Ryzyko na rynkach finansowych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ryzyko na rynkach finansowych"

Transkrypt

1 Ryzyko na rynkach finansowych dr Tomasz Chmielewski Szkoła Główna Handlowa Katedra Polityki Pieniężnej Semestr letni 2011/2012

2 Wstęp Plan wykładu Wprowadzenie do pomiaru ryzyka rynkowego Rozkłady stóp zwrotu z różnych aktywów Realizm normalności Grube ogony Wybrane aspekty modelowania rozkładów Przeglad wybranych rozkładów Modele GARCH/MGARCH Miary ryzyka Pożadane cechy miar ryzyka VaR jako (nieidealna) miara ryzyka rynkowego Inne miary ryzyka Rozszerzenia

3 Wstęp (Wybrana) literatura do drugiej części zajęć (1) T.G. Andersen, T. Bollerslev, F.X. Diebold, Parametric and Nonparametric Volatility Measurement, w: L.P. Hansen, Y. Ait-Sahalia (red.) Handbook of Financial Econometrics, North-Holland, Amsterdam T.G. Andersen, T. Bollerslev, P.F. Christoffersen, F.X. Diebold, Practical Volatility and Correlation Modeling for Financial Market Risk Management, w: M. Carey, R. Stultz (red.), Risks of Financial Institutions, University of Chicago Press for NBER, T.G. Andersen, T. Bollerslev, P.F. Christoffersen, F.X. Diebold, Volatility and Correlation Forecasting, w: G. Elliot, C.W.J. Granger, A. Timmermann, Handbook of Economic Forecasting, North-Holland, Amsterdam 2006.

4 Wstęp (Wybrana) literatura do drugiej części zajęć (2) J.Y. Campbell, A.W. Lo, A.C. MacKinlay, The Econometrics of Financial Markets, Princeton University Press, Princeton C. Alexander, Market Models. A Guide to Financial Data Analysis, John Wiley & Sons, Chichester K. Dowd, Measuring Market Risk (2 wyd.), John Wiley & Sons, Chichester BIS (2011), Messages from the academic literature on risk measurement for the trading book, BCBS Working Papers No 19

5 Stopy zwrotu Wprowadzenie Outline 1 Wstęp 2 Stopy zwrotu Wprowadzenie Proces generujacy stopy zwrotu Alternatywne rozkłady 3 Modele warunkowej zmienności Warunkowa zmienność wprowadzenie Jednowymiarowe modele GARCH Wielowymiarowe modele GARCH 4 Podstawowe miary ryzyka Spójne miary ryzyka VaR Expected shortfall 5 Spektralne miary ryzyka Definicja 6 Wybrane modele ryzyka kredytowego

6 Stopy zwrotu Wprowadzenie Stopy zwrotu dla porzadku Prosta stopa zwrotu: Logarytmiczna stopa zwrotu: r t ln(1 + R t ) = ln R t = P t P t 1 P t 1 = P t P t 1 1 P t P t 1 = ln(p t ) ln(p t 1 ) = p t p t 1 O ile nie zaznaczono inaczej, w tej prezentacji wykorzystywane sa dzienne logarytmiczne stopy zwrotu Addytywność Pewne ułatwienia w modelowaniu stóp zwrotu jako szeregów czasowych Ostrożnie z portfelami

7 Stopy zwrotu Wprowadzenie Dlaczego rozkłady stóp zwrotu? Zwykle wygodniej modelować stopy zwrotu niż poziomy cen Stopy zwrotu być może sa niezależne w czasie, ceny na pewno sa zależne Problemy z integracja szeregów wygodniej jest nie mieć trendów Zarz adzanie ryzykiem: o ile i z jakim prawdopodobieństwem może zmienić się wartość mojego portfela?

8 Stopy zwrotu Proces generujacy stopy zwrotu Outline 1 Wstęp 2 Stopy zwrotu Wprowadzenie Proces generujacy stopy zwrotu Alternatywne rozkłady 3 Modele warunkowej zmienności Warunkowa zmienność wprowadzenie Jednowymiarowe modele GARCH Wielowymiarowe modele GARCH 4 Podstawowe miary ryzyka Spójne miary ryzyka VaR Expected shortfall 5 Spektralne miary ryzyka Definicja 6 Wybrane modele ryzyka kredytowego

9 Stopy zwrotu Proces generujacy stopy zwrotu Grube ogony rozkładów Centralne twierdzenie graniczne daje nadzieję na korzystne własności statystyczne rozkładów Badania empiryczne potwierdzaja odchylenia od normalności Odchylenia te zwykle tym większe, im stopy zwrotu dla krótszego okresu Grube ogony istotne w modelowaniu ryzyka znaczna modyfikacja tej części rozkładu, która jest przedmiotem największego zainteresowania

10 Stopy zwrotu Proces generujacy stopy zwrotu Dlaczego obserwujemy grube ogony? W rzeczywistości rozkład inny niż normalny? Heteroskedastyczność i niewłaściwe ujęcie efektów GARCH? Stopy zwrotów w rzeczywistości pochodza z mieszaniny rozkładów normalnych? Wpływ nieefektywności rynków? Wpływ mikrostruktury rynków? Zmienność stochastyczna? Proces nieciagły (skoki)? Tak naprawdę wszystko jest normalne, tylko mamy zbyt mało obserwacji, żeby to stwierdzić?

11 Stopy zwrotu Alternatywne rozkłady Outline 1 Wstęp 2 Stopy zwrotu Wprowadzenie Proces generujacy stopy zwrotu Alternatywne rozkłady 3 Modele warunkowej zmienności Warunkowa zmienność wprowadzenie Jednowymiarowe modele GARCH Wielowymiarowe modele GARCH 4 Podstawowe miary ryzyka Spójne miary ryzyka VaR Expected shortfall 5 Spektralne miary ryzyka Definicja 6 Wybrane modele ryzyka kredytowego

12 Stopy zwrotu Alternatywne rozkłady Rozkłady stabilne Szukamy rozkładów, dla których szansa zdarzeń odległych od średniej byłaby większa niż dla rozkładu normalnego Wśród kandydatów: rodzina rozkładów stabilnych Suma zmiennych losowych z rozkładów stabilnych ma rozkład stabilny Rozkład normalny szczególnym przypadkiem Znane postaci analityczne funkcji gęstości dla rozkładu Cauchy ego i Bernoulliego

13 Stopy zwrotu Alternatywne rozkłady Problemy z niektórymi rozkładami stabilnymi Niewygodne w wyprowadzeniach Ogony tak grube, że nie istnieja drugie momenty Czyli brak odchylenia standardowego Czyli brak korelacji Problemy z funkcja użyteczności (poza najbardziej trywialnymi przypadkami wyższe momenty rozkładu też się przydaja) Implikuj a tak samo nienormalne rozkłady stóp zwrotu dla dłuższych okresów utrzymywania wbrew wynikom empirycznym

14 Stopy zwrotu Alternatywne rozkłady Rozkłady gruboogonowe z istniejacymi wyższymi momentami Rozkład t-studenta Mieszanina rozkładów normalnych (1 δ t )ε 1,t + δ t ε 2,t δ t zmienna binarna przełaczaj aca między rozkładami normalnymi o różnych wariancjach Procesy ze skokami

15 Stopy zwrotu Alternatywne rozkłady Przykład: Mieszanina rozkładów normalnych Dwie zmienne o rozkładzie normalnym ε i N(µ i, σ 2 i ), µ 1 = µ 2 = 0, σ 2 1 = 1, σ2 2 = 3 Z prawdopodobieństwem 95% losujemy z rozkładu ε 1, zaś z prawd. 5% z rozkładu ε 2 Generujemy szereg obserwacji W efekcie obserwowany rozkład bezwarunkowy będzie miał grube ogony

16 Stopy zwrotu Alternatywne rozkłady Mieszanina rozkładów normalnych

17 Stopy zwrotu Alternatywne rozkłady Mieszanina rozkładów normalnych

18 Stopy zwrotu Alternatywne rozkłady Mieszanina rozkładów normalnych Mieszanina Dopasowany rozkład normalny

19 Stopy zwrotu Alternatywne rozkłady Mieszanina rozkładów normalnych Dopasowany rozkład normalny Mieszanina

20 Wybrane rozkłady gruboogonowe Proces ze skokami Do typowego procesu generujacego stopy zwrotu dodajemy komponent odpowiedzialny za skoki nagłe, znaczne zmiany Możliwe jest wtedy uzyskanie niezerowej skośności rozkładu oraz efektu grubych ogonów r t = e t + et J e t N(0, σt 2) Zmienna et J jest suma N t zmiennych losowych J n, n = 1,..., N t N t jest zmienna losowa o rozkładzie Poissona ze średnia λ, gdzie λ jest liczba "skoków" w ciagu dnia J N N(µ J, σj 2)

