METODA SPRZȨŻONYCH KLASTERÓW. Monika Musia l

Wielkość: px
Rozpocząć pokaz od strony:

Download "METODA SPRZȨŻONYCH KLASTERÓW. Monika Musia l"

Transkrypt

1 METODA SPRZȨŻONYCH KLASTERÓW Monika Musia l

2 Jednym z ważniejszych zadań chemii kwantowej jest opracowywanie nowych metod obliczeniowych umożliwiaj acych bardzo dok ladne wyznaczanie e- nergii korelacji gdyż obliczenia jakie siȩ czȩsto przeprowadza przy użyciu metody Hartree-Focka (HF) obarczone s a b lȩdem spowodowanym tym, iż zak lada siȩ, że każdy elektron porusza siȩ w uśrednionym (a nie w aktualnym) polu pochodz acym od pozosta lych elektronów. Dopuszcza siȩ wiȩc sytuacje, w której elektrony o spinach antyrównoleg lych mog a znajdować siȩ blisko siebie. Ten b l ad liczbowo ujmuje energia korelacji, która jest różnic a miȩdzy energi a dok ladn a (w przybliżeniu nierelatywistycznym) a energi a Hartree-Focka: E korelacji = E dokladna E HF

3 Stanowi ona niewielk a czȩść ca lkowitej energii uk ladu kwantowochemicznego i z regu ly jej wartość nie przekracza 1% ca lkowitej energii ale w sytuacjach interesuj acych chemika jej obliczanie ma ogromne znaczenie np. przy wyznaczaniu: energii dysocjacji energii stanów przejściowych w lasności molekularnych, takich jak czȩstości harmoniczne a także optymalne geometrie w lasności elektryczne oraz wielu innych sytuacjach

4 Można wiȩc powiedzieć, iż energia korelacji jest miar a niedoskona lości przybliżenia jednoelektronowego (modelu cz astek niezależnych) gdyż w rzeczywistości z powodu kulombowskiego odpychania elektrony nie poruszaj a siȩ niezależnie i stan każdego z nich zależy od aktualnego a nie uśrednionego po lożenia wszystkich pozosta lych elektronów. Mówimy wówczas, iż ruchy elektronów w uk ladzie wieloelektronowym s a skorelowane.

5 METODY KWANTOWOCHEMICZNE Wave Function Theory WFT metody oparte na funkcji falowej Density Functional Theory DFT metody oparte na gȩstości elektronowej ւ ց metody ab initio metody pó lempiryczne Hartree-Fock Metoda oddzia lywania konfiguracji (CI) Rachunek zaburzeń Moellera-Plesseta (MPn) Metoda sprzȩżonych klasterów (CC)

6 Metody obliczeniowe oparte na funkcji falowej Ψ Równanie Schrödingera: ĤΨ = EΨ Komplet informacji znajdujemy poprzez znajomość funkcji falowej

7 Strategia obliczeniowa w metodach kwantowochemicznych 1. Wyznaczanie (spin)orbitali molekularnych Metoda Hartree-Focka E HF 99% energii ca lkowitej moleku ly 2. Wyznaczanie korelacji elektronowej Oddzia lywanie konfiguracji Rachunek zburzeń Sprzȩżone klastery

8 Energia korelacji ĤΨ = EΨ Rozwijamy funkcjȩ falow a Ψ na konfiguracje wzbudzone: Ψ = Φ o + Σ ai c a i Φa i + Σ abij,a>b,i>j c ab ij Φab ij + Σ abcijk,a>b>c,i>j>k c abc ijk Φabc ijk +...

9 ... c. b. a. i. j. k Φ o Φ a i Φ ab ij Φ abc ijk

10 Wspó lczynniki rozwiniȩcia znajdujemy: 1. stosuj ac rachunek zaburzeń poprawki Moellera-Plesseta: MP2, MP3, stosuj ac rozwiniȩcie liniowe na konfiguracje wzbudzone Ψ = (1 + Ĉ)Φ o metoda oddzia lywania konfiguracji (CI) 3. stosuj ac rozwiniȩcie wyk ladnicze Ψ = exp(ˆt)φ o metoda sprzȩżonych klasterów (CC)

11

12 Metoda sprzȩżonych klasterów (Coupled Cluster CC) - Istot a metody sprzȩżonych klasterów jest eksponencjalna parametryzacji funkcji falowej: Ψ = Ψ CC = e T Φ o gdzie funkcja φ o jest pewn a funkcj a referencyjn a, najczȩściej bȩdzie to funkcja wyznaczona metod a Hartree-Focka.

13 Metoda CC - podstawy Monika Musia l Operator T, generuj acy wzbudzenia elektronowe, zdefiniujemy jako T = T 1 + T T N gdzie N jest liczb a elektronów w uk ladzie, a T n jest operatorem odpowiedzialnym za n-krotne wzbudzenia i możemy go zapisać w formaliźmie drugiej kwantyzacji nastȩpuj aco: T n = 1 (n!) 2Σ ij...ab...t ab ij a b ji Pamiȩtajmy o konwencji indeksowej, zgodnie z któr a: i, j,..., przebiega po poziomach zajȩtych (dziurowych), a, b,..., przebiega po poziomach niezajȩtych (orbitale wirtualne, poziomy cz astkowe). Symbole a, b,... (i,j,...) oznaczaj a operatory kreacji (anihilacji) elektronów na poziomach a,b,... (i.j,...).

14 Metoda CC - podstawy Monika Musia l Poziomami cz astkowymi lub cz astkami bȩdziemy nazywali poziomy jednoelektronowe niezajȩte w funkcji referencyjnej Φ 0 a poziomami dziurowymi lub dziurami poziomy zajȩte w stanie Φ 0. Podzia l poziomów jednoelektronowych na cz astki i dziury obrazuje poniższy rysunek: poziomy cz astkowe a, b, c,... poziomy dziurowe i, j, k,... Φ 0 Rolȩ próżni Fermiego w tym ujȩciu pe lni funkcja Φ 0, w której jest obsadzonych N pierwszych poziomów.

15 Φ o ˆT 1 ˆT 2 ˆT 3 Metoda CC - podstawy Monika Musia l Zatem pierwsze trzy sk ladniki operatora T bȩd a mia ly postać: T =Σ ia t a ia i+ 1 4 Σ ijabt ab ija b ji Σ ijkabct abc ijka b c kji... c. b. a. i. j. k 2. 1.

16 Metoda CC - podstawy Monika Musia l Rozwijamy e x w szereg: Analogicznie operator e T : e x = 1 + x + x2 2! + x3 3! +... Wówczas: e T = 1 + T T T Ψ o = (1 + T 1 + T T T 1 T T T )Φ o Operatory T ze sob a komutuj a ([T n, T m ] = 0), czyli kolejność nie ma znaczenia i dlatego możemy zapisać, iż np. 1 2 (T 1T 2 + T 2 T 1 ) = T 1 T 2, itd.

