Analiza szeregów czasowych uwagi dodatkowe

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Analiza szeregów czasowych uwagi dodatkowe"

Transkrypt

1 Analiza szeregów czasowch uwagi dodakowe Jerz Sefanowski Poliechnika Poznańska Zaawansowana Eksploracja Danch

2 Prognozowanie Wbór i konsrukcja modelu o dobrch własnościach predkcji przszłch warości zmiennej. Ocena minimalizacja błędu prognoz ex pos

3 Błęd prognoz W lieraurze spokasz akże inne propozcje

4 Uwagi ogólne Dekompozcja szeregu o proces wodrębnienia poszczególnch składowch danego szeregu czasowego. Idenfikację poszczególnch składowch szeregu czasowego zmiennej umożliwia: Ocena wzrokowa sporządzonego wkresu, Analiza auokorelacji, Odpowiednie es (np. Danielsa, Barlea lub von Neumanna). Dla wielu szeregów czasowch wsarczająco adekwane mogą się okazać modele ujmujące lko niekóre składowe szeregu czasowego

5 Meod wrównania mechaniczne Wrównanie szeregu czasowego pozwala na weliminowanie z szeregu wahań przpadkowch, a prz odpowiednim posępowaniu akże wahań okresowch. Inna nazwa wgładzanie szeregów czasowch Częso sosowane: Średnie ruchome (kroczące) zcenrowane i niezcenrowane Wgładzanie wkładnicze

6 Średnie ruchome zwkłe Oblicza się najczęściej z nieparzsej liczb sąsiadującch ze sobą wrazów szeregu, ak ab uzskan wnik móc przporządkować warości znajdującej się w środku uwzględnionego w obliczeniach przedziału czasowego: = 1 q r 2q 1 r=q ( = q, q 1,..., n q) gdzie 2q1 o liczba wrazów szeregu uwzględnianch prz obliczaniu średniej ruchomej, prz czm q jes usalon liczbą nauralną Dla parzsej liczb sąsiadującch ze sobą wrazów szeregu, uwzględnia się połowę warości pierwszego wrazu z danego okna, nasępnie wszskie pozosałe wraz składające się na pełne okno oraz połow warości pierwszego wrazu z nasępnego okna: q = q r 2q 2 r=q 1 2 q

7 Przkład ilusracjn za Seasonal Adjusmen Chrisian Harhoff (maeriał Saisics Denmark)

8 Średnie ruchome Sosuj, gd zaobserwowan w okresie badawczm poziom warości zmiennej prognozowanej jes względnie sał, z pewnmi niewielkimi odchleniami przpadkowmi. Idea: warość zmiennej prognozowanej jes średnią ruchomą z k osanich warości ej zmiennej = 1 1 i= k k k sała wgładzania (przjmuje się ę, dla kórej warość średniego błędu ex-pos prognoz wgasłch jes najmniejsza) i

9 Prognozowanie ze średnimi Poziom zmiennej względnie sał bez wahań okresowch Dla wraźnej liniowej endencji rozwojowej, do konsrukcji prognoz sosuj model podwójnej średniej ruchomej. Wgładzon (średnią ruchomą) szereg warości zmiennej prognozowanej poddaje się powórnemu wgładzeniu meodą średniej ruchomej.

10 Uwagi o dobrze sałej k w średnich Wraz ze wzrosem warości k rośnie efek wrównwania. Średnia ruchoma wznaczona z większej liczb wrazów będzie silniej wgładzała szereg, lecz jednocześnie będzie wolniej reagowała na zmian poziomu prognozowanej zmiennej. Wznaczona z mniejszej liczb wrazów będzie szbciej odzwierciedlała akualne zmian zachodzące w warościach prognozowanej zmiennej, lecz większ wpłw będą wwierał na nią wahania przpadkowe (mniejsz będzie efek wgładzania szeregu)

11 Dosępność w Saisica

12

13 Wskaźniki sezonowości Klasczn model addwn TCS

14 Wkorzsanie średniej w dekompozcji

15 Dekompozcja: rend wahania dane o miesięcznm bezrobociu w Ausralii Za: (Hipel and McLeod, 1994)

16 Dekompozcja: rend wahania dane o miesięcznm bezrobociu w Ausralii Trendwahania Predkcja warości zmiennch

17 Wgładzanie wkładnicze Zasosowanie zmienne, kórch warości podlegają częsm, gwałownm i raczej przpadkowm wahaniom Podsawowa meoda α 1α, gdzie α (0,1]. = 1 ( ) 1 Można inaczej zapisać q 1 = 1 1 Wed wzór ma posać = 1 α q 1 α - paramer wgładzania, m bliższa 1, im zmienna częściej i gwałowniej się zmienia. α na ogół dobierana ekspermenalnie na podsawie ocen błędu prognoz

18 Szeregi z wraźniejszą endencją Nadal model wkładnicz lecz dla szeregu z wraźną endencją rozwojową i wahaniami przpadkowmi (bez sezonowch) pomśl o modelu Hola W ogólności warość prognozowana w chwili 1 składa się z dwóch składników F przbliżającego poziom zmiennej oraz T oceniającego jej przros (rend): F T 1 = F T = α ( 1α) ( F 1 T 1) β F F ) (1 β T = ( 1 ) 1 jako warości począkowe można przjąć F1=1 oraz T1=2-1 F odpowiada wrazowi sałemu, a T1 nachleniu w funkcji liniowej rendu, gdb ją wznaczać

