pl Wojskowa Akademia Techniczna, Katedra Mechaniki i Informatyki Stosowanej MODELOWANIE WARSTWY

Bardziej szczegółowo

Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS

Modelowanie w MES. Kolejność postępowania w prostej analizie MES w SWS MES 5 Modelowanie w MES Część I Kolejność postępowania w prostej analizie MES w SWS Kroki analizy Zakładamy, że model już jest uproszczony, zdefiniowany został materiał, obciążenie i umocowanie (krok 0).

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PODSTAWY MODELOWANIA PROCESÓW WYTWARZANIA Fundamentals of manufacturing processes modeling Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności APWiR Rodzaj

Bardziej szczegółowo

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74

Element cięgnowy. Rysunek: Element LINK1. Jakub J. Słowiński (IMMT PWr) Wykład 4 09 i 16.03.2012 51 / 74 Elementy 1D Element cięgnowy Element LINK1 jest elementem 2D, dwuwęzłowym, posiadającym jedynie dwa stopnie swobody - translację w kierunku x oraz y. Można zadeklarować pole jego przekroju oraz odkształcenie

Bardziej szczegółowo

Rys. 1. Rozpoczynamy rysunek pojedynczej części

Rys. 1. Rozpoczynamy rysunek pojedynczej części Inventor cw1 Otwieramy nowy rysunek typu Inventor Part (ipt) pojedyncza część. Wykonujemy to następującym algorytmem, rys. 1: 1. Na wstędze Rozpocznij klikamy nowy 2. W oknie dialogowym Nowy plik klikamy

Bardziej szczegółowo

ĆWICZENIE Nr 1. Laboratorium CAD/MES. Przedmiot: Modelowanie właściwości materiałów. Opracował: dr inż. Hubert Dębski

ĆWICZENIE Nr 1. Laboratorium CAD/MES. Przedmiot: Modelowanie właściwości materiałów. Opracował: dr inż. Hubert Dębski POLITECHNIKA LUBELSKA WYDZIAŁ MECHANICZNY KATEDRA PODSTAW KON- STRUKCJI MASZYN Przedmiot: Modelowanie właściwości materiałów Laboratorium CAD/MES ĆWICZENIE Nr 1 Opracował: dr inż. Hubert Dębski I. Temat

Bardziej szczegółowo

W tym ćwiczeniu zostanie wykonany prosty profil cienkościenny, jak na powyŝszym rysunku.

W tym ćwiczeniu zostanie wykonany prosty profil cienkościenny, jak na powyŝszym rysunku. ĆWICZENIE 1 - Podstawy modelowania 3D Rozdział zawiera podstawowe informacje i przykłady dotyczące tworzenia trójwymiarowych modeli w programie SolidWorks. Ćwiczenia zawarte w tym rozdziale są podstawą

Bardziej szczegółowo

Projekt połowicznej, prostej endoprotezy stawu biodrowego w programie SOLIDWorks.

Projekt połowicznej, prostej endoprotezy stawu biodrowego w programie SOLIDWorks. 1 Projekt połowicznej, prostej endoprotezy stawu biodrowego w programie SOLIDWorks. Rysunek. Widok projektowanej endoprotezy według normy z wymiarami charakterystycznymi. 2 3 Rysunek. Ilustracje pomocnicze

Bardziej szczegółowo

PROJEKT MES COMSOL MULTIPHYSICS 3.4

PROJEKT MES COMSOL MULTIPHYSICS 3.4 POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA PROJEKT MES COMSOL MULTIPHYSICS 3.4 Prowadzący: dr hab. Tomasz Stręk, prof. nadz. Wykonali: Dawid Weremiuk Dawid Prusiewicz Kierunek: Mechanika

Bardziej szczegółowo

Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne

Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne PROJEKT WYBRANYCH ELEMENTÓW KONSTRUKCJI ŻELBETOWEJ BUDYNKU BIUROWEGO DESIGN FOR SELECTED

Bardziej szczegółowo

Metoda Elementów Skończonych. Projekt: COMSOL Multiphysics 3.4.