17 Metoda CC - podstawy Monika Musia l Ponieważ operatory klasterowe s a operatorami wzbudzeń elektronowych, zatem rozwiniȩcie klasterowe jest rozwiniȩciem funkcji Ψ CC na konfiguracje wzbudzone Φ A. Ψ CC = Φ o + t a iφ a i + a,i a,b,c,i,j,k,i>j>k,a>b>c a,b,i,j,a>b,i>j (t abc ijk + t ab (t ab ij + t a it b j + t a jt b i)φ ab ij + ijt c k...)φ abc ijk c. b. a. i. j. k Φ o Φ a i Φ ab ij Φ abc ijk

18 Metoda CC - podstawy Monika Musia l Wprowadzamy rozwiniȩcie klasterowe do równania Schrödingera HΨ CC = EΨ CC He T Φ o = Ee T Φ o gdzie H jest operatorem Hamiltona. Jest to pe lny hamiltonian uk ladu zapisywany zwykle jako suma czȩści niezaburzonej (H o ) i operatora zaburzenia (V ). W tym ostatnim możemy wyróżnić czȩść jednoelektronow a (F) oraz dwuelektronow a (W). ( )

19 Metoda CC - podstawy Monika Musia l Rozwi azanie równania Schrödingera HΨ CC = E Ψ CC sprowadza siȩ do: znalezienia amplitud klasterowych, t a i, tab ij, tabc ijk,... energii E

20 Metoda CC - podstawy Monika Musia l Mnoż ac lewostronnie równanie ( ), czyli równanie He T Φ o = Ee T Φ o, przez e T otrzymujemy: e T He T Φ o = EΦ o ( ) a nastȩpnie dokonuj ac projekcji 1 na wektor Φ o (tj. rzutuj ac lewostronnie na Φ o ) otrzymujemy wyrażenie na energiȩ: E = Φ o e T He T Φ o Natomiast rzutuj ac równanie ( ) na konfiguracje wzbudzone wzglȩdem Φ o, otrzymujemy równania na amplitudy metody CC: Φ ab... ij... e T He T Φ o = 0 1 rzutowanie, np. równania na wskazan a funkcjȩ, czyli lewostronne przemnożenie obu stron równania przez tȩ funkcjȩ i ca lkowanie po wszystkich zmiennych

21 Metoda CC - podstawy Monika Musia l Centralna wielkość w teorii CC Hamiltonian transformowany przez podobieństwo: H H = e T He T = (He T ) c Drugi wyraz w ramce można zgodnie z twierdzeniem Campbella Bakera Hausdorffa zapisać poprzez sumȩ komutatorów: e T He T = H + [H,T] + [[H, T],T] + [[[H,T], T], T] + [[[[H,T], T], T],T] Rozwiniȩcie dowolnego operatora na szereg komutatorowy prowadzi do tzw. wyrazów zwi azanych, po angielsku connected, st ad bierze siȩ indeks c w ostatnim wyrazie wyrażenia w ramce.

22 Metoda CC - podstawy Monika Musia l Wobec powyższego możemy równania na amplitudy zapisać w nastȩpuj acej postaci: Φ ab... ij... (He T ) c Φ o = 0 Podobnie możemy zapisać wyrażenie na energiȩ: E = Φ o (He T ) c Φ o

23 Metoda CC - podstawy Monika Musia l Ponieważ operator klasterowy T pojawia siȩ w wyk ladniku, czyli w funkcji, e T, tak wiȩc oprócz sumarycznych wzbudzeń pojedynczych T 1, podwójnych T 2, potrójnych T 3, itd. rozrȯżnia siȩ jeszcze np. podwójny klaster wzbudzeń pojedynczych T 1 T 1 lub potrójny klaster wzbudzeń pojedynczych T 1 T 1 T 1 czy też iloczyn wzbudzeń dwukrotnych i jednokrotnych T 2 T 1, itd.

24 Metoda CC - podstawy Monika Musia l Wzbudzenia spójne i niespójne C 1 = T 1 C 2 = T 2 +T 2 1/2! C 3 = T 3 +T 1 T 2 + T 3 1/3! C 4 = T 4 +T 2 2/2! + T 1 T 3 + T 2 T 2 1/2! + T 4 1/4!...

25 Metoda CC - modele pe lne Monika Musia l CCD T = T 2 CCSD T = T 1 + T 2 CCSDT T = T 1 + T 2 + T 3 CCSDTQ T = T 1 + T 2 + T 3 + T 4 CCSDTQP T = T 1 + T 2 + T 3 + T 4 + T 5.

26 Metoda CC - modele pe lne Monika Musia l Przy wyprowadzaniu konkretnych równań należy pamiȩtać o zasadzie zwi azanej z określaniem jakie iloczyny operatorów daj a wk lad do danego równania. Otóż suma wzbudzeń nie może przekroczyć typu równania o wiȩcej niż dwa, czyli np. w równaniu na T 1 nie może uczestniczyć wk lad T2 2/2. Ponadto w operatorze W mamy tylko co najwyżej cztery operatory (zatem co najwyżej cztery anihilatory) oznacza to, że można przeprowadzić maksymalnie cztery kontrakcje pomiȩdzy W i T. Konstrukcja wk ladu (diagramu) do równania polega na l aczeniu linii zwi azanych z werteksem V z liniami po l aczonymi z werteksem (werteksami) T (każde po l aczenie odpowiada jednej kontrakcji).

27 Metoda CC - modele pe lne Monika Musia l Model CCD (T = T 2 ) Φ ab ij (H(1 + T 2 + T 2 2 /2)) c Φ o = 0 Pamiȩtaj ac, iż operator e T rozwijamy w szereg: e T = 1 + T T T

28 Metoda CC - modele pe lne Monika Musia l Model CCSD (T = T 1 + T 2 ) Φ a i (H(1 + T 1 + T 2 + T 2 1 /2 + T 1T 2 + T 3 1 /6)) c Φ o = 0 Φ ab ij (H(1+T 1+T 2 +T 2 1 /2 + T 1T 2 +T 2 2 /2+ +T 3 1 /6 + T2 1 T 2/2 + T 4 1 /24)) c Φ o = 0

29 Metoda CC - modele pe lne Monika Musia l Model CCSDT (T = T 1 + T 2 + T 3 ) Φ a i (H(1 + T 1 + T 2 +T 3 +T 2 1 /2 + T 1T 2 + T 3 1 /6)) c Φ o = 0 Φ ab ij (H(1 + T 1 + T 2 +T 3 +T 2 1 /2 + T 1T 2 +T 1 T 3 +T 2 2 /2+ +T 3 1 /6 + T2 1 T 2/2 + T 4 1 /24)) c Φ o = 0 Φ abc ijk (H(T 2 + T 3 + T 1 T 2 + T 1 T 3 + T 2 2 /2 + T 2T 3 + +T 2 1 T 2/2 + T 2 1 T 3/2 + T 1 T 2 2 /2 + T3 1 T 2/6)) c Φ o = 0 -

