Tematy zadań określonych jako rozmaite

Wielkość: px
Rozpocząć pokaz od strony:

Download "Tematy zadań określonych jako rozmaite"

Transkrypt

1 Tematy zadań określonych jako rozmaite 1. Siedem ciekawych zadań 1. Oblicz długość pasa w przekładni pasowej, mając dane długości promieni kół: 40cm i 10cm, oraz odległość środków tych kół równą 60 cm.. Dana jest funkcja f określona wzorem f(x) = x + x + 1. Wyznacz wszystkie wielomiany, dla których zachodzi warunek f wielomiany, dla których zachodzi warunek ( g(x) ) 4x + 6x + 3 = dla każdego x R Wyprowadź podawany w tablicach matematycznych wzór: sin18 o = (zadanie 4 o rozwiąż nie korzystając ze wzorów na wartości funkcji trygonometrycznych kąta 36 ). km 4. W pewnej chwili awionetka lecąca na zachód z prędkością 360 przelatuje h dokładnie nad autobusem, jadącym po płaskiej drodze na południowy zachód z km prędkością 90. Awionetka leci na wysokości km. Jaka będzie odległość między h awionetką i autobusem po upływie 30 sekund? Wynik podaj z dokładnością do d 1m. 5. Wykaż, że funkcja homograficzna dana wzorem ax + b f(x) =, gdzie ad bc 0, c 0 jest różnowartościowa. cx + d Udowodnij, że funkcja odwrotna do funkcji homograficznej, jest też funkcją homograficzną. 6. Bok kwadratu ABCD ma długość a. Wierzchołek A połączono ze środkami E i F odpowiednio boków BC i CD. Wykaż, że odcinki AE i AF dzielą przekątną BD na trzy odcinki równej długości. 7. W walcu, którego promień podstawy ma długość r, umieszczono stożek. Stożek jest tak położony, ze osie obu brył są prostopadłe, wierzchołek stożka należy do pobocznicy walca, zaś podstawa stożka ma po jednym punkcie wspólnym z podstawami walca i dwa punkty wspólne z pobocznicą walca (rysunek). Oblicz objętości walca i stożka, wiedząc, że długość średnicy podstawy stożka jest równa długości jego tworzącej.. Dziesięć różnych zadań 1. W trójkącie ABC wysokość CD i środkowa CE dzielą kąt ACB na trzy równe części. Wyznaczyć miarę tego kąta.

2 . Znaleźć zbiór środków wszystkich okręgów przechodzących przez punkt P = (3,) i stycznych do osi OX. log 3 x log 3 x 3. Rozwiąż nierówność x + x > W kwadracie zawarty jest prostokąt o bokach odpowiednio równoległych do przekątnych kwadratu. Wykaż, że pole prostokąta nie jest większe od połowy pola kwadratu. 5. W trapezie ABCD łączymy środek M ramienia AB z końcami ramienia CD. Wykazać, że pole powstałego trójkąta CMD jest połową pola trapezu. 3 n n + 6. Ustal, dla jakich naturalnych n, wyrażenie jest liczbą całkowitą. n 1 7. Boki trójkąta prostokątnego tworzą ciąg arytmetyczny o różnicy 10cm. W trójkąt wpisujemy trzy jednakowe koła styczne parami do siebie, każde jest styczne do dłuższej przyprostokątnej, pierwsze jest również styczne do krótszej przyprostokątnej, a trzecie jest również styczne do przeciwprostokątnej. Oblicz długość promieni tych kół. 8. Wyznaczyć liczby wymierne a i b spełniające warunek: a + b = Rowerzysta przebył p drogę AB = 60km jadąc za stałą prędkością. W drodze powrotnej po godzinie jazdy z taką samą prędkością, zatrzymał się na 0 minut, a pozostałą część km drogi odbył z prędkością zwiększoną o 4. Okazało się, że droga w obie strony h trwała tyle samo czasu. Z jaką prędkością rowerzysta jechał z A do B? Znaleźć taką zależność między p i q, aby równanie x + px + q = 0 miało cztery pierwiastki tworzące ciąg arytmetyczny różnych zadań 1. Znajdź wszystkie pary liczb całkowitych spełniających układ równań: x + y = 6 x y + 3 = 5. Wyznacz liczbę rozwiązań równania x + 3x + 1 = k w zależności od parametru k. n n Wykaż, że dla każdej liczby naturalnej n, liczba postaci jest całkowita Udowodnij, że dla każdej liczby naturalnej n zachodzi nierówność: log 1 + log + log logn + log(n + 1) log1 + log + log logn > n + 1 n 5. Dane są długości boków b i c trójkąta ABC. Znajdź długość trzeciego boku, jeżeli kąt leżący naprzeciw tego boku jest dwa razy większy od kąta leżącego naprzeciw boku b. 6. W urnie znajduje się n kul białych, n kul czarnych i 3n kul zielonych. Losujemy 3 kule. Co jest większe: : prawdopodobieństwo, że wszystkie kule będą tego samego koloru, czy też prawdopodobieństwo, że każda kula będzie innego koloru? 7. Rozwiązać równanie: tg (x + y) + ctg (x + y) = 1 x x 8. Na pewnej drodze przednie koło wozu zrobiło 480 obrotów, a tylne, którego obwód jest o 60cm większy, tylko 360 obrotów. Oblicz obwód każdego koła i długość przebytej drogi. 9. Udowodnij, że przekątne trapezu o bokach a,b,b,b są dwusiecznymi kątów przy boku a.