Metoda Elementów Skończonych. Projekt: COMSOL Multiphysics 3.4. Politechnika Poznańska Metoda Elementów Skończonych Projekt: COMSOL Multiphysics 3.4. Prowadzący: dr hab. Tomasz Stręk Wykonali: Widerowski Karol Wysocki Jacek Wydział: Budowa Maszyn i Zarządzania Kierunek:

Bardziej szczegółowo

METODA ELEMENTÓW SKOŃOCZNYCH Projekt

METODA ELEMENTÓW SKOŃOCZNYCH Projekt METODA ELEMENTÓW SKOŃOCZNYCH Projekt Wykonali: Maciej Sobkowiak Tomasz Pilarski Profil: Technologia przetwarzania materiałów Semestr 7, rok IV Prowadzący: Dr hab. Tomasz STRĘK 1. Analiza przepływu ciepła.

Bardziej szczegółowo

Advance Design 2015 / SP2

Advance Design 2015 / SP2 Advance Design 2015 / SP2 Service Pack 2 do ADVANCE Design 2015 przynosi ponad 150 ulepszeń i poprawek. POLSKIE ZAŁĄCZNIKI KRAJOWE DO EUROKODÓW Advance Design 2015 SP2 umożliwia prowadzenie obliczeń z

Bardziej szczegółowo

PLAN SZKOLEŃ FEMAP. Nasza oferta: Solid Edge najefektywniejszy dostępny obecnie na rynku system CAD klasy mid-range,

PLAN SZKOLEŃ FEMAP. Nasza oferta: Solid Edge najefektywniejszy dostępny obecnie na rynku system CAD klasy mid-range, PLAN SZKOLEŃ FEMAP Firma GM System Integracja Systemów Inżynierskich Sp. z o.o. została założona w 2001 roku. Zajmujemy się dostarczaniem systemów CAD/CAM/CAE/PDM. Jesteśmy jednym z największych polskich

Bardziej szczegółowo

RAMA STALOWA 3D MODELOWANIE, ANALIZA ORAZ WYMIAROWANIE W FEM-DESIGN 11.0

RAMA STALOWA 3D MODELOWANIE, ANALIZA ORAZ WYMIAROWANIE W FEM-DESIGN 11.0 Structural Design Software in Europe AB Strona: http://www.strusoft.com Blog: http://www.fem-design-pl.blogspot.com Goldenline: http://www.goldenline.pl/forum/fem-design Facebook: http://www.facebook.com/femdesignpolska

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA. Laboratorium MES projekt

WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA. Laboratorium MES projekt WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA POLITECHNIKA POZNAŃSKA Laboratorium MES projekt Wykonali: Tomasz Donarski Prowadzący: dr hab. Tomasz Stręk Maciej Dutka Kierunek: Mechanika i budowa maszyn Specjalność:

Bardziej szczegółowo

Nowości w. Dlubal Software. Wersja 5.04.0058 / 8.04.0058

Nowości w. Dlubal Software. Wersja 5.04.0058 / 8.04.0058 Dlubal Software Spis treści Strona 1 Nowe moduły dodatkowe 2 2 Nowe funkcje głównych programów 4 3 Nowe funkcje dodatkowych modułów 5 Nowości w W marcu 2015 Wersja 5.04.0058 / 8.04.0058 Dlubal Software

Bardziej szczegółowo

11. 11. OPTYMALIZACJA KONSTRUKCJI

11. 11. OPTYMALIZACJA KONSTRUKCJI 11. OPTYMALIZACJA KONSTRUKCJI 1 11. 11. OPTYMALIZACJA KONSTRUKCJI 11.1. Wprowadzenie 1. Optymalizacja potocznie i matematycznie 2. Przykład 3. Kryterium optymalizacji 4. Ograniczenia w zadaniach optymalizacji