21 Wybrane rozkłady gruboogonowe Proces ze skokami parametry Średnia: λµ J Wariancja: σ 2 + λ(µ 2 J + σ2 J ) Skośność: λµ J (µ 2 J + 3σ2 J ) Kurtoza: 3 + λ(µ 4 J + 6µ2 J σ2 J + 3σ4 J )

22 Wybrane rozkłady gruboogonowe GEV Teoria wartości ekstremalnych pozwala na wyprowadzenie rozkładu skrajnych realizacji zmiennych losowych przy dość ogólnych założeniach { exp[ (1 + ξ(x µ)/σ) H ξ,µ,σ = 1/ξ ], jeżeli ξ 0 exp[ exp( (x µ)/σ)], jeżeli ξ = 0 gdzie musi być spełniony warunek 1 + ξ(x µ)/σ > 0 Parametry położenia (µ) oraz skali (σ) nie moga być bezpośrednio utożsamiane ze średnia i odchyleniem standardowym

23 Wybrane rozkłady gruboogonowe GEV Parametr ξ decyduje o charakterze ogona rozkładu Dla ξ > 0 GEV daje rozkład Frécheta, co oznacza, że zmienna x ma rozkład gruboognowy Dla ξ = 0 otrzymujemy rozkład Gumbela z kurtoza taka, jak dla rozkładu normalnego (3) Dla ξ < 0 (rozkład Weibulla) mamy ogon cieńszy niż dla rozkładu normalnego Możliwe wyprowadzenie wielkości VaR; ξ > 0: VaR α = µ σ ξ [1 ( log(α)) ξ ] ξ = 0: VaR α = µ σ log[log(1/α)]

24 Wybrane rozkłady gruboogonowe POT uogólniony rozkład Pareto Niech X będzie zmienna losowa o dystrybuancie F(x), dla danego poziomu granicznego u można określić rozkład strat przekraczajacych u: F u (y) = P(X u y X > u) Dla dużych wartości u, rozkład F u (y) daży do uogólnionego rozkładu Pareto: G ξ,β = { 1 (1 + ξx/β) 1/ξ, jeżeli ξ 0 1 exp( x/β), jeżeli ξ = 0

25 Wybrane rozkłady gruboogonowe POT parametryzacja Rozkład zależy tylko od dwóch parametrów skali (β) oraz kształtu (ξ), decydujacym o charakterze ogona (tail index) Problem doboru granicznej wartości u wysoka wartość wymagana, żeby zadziałała asymptotyczna teoria, jednak to ogranicza liczbę obserwacji ekstremalnych Możliwe wyznaczenie { wartości VaR: [ } VaR α = u + β n ξ (1 α)] ξ Nu 1

26 Modele warunkowej zmienności Warunkowa zmienność wprowadzenie Outline 1 Wstęp 2 Stopy zwrotu Wprowadzenie Proces generujacy stopy zwrotu Alternatywne rozkłady 3 Modele warunkowej zmienności Warunkowa zmienność wprowadzenie Jednowymiarowe modele GARCH Wielowymiarowe modele GARCH 4 Podstawowe miary ryzyka Spójne miary ryzyka VaR Expected shortfall 5 Spektralne miary ryzyka Definicja 6 Wybrane modele ryzyka kredytowego

27 Modele warunkowej zmienności Warunkowa zmienność wprowadzenie Zmienność oszacowania czy zmienność parametru? okno22 okno60 okno250

28 Modele warunkowej zmienności Warunkowa zmienność wprowadzenie Modelowanie zmienności Zmienność jest zmienna w czasie Zmienność nie jest bezpośrednio obserwowalna Zmienność może być podstawa wyceny instrumentów finansowych Jaka jest wartość zmienności dzisiaj? Jaka będzie wartość zmienności jutro? Skad brać zmienność?

29 Modele warunkowej zmienności Warunkowa zmienność wprowadzenie Dlaczego modele warunkowej zmienności? Wycena opcji Realistyczne oszacowania ryzyka Szacowanie stóp zwrotu skorygowanych o ryzyko Wybór optymalnego portfela Zmienne w czasie β w CAPM

30 Modele warunkowej zmienności Warunkowa zmienność wprowadzenie Model wygładzania wykładniczego σ 2 t = λσ 2 t 1 + (1 λ)r 2 t 1 σt 2 = (1 λ)λ j rt 1 j 2 j=0 Podejście spopularyzowane przez RiskMetrics λ kalibrowana arbitralnie (zwykle 0,94 dla danych dziennych) Jak szybko model zapomina o historycznej zmienności

31 Modele warunkowej zmienności Jednowymiarowe modele GARCH Outline 1 Wstęp 2 Stopy zwrotu Wprowadzenie Proces generujacy stopy zwrotu Alternatywne rozkłady 3 Modele warunkowej zmienności Warunkowa zmienność wprowadzenie Jednowymiarowe modele GARCH Wielowymiarowe modele GARCH 4 Podstawowe miary ryzyka Spójne miary ryzyka VaR Expected shortfall 5 Spektralne miary ryzyka Definicja 6 Wybrane modele ryzyka kredytowego

32 Modele warunkowej zmienności Jednowymiarowe modele GARCH Model GARCH σt 2 = ω + αrt βσ2 t 1 ; ω, α, β 0; α + β 1 σ 2 t = ω 1 β + α β j 1 r 2 t j Możliwe uogólnienie na GARCH(m,n) Liczne wersje modelu GARCH (asymetryczne, zapadkowe, modyfikacje procesu r,...) Estymacja zwykle poprzez (quasi) MNW Model wygładzania wykładniczego jest szczególnym przypadkiem GARCH(1,1)

33 Modele warunkowej zmienności Jednowymiarowe modele GARCH Model GARCH σ 2 t = ω + αr 2 t 1 + βσ2 t 1 σ 2 ω 1 α β Zależność od wartości długookresowej: σ 2 t = σ 2 + α(r 2 t 1 σ2 ) + β(σ 2 t 1 σ2 ) Warunkowa prognoza zmienności: σ 2 t+k t = σ2 + (α + β) k 1 (σ 2 t+1 t σ2 )

34 Modele warunkowej zmienności Wielowymiarowe modele GARCH Outline 1 Wstęp 2 Stopy zwrotu Wprowadzenie Proces generujacy stopy zwrotu Alternatywne rozkłady 3 Modele warunkowej zmienności Warunkowa zmienność wprowadzenie Jednowymiarowe modele GARCH Wielowymiarowe modele GARCH 4 Podstawowe miary ryzyka Spójne miary ryzyka VaR Expected shortfall 5 Spektralne miary ryzyka Definicja 6 Wybrane modele ryzyka kredytowego

35 Modele warunkowej zmienności Wielowymiarowe modele GARCH Wielowymiarowe modele warunkowej zmienności (MGARCH) Zmienność na różnych rynkach może zależeć od wspólnych czynników Wzrost zmienności na jednym rynku może powodować zmianę zmienności na innym rynku Zależności (kowariancje/korelacje) między rynkami mog a być zmienne w czasie

36 Modele warunkowej zmienności Wielowymiarowe modele GARCH Ogólna specyfikacja modelu R t = Ω 1 2 t Z t E(Z t ) = 0 Z t i.i.d var(z t ) = I Ω to wielowymiarowa analogia wariancji W modelowaniu konieczne zapewnienie, by macierz Ω była nieujemnie określona Dla N aktywów w macierzy Ω mamy N(N + 1)/2 wolnych parametrów do oszacowania W praktyce konieczne nałożenie restrykcji w celu zmniejszenia wymiarowości problemu

37 Modele warunkowej zmienności Wielowymiarowe modele GARCH Wygładzanie wykładnicze Dla macierzy robimy to samo co wcześniej dla skalarów Ω t = λω t 1 + (1 λ)r t 1 R t 1 Podejście bardzo restrykcyjne implikowane założenie o takim samym stopniu wygładzania dla wszystkich parametrów Ale mamy gwarancję nieujemnej określoności macierzy Ω t

38 Modele warunkowej zmienności Wielowymiarowe modele GARCH Wielowymiarowy GARCH Wielowymiarowy odpowiednik modelu GARCH(1,1): vech(ω t ) = vech(c) + Bvech(Ω t 1 ) + Avech(R t 1 R t 1 ) Operator vech przekształca macierz symetryczna w wektor N(N + 1)/2 1 Macierze A oraz B maja wymiary N(N + 1)/2 N(N + 1)/2 W najbardziej ogólnej postaci w modelu trzeba oszacować O(N 4 ) parametrów Czyli dla N = 100 aktywów ponad 51mln parametrów do oszacowania!