3 x Narysuj wykres funkcji: y = + x 3 x Do dwóch okręgów o promieniach cm i 9cm poprowadzono wspólną styczną przecinającą odcinek łączący środki okręgów. Wiedząc, że odległość środków okręgów wynosi cm, oblicz długość odcinka stycznej zawartego między punktami styczności. 1. Obwód prostokąta wynosi 80 cm.. Dwusieczna jednego z kątów dzieli obwód na dwie części różniące się o 0 cm. Oblicz pole prostokąta. 13. Udowodnij, że w trójkącie równobocznym suma odległości dowolnego punktu wewnętrznego tego trójkąta od boków trójkąta jest wielkością stałą. 14. Wykazać, że w trójkącie prostokątnym równoramiennym suma odległości dowolnego punktu przeciwprostokątnej od obydwu przyprostokątnych jest równa długości jednej przyprostokątnej. 15. Średnia wieku drużyny piłkarskiej (11 osób) wynosi lata. Jeden z piłkarzy otrzymał czerwoną kartkę i zszedł z boiska. Średnia wieku pozostałych zawodników wynosi teraz 1 lat. Ile lat miał piłkarz, który otrzymał czerwoną kartkę? 16. Piła ma 60 cm długości i równe ząbki będące trójkątami równoramiennymi. Wysokość każdego z ząbków jest równa jego podstawy. 3 Jaką drogę przejdzie mrówka maszerując po ostrzach kolejnych ząbków piły? 17. W trójkącie równoramiennym dany jest kąt α przy podstawie. Obliczyć stosunek pola koła opisanego na tym trójkącie do pola tego trójkąta Dla jakich wartości m funkcja f (x) = mx (m + )x ma ekstremum w punkcie x 0 = 1? Wyznaczyć to ekstremum. sin x Wyznaczyć dziedzinę funkcji f(x) = cosx 1 0. W prawidłowym graniastosłupie trójkątnym, krawędź podstawy równa się a, zaś kosinus kąta między przekątnymi ścian bocznych, wychodzącymi ze wspólnego wierzchołka jest równy 19. Obliczyć objętość graniastosłupa różnych zadań 1. Ramię trójkąta równoramiennego jest dwa razy dłuższe od jego podstawy. Obliczyć stosunek pola koła wpisanego w ten trójkąt do pola trójkąta.. Napisać równanie okręgu o promieniu r = 3, przechodzącego przez punkt A = (4,) wiedząc, że środek tego okręgu należy do prostej x y = Obliczyć cosinus kąta, pod jakim ze środka podstawy sześcianu o krawędzi a widać jego przekątną. Dla jakich wartości m reszta z dzielenia wielomianu 3 x x + mx przez dwumian x jest mniejsza lub równa 6? m 3 4. Dla jakich wartości m reszta z dzielenia ia wielomianu x x + mx przez m dwumian x jest mniejsza lub równa 6? 5. Ze zbioru liczb { 1,,3,...,0} losujemy jedną liczbę. Zbadaj niezależność zdarzeń: A wylosowana liczba jest parzysta, B - wylosowana liczba jest podzielna przez 3.

4 6. Dane są punkty A = (0,3) i B = (, 1). Na prostej y = x wyznaczyć taki punkt C, aby kąt ABC był prosty i obliczyć pole trójkąta ABC. 7. Napisać równanie okręgu o promieniu 5 i stycznego do prostej x + y 1 = 0, wiedząc, że jego środek leży na osi OY. 3 sin x sin x sin x 1 8. Rozwiązać równanie = Podstawą ostrosłupa jest trójkąt równoboczny ABC o boku a, a spodkiem wysokości poprowadzonej z wierzchołka W jest punkt A. Wiedząc, że kąt BWC na ścianie ostrosłupa wynosi 45 0, oblicz wysokość ostrosłupa. 10. Z urny zawierającej 3 kule białe i 4 kule czarne losowo wybieramy bez zwracania dwie kule, a następnie dokładamy do urny kulę białą. Obliczyć prawdopodobieństwo, że po tym postępowaniu losowo wybrana z urny kula okaże się biała. 11. Dane są dwa wektory: AB = [1,0] i AC = [ k,]. π Dla jakich wartości k kąt BAC wynosi? 3 1. Wyznacz zbiór wartości funkcji f(x) = sin x cos x 13. Wykaż, że trójkąt o wierzchołkach A = (,1), B = (5,4), C = (0,3) jest rozwartokątny, a następnie oblicz jego pole. 14. W trójkącie równoramiennym ABC, w którym AB =, BC = AC = 6, poprowadzono środkową AD. Oblicz promień okręgu opisanego na trójkącie ABD. 15. W trójkącie równoramiennym ABC dane są:,. Obliczyć odległość środków okręgów: wpisanego w ten trójkąt i opisanego na tym trójkącie. 16. Jeden kran napełnia basen w ciągu 10 godzin. Każdy z dwu pozostałych kranów dwa razy szybciej. W jakim czasie napełni się basen, gdy otworzy się wszystkie trzy krany? 17. Rozwiązać równanie: ( )( ). 18. Narysuj wykres funkcji: ( ) 19. Rozwiązać równanie wiedząc, że kwadrat różnicy pierwiastków równa się Wyznaczyć resztę z dzielenia wielomianu ( ) przez wielomian ( ). 1. Wykazać, że równanie o współczynnikach nieparzystych nie ma pierwiastków całkowitych.. Dla jakich liczb naturalnych n równanie ma dokładnie dwa pierwiastki rzeczywiste? 3. Dana jest funkcja ( ).. Wyznacz wartości parametrów a i b wiedząc, że dla wszystkich liczb rzeczywistych x spełnione jest równanie: ( ) ( ). 4. W trójkącie prostokątnym przeciwprostokątna ma długość 13cm, a jedna z przyprostokątnych jest o 7cm dłuższa od drugiej. Oblicz długość wysokości tego trójkąta opuszczonej na przeciwprostokątną. 5. Znajdź największą wartość iloczynu sin,, jeżeli i β są s to miary kątów ostrych pewnego trójkąta prostokątnego. 6. Oblicz miarę kąta ostrego między prostymi. 7. Kontrola techniczna w zakładzie produkcyjnym odrzuca partię wyrobów złożoną ze 100 sztuk, jeżeli wśród losowo wybranych z tej partii 4 sztuk znajduje się co najmniej