Bardziej szczegółowo

Przekrój zespolony. Przykład: Obliczanie parametrów przekroju jednorodnego. Ikona: Polecenie: GEOMZE Menu: BstInżynier Przekrój zespolony

Przekrój zespolony. Przykład: Obliczanie parametrów przekroju jednorodnego. Ikona: Polecenie: GEOMZE Menu: BstInżynier Przekrój zespolony BeStCAD - Moduł INŻYNIER 1 Przekrój zespolony Oblicza geometrię mas dla przekroju zespolonego Ikona: Polecenie: GEOMZE Menu: BstInżynier Przekrój zespolony Procedura licząca oparta jest na dostępnym w

Bardziej szczegółowo

ROTOPOL Spring Meeting

ROTOPOL Spring Meeting ROTOPOL Spring Meeting Obliczenia wytrzymałościowe dużych zbiorników. Optymalizacja konstrukcji zbiorników. Studium przypadku. Strength analysis of big tanks. Optimization of design of tanks. Case study.

Bardziej szczegółowo

1. Płyta: Płyta Pł1.1

1. Płyta: Płyta Pł1.1 Plik: Płyta Pł1.1.rtd Projekt: Płyta Pł1.1 1. Płyta: Płyta Pł1.1 1.1. Zbrojenie: Typ : Przedszk Kierunek zbrojenia głównego : 0 Klasa zbrojenia głównego : A-III (34GS); wytrzymałość charakterystyczna =

Bardziej szczegółowo

TUTORIAL: wyciągni. gnięcia po wielosegmentowej ście. cieżce ~ 1 ~

TUTORIAL: wyciągni. gnięcia po wielosegmentowej ście. cieżce ~ 1 ~ ~ 1 ~ TUTORIAL: Sprężyna skrętna w SolidWorks jako wyciągni gnięcia po wielosegmentowej ście cieżce ce przykład Sprężyny występują powszechnie w maszynach, pojazdach, meblach, sprzęcie AGD i wielu innych

Bardziej szczegółowo

1.1. Przykład projektowania konstrukcji prętowej z wykorzystaniem ekranów systemu ROBOT Millennium

1.1. Przykład projektowania konstrukcji prętowej z wykorzystaniem ekranów systemu ROBOT Millennium ROBOT Millennium wersja 20.0 - Podręcznik użytkownika (PRZYKŁADY) strona: 3 1. PRZYKŁADY UWAGA: W poniższych przykładach została przyjęta następująca zasada oznaczania definicji początku i końca pręta

Bardziej szczegółowo

Projektowanie elementów z tworzyw sztucznych

Projektowanie elementów z tworzyw sztucznych Projektowanie elementów z tworzyw sztucznych Wykorzystanie technik komputerowych w projektowaniu elementów z tworzyw sztucznych Tematyka wykładu Techniki komputerowe, Problemy występujące przy konstruowaniu

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: MODELOWANIE I SYMULACJA PROCESÓW WYTWARZANIA Modeling and Simulation of Manufacturing Processes Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy specjalności PSM Rodzaj zajęć: wykład,

Bardziej szczegółowo

R2D2-Rama 2D - moduł obliczeniowy

R2D2-Rama 2D - moduł obliczeniowy R2D2-Rama 2D - moduł obliczeniowy Program R2D2-Rama 2D przeznaczony jest dla konstruktorów budowlanych. Służy do przeprowadzania obliczeń statycznych i wymiarowania płaskich układów prętowych. Dzięki wygodnemu

Bardziej szczegółowo

Temat 1 (2 godziny): Próba statyczna rozciągania metali

Temat 1 (2 godziny): Próba statyczna rozciągania metali Temat 1 (2 godziny): Próba statyczna rozciągania metali 1.1. Wstęp Próba statyczna rozciągania jest podstawowym rodzajem badania metali, mających zastosowanie w technice i pozwala na określenie własności

Bardziej szczegółowo

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa

Spis treści Rozdział I. Membrany izotropowe Rozdział II. Swobodne skręcanie izotropowych prętów pryzmatycznych oraz analogia membranowa Spis treści Rozdział I. Membrany izotropowe 1. Wyprowadzenie równania na ugięcie membrany... 13 2. Sformułowanie zagadnień brzegowych we współrzędnych kartezjańskich i biegunowych... 15 3. Wybrane zagadnienia

Bardziej szczegółowo

Rysunek 8. Rysunek 9.