39 Modele warunkowej zmienności Wielowymiarowe modele GARCH MGARCH vech(1,1) h 11t h 21t h 22t = c 1 c 2 c a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 b 11 b 12 b 13 b 21 b 22 b 23 b 31 b 32 b 33 h 11,t 1 h 21,t 1 h 22,t 1 ɛ 2 1,t 1 ɛ 1,t 1 ɛ 2,t 1 ɛ 2 2,t 1

40 Modele warunkowej zmienności Wielowymiarowe modele GARCH Nakładamy restrykcje Musimy coś zrobić najlepiej z macierzami A oraz B Wersja najbardziej restrykcyjna: Ω t = C + βω t 1 + αr t 1 R t 1 Przekształcajac podobnie jak dla GARCH: Ω t = Ω + β(ω t 1 Ω) + α(r t 1 R t 1 Ω) Ponownie wersja nieco mniej restrykcyjna niż wygładzanie wykładnicze Szukamy czegoś bardziej ogólnego

41 Modele warunkowej zmienności Wielowymiarowe modele GARCH Model BEKK Reparametryzujemy specyfikację vech Zapewnienie nieujemnej określoności szacowanej macierzy wariancji-kowariancji Ω t = C C + B Ω t 1 B + A (R t 1 R t 1)A N(5N + 1)/2 parametrów do oszacowania Możemy nałożyć dodatkowe restrykcje na macierze A oraz B

42 Modele warunkowej zmienności Wielowymiarowe modele GARCH BEKK(1,1,1) [ ] [ ] [ ] h11t h 12t c11 0 c11 c = 21 + h 21t h 22t c 21 c 22 0 c 22 [ ] [ a11 a + 12 ɛ 2 ] [ ] 1,t 1 ɛ 1,t 1 ɛ 2,t 1 a11 a 12 a 21 a 22 ɛ 1,t 1 ɛ 2,t 1 ɛ 2 + 2,t 1 a 21 a 22 [ ] [ ] [ ] b11 b + 12 h11,t 1 h 12,t 1 b11 b 12 b 21 b 22 h 21,t 1 h 22,t 1 b 21 b 22

43 Modele warunkowej zmienności Wielowymiarowe modele GARCH DCC Dynamic Condition Correlation Korzystamy z dekompozycji macierzy wariancji-kowariancji: Ω t D t Γ t D t Γ t macierz korelacji D t diagonalna macierz odchyleń standardowych Możliwe jest indywidualne modelowanie warunkowej zmienności dla poszczególnych szeregów Zwykle dość restrykcyjna specyfikacja dla procesu zmian korelacji W wersji Γ t = Γ model stałych warunkowych korelacji (CCC) Ale takie założenie może być zbyt restrykcyjne

44 Modele warunkowej zmienności Wielowymiarowe modele GARCH Modele czynnikowe Być może stopy zwrotu danej klasy aktywów zależa od stosunkowo niewielkiej liczby (być może nieobserwowalnych) czynników Przykład wycena obligacji i modelowanie krzywej dochodowości Budujemy model MGARCH tylko dla czynników, a następnie odtwarzamy odpowiednie parametry dla rzeczywistych aktywów Powiazana klasa ortogonalne modele GARCH

45 Podstawowe miary ryzyka Spójne miary ryzyka Outline 1 Wstęp 2 Stopy zwrotu Wprowadzenie Proces generujacy stopy zwrotu Alternatywne rozkłady 3 Modele warunkowej zmienności Warunkowa zmienność wprowadzenie Jednowymiarowe modele GARCH Wielowymiarowe modele GARCH 4 Podstawowe miary ryzyka Spójne miary ryzyka VaR Expected shortfall 5 Spektralne miary ryzyka Definicja 6 Wybrane modele ryzyka kredytowego

46 Podstawowe miary ryzyka Spójne miary ryzyka Pożadane właściwości miar ryzyka Niech X oraz Y oznaczaja (nominalne) zwroty z dwóch portfeli Miarę ryzyka ρ nazywamy spójna, gdy spełnia: Y X ρ(y ) ρ(x) ρ(x + Y ) ρ(x) + ρ(y ) (subaddytywność) ρ(hx) = hρ(x) dla h > 0 Dla znanej (pozbawionej ryzyka) kwoty n: ρ(x + n) = ρ(x) n W praktyce najważniejsza jest subaddytywność Uwaga: miara ryzyka rozważana z punktu widzenia indywidualnego podmiotu/portfela, perspektywa np. ryzyka systemowego może być inna

47 Podstawowe miary ryzyka VaR Outline 1 Wstęp 2 Stopy zwrotu Wprowadzenie Proces generujacy stopy zwrotu Alternatywne rozkłady 3 Modele warunkowej zmienności Warunkowa zmienność wprowadzenie Jednowymiarowe modele GARCH Wielowymiarowe modele GARCH 4 Podstawowe miary ryzyka Spójne miary ryzyka VaR Expected shortfall 5 Spektralne miary ryzyka Definicja 6 Wybrane modele ryzyka kredytowego

48 Podstawowe miary ryzyka VaR Value at Risk (VaR) Wartość zagrożona Wartość narażona na ryzyko...ale nie VAR Vector AutoRegression! Popularna miara ryzyka Popularność wspierana regulacjami nadzorczymi...ale od strony teorii ma pewne wady Dla ogólnych rozkładów nie jest spójna miara ryzyka

49 Podstawowe miary ryzyka VaR Definicja VaR Oszacowanie, przy założonym poziomie prawdopodobieństwa, straty w danym horyzoncie czasowym Na przykład: szacujemy, że z prawdopodobieństwem 99% w ciagu kolejnych 10 dni roboczych nie stracimy więcej niż 10 mln PLN

50 Podstawowe miary ryzyka VaR VaR uwagi do definicji VaR nie jest maksymalna możliwa wielkościa straty VaR nie określa, jak dużo możemy stracić, jeśli strata przekroczy wartość VaR VaR zakłada typowe warunki rynkowe Oszacowana wartość VaR jest warunkowana modelem zachowania się stóp zwrotu Przekroczenia przez straty poziomu VaR jest normalne (byle nie za często)

51 Podstawowe miary ryzyka VaR Prawdopodobieństwo przekroczenia VaR (1 dzień, 99%) Liczba Prawdop. Prawdop. przekroczeń skumulowane 0 8,11% 8,11% 1 20,47% 28,58% 2 25,74% 54,32% 3 21,50% 75,81% 4 13,41% 89,22% 5 6,66% 95,88% 6 2,75% 98,63% 7 0,97% 99,60% 8 0,30% 99,89% 9 0,08% 99,98% 10 0,02% 100,00% 11 0,00% 100,00%

52 Podstawowe miary ryzyka VaR Niespójność VaR jako miary ryzyka Portfel dwóch obligacji (A i B) Wartość nominalna każdej wynosi 100 Prawdopobieństwo upadłości: 4%, upadłości niezależne Rozkład możliwych wartości portfela: P(W = 200) = 0,96 2 = 0,9216 P(W = 0) = 0,04 2 = 0,0016 P(W = 100) = 1 0,9216 0,0016 = 0,0768 VaR 95% (A) = VaR 95% (B) = 0 VaR 95% (A + B) = 100 > 0 = VaR 95% (A) + VaR 95% (B)

53 Podstawowe miary ryzyka VaR VaR sposoby wyznaczania Metoda wariancji-kowariancji Symulacja historyczna Symulacja Monte Carlo