30 Metoda CC - modele pe lne Monika Musia l Model CCSDTQ (T = T 1 + T 2 + T 3 + T 4 ) Φ a i (H(1 + T 1 + T 2 + T 3 + T 2 1/2 + T 1 T 2 + T 3 1/6)) c Φ o = 0 Φ ab ij (H(1 + T 1 + T 2 + T 3 +T 4 +T 2 1/2 + T 1 T 2 + T 1 T 3 + T 2 2/2+ +T 3 1/6 + T 2 1T 2 /2 + T 4 1/24)) c Φ o = 0 Φ abc ijk (H(T 2 + T 3 +T 4 +T 1 T 2 + T 1 T 3 +T 1 T 4 +T 2 2/2 + T 2 T 3 + +T 2 1T 2 /2 + T 2 1T 3 /2 + T 1 T 2 2/2 + T 3 1T 2 /6)) c Φ o = 0 Φ abcd ijkl (H(T 3 + T 4 + T 1 T 3 + T 1 T 4 + T 2 2/2 + T 2 T 3 + T 2 T 4 + T 2 3/2 + T 2 1T 3 /2+ +T 2 1T 4 /2 + T 1 T 2 2/2 + T 1 T 2 T 3 + T 3 2/6 + T 3 1T 3 /6 + T 2 1T 2 2/4)) c Φ o = 0 -

31 METODA SPRZȨŻONYCH KLASTERÓW Ψ = exp(t) Φ o ekstensywność wymiarowa

32 Wymiarowa ekstensywność Poprawne skalowanie siȩ energii z rozmiarem uk ladu = poprawne odseparowanie nieoddzia luj acych fragmentów. Dla moleku ly AB sk ladaj acej siȩ z nieoddzia luj acych fragmentów A i B, opisywanej funkcj a referencyjn a Φ AB = Φ A Φ B, otrzymujemy: Ψ AB = exp(t AB ) Φ AB = exp(t A ) Φ A exp(t B ) Φ B = Ψ A Ψ B E AB CC = EA CC + EB CC

METODY POSTHARTREE-FOCKOWSKIE MONIKA MUSIA L

METODY POSTHARTREE-FOCKOWSKIE MONIKA MUSIA L METODY POSTHARTREE-FOCKOWSKIE MONIKA MUSIA L Jednym z ważniejszych zadań chemii kwantowej jest opracowywanie nowych metod obliczeniowych umożliwiaj acych bardzo dok ladne wyznaczanie e- nergii korelacji

Bardziej szczegółowo

METODA SPRZȨŻONYCH KLASTERÓW METODA MIESZANIA KONFIGURACJI. Monika Musia l

METODA SPRZȨŻONYCH KLASTERÓW METODA MIESZANIA KONFIGURACJI. Monika Musia l METODA SPRZȨŻONYCH KLASTERÓW METODA MIESZANIA KONFIGURACJI Monika Musia l Jednym z ważniejszych zadań chemii kwantowej jest opracowywanie nowych metod obliczeniowych umożliwiaj acych bardzo dok ladne wyznaczanie

Bardziej szczegółowo

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C

Bardziej szczegółowo

Podstawowe działania w rachunku macierzowym

Podstawowe działania w rachunku macierzowym Podstawowe działania w rachunku macierzowym Marcin Detka Katedra Informatyki Stosowanej Kielce, Wrzesień 2004 1 MACIERZE 1 1 Macierze Macierz prostokątną A o wymiarach m n (m wierszy w n kolumnach) definiujemy:

Bardziej szczegółowo

Podprzestrzeń wektorowa, baza, suma prosta i wymiar Javier de Lucas

Podprzestrzeń wektorowa, baza, suma prosta i wymiar Javier de Lucas Podprzestrzeń wektorowa, baza, suma prosta i wymiar Javier de Lucas Ćwiczenie 1. Niech W = {(x 1, x 2, x 3 ) K 3 : x 2 1 + x 2 2 + x 2 3 = x 1 x 2 + x 2 x 3 + x 3 x 1 }. Czy W jest podprzestrzeni a gdy

Bardziej szczegółowo

W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 3. Rozwiąż równanie: sin 5x cos x + sin x = 0. W rozwiązaniach podobnych zadań często korzystamy ze wzorów trygonometrycznych

Bardziej szczegółowo

Metody obliczeniowe chemii teoretycznej

Metody obliczeniowe chemii teoretycznej Metody obliczeniowe chemii teoretycznej mechanika kwantowa mechanika klasyczna ւ ց WFT DFT MM FFM metody bazuj ace na metody bazuj ace na Mechanika Molekularna funkcji falowej gȩstości elektronowej Wave

Bardziej szczegółowo

Monika Musia l. METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe)

Monika Musia l. METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe) Monika Musia l METODA MIESZANIA KONFIGURACJI Configuration Interaction (CI) (ujȩcie wyznacznikowe) ĤΨ i = E i Ψ i W metodzie mieszania konfiguracji wariacyjna funkcja falowa, jest liniow a kombinacj a

Bardziej szczegółowo

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 6, strona 1. Format JPEG

mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 6, strona 1. Format JPEG mgr inż. Grzegorz Kraszewski SYSTEMY MULTIMEDIALNE wykład 6, strona 1. Format JPEG Cechy formatu JPEG Schemat blokowy kompresora Transformacja koloru Obniżenie rozdzielczości chrominancji Podział na bloki

Bardziej szczegółowo

2.Prawo zachowania masy

2.Prawo zachowania masy 2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco

Bardziej szczegółowo

Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie

Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie Ćwiczenie nr 2 Zbiory rozmyte logika rozmyta Rozmywanie, wnioskowanie, baza reguł, wyostrzanie 1. Wprowadzenie W wielu zagadnieniach dotyczących sterowania procesami technologicznymi niezbędne jest wyznaczenie

Bardziej szczegółowo

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l

TEORIA FUNKCJONA LÓW. (Density Functional Theory - DFT) Monika Musia l TEORIA FUNKCJONA LÓW GȨSTOŚCI (Density Functional Theory - DFT) Monika Musia l PRZEDMIOT BADAŃ Uk lad N elektronów + K j ader atomowych Przybliżenie Borna-Oppenheimera Zamiast funkcji falowej Ψ(r 1,σ 1,r

Bardziej szczegółowo

MATEMATYKA 9. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 2017/2018 FUNKCJE WYKŁADNICZE, LOGARYTMY

MATEMATYKA 9. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 2017/2018 FUNKCJE WYKŁADNICZE, LOGARYTMY INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 9 FUNKCJE WYKŁADNICZE, LOGARYTMY Dla dowolnej liczby a > 0, liczby

Bardziej szczegółowo

1 Granice funkcji. Definicja 1 (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f(x) w punkcie x = a, co zapisujemy.