5 jedna wadliwa. a. Obliczyć prawdopodobieństwo odrzucenia partii zawierającej 10 sztuk wadliwych. 8. Wyznacz współrzędne punktu symetrycznego do punktu (-1,3) względem prostej. 9. Wyznacz taką liczbę c, by proste styczne do paraboli o równaniu w punktach przecięcia z osią OX były prostopadłe. 30. W trójkącie równoramiennym o długości podstawy a i wysokościach h oraz H,,, zachodzi związek.. Oblicz sinus kąta przy podstawie trójkąta różnych zadań 1. W ostrosłupie prawidłowym czworokątnym krawędź boczna ma długość a i jest nachylona do płaszczyzny p podstawy pod kątem α. Przy ustalonym a, wyraź objętość tego ostrosłupa jako funkcję zmiennej α.. Ile rozwiązań ma równanie:? 3. Losowo rzucono osiem monet. Oblicz prawdopodobieństwo, że wypadło więcej reszek niż orłów. 4. Oblicz obwód czworokąta opisanego na okręgu o promieniu długości r, jeżeli pole czworokąta wynosi P. 5. Zaznacz w układzie współrzędnych zbiór: (, ): 1 6. Niech A i B będą niezależnymi zdarzeniami losowymi takimi, że z prawdopodobieństwem em zachodzą jednocześnie i z prawdopodobieństwem żadne em z nich nie zachodzi. Oblicz ( ) ( ). 7. Objętość prostopadłościanu jest równa 16, pole powierzchni całkowitej wynosi 5, a długości jego krawędzi tworzą ciąg geometryczny. Oblicz długość przekątnej tego prostopadłościanu. 8. Fabryka zamierzała w ciągu pewnego czasu wyprodukować 10 samochodów. Po wykonaniu połowy zamówienia usprawniono produkcję tak, że fabryka wytwarzała dziennie o jeden samochód więcej i zamówienie wykonała o 5 dni wcześniej. W ciągu ilu dni fabryka zamierzała wyprodukować te samochody? 9. Pole trójkąta (rys. poniżej) spełnia równość: ( ). Oblicz. 10. Jaki warunek spełniają parametry b i c, jeżeli trójmian ( ) ma dwa pierwiastki i takie, że? 11. Wyznacz zbiór wartości funkcji ( ), 1. W schemacie 4 prób Bernoulliego prawdopodobieństwo uzyskania co najmniej jednego sukcesu wynosi. Oblicz prawdopodobieństwo sukcesu w jednej próbie. 13. Pan Pieniążek otworzył w banku konto z wpłatą 100zł i postanowił, że będzie na swoje konto wpłacał dodatkowo po upływie każdego kwartału kwotę 100zł. Bank