54 Podstawowe miary ryzyka VaR Metoda wariancji-kowariancji Założenie: normalny rozkład wszystkich czynników ryzyka Portfel instrumentów liniowych względem czynników ryzyka Zmiany wartości portfela również rozkład normalny Wyprowadzamy wzór, podstawiamy zmienności i korelacje

55 Podstawowe miary ryzyka VaR Metoda wariancji-kowariancji Zalety: Względnie prosta do zrozumienia i wdrożenia Niewielkie zapotrzebowanie na zasoby Problemy: Niezbyt realistyczne założenia o rozkładach czynników ryzyka Nie można uwzględnić bardziej skomplikowanych instrumentów pochodnych Dla portfeli o dużej liczbie składników oszacowanie macierzy wariancji-kowariancji może być trudne

56 Podstawowe miary ryzyka VaR Symulacja historyczna Zbieramy dane o przeszłych wartościach czynników ryzyka Wyceniamy posiadany portfel dla takich wartości czynników ryzyka Sortujemy zmiany Bierzemy odpowiedni percentyl

57 Podstawowe miary ryzyka VaR Symulacja historyczna Zalety: (Prawie) żadnych założeń parametrycznych! prawie robi różnicę szczegóły za chwilę Łatwa do zrozumienia Problemy: Konieczne przechowywanie wielu danych Dane historyczne niedostępne dla części aktywów (np. nowe produkty) Co ze zmianami strukturalnymi na rynkach?

58 Podstawowe miary ryzyka VaR Symulacja Monte Carlo Sztuczne generowanie ścieżek czynników ryzyka Na tej podstawie wycena posiadanego portfela Sortujemy zmiany wartości Bierzemy odpowiedni percentyl

59 Podstawowe miary ryzyka VaR Symulacja Monte Carlo Zalety: Potencjalnie najbardziej elastyczne podejście Można wyceniać dowolne instrumenty Problemy Dużo zależy od założeń co do procesów generujacych dane Duża złożoność obliczeniowa Najtrudniejsza do implementacji Sztuczki numeryczne Przybliżenie delta-gamma (intuicja: podobnie jak duration i convexity dla obligacji) Metody redukowania zmienności estymatora

60 Podstawowe miary ryzyka Dekompozycja VaR Dekompozycja VaR Wkład poszczególnych ekspozycji do VaR portfela zwykle mniejszy niż VaR dla danej pozycji (efekt dywersyfikacji) W wielu przypadkach istotne jest określenie wielkości wpływu ekspozycji (lub jej zmiany) na VaR Budżetowanie ryzyka/kapitału Pomiar rentowności skorygowanej o ryzyko Ocena kapitałochłonności różnych potencjalnych inwestycji

61 Podstawowe miary ryzyka Dekompozycja VaR Horyzont czasowy VaR Co jeśli interesuje nas dłuższy okres utrzymywania pozycji? Prosto jeśli założymy i.i.d. procesu stóp zwrotu Promowane przez regulatorów: reguła pierwiastka czasu Problem jeśli chcemy uwzględnić efekty GARCH W metodzie MC możemy założyć dowolny proces Trzeba oszacować proces generujacy dane problem dużych portfeli Rośnie złożoność obliczeniowa Bardziej skomplikowane dla symulacji historycznej metoda przestaje być wolna od założeń! Co jeśli chcemy agregować VaR dla różnych horyzontów czasowych?

62 Podstawowe miary ryzyka Backtest VaR wybrane testy VaR jako statystyka Oszacowanie VaR jest percentylem rozkładu, możemy więc stosować wszystkie narzędzia statystyczne zwiazane z testowaniem hipotez dotyczacych parametrów Niepewność co do oszacowania wartości VaR jako wyniku szacowanego wcześniej modelu, problemy szczególnie duże dla VaR szacowanego dla wysokim poziomów ufności (mało obserwacji szeroki przedział ufności oszacowania parametru) Obok poziomu ufności VaR, należy wybrać poziom istotności dla testu W ogólności, przy testowaniu oszacowań miar ryzyka chcielibyśmy móc odnosić się do modeli dla całych rozkładów

63 Podstawowe miary ryzyka Backtest VaR wybrane testy Testy oparte na częstości ekstremalnych zwrotów Pytanie, czy częstość przekroczeń wartości VaR jest zgodna z przyjętym poziomem ufności dla VaR Założenie, że poszczególne realizacje (i ewentualne przekroczenia) sa zdarzeniami niezależnymi Możliwe wyniki dane rozkładem dwumianowym

64 Podstawowe miary ryzyka Backtest VaR wybrane testy Test częstości przekroczeń Test "wbudowany" w konstrukcję wymogu kapitałowego (Bazylea II) dla metody zaawansowanej ryzyka rynkowego Test może być nieefektywny (mieć słaba moc) przy wykrywaniu niewłaściwego modelu z uwagi na ignorowanie znacznej ilości informacji Wielkość przekroczenia Niezależność przekroczeń w wymiarze czasowym (ewentualna koncentracja) Wymagana znaczna wielkość próby szerokość przedziału ufności dla uzyskanej liczby przekroczeń Problem przy zwiększaniu horyzontu czasowego utrzymywania ekspozycji

65 Podstawowe miary ryzyka Backtest VaR wybrane testy Testy rozkładu warunkowego Porównujemy empiryczny rozkład strat przekraczajacych wielkość VaR z rozkładem teoretycznym wynikajacym ze stosowanego modelu Statystyczne testy różnicy rozkładów np. Kołmogorow-Smirnow Możliwe odrzucenie modelu w sytuacjach, gdy testy oparte na liczbie przekroczeń VaR nie dawałyby do tego podstawy (np. przekroczenia z przewidywana częstościa, ale znacznie większe niż implikowane przez model) Problem gdy nie mamy jawnie określonego modelu do porównań (metoda symulacji historycznej)

66 Podstawowe miary ryzyka Backtest VaR wybrane testy Testy zgodności rozkładów Postępowanie analogiczne jak dla testów rozkładu warunkowego, ale z uwzględnieniem całości rozkładu Może mieć uzasadnienie, jeśli model ryzyka wykorzystywany w procesie konstrukcji portfela lub oceny efektywności inwestycji Podstawowe (dyskusyjne) założenie: zgodność centrum porównywanych rozkładów daje informację o zgodności ich ogonów Przy nisko ustawionym progu testy zgodności dla całych rozkładów i rozkładów warunkowych "zbliżaja się" do siebie

67 Podstawowe miary ryzyka Expected shortfall Outline 1 Wstęp 2 Stopy zwrotu Wprowadzenie Proces generujacy stopy zwrotu Alternatywne rozkłady 3 Modele warunkowej zmienności Warunkowa zmienność wprowadzenie Jednowymiarowe modele GARCH Wielowymiarowe modele GARCH 4 Podstawowe miary ryzyka Spójne miary ryzyka VaR Expected shortfall 5 Spektralne miary ryzyka Definicja 6 Wybrane modele ryzyka kredytowego

68 Podstawowe miary ryzyka Expected shortfall Expected shortfall (ES) Inne pseudonimy: Expected (tail) loss Conditional VaR Wartość oczekiwana straty pod warunkiem, że strata przekracza VaR Różnica między ES a VaR tym większa, im rozkład bardziej gruboogonowy

69 Spektralne miary ryzyka Definicja Outline 1 Wstęp 2 Stopy zwrotu Wprowadzenie Proces generujacy stopy zwrotu Alternatywne rozkłady 3 Modele warunkowej zmienności Warunkowa zmienność wprowadzenie Jednowymiarowe modele GARCH Wielowymiarowe modele GARCH 4 Podstawowe miary ryzyka Spójne miary ryzyka VaR Expected shortfall 5 Spektralne miary ryzyka Definicja 6 Wybrane modele ryzyka kredytowego

70 Spektralne miary ryzyka Definicja Definicja miary ryzyka Rozważmy miarę ryzyka M φ : M φ = 1 0 φ(p)q p dp q p p-ty percentyl rozkładu strat φ(p) funkcja wag zdefiniowana dla p [0, 1] M φ jest miara ryzyka oparta na kwantylach rozkładu, zróżnicowanie w zależności od przyjętej funkcji wag Chcielibyśmy uzależnić φ(p) od stopnia awersji do ryzyka