1 Granice funkcji. Definicja 1 (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f(x) w punkcie x = a, co zapisujemy. Granice funkcji Definicja (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f() w punkcie = a, co zapisujemy f() = g (.) a jeżeli dla każdego ε > 0 można wskazać taką liczbę (istnieje

Bardziej szczegółowo

TEST WIADOMOŚCI: Równania i układy równań

TEST WIADOMOŚCI: Równania i układy równań Poziom nauczania: Gimnazjum, klasa II Przedmiot: Matematyka Dział: Równania i układy równań Czas trwania: 45 minut Wykonała: Joanna Klimeczko TEST WIADOMOŚCI: Równania i układy równań Liczba punktów za

Bardziej szczegółowo

Zagadnienia transportowe

Zagadnienia transportowe Mieczysław Połoński Zakład Technologii i Organizacji Robót Inżynieryjnych Wydział Inżynierii i Kształtowania Środowiska SGGW Zagadnienia transportowe Z m punktów odprawy ma być wysłany jednorodny produkt

Bardziej szczegółowo

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję

Bardziej szczegółowo

TWIERDZENIE PITAGORASA

TWIERDZENIE PITAGORASA PODSTAWY > Figury płaskie (2) TWIERDZENIE PITAGORASA Twierdzenie Pitagorasa dotyczy trójkąta prostokątnego, to znaczy takiego, który ma jeden kąt prosty. W trójkącie prostokątnym boki, które tworzą kąt

Bardziej szczegółowo

I. LOGICZNE STRUKTURY DRZEWIASTE

I. LOGICZNE STRUKTURY DRZEWIASTE I LOGICZNE STRUKTURY DRZEWIASTE Analizując dany problem uzyskuje się zadanie projektowe w postaci pewnego zbioru danych Metoda morfologiczna, która została opracowana w latach 1938-1948 przez amerykańskiego

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

2. Opis zajęć dydaktycznych i pracy studenta

2. Opis zajęć dydaktycznych i pracy studenta Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi poziom Sylabus modułu: Moduł przedmiotów specjalizacyjnych A (0310-CH-S2-004) Nazwa wariantu modułu (opcjonalnie): Metody

Bardziej szczegółowo

Mapa umiejętności czytania, interpretacji i posługiwania się mapą Polski.

Mapa umiejętności czytania, interpretacji i posługiwania się mapą Polski. Mapa umiejętności czytania, interpretacji i posługiwania się mapą Polski. Uczeń: odczytuje z map informacje przedstawione za pomocą różnych metod kartograficznych Mapa i jej przeznaczenie Wybierając się

Bardziej szczegółowo

Matematyka:Matematyka I - ćwiczenia/granice funkcji

Matematyka:Matematyka I - ćwiczenia/granice funkcji Matematyka:Matematyka I - ćwiczenia/granice funkcji 1 Matematyka:Matematyka I - ćwiczenia/granice funkcji Granice funkcji Zadanie 1 Wykorzystując definicję Heinego granicy funkcji, znaleźć (1) Zadanie

Bardziej szczegółowo

Geometria Wykreślna Wykład 3

Geometria Wykreślna Wykład 3 Geometria Wykreślna Wykład 3 OBRÓT PUNKTU Z obrotem punktu A związane są następujące elementy obrotu: - oś obrotu - prosta l, - płaszczyzna obrotu - płaszczyzna, - środek obrotu - punkt S, - promień obrotu

Bardziej szczegółowo

3b. Rozwiązywanie zadań ze skali mapy

3b. Rozwiązywanie zadań ze skali mapy 3b. Rozwiązywanie zadań ze skali mapy SKALA MAPY określa stopień zmniejszenia odległości przedstawionej na mapie w stosunku do odpowiedniej odległości w terenie. Wyróżniamy następujące rodzaje skali: SKALA

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Kwantowa natura promieniowania elektromagnetycznego Zjawisko fotoelektryczne. Zadanie 1. Jaką prędkość posiada fotoelektron wytworzony przez kwant γ o energii E γ=1,27mev? W porównaniu z pracą wyjścia

Bardziej szczegółowo

Statystyki opisowe. Marcin Zajenkowski. Marcin Zajenkowski () Statystyki opisowe 1 / 57

Statystyki opisowe. Marcin Zajenkowski. Marcin Zajenkowski () Statystyki opisowe 1 / 57 Statystyki opisowe Marcin Zajenkowski Marcin Zajenkowski () Statystyki opisowe 1 / 57 Struktura 1 Miary tendencji centralnej Średnia arytmetyczna Wartość modalna Mediana 2 Miary rozproszenia Roztęp Wariancja

Bardziej szczegółowo

Metoda oddzia lywania konfiguracji (CI)

Metoda oddzia lywania konfiguracji (CI) Metoda oddzia lywania konfiguracji (CI) Spinorbitale: obsadzone φ a i wirtualne φ r : ɛ a ɛ HOMO, ɛ r ɛ LUMO ê r a wykonuje podstawienie φ a φ r, np. ê 7 2 φ 1 φ 2 φ 3... φ N = φ 1 φ 7 φ 3... φ N Operator

Bardziej szczegółowo

PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 29/2 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!

Bardziej szczegółowo

STA T T A YSTYKA Korelacja

STA T T A YSTYKA Korelacja STATYSTYKA Korelacja Pojęcie korelacji Korelacja (współzależność cech) określa wzajemne powiązania pomiędzy wybranymi zmiennymi. Charakteryzując korelację dwóch cech podajemy dwa czynniki: kierunek oraz

Bardziej szczegółowo

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących

Bardziej szczegółowo

Efektywność nauczania w Gimnazjum w Lutyni

Efektywność nauczania w Gimnazjum w Lutyni Efektywność nauczania w Gimnazjum w Lutyni Efektywność nauczania w danej szkole często utożsamiana jest z jej wynikami egzaminacyjnymi. Gdyby wszystkie szkoły w Polsce pracowały z uczniami o tym samym

Bardziej szczegółowo

1. Rozwiązać układ równań { x 2 = 2y 1

1. Rozwiązać układ równań { x 2 = 2y 1 Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,

Bardziej szczegółowo

Podstawowe pojęcia: Populacja. Populacja skończona zawiera skończoną liczbę jednostek statystycznych

Podstawowe pojęcia: Populacja. Populacja skończona zawiera skończoną liczbę jednostek statystycznych Podstawowe pojęcia: Badanie statystyczne - zespół czynności zmierzających do uzyskania za pomocą metod statystycznych informacji charakteryzujących interesującą nas zbiorowość (populację generalną) Populacja

Bardziej szczegółowo

Test F- Snedecora. będzie zmienną losową chi-kwadrat o k 1 stopniach swobody a χ

Test F- Snedecora. będzie zmienną losową chi-kwadrat o k 1 stopniach swobody a χ Test F- nedecora W praktyce często mamy do czynienia z kilkoma niezaleŝnymi testami, słuŝącymi do weryfikacji tej samej hipotezy, prowadzącymi do odrzucenia lub przyjęcia hipotezy zerowej na róŝnych poziomach