6 oferuje stałe roczne oprocentowanie 4% i kapitalizuje odsetki co kwartał. Oblicz oszczędności pana Pieniążka na koniec czwartego roku (w zaokrągleniu do złotego). 14. Czworokąt ABCD jest rombem. Wysokość DE ( ) dzieli bok AB na odcinki o długościach:,,. Oblicz długość dłuższej przekątnej rombu 15. Dla jakich wartości parametru, funkcja ( ) ma wartość najmniejszą równą zero? 16. Rzucamy dwa razy kostką. Niech A oznacza zdarzenie losowe polegające na tym, że w wyniku pierwszego rzutu otrzymano nieparzystą liczbę oczek, B w wyniku drugiego rzutu otrzymano więcej oczek, niż w wyniku pierwszego. Oblicz ( / ). 17. Trójkąt prostokątny ma pole, a promień koła opisanego na trójkącie ma długość,.oblicz długości boków tego trójkąta. 18. Stożek o objętości przecięto płaszczyzną równoległą do podstawy stożka, odcinając stożek o objętości.. Oblicz stosunek wysokości danego stożka i stożka odciętego. 19. Wiadomo, że wielomian ( ) jest podzielny przez dwumian ( ).. Oblicz resztę z dzielenia tego wielomianu przez dwumian ( ). 0. Funkcja ( ) ma ekstremum lokalne w punkcie.. Sprawdź, czy jest to maksimum, czy minimum lokalne. Sprawdź, czy funkcja posiada inne ekstrema jeśli tak, wyznacz je. 1. Prawdopodobieństwo, że lipcowy dzień będzie słoneczny w Kołobrzegu jest równe. Oblicz prawdopodobieństwo 10 słonecznych dni podczas 14-dniowego pobytu w Kołobrzegu w miesiącu lipcu.. W trójkącie prostokątnym długości boków tworzą ciąg arytmetyczny rosnący. Udowodnij, że różnica tego ciągu jest równa promieniowi okręgu wpisanego w ten trójkąt. 3. Oblicz miejsca zerowe funkcji: ( ) ( ) 4. Rozłóż na czynniki stopnia pierwszego i drugiego wielomian ( ) 5. W trójkącie równoramiennym suma długości ramienia i wysokości prostopadłej do podstawy jest równa 1, a miara kąta przy podstawie jest równa. Oblicz pole trójkąta zadań z planimetrii 1. Podstawa trójkąta ma długość 60cm, wysokość 1cm, a środkowa poprowadzona do podstawy 13cm. Oblicz długości boków trójkąta.. Na bokach równoramiennego trójkąta prostokątnego o przyprostokątnej długości 10cm zbudowano kwadraty na zewnątrz boków. Środki tych kwadratów połączono odcinkami. Oblicz pole otrzymanego trójkąta. ta. 3. Podstawa trójkąta jest podzielona przez wysokość na części równe 36cm i 14cm. Prosta poprowadzona prostopadle do podstawy dzieli pole danego trójkąta na połowy. Na jakie części prosta ta dzieli podstawę trójkąta? 4. Oblicz pole trójkąta równoramiennego, jeżeli j jego podstawa wynosi 1cm, a wysokość opuszczona na podstawę jest równa odcinkowi łączącemu środek podstawy ze środkiem ramienia. 5. Podstawy trapezu mają długości a, b. Wyznacz długość odcinka równoległego do podstaw i dzielącego pole trapezu na połowy 6. Wyznacz pole trójkąta, którego boki są równe 7cm i 9cm, a środkowa trzeciego boku wynosi 6cm.

7 7. W trójkącie dane są dwa boki b i c, oraz jego pole.. Oblicz długość trzeciego boku. 8. Z punktu leżącego na zewnątrz okręgu poprowadzono dwie sieczne. Odcinek wewnętrzny pierwszej siecznej równa się 47cm, a zewnętrzny 9cm. Odcinek wewnętrzny drugiej siecznej jest o 7cm dłuższy od jej odcinka zewnętrznego. Wyznacz długość cięciwy wyznaczonej przez drugą sieczną. 9. Boki trójkąta są równe,,.. Dwa z nich (a i b) są styczne do okręgu, którego środek leży na trzecim boku. Oblicz promień tego okręgu. 10. W trójkącie prostokątnym na większej przyprostokątnej, jako na średnicy opisano półokrąg. Wyznacz długość półokręgu, jeżeli mniejsza przyprostokątna jest równa 30cm, a cięciwa łącząca wierzchołek kąta prostego z punktem przecięcia przeciwprostokątnej z półokręgiem jest równa 4cm. 11. Przez punkt okręgu poprowadzono dwie cięciwy o długościach 6cm i 8cm. Jeżeli połączymy ich końce, to otrzymamy trójkąt o polu 4cm. Wyznacz promień okręgu. 1. Oblicz pole koła wpisanego w trójkąt prostokątny, jeżeli wysokość opuszczona na przeciwprostokątną dzieli ją na odcinki równe 5,6cm i 14,4cm. 13. Na okręgu o promieniu r opisano trapez prostokątny, którego najmniejszy bok jest równy. Wyznacz pole trapezu. 14. W trójkąt równoboczny o boku a wpisano trzy jednakowe okręgi styczne jeden do drugiego. Każdy z nich przylega poza tym do dwóch boków danego trójkąta. Wyznacz promienie tych okręgów. 15. W trójkąt wpisano okrąg o promieniu 4cm. Jeden z boków trójkąta został podzielony przez punkt styczności okręgu na dwie części równe 6cm i 8cm. Wyznacz długości dwóch pozostałych boków trójkąta. 16. Prostopadła opuszczona z wierzchołka kąta przy podstawie trójkąta równoramiennego na przeciwległe ramię dzieli je w stosunku : licząc od wierzchołka. Sprawdź, czy kąt przy wierzchołku spełnia nierówność:. 17. W wycinek kołowy o promieniu i kącie rozwarcia wpisano koło. Oblicz promień tego koła. 18. Punkt leżący wewnątrz kąta jest odległy o a i b od jego ramion. Oblicz odległość tego punktu od wierzchołka kąta

PLANIMETRIA. Poziom podstawowy

PLANIMETRIA. Poziom podstawowy LANIMETRIA oziom podstawowy Zadanie ( pkt) W prostokątnym trójkącie ABC dana jest długość przyprostokątnej AC = Na przeciwprostokątnej AB wybrano punkt D, a na przyprostokątnej BC punkt E w taki sposób,

Bardziej szczegółowo

Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem

Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem Odpowiedzi i schematy oceniania Arkusz Zadania zamknięte Numer zadania Poprawna odpowiedź Wskazówki do rozwiązania B W ( ) + 8 ( ) 8 W ( 7) ( 7) ( 7 ) 8 ( 7) ( 8) 8 ( 8) Iloczyn dwóch liczb ujemnych jest

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

SPRAWDZIANY Z MATEMATYKI

SPRAWDZIANY Z MATEMATYKI SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci

Bardziej szczegółowo

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 015 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. s podane 4 odpowiedzi:

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

KARTY PRACY UCZNIA. Twierdzenie Pitagorasa i jego zastosowanie. samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób,

KARTY PRACY UCZNIA. Twierdzenie Pitagorasa i jego zastosowanie. samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób, KARTY PRACY UCZNIA Twierdzenie Pitagorasa i jego zastosowanie opracowanie: mgr Teresa Kargol, nauczyciel matematyki w PSP nr 162 w Łodzi Karty pracy to materiały pomocnicze, które mogą służyć do samodzielnej

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 8 stycznia 2014 r. 120 minut Informacje dla

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..