Rysunek 8. Rysunek 9. Ad 2. Dodatek Excel Add-Ins for Operations Management/Industral Engineering został opracowany przez Paul A. Jensen na uniwersytecie w Teksasie. Dodatek można pobrać ze strony http://www.ormm.net. Po rozpakowaniu

Bardziej szczegółowo

Modelowanie procesu walcowania blachy miedzianej

Modelowanie procesu walcowania blachy miedzianej Modelowanie procesu walcowania blachy miedzianej Samouczek został wykonany przy użyciu programu Abaqus 6.5-1, jednakże może zostać z powodzeniem użyty także w nowszych wersjach. Samouczek jest napisany

Bardziej szczegółowo

ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H

ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H Szybkobieżne Pojazdy Gąsienicowe (16) nr 2, 2002 Alicja ZIELIŃSKA ANALIZA WYTRZYMAŁOŚCI WYSIĘGNIKA ŻURAWIA TD50H Streszczenie: W artykule przedstawiono wyniki obliczeń sprawdzających poprawność zastosowanych

Bardziej szczegółowo

5.4. Tworzymy formularze

5.4. Tworzymy formularze 5.4. Tworzymy formularze Zastosowanie formularzy Formularz to obiekt bazy danych, który daje możliwość tworzenia i modyfikacji danych w tabeli lub kwerendzie. Jego wielką zaletą jest umiejętność zautomatyzowania

Bardziej szczegółowo

POMOCE NAUKOWE MODELOWANIE W PROGRAMIE ROBOT HALA PRZEMYSŁOWA O KONSTRUKCJI ŻELBETOWEJ EJ MONOLITYCZNEJ ROBOT MODELOWANIE W PROGRAMIE

POMOCE NAUKOWE MODELOWANIE W PROGRAMIE ROBOT HALA PRZEMYSŁOWA O KONSTRUKCJI ŻELBETOWEJ EJ MONOLITYCZNEJ ROBOT MODELOWANIE W PROGRAMIE HALA PRZEMYSŁOWA O KONSTRUKCJI ŻELBETOWEJ EJ MONOLITYCZNEJ MODELOWANIE W PROGRAMIE ROBOT 1 OPRACOWAŁ MGR INŻ. KAMIL DUBAŁA LISTOPAD 2010 1. Z okna selekcji typu konstrukcji wybieramy Ramę płaską 2. Z paska

Bardziej szczegółowo

W module Część-ISO wykonać kubek jak poniżej

W module Część-ISO wykonać kubek jak poniżej W module Część-ISO wykonać kubek jak poniżej rozpoczniemy od wyciągnięcia walca o średnicy 75mm i wysokości 90mm z płaszczyzny xy wykonujemy szkic do wyciągnięcia zamykamy szkic, oraz wprowadzamy wartość

Bardziej szczegółowo

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH

PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1 Przedmowa Okładka CZĘŚĆ PIERWSZA. SPIS PODSTAWY MECHANIKI OŚRODKÓW CIĄGŁYCH 1. STAN NAPRĘŻENIA 1.1. SIŁY POWIERZCHNIOWE I OBJĘTOŚCIOWE 1.2. WEKTOR NAPRĘŻENIA 1.3. STAN NAPRĘŻENIA W PUNKCIE 1.4. RÓWNANIA