Bardziej szczegółowo

NUMER IDENTYFIKATORA:

NUMER IDENTYFIKATORA: Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl

Bardziej szczegółowo

Specyfikacja techniczna banerów Flash

Specyfikacja techniczna banerów Flash Specyfikacja techniczna banerów Flash Po stworzeniu własnego banera reklamowego należy dodać kilka elementów umożliwiających integrację z systemem wyświetlającym i śledzącym reklamy na stronie www. Specyfikacje

Bardziej szczegółowo

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej

Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej Opis programu do wizualizacji algorytmów z zakresu arytmetyki komputerowej 3.1 Informacje ogólne Program WAAK 1.0 służy do wizualizacji algorytmów arytmetyki komputerowej. Oczywiście istnieje wiele narzędzi

Bardziej szczegółowo

INSTRUKCJA DLA UCZESTNIKÓW ZAWODÓW ZADANIA

INSTRUKCJA DLA UCZESTNIKÓW ZAWODÓW ZADANIA INSTRUKCJA DLA UCZESTNIKÓW ZAWODÓW 1. Zawody III stopnia trwają 150 min. 2. Arkusz egzaminacyjny składa się z 2 pytań otwartych o charakterze problemowym, 1 pytania opisowego i 1 mini testu składającego

Bardziej szczegółowo

Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem

Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem Odpowiedzi i schematy oceniania Arkusz Zadania zamknięte Numer zadania Poprawna odpowiedź Wskazówki do rozwiązania B W ( ) + 8 ( ) 8 W ( 7) ( 7) ( 7 ) 8 ( 7) ( 8) 8 ( 8) Iloczyn dwóch liczb ujemnych jest

Bardziej szczegółowo

KONKURSY MATEMATYCZNE. Treść zadań

KONKURSY MATEMATYCZNE. Treść zadań KONKURSY MATEMATYCZNE Treść zadań Wskazówka: w każdym zadaniu należy wskazać JEDNĄ dobrą odpowiedź. Zadanie 1 Wlewamy 1000 litrów wody do rurki w najwyższym punkcie systemu rurek jak na rysunku. Zakładamy,

Bardziej szczegółowo

Liczby zespolone C := R 2.

Liczby zespolone C := R 2. C := R 2. R 2 (a, b) = (a, 0) + (0, b) = a (1, 0) + b (0, 1). R C, R x (x, 0) C. i := (0, 1), 1 = (1, 0) (a, b) = a(1, 0) + b(0, 1) = a + bi. R 2 (a, b) = z = a + bi C. a- część rzeczywista liczby zespolonej

Bardziej szczegółowo

Zarządzanie projektami. wykład 1 dr inż. Agata Klaus-Rosińska

Zarządzanie projektami. wykład 1 dr inż. Agata Klaus-Rosińska Zarządzanie projektami wykład 1 dr inż. Agata Klaus-Rosińska 1 DEFINICJA PROJEKTU Zbiór działań podejmowanych dla zrealizowania określonego celu i uzyskania konkretnego, wymiernego rezultatu produkt projektu

Bardziej szczegółowo

Harmonogramowanie projektów Zarządzanie czasem

Harmonogramowanie projektów Zarządzanie czasem Harmonogramowanie projektów Zarządzanie czasem Zarządzanie czasem TOMASZ ŁUKASZEWSKI INSTYTUT INFORMATYKI W ZARZĄDZANIU Zarządzanie czasem w projekcie /49 Czas w zarządzaniu projektami 1. Pojęcie zarządzania

Bardziej szczegółowo

Projektowanie bazy danych

Projektowanie bazy danych Projektowanie bazy danych Pierwszą fazą tworzenia projektu bazy danych jest postawienie definicji celu, założeo wstępnych i określenie podstawowych funkcji aplikacji. Każda baza danych jest projektowana

Bardziej szczegółowo

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW

Statystyczna analiza danych w programie STATISTICA. Dariusz Gozdowski. Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Statystyczna analiza danych w programie STATISTICA ( 4 (wykład Dariusz Gozdowski Katedra Doświadczalnictwa i Bioinformatyki Wydział Rolnictwa i Biologii SGGW Regresja prosta liniowa Regresja prosta jest

Bardziej szczegółowo

Energia wiązania [ev] Wiązanie. Właściwości ciał stałych

Energia wiązania [ev] Wiązanie. Właściwości ciał stałych Wiązanie Energia wiązania [ev] kowalencyjne 7-12 jonowe 7-10 metaliczne 1-4 wodorowe 0.2 0.4 Van der Waalsa 0.1 0.2 Właściwości ciał stałych - wysoka temperatura topnienia - twarde lub średniotwarde -

Bardziej szczegółowo

Regulamin w konkurencjach solowych

Regulamin w konkurencjach solowych sezon 2016-2017 Regulamin w konkurencjach solowych SENIORZY Program krótki : dozwolona jest muzyka wokalna - czas trwania programu krótkiego 2:40 (+/- 10 sek.) Ogólne: Wycofanie dodatkowych 30 sek. przed

Bardziej szczegółowo

Analityczne pierwsze pochodne energii w układach podwójnie zjonizowanych na podstawie m etody równań ruchu teorii sprzężonych klasterów

Analityczne pierwsze pochodne energii w układach podwójnie zjonizowanych na podstawie m etody równań ruchu teorii sprzężonych klasterów UNIWERSYTET ŚLĄSKI Wydział Matematyki, Fizyki i Chemii Rozprawa doktorska Katarzyna Kowalska-Szojda Analityczne pierwsze pochodne energii w układach podwójnie zjonizowanych na podstawie m etody równań

Bardziej szczegółowo

Automatyka Treść wykładów: Literatura. Wstęp. dr inż. Szymon Surma pok. 202, tel.

Automatyka Treść wykładów: Literatura. Wstęp. dr inż. Szymon Surma pok. 202, tel. 25--6 Treść wykładów: Automatyka dr inż. Szymon Surma szymon.surma@polsl.pl pok. 22, tel. +4 32 63 436. Podstawy automatyki. Wstęp, 2. Różnice między sygnałem analogowym a cyfrowym, 3. Podstawowe elementy

Bardziej szczegółowo

Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych ul. Koszykowa 75, 00-662 Warszawa

Politechnika Warszawska Wydział Matematyki i Nauk Informacyjnych ul. Koszykowa 75, 00-662 Warszawa Zamawiający: Wydział Matematyki i Nauk Informacyjnych Politechniki Warszawskiej 00-662 Warszawa, ul. Koszykowa 75 Przedmiot zamówienia: Produkcja Interaktywnej gry matematycznej Nr postępowania: WMiNI-39/44/AM/13

Bardziej szczegółowo

Przypomnienie najważniejszych pojęć z baz danych. Co to jest baza danych?