71 Spektralne miary ryzyka Definicja Szczególne przypadki VaR α = q α funkcja wag skoncentrowana w jednym punkcie ES α = α α q pdp schodkowa funkcja wag Te specyfikacje nie sa zależne od stopnia awersji do ryzyka Gubimy znaczna część informacji o rozkładzie

72 Spektralne miary ryzyka Definicja Restrykcje dla φ(p) φ(p) φ(p)dp = 1 φ (p) 0 (w celu wyeliminowania neutralności względem ryzyka czasem warunek formułowany jako φ (p) > 0) Miara spełniajaca te warunki nazywana jest spektralna miara ryzyka Spełnia warunki spójnej miary ryzyka Do pełnego zdefiniowania spektralnej miary ryzyka konieczne jest również wskazanie postaci i parametryzacji funkcji użyteczności

73 Spektralne miary ryzyka Funkcje użyteczności Wykładnicza funkcja użyteczności Wykładnicza funkcja użyteczności: U(x) = e kx, k > 0 M φ = R A (x) = U (x) U (x) = k R R (x) = xu (x) U (x) = xk Możliwa funkcja wag: φ(p) = λe k(1 p) = ke k(1 p) 1 e k k 1 e k 1 e k(1 p) q p dp 0

74 Spektralne miary ryzyka Funkcje użyteczności Potęgowa funkcja użyteczności Potęgowa funkcja użyteczności, γ > 0: U(x) = x 1 γ 1 1 γ W przypadku granicznym, gdy γ = 1: U(x) = ln(x) R A (x) = U (x) U (x) = γ x R R (x) = xu (x) U (x) = γ Możliwa funkcja wag: φ(p) = λ (1 p)γ 1 1 γ M φ = 1 γ(1 p) γ 1 q p dp 0 = γ(1 p) γ 1

75 Spektralne miary ryzyka Funkcje użyteczności Modelowanie ryzyka na rynkach finansowych niektóre problemy Zmienność Jak ja mierzyć? Jak brać pod uwagę zmiany zmienności? Jaka ma być rola zmienności implikowanych? Pamięć oszacowań zmienności Kowariancje/korelacje Coraz istotniejsze dla wyceny strukturyzowanych produktów finansowych Problem wymiarów! Modelowanie ich zmian w czasie

76 Spektralne miary ryzyka Funkcje użyteczności Modelowanie ryzyka na rynkach finansowych niektóre problemy Jak uwzględniać strukturę terminowa zmienności? W symulacjach Monte Carlo różnice w modelach dla stóp procentowych i innych rodzajów aktywów Czy można lepiej modelować same ogony rozkładów? Modelowanie współwystępowania zdarzeń ekstremalnych

77 Wybrane modele ryzyka kredytowego CreditMetrics Podstawowe założenia Ekspozycjom można przypisać ratingi z powiazanymi prawdopodobieństwami upadłości Znane sa prawdopodobieństwa zmian przypisanych ratingów (macierz przejść) proces Markowa Znana jest struktura terminowa premii za ryzyko dla poszczególnych klas ratingowych (lub odpowiednie procesy stochastyczne) Na podstawie powyższych możliwe jest wyznaczenie rozkładu przyszłej wartości danej ekspozycji

78 Wybrane modele ryzyka kredytowego CreditMetrics Efekty dywersyfikacji w ramach portfela Prawdopodobieństwa upadłości nie sa niezależne problem określenia współzależności między nimi Możliwe rozwiazanie korelacja między wartościa aktywów firm (przybliżana przez rynkowa wartość akcji), w powiazaniu z uproszczonym modelem Mertona Wyznaczanie korelacji może być uproszczone w ramach analizy czynnikowej (problem wymiarów)

79 Wybrane modele ryzyka kredytowego CreditMetrics Problemy Macierz przejść through-the-cycle może nie być odpowiednia dla analiz w krótszym niż pełen cykl horyzoncie czasowym Losowość elementów macierzy przejść (moga być traktowane jako oszacowania nieznanych prawdziwych wartości parametrów) Założenie homogeniczności ekspozycji w ramach danej grupy ratingowej Uwzględnienie losowości w odniesieniu do stóp procentowych (zarówno wolnych od ryzyka, jak i komponentu premii za ryzyko) Ekspozycje musza mieć przypisane ratingi

80 Wybrane modele ryzyka kredytowego Model KMV Podstawowe założenia Rezygnacja z macierzy przejść na rzecz oparcia się na danych rynkowych, w powiazaniu z informacja o strukturze finansowania przedsiębiorstwa Prawdopodobieństwo upadłości określane na podstawie oszacowania zmienności wartości kapitału (distance-to-default) Teoretycznie możliwość lepszego ujęcia zależności między ekspozycjami w ramach portfela

81 Wybrane modele ryzyka kredytowego Model KMV Problemy Utrudnione (ale nie niemożliwe) stosowanie do firm niepublicznych Konieczność dodatkowego mapowania pomiędzy wyznaczonym bezpośrednio distance-to-default a faktycznym prawdopodobieństwem upadłości Nie dla wszystkich branż model działa równie dobrze (np. instytucje finansowe)

82 Wybrane modele ryzyka kredytowego CreditRisk+ Podstawowe założenia Podejście aktuarialne upadłość lub brak zmiany stanu Liczba upadłości w danym okresie dana rozkładem Poissona (λ) Brak bezpośrednio uwzględnionej korelacji między ekspozycjami Podejście względnie proste obliczeniowo

83 Wybrane modele ryzyka kredytowego CreditRisk+ Rozszerzenia Rozkład Poissona określony jednym parametrem zmienność implikowanej stopy upadłości może być zaniżona w stosunku do faktycznie obserwowanych wartości Ustochastycznienie parametru λ w tym uzależnienie od czynników zewnętrznych Ustochastycznienie stopy odzysku

VaR Value atrisk(var) co to jest? Inne nazwy: Wartość zagrożona Wartość narażona na ryzyko

VaR Value atrisk(var) co to jest? Inne nazwy: Wartość zagrożona Wartość narażona na ryzyko VaR 11 Value atrisk(var) co to jest? Inne nazwy: Wartość zagrożona Wartość narażona na ryzyko Popularna miara ryzyka Co może mieć negatywne skutki z punktu widzenia ryzyka systemowego Popularność wspierana

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Krzywa dochodowości. termin. SGH Rynki Finansowe

Krzywa dochodowości. termin. SGH Rynki Finansowe Wykład Futures na obligacje Value at Risk % Krzywa dochodowości termin SGH Rynki Finansowe 2015 1 Krzywa dochodowości zmiana kształtu % termin Pytanie do Napoleona: O czym wystarczy pamiętać, by wiedzieć

Bardziej szczegółowo

Spis treści. Ze świata biznesu... 13. Przedmowa do wydania polskiego... 15. Wstęp... 19

Spis treści. Ze świata biznesu... 13. Przedmowa do wydania polskiego... 15. Wstęp... 19 Spis treści Ze świata biznesu............................................................ 13 Przedmowa do wydania polskiego.............................................. 15 Wstęp.......................................................................

Bardziej szczegółowo

Excel i VBA w analizach i modelowaniu finansowym Pomiar ryzyka. Pomiar ryzyka

Excel i VBA w analizach i modelowaniu finansowym Pomiar ryzyka. Pomiar ryzyka Pomiar ryzyka Miary obiektywne stosowane w kwantyfikacji ryzyka rynkowego towarzyszącego zaangażowaniu środków w inwestycjach finansowych obejmują: Miary zmienności, Miary zagrożenia, Miary wrażliwości.

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

Matematyczna filozofia IRB. Michał Motoczyński Departament Ryzyka Finansowego

Matematyczna filozofia IRB. Michał Motoczyński Departament Ryzyka Finansowego Matematyczna filozofia IRB Michał Motoczyński Departament Ryzyka Finansowego 2009-05-22 2009-05-28 Kluczowe założenia do modelu IRB:. Dwa rodzaje ryzyka mające wpływ na pojedynczą ekspozycję: ryzyko systematyczne

Bardziej szczegółowo

Analiza zdarzeń Event studies

Analiza zdarzeń Event studies Analiza zdarzeń Event studies Dobromił Serwa akson.sgh.waw.pl/~dserwa/ef.htm Leratura Campbell J., Lo A., MacKinlay A.C.(997) he Econometrics of Financial Markets. Princeton Universy Press, Rozdział 4.