Bardziej szczegółowo

Krzysztof Sendor Słowa kluczowe Tworzenie schodów

Krzysztof Sendor Słowa kluczowe Tworzenie schodów Program Intericad T5 Wersja polska Przygotował: Krzysztof Sendor Słowa kluczowe Tworzenie schodów Tworzenie schodów Istnie ją 4 sposoby tworzenie schodów w programie Intericad. W zależności od rodzaju

Bardziej szczegółowo

Projektowanie baz danych za pomocą narzędzi CASE

Projektowanie baz danych za pomocą narzędzi CASE Projektowanie baz danych za pomocą narzędzi CASE Metody tworzenia systemów informatycznych w tym, także rozbudowanych baz danych są komputerowo wspomagane przez narzędzia CASE (ang. Computer Aided Software

Bardziej szczegółowo

Metoda elementów skończonych

Metoda elementów skończonych Metoda elementów skończonych Krzysztof Szwedt Karol Wenderski M-2 WBMiZ MiBM 2013/2014 1 SPIS TREŚCI 1 Analiza przepływu powietrza wokół lecącego airbusa a320...3 1.1 Opis badanego obiektu...3 1.2 Przebieg

Bardziej szczegółowo

Załącznik nr 8. do Studium Wykonalności projektu Sieć Szerokopasmowa Polski Wschodniej województwo podkarpackie

Załącznik nr 8. do Studium Wykonalności projektu Sieć Szerokopasmowa Polski Wschodniej województwo podkarpackie MINISTERSTWO ROZWOJU REGIONALNEGO Załącznik nr 8 do Studium Wykonalności projektu Sieć Szerokopasmowa Polski Wschodniej Instrukcja obliczania wskaźnika pokrycia. Strona 2 z 24 Studium Wykonalności projektu

Bardziej szczegółowo

Modelowanie układów prętowych

Modelowanie układów prętowych Modelowanie kładów prętowych Elementy prętowe -definicja Elementami prętowymi można modelować - elementy konstrkcji o stosnk wymiarów poprzecznych do podłżnego poniżej 0.1, - elementy, które są wąskie

Bardziej szczegółowo

Technologia wykrawania w programie SigmaNEST

Technologia wykrawania w programie SigmaNEST Technologia wykrawania w programie SigmaNEST 1. Wstęp Wykrawanie - obok cięcia plazmą, laserem, nożem, tlenem oraz wodą - jest kolejnym procesem, obsługiwanym przez program SigmaNEST. Jednak w tym przypadku,

Bardziej szczegółowo

Dla tego magazynu dodajemy dokument "BO remanent", który definiuje faktyczny, fizyczny stan magazynu:

Dla tego magazynu dodajemy dokument BO remanent, który definiuje faktyczny, fizyczny stan magazynu: Remanent w Aptece Spis treści 1 Omówienie mechanizmu 2 Dokument BO jako remanent 2.1 Dodawanie dokumentu 2.2 Generowanie pozycji remanentu 2.3 Generowanie stanów zerowych 2.4 Raporty remanentowe 3 Raport

Bardziej szczegółowo

Laboratorium Wytrzymałości Materiałów

Laboratorium Wytrzymałości Materiałów Katedra Wytrzymałości Materiałów Instytut Mechaniki Budowli Wydział Inżynierii Lądowej Politechnika Krakowska Laboratorium Wytrzymałości Materiałów Praca zbiorowa pod redakcją S. Piechnika Skrypt dla studentów

Bardziej szczegółowo

PRO/ENGINEER. ĆW. Nr. MODELOWANIE SPRĘŻYN

PRO/ENGINEER. ĆW. Nr. MODELOWANIE SPRĘŻYN PRO/ENGINEER ĆW. Nr. MODELOWANIE SPRĘŻYN 1. Śruba walcowa o stałym skoku W programie Pro/Engineer modelowanie elementów typu sprężyny można realizować poleceniem Insert/Helical Sweep/Protrusin. Dla prawozwojnej