Przypomnienie najważniejszych pojęć z baz danych. Co to jest baza danych? Przypomnienie najważniejszych pojęć z baz danych. Co to jest baza danych? 1 Podstawowe pojęcia: 2 3 4 5 Dana (ang.data) najmniejsza, elementarna jednostka informacji o obiekcie będąca przedmiotem przetwarzania

Bardziej szczegółowo

Pomiary geofizyczne w otworach

Pomiary geofizyczne w otworach Pomiary geofizyczne w otworach Profilowanie w geofizyce otworowej oznacza rejestrację zmian fizycznego parametru z głębokością. Badania geofizyki otworowej, wykonywane dla potrzeb geologicznego rozpoznania

Bardziej szczegółowo

Test całoroczny z matematyki. Wersja A

Test całoroczny z matematyki. Wersja A Test całoroczny z matematyki klasa IV Wersja A Na kartce masz zapisanych 20 zadań. Opuść więc te, których rozwiązanie okaże się zbyt trudne dla Ciebie. Wrócisz do niego później. W niektórych zadaniach

Bardziej szczegółowo

40. Międzynarodowa Olimpiada Fizyczna Meksyk, 12-19 lipca 2009 r. ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA

40. Międzynarodowa Olimpiada Fizyczna Meksyk, 12-19 lipca 2009 r. ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA ZADANIE TEORETYCZNE 2 CHŁODZENIE LASEROWE I MELASA OPTYCZNA Celem tego zadania jest podanie prostej teorii, która tłumaczy tak zwane chłodzenie laserowe i zjawisko melasy optycznej. Chodzi tu o chłodzenia

Bardziej szczegółowo

PROJEKTOWANIE PROCESÓW PRODUKCYJNYCH

PROJEKTOWANIE PROCESÓW PRODUKCYJNYCH PROJEKTOWANIE PROCESÓW PRODUKCYJNYCH Do celów projektowania naleŝy ustalić model procesu wytwórczego: Zakłócenia i warunki otoczenia Wpływ na otoczenie WEJŚCIE materiały i półprodukty wyposaŝenie produkcyjne

Bardziej szczegółowo

Karta pracy: Ćwiczenie 5.

Karta pracy: Ćwiczenie 5. Imię i nazwisko: Grupa: Karta pracy: Ćwiczenie 5. Tytuł ćwiczenia: Optymalizacja geometrii prostych cząsteczek organicznych. Analiza populacyjna i rzędy wiązań. Zagadnienia do przygotowania: Przypomnij

Bardziej szczegółowo

BLOK I. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach:

BLOK I. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach: BLOK I. Rachunek różniczkowy i całkowy. Znaleźć przyrost funkcji f() = przy = zakładając, że przyrost zmiennej niezależnej jest równy: a), ; b), ;, 5.. Znaleźć iloraz różnicowy funkcji y = f() w punkcie

Bardziej szczegółowo

1) TUnŻ WARTA S.A. i TUiR WARTA S.A. należą do tej samej grupy kapitałowej,

1) TUnŻ WARTA S.A. i TUiR WARTA S.A. należą do tej samej grupy kapitałowej, Zasady finansowania działalności kulturalno-oświatowej ze środków zakładowego funduszu świadczeń socjalnych w TUnŻ WARTA S.A. w okresie od 1 września 2015 roku do 31 grudnia 2015 roku 1. Świadczenia finansowane

Bardziej szczegółowo

Projekt MES. Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe

Projekt MES. Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe Projekt MES Wykonali: Lidia Orkowska Mateusz Wróbel Adam Wysocki WBMIZ, MIBM, IMe 1. Ugięcie wieszaka pod wpływem przyłożonego obciążenia 1.1. Wstęp Analizie poddane zostało ugięcie wieszaka na ubrania

Bardziej szczegółowo

7. REZONANS W OBWODACH ELEKTRYCZNYCH

7. REZONANS W OBWODACH ELEKTRYCZNYCH OBWODY SYGNAŁY 7. EZONANS W OBWODAH EEKTYZNYH 7.. ZJAWSKO EZONANS Obwody elektryczne, w których występuje zjawisko rezonansu nazywane są obwodami rezonansowymi lub drgającymi. ozpatrując bezźródłowy obwód

Bardziej szczegółowo

UMOWA NA USŁUGI PRZEWOZOWE TRASA NR

UMOWA NA USŁUGI PRZEWOZOWE TRASA NR Załącznik Nr 2A UMOWA NA USŁUGI PRZEWOZOWE TRASA NR zawarta w dniu... r. w Morawicy pomiędzy Gminą Morawica reprezentowaną przez: zwaną dalej w treści umowy Organizatorem przewozu, a Firmą - reprezentowaną

Bardziej szczegółowo

Twierdzenie Bayesa. Indukowane Reguły Decyzyjne Jakub Kuliński Nr albumu: 53623

Twierdzenie Bayesa. Indukowane Reguły Decyzyjne Jakub Kuliński Nr albumu: 53623 Twierdzenie Bayesa Indukowane Reguły Decyzyjne Jakub Kuliński Nr albumu: 53623 Niniejszy skrypt ma na celu usystematyzowanie i uporządkowanie podstawowej wiedzy na temat twierdzenia Bayesa i jego zastosowaniu

Bardziej szczegółowo

RZECZPOSPOLITA POLSKA. Prezydent Miasta na Prawach Powiatu Zarząd Powiatu. wszystkie

RZECZPOSPOLITA POLSKA. Prezydent Miasta na Prawach Powiatu Zarząd Powiatu. wszystkie RZECZPOSPOLITA POLSKA Warszawa, dnia 11 lutego 2011 r. MINISTER FINANSÓW ST4-4820/109/2011 Prezydent Miasta na Prawach Powiatu Zarząd Powiatu wszystkie Zgodnie z art. 33 ust. 1 pkt 2 ustawy z dnia 13 listopada

Bardziej szczegółowo

Ogólna charakterystyka kontraktów terminowych

Ogólna charakterystyka kontraktów terminowych Jesteś tu: Bossa.pl Kurs giełdowy - Część 10 Ogólna charakterystyka kontraktów terminowych Kontrakt terminowy jest umową pomiędzy dwiema stronami, z których jedna zobowiązuje się do nabycia a druga do

Bardziej szczegółowo

Kratownice Wieża Eiffel a

Kratownice Wieża Eiffel a Kratownice Wieża Eiffel a Kratownica jest to konstrukcja nośna, składająca się z prętów połączonch ze sobą w węzłach. Kratownica może bć: 1) płaska, gd wszstkie pręt leżą w jednej płaszczźnie, 2) przestrzenna,

Bardziej szczegółowo

RUCH KONTROLI WYBORÓW. Tabele pomocnicze w celu szybkiego i dokładnego ustalenia wyników głosowania w referendum w dniu 6 września 2015 r.