Bardziej szczegółowo

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

MATEMATYKA. Zadania maturalne poziom rozszerzony.

MATEMATYKA. Zadania maturalne poziom rozszerzony. MATEMATYKA Zadania maturalne poziom rozszerzony I Liczby, zbiory, wartość bezwzględna b Porównaj liczby a oraz Rozw: b a b a [MRI009/pkt] 8 a, b 7 9 a b, gdzie 69, : cos0 5 6 Uzasadnij, że 6 8 [MR/pkt]

Bardziej szczegółowo

NUMER IDENTYFIKATORA:

NUMER IDENTYFIKATORA: Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl

Bardziej szczegółowo

Zadania zamknięte. A) 3 pierwiastki B) 1 pierwiastek C) 4 pierwiastki D) 2 pierwiastki. C) a 4 = 2 3

Zadania zamknięte. A) 3 pierwiastki B) 1 pierwiastek C) 4 pierwiastki D) 2 pierwiastki. C) a 4 = 2 3 Zadania zamknięte ZADANIE 1 (1 PKT) Równanie x2 3x+2 = 0 ma: x 2 4 A) 3 pierwiastki B) 1 pierwiastek C) 4 pierwiastki D) 2 pierwiastki ZADANIE 2 (1 PKT) Liczba b jest 3 razy większa od liczby a. Wtedy

Bardziej szczegółowo

ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.

ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. 2 Przyk adowy arkusz egzaminacyjny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. Zadanie 1. (1 pkt) Pole powierzchni ca kowitej sze

Bardziej szczegółowo

BAZA ZADAŃ KLASA 3 TECHNIKUM LOGARYTMY I FUNKCJA WYKŁADNICZA. 1. Oblicz: a) b) c) d) e)* f) g) h) i) j) k) l) m) n) o) p) r)

BAZA ZADAŃ KLASA 3 TECHNIKUM LOGARYTMY I FUNKCJA WYKŁADNICZA. 1. Oblicz: a) b) c) d) e)* f) g) h) i) j) k) l) m) n) o) p) r) BAZA ZADAŃ KLASA 3 TECHNIKUM LOGARYTMY I FUNKCJA WYKŁADNICZA 1 Oblicz: a) b) c) d) e)* f) g) h) i) j) k) l) m) n) o) p) r) s) 2 Wykaż, że liczba jest liczbą wymierną 3Wykaż, że liczba jest liczbą całkowitą

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są

Bardziej szczegółowo

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt):

Zadanie I. 2. Gdzie w przestrzeni usytuowane są punkty (w której ćwiartce leży dany punkt): GEOMETRIA WYKREŚLNA ĆWICZENIA ZESTAW I Rok akademicki 2014/2015 Zadanie I. 1. Według podanych współrzędnych punktów wyznaczyć ich położenie w przestrzeni (na jednym rysunku aksonometrycznym) i określić,

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2013 r. 120 minut Informacje dla

Bardziej szczegółowo

ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 pobrano z www.sqlmedia.pl Centralna Komisja Egzaminacyjna ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawd, czy arkusz wiczeniowy zawiera strony (zadania 1 ).. Rozwi zania zada i odpowiedzi

Bardziej szczegółowo

pobrano z (A1) Czas GRUDZIE

pobrano z  (A1) Czas GRUDZIE EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA (A1) W czasie trwania egzaminu zdaj cy mo e korzysta z zestawu wzorów matematycznych, linijki i cyrkla

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM

ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM DLA UCZNIÓW GIMNAZJUM Drogi gimnazjalisto! Serdecznie dziękujemy, że zdecydowałeś się na wzięcie udziału w naszym konkursie. Test (tzw. wielokrotnego wyboru) składa

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 16 stron (zadania

Bardziej szczegółowo

KONKURSY MATEMATYCZNE. Treść zadań

KONKURSY MATEMATYCZNE. Treść zadań KONKURSY MATEMATYCZNE Treść zadań Wskazówka: w każdym zadaniu należy wskazać JEDNĄ dobrą odpowiedź. Zadanie 1 Wlewamy 1000 litrów wody do rurki w najwyższym punkcie systemu rurek jak na rysunku. Zakładamy,

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2011/2012 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 20/202 KOD UCZNIA Etap: Data: Czas pracy: szkolny 5 listopada 20 r. 90 minut Informacje dla ucznia:.

Bardziej szczegółowo

TERMIN ODDAWANIA PRAC 29 LUTEGO KLASA IV ZESTAW 3

TERMIN ODDAWANIA PRAC 29 LUTEGO KLASA IV ZESTAW 3 KLASA IV Pierwszy autobus odjeżdża z przystanku o godzinie 5.30, a następne autobusy odjeżdżają z tego przystanku co 45 minut. Janek przyszedł na przystanek o godzinie 14.22. o ile minut przyszedł za późno

Bardziej szczegółowo

Zadanie 2. Funkcja jest funkcją kwadratową. Zbiorem wszystkich rozwiązań nierówności f x jest przedział

Zadanie 2. Funkcja jest funkcją kwadratową. Zbiorem wszystkich rozwiązań nierówności f x jest przedział Zadanie. Na początku roku akademickiego mężczyźni stanowili 40% wszystkich studentów. Na koniec roku liczba wszystkich studentów zmalała o 0% i wówczas okazało się, że mężczyźni stanowią % wszystkich studentów.