Bardziej szczegółowo

1 Moduł E-mail. 1.1 Konfigurowanie Modułu E-mail

1 Moduł E-mail. 1.1 Konfigurowanie Modułu E-mail 1 Moduł E-mail Moduł E-mail daje użytkownikowi Systemu możliwość wysyłania wiadomości e-mail poprzez istniejące konto SMTP. System Vision może używać go do wysyłania informacji o zdefiniowanych w jednostce

Bardziej szczegółowo

Modelowanie i obliczenia statyczne kratownicy w AxisVM Krok po kroku

Modelowanie i obliczenia statyczne kratownicy w AxisVM Krok po kroku Modelowanie i obliczenia statyczne kratownicy w AxisVM Krok po kroku Nowe zadanie Oś Z jest domyślną osią działania grawitacji. W ustawieniach programu można przypisać dowolny kierunek działania grawitacji.

Bardziej szczegółowo

Uruchom polecenie z menu Wstaw Wykres lub ikonę Kreator wykresów na Standardowym pasku narzędzi.

Uruchom polecenie z menu Wstaw Wykres lub ikonę Kreator wykresów na Standardowym pasku narzędzi. Tworzenie wykresów w Excelu. Część pierwsza. Kreator wykresów Wpisz do arkusza poniższą tabelę. Podczas tworzenia wykresów nie ma znaczenia czy tabela posiada obramowanie lub inne elementy formatowania

Bardziej szczegółowo

Rysowanie precyzyjne. Polecenie:

Rysowanie precyzyjne. Polecenie: 7 Rysowanie precyzyjne W ćwiczeniu tym pokazane zostaną różne techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2010, między innymi wykorzystanie punktów charakterystycznych. Z uwagi na

Bardziej szczegółowo

Instrukcja obsługi programu PowRek

Instrukcja obsługi programu PowRek Instrukcja obsługi programu PowRek środa, 21 grudnia 2011 Spis treści Przeznaczenie programu... 4 Prezentacja programu... 5 Okno główne programu... 5 Opis poszczególnych elementów ekranu... 5 Nowy projekt...

Bardziej szczegółowo

DRGANIA ELEMENTÓW KONSTRUKCJI

DRGANIA ELEMENTÓW KONSTRUKCJI DRGANIA ELEMENTÓW KONSTRUKCJI (Wprowadzenie) Drgania elementów konstrukcji (prętów, wałów, belek) jak i całych konstrukcji należą do ważnych zagadnień dynamiki konstrukcji Przyczyna: nawet niewielkie drgania

Bardziej szczegółowo

Stan graniczny użytkowalności wg PN-EN-1995

Stan graniczny użytkowalności wg PN-EN-1995 Politechnika Gdańska Wydział Inżynierii ądowej i Środowiska Stan graniczny użytkowalności wg PN-EN-1995 Jerzy Bobiński Gdańsk, wersja 0.32 (2014) Ugięcie końcowe wynikowe w net,fin Składniki ugięcia: w

Bardziej szczegółowo

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady

ANALIA STATYCZNA UP ZA POMOCĄ MES Przykłady ANALIZA STATYCZNA UP ZA POMOCĄ MES Przykłady PODSTAWY KOMPUTEROWEGO MODELOWANIA USTROJÓW POWIERZCHNIOWYCH Budownictwo, studia I stopnia, semestr VI przedmiot fakultatywny rok akademicki 2013/2014 Instytut

Bardziej szczegółowo

Komunikacja Master-Slave w protokole PROFIBUS DP pomiędzy S7-300/S7-400

Komunikacja Master-Slave w protokole PROFIBUS DP pomiędzy S7-300/S7-400 PoniŜszy dokument zawiera opis konfiguracji programu STEP7 dla sterowników S7 300/S7 400, w celu stworzenia komunikacji Master Slave z wykorzystaniem sieci PROFIBUS DP pomiędzy sterownikami S7 300 i S7