RUCH KONTROLI WYBORÓW. Tabele pomocnicze w celu szybkiego i dokładnego ustalenia wyników głosowania w referendum w dniu 6 września 2015 r. RUCH KONTROLI WYBORÓW Tabele pomocnicze w celu szybkiego i dokładnego ustalenia wyników głosowania w referendum w dniu września r. Plik zawiera - dwie tabele pomocnicze do zliczania wyników cząstkowych

Bardziej szczegółowo

Proste struktury krystaliczne

Proste struktury krystaliczne Budowa ciał stałych Proste struktury krystaliczne sc (simple cubic) bcc (body centered cubic) fcc (face centered cubic) np. Piryt FeSe 2 np. Żelazo, Wolfram np. Miedź, Aluminium Struktury krystaliczne

Bardziej szczegółowo

JAK POPRAWNIE NAPISAĆ PODANIE? PORADNIK

JAK POPRAWNIE NAPISAĆ PODANIE? PORADNIK JAK POPRAWNIE NAPISAĆ PODANIE? PORADNIK 1. Podania piszemy zawsze na arkuszu A4 (210x297mm), niezależnie od tego, czy podanie będzie wydrukowane, czy też będzie to pismo odręczne. Prawidłowo napisane podanie

Bardziej szczegółowo

Trenuj przed sprawdzianem! Matematyka Test 4

Trenuj przed sprawdzianem! Matematyka Test 4 mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. nformacja do zadań od 1. do 3. Historia telewizji w Polsce

Bardziej szczegółowo

Rozliczenia z NFZ. Ogólne założenia. Spis treści

Rozliczenia z NFZ. Ogólne założenia. Spis treści Rozliczenia z NFZ Spis treści 1 Ogólne założenia 2 Generacja raportu statystycznego 3 Wczytywanie raportu zwrotnego 4 Szablony rachunków 4.1 Wczytanie szablonów 4.2 Wygenerowanie dokumentów rozliczenia

Bardziej szczegółowo

Tester pilotów 315/433/868 MHz

Tester pilotów 315/433/868 MHz KOLOROWY WYŚWIETLACZ LCD TFT 160x128 ` Parametry testera Zasilanie Pasmo 315MHz Pasmo 433MHz Pasmo 868 MHz 5-12V/ bateria 1,5V AAA 300-360MHz 400-460MHz 820-880MHz Opis Przyciski FQ/ST DN UP OFF przytrzymanie

Bardziej szczegółowo

POMOC PSYCHOLOGICZNO-PEDAGOGICZNA Z OPERONEM. Vademecum doradztwa edukacyjno-zawodowego. Akademia

POMOC PSYCHOLOGICZNO-PEDAGOGICZNA Z OPERONEM. Vademecum doradztwa edukacyjno-zawodowego. Akademia POMOC PSYCHOLOGICZNO-PEDAGOGICZNA Z OPERONEM PLANOWANIE DZIAŁAŃ Określanie drogi zawodowej to szereg różnych decyzji. Dobrze zaplanowana droga pozwala dojechać do określonego miejsca w sposób, który Ci

Bardziej szczegółowo

Zadania z parametrem

Zadania z parametrem Zadania z paramerem Zadania z paramerem są bardzo nielubiane przez maurzysów Nie jes ławo odpowiedzieć na pyanie: dlaczego? Nie są o zadania o dużej skali rudności Myślę, że głównym powodem akiego sanu

Bardziej szczegółowo

Tester pilotów 315/433/868 MHz 10-50 MHz

Tester pilotów 315/433/868 MHz 10-50 MHz TOUCH PANEL KOLOROWY WYŚWIETLACZ LCD TFT 160x128 ` Parametry testera Zasilanie Pasmo 315MHz Pasmo 433MHz Pasmo 868 MHz Pasmo 10-50MHz 5-12V/ bateria 1,5V AAA 300-360MHz 400-460MHz 820-880MHz Pomiar sygnałów

Bardziej szczegółowo

1. Obliczenie SDR pojazdów silnikowych ogółem w punkcie pomiarowym typu P

1. Obliczenie SDR pojazdów silnikowych ogółem w punkcie pomiarowym typu P Załącznik nr 2 PRZYKŁAD OBLICZENIA SDR I RODZAJOWEJ STRUKTURY RUCHU W PUNKTACH POMIAROWYCH. Obliczenie SDR ogółem w punkcie pomiarowym typu P Zestawienie zbiorcze wyników z pomiarów przeprowadzonych w

Bardziej szczegółowo

Elementy cyfrowe i układy logiczne

Elementy cyfrowe i układy logiczne Elementy cyfrowe i układy logiczne Wykład Legenda Zezwolenie Dekoder, koder Demultiplekser, multiplekser 2 Operacja zezwolenia Przykład: zamodelować podsystem elektroniczny samochodu do sterowania urządzeniami:

Bardziej szczegółowo

Projekty uchwał na Zwyczajne Walne Zgromadzenie Akcjonariuszy zwołane na dzień 10 maja 2016 r.

Projekty uchwał na Zwyczajne Walne Zgromadzenie Akcjonariuszy zwołane na dzień 10 maja 2016 r. Projekty uchwał na Zwyczajne Walne Zgromadzenie Akcjonariuszy zwołane na dzień 10 maja 2016 r. Uchwała nr.. Zwyczajnego Walnego Zgromadzenia Akcjonariuszy OEX Spółka Akcyjna z siedzibą w Poznaniu z dnia

Bardziej szczegółowo

Metody obliczeniowe chemii kwantowej oparte na funkcji falowej. Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać:

Metody obliczeniowe chemii kwantowej oparte na funkcji falowej. Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać: Metody obliczeniowe chemii kwantowej oparte na funkcji falowej Równanie Schrödingera: ĤΨ = EΨ Dla uk ladu N elektronów i K j ader atomowych hamiltonian przyjmuje postać: Ĥ = h 2 K α=1 1 2M α 2 α h2 2m

Bardziej szczegółowo

s n = a k (2) lim s n = S, to szereg (1) nazywamy zbieżnym. W przeciwnym przypadku mówimy, że szereg jest rozbieżny.

s n = a k (2) lim s n = S, to szereg (1) nazywamy zbieżnym. W przeciwnym przypadku mówimy, że szereg jest rozbieżny. Szeregi liczbowe Definicja Szeregiem liczbowym nazywamy wyrażenie a n = a + a 2 + a 3 + () Liczby a n, n =, 2,... nazywamy wyrazami szeregu. Natomiast sumę n s n = a k (2) nazywamy n-tą sumą częściową

Bardziej szczegółowo

Podstawy pracy w arkuszu kalkulacyjnym MS Excel

Podstawy pracy w arkuszu kalkulacyjnym MS Excel Podstawy pracy w arkuszu kalkulacyjnym MS Excel Program MS Excel jest arkuszem kalkulacyjnym. Oznacza to, że dominującą czynnością wykonywaną w nim są obliczenia. Można oczywiście pisać również w Excelu