Bardziej szczegółowo

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5.

ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR 2 POZIOM ROZSZERZONY. S x 3x y. 1.5 Podanie odpowiedzi: Poszukiwane liczby to : 2, 6, 5. Nr zadania Nr czynno ci... ODPOWIEDZI I SCHEMAT PUNKTOWANIA ZESTAW NR POZIOM ROZSZERZONY Etapy rozwi zania zadania Wprowadzenie oznacze : x, x, y poszukiwane liczby i zapisanie równania: x y lub: zapisanie

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2008 Czas pracy 180 minut Instrukcja

Bardziej szczegółowo

Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% C) 5 3 A) B) C) D)

Zadanie 1. (0-1 pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% C) 5 3 A) B) C) D) W ka dym z zada.-24. wybierz i zaznacz jedn poprawn odpowied. Zadanie. (0- pkt) Liczba 30 to p% liczby 80, zatem A) p = 44,(4)% B) p > 44,(4)% C) p = 43,(4)% D) p < 43,(4)% Zadanie 2. (0- pkt) Wyra enie

Bardziej szczegółowo

TWIERDZENIE PITAGORASA

TWIERDZENIE PITAGORASA PODSTAWY > Figury płaskie (2) TWIERDZENIE PITAGORASA Twierdzenie Pitagorasa dotyczy trójkąta prostokątnego, to znaczy takiego, który ma jeden kąt prosty. W trójkącie prostokątnym boki, które tworzą kąt

Bardziej szczegółowo

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. pobrano z www.sqlmedia.pl Uk ad graficzny CKE 00 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk

Bardziej szczegółowo

nie zdałeś naszej próbnej matury z matematyki?

nie zdałeś naszej próbnej matury z matematyki? Szanowny Maturzysto, nie zdałeś naszej próbnej matury z matematyki? To prawie niemożliwe, ale jeżeli jednak tak, to Pewnie sądzisz, że przyczyna tkwi w bardzo trudnym arkuszu! Zobaczmy, jak to wygląda

Bardziej szczegółowo

KURS GEOMETRIA ANALITYCZNA

KURS GEOMETRIA ANALITYCZNA KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6 KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+

'()(*+,-./01(23/*4*567/8/23/*98:)2(!./+)012+3$%-4#4$5012#-4#4-6017%*,4.!#$!#%&!!!#$%&#'()%*+,-+ '()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu

Bardziej szczegółowo

LICZBY I DZIAŁANIA - POZIOM PODSTAWOWY

LICZBY I DZIAŁANIA - POZIOM PODSTAWOWY LICZBY I DZIAŁANIA - POZIOM PODSTAWOWY Zadanie 1. (1 pkt) Liczba 3 30 9 90 jest równa A. 3 210 B. 3 300 C. 9 120 D. 27 2700 Zadanie 2. (1 pkt) Liczba 2 40 4 20 jest równa A. 4 40 B. 4 50 C. 8 60 D. 8 800

Bardziej szczegółowo

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY V TECHNIKUM 5 - LETNIEGO

PLAN WYNIKOWY Z MATEMATYKI DLA KLASY V TECHNIKUM 5 - LETNIEGO PLAN WYNIKOWY Z MATEMATYKI DLA KLASY V TECHNIKUM 5 - LETNIEGO Lp. Temat lekcji Umiejętności Podstawowe Ponadpodstawowe I Rachunek prawdopodobieństwa. Uczeń: Uczeń: 1-2 Permutacje. - zna symbol n!; - stosuje

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie: WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 15 stron (zadania

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013 Etap szkolny 13 listopada 2012 r. Godzina 10.00 Kod ucznia Instrukcja dla ucznia 1. Sprawdź, czy zestaw zawiera 7 stron. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi. 2. Na tej stronie i

Bardziej szczegółowo

Zadania. SiOD Cwiczenie 1 ;

Zadania. SiOD Cwiczenie 1 ; 1. Niech A będzie zbiorem liczb naturalnych podzielnych przez 6 B zbiorem liczb naturalnych podzielnych przez 2 C będzie zbiorem liczb naturalnych podzielnych przez 5 Wyznaczyć zbiory A B, A C, C B, A

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-062 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 14

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI pobrano z www.sqlmedia.pl ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. pobrano z

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. pobrano z Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2013 WPISUJE ZDAJ CY KOD PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014

Bardziej szczegółowo

Wymagania na poszczególne oceny klasa 4

Wymagania na poszczególne oceny klasa 4 Wymagania na poszczególne oceny klasa 4 a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć

Bardziej szczegółowo

MATURA PODSTAWOWA nr 2 NOWA FORMUŁA, czas pracy 170 minut

MATURA PODSTAWOWA nr 2 NOWA FORMUŁA, czas pracy 170 minut MATURA POSTAWOWA nr NOWA FORMUŁA, czas pracy 170 minut Każde zadanie od początku do końca jest mojego autorstwa. Odkąd istnieje nowa matura, każde z zadań rozwiązałem na wiele sposobów. Zaznajomiłem się

Bardziej szczegółowo

MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA NR 2. Miejsce na naklejk z kodem szko y CKE MARZEC ROK Czas pracy 150 minut

MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA NR 2. Miejsce na naklejk z kodem szko y CKE MARZEC ROK Czas pracy 150 minut Miejsce na naklejk z kodem szko y CKE MATEMATYKA POZIOM ROZSZERZONY MARZEC ROK 2008 PRZYK ADOWY ZESTAW ZADA NR 2 Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera

Bardziej szczegółowo

PRACA KLASOWA PO REALIZACJI PROGRAMU NAUCZANIA W KLASIE 4

PRACA KLASOWA PO REALIZACJI PROGRAMU NAUCZANIA W KLASIE 4 PRACA KLASOWA PO REALZACJ PROGRAMU NAUCZANA W KLASE 4 PLAN PRACY KLASOWEJ Nr zad. Czynności sprawdzane Cele / Wymagania Odniesienie do podstawy programowej Odpowiedzi 1 zapisywanie liczby w systemie dziesiątkowym

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 007 Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny

Bardziej szczegółowo

BLOK I. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach:

BLOK I. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach: BLOK I. Rachunek różniczkowy i całkowy. Znaleźć przyrost funkcji f() = przy = zakładając, że przyrost zmiennej niezależnej jest równy: a), ; b), ;, 5.. Znaleźć iloraz różnicowy funkcji y = f() w punkcie

Bardziej szczegółowo

KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2014/2015 DLA KLAS III przygotowały mgr Magdalena Murawska i mgr Agnieszka Łukaszyk

KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2014/2015 DLA KLAS III przygotowały mgr Magdalena Murawska i mgr Agnieszka Łukaszyk KOŃCOWOROCZNE KRYTERIA OCENIANIA Z MATEMATYKI W ROKU SZKOLNYM 2014/2015 DLA KLAS III przygotowały mgr Magdalena Murawska i mgr Agnieszka Łukaszyk Ocenę dopuszczającą otrzymuje uczeń, który: definiuje notację

Bardziej szczegółowo

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja MMA-P1_1P-072 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2007 Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny

Bardziej szczegółowo

W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 3. Rozwiąż równanie: sin 5x cos x + sin x = 0. W rozwiązaniach podobnych zadań często korzystamy ze wzorów trygonometrycznych

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ

PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ WPISUJE ZDAJĄCY KOD IMIĘ I NAZWISKO * * nieobowiązkowe PRÓBNY EGZAMIN MATURALNY Z NOWĄ ERĄ matematyka-poziom PODSTAWOWY dysleksja Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 4

Bardziej szczegółowo

Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II

Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II Matematyka wykaz umiejętności wymaganych na poszczególne oceny zakres rozszerzony KLASA II 1.Uzupełnienie treści ujętych w działach klasy I. 1.Rozwiązywanie prostych równań i nierówności z wartością bezwzględną

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-061 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 12

Bardziej szczegółowo

jest wierzchołkiem kąta prostego. Przeciwprostokątna AB jest zawarta w prostej o równaniu 3 x y + 2 = 0. Oblicz współrzędne punktów A i B.

jest wierzchołkiem kąta prostego. Przeciwprostokątna AB jest zawarta w prostej o równaniu 3 x y + 2 = 0. Oblicz współrzędne punktów A i B. Zadanie PP-GA-1. W trójkącie równoramiennym prostokątnym punkt C = ( 3, 1) jest wierzchołkiem kąta prostego. Przeciwprostokątna AB jest zawarta w prostej o równaniu 3 x y + 2 = 0. Oblicz współrzędne punktów

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Rozkład materiału klasa 1BW

Rozkład materiału klasa 1BW Rozkład materiału klasa BW wg podręcznika Matematyka kl. wyd. Nowa Era 2h x 38 tyg. = 76h lekcyjnych LICZBYRZECZYWISTE (7 godz.). Zapoznanie z programem nauczania, wymaganiami edukacyjnymi, zasadami BHP

Bardziej szczegółowo

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 D A D A A B A B B C B D C C C D B C C B. Schemat oceniania zadań otwartych.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 D A D A A B A B B C B D C C C D B C C B. Schemat oceniania zadań otwartych. Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych LICEUM Klucz odpowiedzi do zadań zamkniętych 6 7 8 9 0 6 7 8 9 0 D A D A A B A B B C B D C C C D B C C B Zadanie. (pkt) Rozwiąż

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. pobrano z

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2013 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50. pobrano z Uk ad graficzny CKE 010 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN

Bardziej szczegółowo

KOD UCZNIA PESEL EGZAMIN. jedna. zadaniach. 5. W niektórych. Czas pracy: do. 135 minut T N. miejsce. Powodzeni GM-M7-132. z kodem. egzaminu.