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

SGH, Rynki Finansowe, 2015, Anna Chmielewska 1

SGH, Rynki Finansowe, 2015, Anna Chmielewska 1 Wykład 10 Instrumenty pochodne - obligacje KONTRAKTY TERMINOWE NA OBLIGACJE SGH, Rynki Finansowe, 2015, Anna Chmielewska 1 Pytanie do Napoleona: O czym wystarczy pamiętać, by wiedzieć jak funkcjonuje rynek

Bardziej szczegółowo

Zarządzanie portfelem kredytowym w banku w warunkach kryzysu. Dr Agnieszka Scianowska Akademia Humanistyczno-Ekonomiczna w Łodzi

Zarządzanie portfelem kredytowym w banku w warunkach kryzysu. Dr Agnieszka Scianowska Akademia Humanistyczno-Ekonomiczna w Łodzi Zarządzanie portfelem kredytowym w banku w warunkach kryzysu Dr Agnieszka Scianowska Akademia Humanistyczno-Ekonomiczna w Łodzi Założenia Umowy Kapitałowej Przyjętej w 1988r.(Bazylea I) podstawowym wyznacznikiem

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński

Zarządzanie ryzykiem. Opracował: Dr inŝ. Tomasz Zieliński Zarządzanie ryzykiem Opracował: Dr inŝ. Tomasz Zieliński I. OGÓLNE INFORMACJE O PRZEDMIOCIE Cel przedmiotu: Celem przedmiotu jest zaprezentowanie studentom podstawowych pojęć z zakresu ryzyka w działalności

Bardziej szczegółowo

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego Katarzyna Kuziak Cel: łączenie różnych rodzajów ryzyka rynkowego za pomocą wielowymiarowej funkcji powiązań 2 Ryzyko rynkowe W pomiarze ryzyka

Bardziej szczegółowo

Ekonometria Finansowa II EARF. Michał Rubaszek

Ekonometria Finansowa II EARF. Michał Rubaszek Ekonometria Finansowa II EARF Michał Rubaszek 1 Cele - Zapoznanie z charakterystykami szeregów finansowych - Omówienie jednowymiarowych metod liczenia VaR - Omówienie wielowymiarowych metod liczenia VaR

Bardziej szczegółowo

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI

Analiza inwestycji i zarządzanie portfelem SPIS TREŚCI Analiza inwestycji i zarządzanie portfelem Frank K. Reilly, Keith C. Brown SPIS TREŚCI TOM I Przedmowa do wydania polskiego Przedmowa do wydania amerykańskiego O autorach Ramy książki CZĘŚĆ I. INWESTYCJE

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych

R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych R ozkład norm alny Bardzo często używany do modelowania symetrycznych rozkładów zmiennych losowych ciągłych Przykłady: Błąd pomiarowy Wzrost, wydajność Temperatura ciała Zawartość różnych składników we

Bardziej szczegółowo

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek

MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Tytuł: Autor: MODELOWANIE POLSKIEJ GOSPODARKI Z PAKIETEM R Michał Rubaszek Wstęp Książka "Modelowanie polskiej gospodarki z pakietem R" powstała na bazie materiałów, które wykorzystywałem przez ostatnie

Bardziej szczegółowo

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory

Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Statystyka i opracowanie danych Podstawy wnioskowania statystycznego. Prawo wielkich liczb. Centralne twierdzenie graniczne. Estymacja i estymatory Dr Anna ADRIAN Paw B5, pok 407 adrian@tempus.metal.agh.edu.pl

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH

Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH Akademia Ekonomiczna im. Oskara Langego we Wrocławiu Wydział Zarządzania i Informatyki Krzysztof Piontek MODELOWANIE I PROGNOZOWANIE ZMIENNOŚCI INSTRUMENTÓW FINANSOWYCH rozprawa doktorska Promotor: prof.

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Struktura terminowa rynku obligacji

Struktura terminowa rynku obligacji Krzywa dochodowości pomaga w inwestowaniu w obligacje Struktura terminowa rynku obligacji Wskazuje, które obligacje są atrakcyjne a których unikać Obrazuje aktualną sytuację na rynku długu i zmiany w czasie

Bardziej szczegółowo

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko.

Inwestycje finansowe. Wycena obligacji. Stopa zwrotu z akcji. Ryzyko. Inwestycje finansowe Wycena obligacji. Stopa zwrotu z akcji. yzyko. Inwestycje finansowe Instrumenty rynku pieniężnego (np. bony skarbowe). Instrumenty rynku walutowego. Obligacje. Akcje. Instrumenty pochodne.

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 03/04 Wykład 5 Testy statystyczne Ogólne zasady testowania hipotez statystycznych, rodzaje

Bardziej szczegółowo

Szacowanie miary zagrożenia Expected Shortfall dla wybranych instrumentów polskiego rynku kapitałowego

Szacowanie miary zagrożenia Expected Shortfall dla wybranych instrumentów polskiego rynku kapitałowego Radosław Pietrzyk Katedra Inwestycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Szacowanie miary zagrożenia Expected Shortfall dla wybranych instrumentów polskiego rynku kapitałowego 1.

Bardziej szczegółowo

STATYSTYKA

STATYSTYKA Wykład 1 20.02.2008r. 1. ROZKŁADY PRAWDOPODOBIEŃSTWA 1.1 Rozkład dwumianowy Rozkład dwumianowy, 0 1 Uwaga: 1, rozkład zero jedynkowy. 1 ; 1,2,, Fakt: Niech,, będą niezależnymi zmiennymi losowymi o jednakowym

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA

AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej ROZKŁAD NORMALNY ROZKŁAD GAUSSA AKADEMIA GÓRNICZO-HUTNICZA Wydział Matematyki Stosowanej KATEDRA MATEMATYKI TEMAT PRACY: ROZKŁAD NORMALNY ROZKŁAD GAUSSA AUTOR: BARBARA MARDOSZ Kraków, styczeń 2008 Spis treści 1 Wprowadzenie 2 2 Definicja

Bardziej szczegółowo

Metody oceny ryzyka operacyjnego

Metody oceny ryzyka operacyjnego Instytut Matematyki i Informatyki Wrocław, 10 VII 2009 Bazylejski Komitet Nadzoru Bankowego Umowa Kapitałowa - 1988 Opracowanie najlepszych praktyk rynkowych w zakresie zarządzania ryzykiem Nowa Umowa

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn

Wykład 10 Estymacja przedziałowa - przedziały ufności dla średn Wykład 10 Estymacja przedziałowa - przedziały ufności dla średniej Wrocław, 21 grudnia 2016r Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja 10.1 Przedziałem

Bardziej szczegółowo

Ekonometria Finansowa II EARF. Michał Rubaszek

Ekonometria Finansowa II EARF. Michał Rubaszek Ekonometria Finansowa II EARF Michał Rubaszek 1 Cele - Zapoznanie z charakterystykami szeregów finansowych - Omówienie jednowymiarowych metod liczenia VaR - Omówienie wielowymiarowych metod liczenia VaR

Bardziej szczegółowo

Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem.

Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem. Identyfikacja i pomiar ryzyka pierwszy krok w zarządzaniu ryzykiem. Andrzej Podszywałow Własność przemysłowa w innowacyjnej gospodarce. Zarządzanie ryzykiem, strategia zarządzania własnością intelektualną

Bardziej szczegółowo

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ

ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ ANALIZA STATYSTYCZNA WYNIKÓW BADAŃ Dopasowanie rozkładów Dopasowanie rozkładów- ogólny cel Porównanie średnich dwóch zmiennych 2 zmienne posiadają rozkład normalny -> test parametryczny (t- studenta) 2

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Agenda Instytut Matematyki Politechniki Łódzkiej 2 stycznia 2012 Agenda Agenda 1 Wprowadzenie Agenda 2 Hipoteza oraz błędy I i II rodzaju Hipoteza alternatywna Statystyka testowa Zbiór krytyczny Poziom

Bardziej szczegółowo

Kalibracja. W obu przypadkach jeśli mamy dane, to możemy znaleźć równowagę: Konwesatorium z Ekonometrii, IV rok, WNE UW 1

Kalibracja. W obu przypadkach jeśli mamy dane, to możemy znaleźć równowagę: Konwesatorium z Ekonometrii, IV rok, WNE UW 1 Kalibracja Kalibracja - nazwa pochodzi z nauk ścisłych - kalibrowanie instrumentu oznacza wyznaczanie jego skali (np. kalibrowanie termometru polega na wyznaczeniu 0C i 100C tak by oznaczały punkt zamarzania

Bardziej szczegółowo

NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A

NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Autor: 1. Dobromił Serwa 2. Tytuł przedmiotu Sygnatura (będzie nadana, po akceptacji przez Senacką Komisję Programową) Wprowadzenie do teorii

Bardziej szczegółowo

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie

METODY ESTYMACJI PUNKTOWEJ. nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie METODY ESTYMACJI PUNKTOWEJ X 1,..., X n - próbka z rozkładu P θ, θ Θ, θ jest nieznanym parametrem (lub wektorem parametrów). Przez X będziemy też oznaczać zmienną losową o rozkładzie P θ. Definicja. Estymatorem

Bardziej szczegółowo

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014

Estymacja przedziałowa - przedziały ufności dla średnich. Wrocław, 5 grudnia 2014 Estymacja przedziałowa - przedziały ufności dla średnich Wrocław, 5 grudnia 2014 Przedział ufności Niech będzie dana próba X 1, X 2,..., X n z rozkładu P θ, θ Θ. Definicja Przedziałem ufności dla paramertu

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

ćwiczenia 30 zaliczenie z oceną

ćwiczenia 30 zaliczenie z oceną Wydział: Zarządzanie i Finanse Nazwa kierunku kształcenia: Finanse i Rachunkowość Rodzaj przedmiotu: podstawowy Opiekun: dr Rafał Kusy Poziom studiów (I lub II stopnia): II stopnia Tryb studiów: Stacjonarne

Bardziej szczegółowo

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak

Inne kryteria tworzenia portfela. Inne kryteria tworzenia portfela. Poziom bezpieczeństwa. Analiza i Zarządzanie Portfelem cz. 3. Dr Katarzyna Kuziak Inne kryteria tworzenia portfela Analiza i Zarządzanie Portfelem cz. 3 Dr Katarzyna Kuziak. Minimalizacja ryzyka przy zadanym dochodzie Portfel efektywny w rozumieniu Markowitza odchylenie standardowe

Bardziej szczegółowo

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW

ODRZUCANIE WYNIKÓW POJEDYNCZYCH POMIARÓW ODRZUCANIE WYNIKÓW OJEDYNCZYCH OMIARÓW W praktyce pomiarowej zdarzają się sytuacje gdy jeden z pomiarów odstaje od pozostałych. Jeżeli wykorzystamy fakt, że wyniki pomiarów są zmienną losową opisywaną

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych

zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych zadania z rachunku prawdopodobieństwa zapożyczone z egzaminów aktuarialnych 1. [E.A 5.10.1996/zad.4] Funkcja gęstości dana jest wzorem { 3 x + 2xy + 1 y dla (x y) (0 1) (0 1) 4 4 P (X > 1 2 Y > 1 2 ) wynosi:

Bardziej szczegółowo

Spis treści Wstęp 1. Ryzyko a pojęcie cykliczności, procykliczności i antycykliczności zjawisk sfery realnej i systemu finansowego gospodarki

Spis treści Wstęp 1. Ryzyko a pojęcie cykliczności, procykliczności i antycykliczności zjawisk sfery realnej i systemu finansowego gospodarki Wstęp... 11 1. Ryzyko a pojęcie cykliczności, procykliczności i antycykliczności zjawisk sfery realnej i systemu finansowego gospodarki... 23 1.1. Wprowadzenie... 23 1.2. Definicje zjawiska cyklu koniukturalnego,

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp

OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA. z wykorzystaniem programu obliczeniowego Q maxp tel.: +48 662 635 712 Liczba stron: 15 Data: 20.07.2010r OBLICZENIE PRZEPŁYWÓW MAKSYMALNYCH ROCZNYCH O OKREŚLONYM PRAWDOPODOBIEŃSTWIE PRZEWYŻSZENIA z wykorzystaniem programu obliczeniowego Q maxp DŁUGIE

Bardziej szczegółowo

Statystyka matematyczna dla leśników

Statystyka matematyczna dla leśników Statystyka matematyczna dla leśników Wydział Leśny Kierunek leśnictwo Studia Stacjonarne I Stopnia Rok akademicki 2013/2014 Wykład 3 Zmienna losowa i jej rozkłady Zdarzenia losowe Pojęcie prawdopodobieństwa

Bardziej szczegółowo

Wycena opcji. Dr inż. Bożena Mielczarek

Wycena opcji. Dr inż. Bożena Mielczarek Wycena opcji Dr inż. Bożena Mielczarek Stock Price Wahania ceny akcji Cena jednostki podlega niewielkim wahaniom dziennym (miesięcznym) wykazując jednak stały trend wznoszący. Cena może się doraźnie obniżać,

Bardziej szczegółowo

Oszacowanie i rozkład t

Oszacowanie i rozkład t Oszacowanie i rozkład t Marcin Zajenkowski Marcin Zajenkowski () Oszacowanie i rozkład t 1 / 31 Oszacowanie 1 Na podstawie danych z próby szacuje się wiele wartości w populacji, np.: jakie jest poparcie

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.

Bardziej szczegółowo

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN

Bardziej szczegółowo

Bezpieczeństwo biznesu - Wykład 8

Bezpieczeństwo biznesu - Wykład 8 Wykład 8. Ryzyko bankowe Pojęcie ryzyka bankowego i jego rodzaje. Ryzyko zagrożenie nieosiągniecia zamierzonych celów Przyczyny wzrostu ryzyka w działalności bankowej. Gospodarcze : wzrost, inflacja, budżet,

Bardziej szczegółowo

INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI

INWESTYCJE Instrumenty finansowe, ryzyko SPIS TREŚCI INWESTYCJE Instrumenty finansowe, ryzyko Jajuga Krzysztof, Jajuga Teresa SPIS TREŚCI Przedmowa Wprowadzenie - badania w zakresie inwestycji i finansów Literatura Rozdział 1. Rynki i instrumenty finansowe

Bardziej szczegółowo

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii

Przedmowa Wykaz symboli Litery alfabetu greckiego wykorzystywane w podręczniku Symbole wykorzystywane w zagadnieniach teorii SPIS TREŚCI Przedmowa... 11 Wykaz symboli... 15 Litery alfabetu greckiego wykorzystywane w podręczniku... 15 Symbole wykorzystywane w zagadnieniach teorii mnogości (rachunku zbiorów)... 16 Symbole stosowane

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół

Bardziej szczegółowo

Wycena papierów wartościowych - instrumenty pochodne

Wycena papierów wartościowych - instrumenty pochodne Matematyka finansowa - 8 Wycena papierów wartościowych - instrumenty pochodne W ujęciu probabilistycznym cena akcji w momencie t jest zmienną losową P t o pewnym (zwykle nieznanym) rozkładzie prawdopodobieństwa,

Bardziej szczegółowo

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych

Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zadania ze statystyki, cz.7 - hipotezy statystyczne, błąd standardowy, testowanie hipotez statystycznych Zad. 1 Średnia ocen z semestru letniego w populacji studentów socjologii w roku akademickim 2011/2012

Bardziej szczegółowo

KURS DORADCY FINANSOWEGO

KURS DORADCY FINANSOWEGO KURS DORADCY FINANSOWEGO Przykładowy program szkolenia I. Wprowadzenie do planowania finansowego 1. Rola doradcy finansowego Definicja i cechy doradcy finansowego Oczekiwania klienta Obszary umiejętności

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 0/5 () Nazwa Rachunek prawdopodobieństwa i statystyka () Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot ()

Bardziej szczegółowo

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22

Importowanie danych do SPSS Eksportowanie rezultatów do formatu MS Word... 22 Spis treści Przedmowa do wydania pierwszego.... 11 Przedmowa do wydania drugiego.... 15 Wykaz symboli.... 17 Litery alfabetu greckiego wykorzystywane w podręczniku.... 17 Symbole wykorzystywane w zagadnieniach

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Raport i dokumentacja Obliczanie Value-at-Risk portfela metodą Monte Carlo

Raport i dokumentacja Obliczanie Value-at-Risk portfela metodą Monte Carlo Raport i dokumentacja Obliczanie Value-at-Risk portfela metodą Monte Carlo 1. Opis problemu Celem pracy jest policzenie jednodniowej wartości narażonej na ryzyko (Value-at- Risk) portfela składającego

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

SPIS TEŚCI CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA

SPIS TEŚCI CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA SPIS TEŚCI PRZEDMOWA...13 CZĘŚĆ I RACHUNEK PRAWDOPODOBIEŃSTWA 1. ZDARZENIA LOSOWE I PRAWDOPODOBIEŃSTWO...17 1.1. UWAGI WSTĘPNE... 17 1.2. ZDARZENIA LOSOWE... 17 1.3. RELACJE MIĘDZY ZDARZENIAMI... 18 1.4.