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Instrukcja dla zdaj cego (poziom rozszerzony) Czas pracy 120 minut 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak

Bardziej szczegółowo

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na

Bardziej szczegółowo

KARTY PRACY UCZNIA. Twierdzenie Pitagorasa i jego zastosowanie. samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób,

KARTY PRACY UCZNIA. Twierdzenie Pitagorasa i jego zastosowanie. samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób, KARTY PRACY UCZNIA Twierdzenie Pitagorasa i jego zastosowanie opracowanie: mgr Teresa Kargol, nauczyciel matematyki w PSP nr 162 w Łodzi Karty pracy to materiały pomocnicze, które mogą służyć do samodzielnej

Bardziej szczegółowo

ZASADY WYPEŁNIANIA ANKIETY 2. ZATRUDNIENIE NA CZĘŚĆ ETATU LUB PRZEZ CZĘŚĆ OKRESU OCENY

ZASADY WYPEŁNIANIA ANKIETY 2. ZATRUDNIENIE NA CZĘŚĆ ETATU LUB PRZEZ CZĘŚĆ OKRESU OCENY ZASADY WYPEŁNIANIA ANKIETY 1. ZMIANA GRUPY PRACOWNIKÓW LUB AWANS W przypadku zatrudnienia w danej grupie pracowników (naukowo-dydaktyczni, dydaktyczni, naukowi) przez okres poniżej 1 roku nie dokonuje

Bardziej szczegółowo

Opracował: mgr inż. Marcin Wieczorek

Opracował: mgr inż. Marcin Wieczorek Opracował: mgr inż. Marcin Wieczorek www.marwie.net.pl 1. Instalacja elektryczna samochodu. układ połączeń za pomocą przewodów elektrycznych, źródeł energii elektrycznej ze wszystkimi odbiornikami zamontowanymi

Bardziej szczegółowo

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a

Bardziej szczegółowo

Opinia do ustawy o zmianie ustawy o drogach publicznych oraz niektórych innych ustaw (druk nr 69)

Opinia do ustawy o zmianie ustawy o drogach publicznych oraz niektórych innych ustaw (druk nr 69) Warszawa, dnia 6 marca 2012 r. Opinia do ustawy o zmianie ustawy o drogach publicznych oraz niektórych innych ustaw (druk nr 69) I. Cel i przedmiot ustawy Ustawa z dnia 2 marca 2012 r. o zmianie ustawy

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Instrukcja dla zdającego (poziom rozszerzony) Czas pracy 120 minut 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak

Bardziej szczegółowo

Agrofi k zy a Wyk Wy ł k ad V Marek Kasprowicz

Agrofi k zy a Wyk Wy ł k ad V Marek Kasprowicz Agrofizyka Wykład V Marek Kasprowicz Spektroskopia p nauka o powstawaniu i interpretacji widm powstających w wyniku oddziaływań wszelkich rodzajów promieniowania na materię ę rozumianą jako zbiorowisko

Bardziej szczegółowo

INFORMATOR TECHNICZNY WONDERWARE

INFORMATOR TECHNICZNY WONDERWARE Informator techniczny nr 95 04-06-2007 INFORMATOR TECHNICZNY WONDERWARE Synchronizacja czasu systemowego na zdalnych komputerach względem czasu systemowego na komputerze z serwerem Wonderware Historian

Bardziej szczegółowo

Hierarchia baz gaussowskich (5)

Hierarchia baz gaussowskich (5) Hierarchia baz gaussowskich (5) Bazy split-valence czyli VDZ, VTZ, etc. (np. bazy Pople a 6-31G, 6-311G, etc) Bazy split-valence spolaryzowane VDZP, VTZP, etc. Bazy bazy Dunninga (konsystentne korelacyjnie)

Bardziej szczegółowo

tel/fax 018 443 82 13 lub 018 443 74 19 NIP 7343246017 Regon 120493751

tel/fax 018 443 82 13 lub 018 443 74 19 NIP 7343246017 Regon 120493751 Zespół Placówek Kształcenia Zawodowego 33-300 Nowy Sącz ul. Zamenhoffa 1 tel/fax 018 443 82 13 lub 018 443 74 19 http://zpkz.nowysacz.pl e-mail biuro@ckp-ns.edu.pl NIP 7343246017 Regon 120493751 Wskazówki

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Zadanie 3 - (7 punktów) Iloczyn składników Jeśli zapis liczby 22 w postaci sumy zawiera składnik 1, lepiej pogrupować go z innym składnikiem

Zadanie 3 - (7 punktów) Iloczyn składników Jeśli zapis liczby 22 w postaci sumy zawiera składnik 1, lepiej pogrupować go z innym składnikiem Zadanie 1 - (7 punktów) Latające kartki Ponieważ są 64 liczby od 27 do 90 włącznie, mamy 64 strony, czyli 16 kartek (16= 64 : 4). Pod stroną 26. znajdują się strony 24., 22.,..., 4. i 2. wraz z ich nieparzystymi

Bardziej szczegółowo

Techniki korekcyjne wykorzystywane w metodzie kinesiotapingu

Techniki korekcyjne wykorzystywane w metodzie kinesiotapingu Techniki korekcyjne wykorzystywane w metodzie kinesiotapingu Jak ju wspomniano, kinesiotaping mo e byç stosowany jako osobna metoda terapeutyczna, jak równie mo e stanowiç uzupe nienie innych metod fizjoterapeutycznych.

Bardziej szczegółowo

Umowa nr.. /. Klient. *Niepotrzebne skreślić

Umowa nr.. /. Klient. *Niepotrzebne skreślić Umowa nr.. /. zawarta dnia w, pomiędzy: Piotr Kubala prowadzącym działalność gospodarczą pod firmą Piotr Kubala JSK Edukacja, 41-219 Sosnowiec, ul. Kielecka 31/6, wpisanym do CEIDG, NIP: 644 273 13 18,

Bardziej szczegółowo

Warunki formalne dotyczące udziału w projekcie

Warunki formalne dotyczące udziału w projekcie Witaj. Interesuje Cię udział w projekcie Trener w rolach głównych. Zapraszamy więc do prześledzenia dokumentu, który pozwoli Ci znaleźć odpowiedź na pytanie, czy możesz wziąć w nim udział. Tym samym znajdziesz

Bardziej szczegółowo

Kalendarz Maturzysty 2010/11 Fizyka

Kalendarz Maturzysty 2010/11 Fizyka Kalendarz Maturzysty 2010/11 Fizyka Kalendarz Maturzysty 2010/11 Fizyka Patryk Kamiński Drogi Maturzysto, Oddajemy Ci do rąk profesjonalny Kalendarz Maturzysty z fizyki stworzony przez naszego eksperta.

Bardziej szczegółowo