KOD UCZNIA PESEL EGZAMIN. jedna. zadaniach. 5. W niektórych. Czas pracy: do. 135 minut T N. miejsce. Powodzeni GM-M7-132. z kodem. egzaminu. Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2011 UZUPE NIA ZESPÓ NADZORUJ CY KOD UCZNIA PESEL miejsce na naklejk z kodem

Bardziej szczegółowo

Dział Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra trójkąty prostokątne. Wielokąty i okręgi

Dział Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra trójkąty prostokątne. Wielokąty i okręgi Dział Ocena dopuszczająca Ocena dostateczna Ocena dobra Ocena bardzo dobra trójkąty prostokątne Wielokąty i okręgi zna twierdzenie Pitagorasa rozumie potrzebę stosowania twierdzenia Pitagorasa umie obliczyć

Bardziej szczegółowo

Kurs wyrównawczy dla kandydatów i studentów UTP

Kurs wyrównawczy dla kandydatów i studentów UTP Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122,

Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122, Analiza wyników egzaminu gimnazjalnego Test matematyczno-przyrodniczy Test GM-M1-122, Zestaw zadań z zakresu matematyki posłużył w dniu 25 kwietnia 2012 r. do sprawdzenia, u uczniów kończących trzecią

Bardziej szczegółowo

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne

Arkusz maturalny. Šukasz Dawidowski. 25 kwietnia 2016r. Powtórki maturalne Arkusz maturalny Šukasz Dawidowski Powtórki maturalne 25 kwietnia 2016r. Odwrotno±ci liczby rzeczywistej 1. 9 8 2. 0, (1) 3. 8 9 4. 0, (8) 3 4 4 4 1 jest liczba Odwrotno±ci liczby rzeczywistej 3 4 4 4

Bardziej szczegółowo

MATERIA DIAGNOSTYCZNY Z MATEMATYKI

MATERIA DIAGNOSTYCZNY Z MATEMATYKI dysleksja MATERIA DIAGNOSTYCZNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla ucznia 1. Sprawd, czy arkusz zawiera 12 ponumerowanych stron. Ewentualny brak zg o przewodnicz

Bardziej szczegółowo

XIII KONKURS MATEMATYCZNY

XIII KONKURS MATEMATYCZNY XIII KONKURS MTMTYZNY L UZNIÓW SZKÓŁ POSTWOWYH organizowany przez XIII Liceum Ogólnokształcace w Szczecinie FINŁ - 19 lutego 2013 Test poniższy zawiera 25 zadań. Za poprawne rozwiązanie każdego zadania

Bardziej szczegółowo

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a

Bardziej szczegółowo

Załącznik nr 4 do PSO z matematyki

Załącznik nr 4 do PSO z matematyki Załącznik nr 4 do PSO z matematyki Wymagania na poszczególne oceny szkolne z matematyki na poziomie rozszerzonym Charakterystyka wymagań na poszczególne oceny: Wymagania na ocenę dopuszczającą dotyczą

Bardziej szczegółowo

TEST WIADOMOŚCI: Równania i układy równań

TEST WIADOMOŚCI: Równania i układy równań Poziom nauczania: Gimnazjum, klasa II Przedmiot: Matematyka Dział: Równania i układy równań Czas trwania: 45 minut Wykonała: Joanna Klimeczko TEST WIADOMOŚCI: Równania i układy równań Liczba punktów za

Bardziej szczegółowo

Konkurs Matematyczny OMEGA organizowany przez Zespół Szkół Nr 1 im. Stefana Garczyńskiego w Zbąszyniu. http://omegamat.w.interia.

Konkurs Matematyczny OMEGA organizowany przez Zespół Szkół Nr 1 im. Stefana Garczyńskiego w Zbąszyniu. http://omegamat.w.interia. Aleksandra Zalejko Konkurs Matematyczny OMEGA organizowany przez Zespół Szkół Nr im. Stefana Garczyńskiego w Zbąszyniu. http://omegamat.w.interia.pl Organizacja kolejnych edycji Konkursu Matematycznego

Bardziej szczegółowo

Zadania z parametrem

Zadania z parametrem Zadania z paramerem Zadania z paramerem są bardzo nielubiane przez maurzysów Nie jes ławo odpowiedzieć na pyanie: dlaczego? Nie są o zadania o dużej skali rudności Myślę, że głównym powodem akiego sanu

Bardziej szczegółowo

MATEMATYKA Zakres podstawowy

MATEMATYKA Zakres podstawowy Wiedzy teoretycznej Podstawowych umiejętności MATEMATYKA Zakres podstawowy Testy sprawdzające znajomość: Testy zostały opracowane przez nauczycieli gdańskich szkół średnich: Kaminiecką Annę Kasprzak Annę

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 24 czerwca 2013 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, 24 czerwca 2013 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Rozwiąż następujące zagadnienie programowania liniowego: Zminimalizować 2x 1 x 2 +x 3 +x 4, przy ograniczeniach x 1 x 2 + 2x 3 = 2 x 2 3x 3 = 6 x 1 + x 3 + x 4 =

Bardziej szczegółowo

W Y M A GANIA NA POSZCZEG ÓLNE OCENY-MATEMATYKA KLASA 3

W Y M A GANIA NA POSZCZEG ÓLNE OCENY-MATEMATYKA KLASA 3 W Y M A GANIA NA POSZCZEG ÓLNE OCENY-MATEMATYKA KLASA 3 dopuszczaj ący 1 rozumie wykres jako sposób prezentacji informacji umie odczytać z wykresu zna pojęcie funkcji zna pojęcia: dziedzina, argument,

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ 0 MATURA 00 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 70 minut. Sprawdê, czy arkusz zawiera stron.. W zadaniach od. do 5. sà podane 4 odpowiedzi:

Bardziej szczegółowo

Matematyka przed egzaminem gimnazjalnym fragmenty

Matematyka przed egzaminem gimnazjalnym fragmenty 42. Na osi liczbowej (ilustracja obok) liczba 0,77 leży między punktami: A) K i L, B) L i M, C) M i N, D) N i P. 8 7 6 5 4 : C. 54. Butelka o pojemności litra napełniona jest w połowie sokiem. Arek wypił

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron.

Bardziej szczegółowo