Bardziej szczegółowo

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x 1, x 2,...}, to mówimy, że jest to zmienna dyskretna. Wykład 4 Rozkłady i ich dystrybuanty Dwa typy zmiennych losowych Jeśli wszystkie wartości, jakie może przyjmować zmienna można wypisać w postaci ciągu {x, x 2,...}, to mówimy, że jest to zmienna dyskretna.

Bardziej szczegółowo

Spis treści. Notki o autorach Założenia i cele naukowe Wstęp... 17

Spis treści. Notki o autorach Założenia i cele naukowe Wstęp... 17 Notki o autorach................................................... 11 Założenia i cele naukowe............................................ 15 Wstęp............................................................

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe 1. Cele i przydatność ujęcia modelowego w ekonomii 2.

Bardziej szczegółowo

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI

LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI LABORATORIUM 8 WERYFIKACJA HIPOTEZ STATYSTYCZNYCH PARAMETRYCZNE TESTY ISTOTNOŚCI WERYFIKACJA HIPOTEZ Hipoteza statystyczna jakiekolwiek przypuszczenie dotyczące populacji generalnej- jej poszczególnych

Bardziej szczegółowo

MODELOWANIE ZMIENNOŚCI I RYZYKA INWESTYCJI W ZŁOTO. Celina Otolińska

MODELOWANIE ZMIENNOŚCI I RYZYKA INWESTYCJI W ZŁOTO. Celina Otolińska MODELOWANIE ZMIENNOŚCI I RYZYKA INWESTYCJI W ZŁOTO Celina Otolińska PLAN: 1. Rynek złota-krótka informacja. 2. Wartość zagrożona i dlaczego ona. 3. Badany szereg czasowy oraz jego własności. 4. Modele

Bardziej szczegółowo

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe

PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA. CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe PYTANIA NA EGZAMIN MAGISTERSKI KIERUNEK: EKONOMIA STUDIA DRUGIEGO STOPNIA CZĘŚĆ I dotyczy wszystkich studentów kierunku Ekonomia pytania podstawowe 1. Cele i przydatność ujęcia modelowego w ekonomii 2.

Bardziej szczegółowo

Analiza przeżycia. Wprowadzenie

Analiza przeżycia. Wprowadzenie Wprowadzenie Przedmiotem badania analizy przeżycia jest czas jaki upływa od początku obserwacji do wystąpienia określonego zdarzenia, które jednoznacznie kończy obserwację na danej jednostce. Analiza przeżycia

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

Spis treści. Wstęp. 2. Procykliczność w działalności bankowej na gruncie teorii zawodności mechanizmu rynkowego i finansów

Spis treści. Wstęp. 2. Procykliczność w działalności bankowej na gruncie teorii zawodności mechanizmu rynkowego i finansów Spis treści Wstęp 1. Ryzyko a pojęcie cykliczności, procykliczności i antycykliczności zjawisk sfery realnej i systemu finansowego gospodarki 1.1. Wprowadzenie 1.2. Definicje zjawiska cyklu koniukturalnego,

Bardziej szczegółowo

KADD Metoda najmniejszych kwadratów funkcje nieliniowe

KADD Metoda najmniejszych kwadratów funkcje nieliniowe Metoda najmn. kwadr. - funkcje nieliniowe Metoda najmniejszych kwadratów Funkcje nieliniowe Procedura z redukcją kroku iteracji Przykłady zastosowań Dopasowanie funkcji wykładniczej Dopasowanie funkcji

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

5. Wprowadzenie do prawdopodobieństwa Wprowadzenie Wyniki i zdarzenia Różne podejścia do prawdopodobieństwa Zdarzenia wzajemnie wykluczające się i

5. Wprowadzenie do prawdopodobieństwa Wprowadzenie Wyniki i zdarzenia Różne podejścia do prawdopodobieństwa Zdarzenia wzajemnie wykluczające się i Spis treści Przedmowa do wydania polskiego - Tadeusz Tyszka Słowo wstępne - Lawrence D. Phillips Przedmowa 1. : rola i zastosowanie analizy decyzyjnej Decyzje złożone Rola analizy decyzyjnej Zastosowanie

Bardziej szczegółowo

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd.

Statystyki: miary opisujące rozkład! np. : średnia, frakcja (procent), odchylenie standardowe, wariancja, mediana itd. Wnioskowanie statystyczne obejmujące metody pozwalające na uogólnianie wyników z próby na nieznane wartości parametrów oraz szacowanie błędów tego uogólnienia. Przewidujemy nieznaną wartości parametru

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

STATYSTYKA wykład 5-6

STATYSTYKA wykład 5-6 TATYTYKA wykład 5-6 Twierdzenia graniczne Rozkłady statystyk z próby Wanda Olech Twierdzenia graniczne Jeżeli rozpatrujemy ciąg zmiennych losowych {X ; X ;...; X n }, to zdarza się, że ich rozkłady przy

Bardziej szczegółowo

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu...

... prognozowanie nie jest celem samym w sobie a jedynie narzędziem do celu... 4 Prognozowanie historyczne Prognozowanie - przewidywanie przyszłych zdarzeń w oparciu dane - podstawowy element w podejmowaniu decyzji... prognozowanie nie jest celem samym w sobie a jedynie narzędziem

Bardziej szczegółowo

O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE

O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE Ryszard Zieliński, IMPAN Warszawa O ŚREDNIEJ ARYTMETYCZNEJ I MEDIANIE XXXIX Ogólnopolska Konferencja Zastosowań Matematyki Zakopane-Kościelisko 7-14 września 2010 r Model statystyczny pomiaru: wynik pomiaru

Bardziej szczegółowo

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie

Bardziej szczegółowo

Statystyka i eksploracja danych

Statystyka i eksploracja danych Wykład XII: Zagadnienia redukcji wymiaru danych 12 maja 2014 Definicja Niech X będzie zmienną losową o skończonym drugim momencie. Standaryzacją zmiennej X nazywamy zmienną losową Z = X EX Var (X ). Definicja

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Statystyka Matematyczna Anna Janicka

Statystyka Matematyczna Anna Janicka Statystyka Matematyczna Anna Janicka wykład IX, 25.04.2016 TESTOWANIE HIPOTEZ STATYSTYCZNYCH Plan na dzisiaj 1. Hipoteza statystyczna 2. Test statystyczny 3. Błędy I-go i II-go rodzaju 4. Poziom istotności,

Bardziej szczegółowo

Optymalne portfele inwestycyjne

Optymalne portfele inwestycyjne Dariusz Zawisza Instytut Matematyki UJ 10 maj 2012 Problem Rozwiązanie problemu Aktywa wolne od ryzyka Estymacja parametrów Pomiar ryzyka Oznaczenia (Ω, F, P) - przestrzeń probablistyczna, r i := S1 i

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r.

Matematyka finansowa 20.06.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVII Egzamin dla Aktuariuszy z 20 czerwca 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

laboratoria 24 zaliczenie z oceną

laboratoria 24 zaliczenie z oceną Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Andrzej Tarłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Niestacjonarne

Bardziej szczegółowo

Dodatek 2. Wielowymiarowe modele GARCH

Dodatek 2. Wielowymiarowe modele GARCH Dodatek 2. Wielowymiarowe modele GARCH MODELOWANIE POLSKIEJ GOSPODARKI z R MPGzR (dodatek 2) Modele MGARCH 1 / 15 Ogólna specykacja modelu MGARCH Ogólna posta dla N-wymiarowego procesu MGARCH {y t }: y

Bardziej szczegółowo

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik

Bardziej szczegółowo