Bardziej szczegółowo

Politechnika Poznańska

Politechnika Poznańska Politechnika Poznańska Wydział Budowy Maszyn i Zarządzania Mechanika i Budowa Maszyn Projekt: Metoda elementów skończonych Prowadzący: dr hab. Tomasz STRĘK prof. nadzw. Autorzy: Małgorzata Jóźwiak Mateusz

Bardziej szczegółowo

Wprowadzenie do rysowania w 3D. Praca w środowisku 3D

Wprowadzenie do rysowania w 3D. Praca w środowisku 3D Wprowadzenie do rysowania w 3D 13 Praca w środowisku 3D Pierwszym krokiem niezbędnym do rozpoczęcia pracy w środowisku 3D programu AutoCad 2010 jest wybór odpowiedniego obszaru roboczego. Można tego dokonać

Bardziej szczegółowo

Katedra Zarządzania i Inżynierii Produkcji 2013r. Materiały pomocnicze do zajęć laboratoryjnych

Katedra Zarządzania i Inżynierii Produkcji 2013r. Materiały pomocnicze do zajęć laboratoryjnych Materiały pomocnicze do zajęć laboratoryjnych 1 Używane w trakcie ćwiczeń moduły programu Autodesk Inventor 2008 Tworzenie złożenia Tworzenie dokumentacji płaskiej Tworzenie części Obserwacja modelu/manipulacja

Bardziej szczegółowo

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora.

W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. 1. Podstawy matematyki 1.1. Geometria analityczna W naukach technicznych większość rozpatrywanych wielkości możemy zapisać w jednej z trzech postaci: skalara, wektora oraz tensora. Skalarem w fizyce nazywamy

Bardziej szczegółowo

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ

4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 1 4. 4. ELEMENTY PŁASKIEGO STANU NAPRĘŻEŃ I ODKSZTAŁCEŃ 4.1. Elementy trójkątne Do opisywania dwuwymiarowego kontinuum jako jeden z pierwszych elementów

Bardziej szczegółowo

Analiza MES pojedynczej śruby oraz całego układu stabilizującego do osteosyntezy

Analiza MES pojedynczej śruby oraz całego układu stabilizującego do osteosyntezy POLITECHNIKA POZNAŃSKA WYDZIAŁ BUDOWY MASZYN I ZARZĄDZANIA INŻYNIERIA BIOMEDYCZNA M O D E L O W A N I E I S Y M U L A C J A Z A G A D N I E Ń B I O M E D Y C Z N Y C H PROJEKT Analiza MES pojedynczej śruby

Bardziej szczegółowo

Karty pracy. Ustawienia. W tym rozdziale została opisana konfiguracja modułu CRM Karty pracy oraz widoki i funkcje w nim dostępne.

Karty pracy. Ustawienia. W tym rozdziale została opisana konfiguracja modułu CRM Karty pracy oraz widoki i funkcje w nim dostępne. Karty pracy W tym rozdziale została opisana konfiguracja modułu CRM Karty pracy oraz widoki i funkcje w nim dostępne. Ustawienia Pierwszym krokiem w rozpoczęciu pracy z modułem Karty Pracy jest definicja

Bardziej szczegółowo

Weryfikacja geometrii wypraski oraz jej modyfikacja z zastosowaniem Technologii Synchronicznej systemu NX

Weryfikacja geometrii wypraski oraz jej modyfikacja z zastosowaniem Technologii Synchronicznej systemu NX Weryfikacja geometrii wypraski oraz jej modyfikacja z zastosowaniem Technologii Synchronicznej systemu NX Projektowanie i wytwarzanie form wtryskowych, przeznaczonych do produkcji wyprasek polimerowych,

Bardziej szczegółowo

Podręcznik użytkownika Obieg dokumentów

Podręcznik użytkownika Obieg dokumentów Podręcznik użytkownika Obieg dokumentów Opracowany na potrzeby wdrożenia dla Akademii Wychowania Fizycznego im. Eugeniusza Piaseckiego w Poznaniu W ramach realizacji projektu: Uczelnia jutra wdrożenie

Bardziej szczegółowo