19 Dosępność w Saisica

20 Prognoza dla szeregu czasowego meodą Winersa Uogólnienie modelu Hola dla szeregu z wahaniami sezonowmi. Oprócz poziomu zmiennej (F), współcznnika rendu (T) wgładzaniu podlega składki sezonow (S) r długość cklu sezonowości; warości począkowe S1..Sr wznaczam odejmując od warości i średnią r pierwszch obserwacji Trudności z doborem α, β, γ ) ( ) (1 ] [ = = r r T F S F S T F α α r S F S = ) (1 ) ( γ γ 1 1 ) (1 ) ( = T F F T β β

21 Prognozowanie w modelu Winersa Równania na momen > n Wersja addwna Wersja muliplikawna r n n S n T F = ) ( r n n S n T F = )) ( (

Prognozowanie i symulacje

Prognozowanie i symulacje Prognozowanie i smulacje Lepiej znać prawdę niedokładnie, niż dokładnie się mlić. J. M. Kenes dr Iwona Kowalska ikowalska@wz.uw.edu.pl Prognozowanie meod naiwne i średnie ruchome Meod naiwne poziom bez

Bardziej szczegółowo

Wygładzanie metodą średnich ruchomych w procesach stałych

Wygładzanie metodą średnich ruchomych w procesach stałych Wgładzanie meodą średnich ruchomch w procesach sałch Cel ćwiczenia. Przgoowanie procedur Średniej Ruchomej (dla ruchomego okna danch); 2. apisanie procedur do obliczenia sandardowego błędu esmacji;. Wizualizacja

Bardziej szczegółowo

Cechy szeregów czasowych

Cechy szeregów czasowych energecznch Cech szeregów czasowch Rozdział Modelowanie szeregów czasowch 7 proces deerminisczn proces kórego warość może bć preczjnie określona w dowolnm czasie =T+τ = a +b T T+τ czas = sin(ω) T T+τ czas

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk Krzywa wieża w Pizie 1 2 3 4 5 6 7 8 9 10 11 12 13 y 4,9642 4,9644 4,9656 4,9667 4,9673 4,9688 4,9696 4,9698 4,9713 4,9717 4,9725 4,9742 4,9757 Szeregiem czasowym nazywamy

Bardziej szczegółowo

Wykład 6. Badanie dynamiki zjawisk

Wykład 6. Badanie dynamiki zjawisk Wykład 6 Badanie dynamiki zjawisk TREND WYODRĘBNIANIE SKŁADNIKÓW SZEREGU CZASOWEGO 1. FUNKCJA TRENDU METODA ANALITYCZNA 2. ŚREDNIE RUCHOME METODA WYRÓWNYWANIA MECHANICZNEGO średnie ruchome zwykłe średnie

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Zasady budowania prognoz ekonometrycznych

Zasady budowania prognoz ekonometrycznych Zasad budowania prognoz ekonometrcznch Klasczne założenia teorii predkcji 1. Znajomość modelu kształtowania się zmiennej prognozowanej Znajomość postaci analitcznej wstępującch zależności międz zmiennmi

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1

ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 ANALIZA, PROGNOZOWANIE I SYMULACJA / Ćwiczenia 1 mgr inż. Żanea Pruska Maeriał opracowany na podsawie lieraury przedmiou. Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X,

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 hp://www.oucome-seo.pl/excel2.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodaek Solver jes dosępny w menu Narzędzia. Jeżeli Solver nie jes dosępny

Bardziej szczegółowo

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego

Statystyka od podstaw z systemem SAS Dr hab. E. Frątczak, ZAHZiAW, ISiD, KAE. Część VII. Analiza szeregu czasowego Część VII. Analiza szeregu czasowego 1 DEFINICJA SZEREGU CZASOWEGO Szeregiem czasowym nazywamy zbiór warości cechy w uporządkowanych chronologicznie różnych momenach (okresach) czasu. Oznaczając przez

Bardziej szczegółowo

Prognozowanie i symulacje

Prognozowanie i symulacje Prognozowanie i smulacje Ramow plan wkładu.wprowadzenie w przedmio.rafność dopuszczalność i błąd prognoz 3.Prognozowanie na podsawie szeregów czasowch 4.Prognozowanie na podsawie modelu ekonomercznego

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA

PROGNOZOWANIE I SYMULACJE EXCEL 2 PROGNOZOWANIE I SYMULACJE EXCEL AUTOR: ŻANETA PRUSKA 1 PROGNOZOWANIE I SYMULACJE EXCEL 2 AUTOR: mgr inż. ŻANETA PRUSKA DODATEK SOLVER 2 Sprawdzić czy w zakładce Dane znajduję się Solver 1. Kliknij przycisk Microsof Office, a nasępnie kliknij przycisk Opcje

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1

PROGNOZOWANIE I SYMULACJE. mgr Żaneta Pruska. Ćwiczenia 2 Zadanie 1 PROGNOZOWANIE I SYMULACJE mgr Żanea Pruska Ćwiczenia 2 Zadanie 1 Firma Alfa jes jednym z głównych dosawców firmy Bea. Ilość produku X, wyrażona w ysiącach wyprodukowanych i dosarczonych szuk firmie Bea,

Bardziej szczegółowo

Metody Ilościowe w Socjologii

Metody Ilościowe w Socjologii Meod Ilościowe w Socjologii wkład 5, 6, 7 PROGNOZOWANIE I SYMULACJE dr inż. Maciej Woln AGENDA I. Prognozowanie i smulacje podsawowe informacje II. Prognozowanie szeregów czasowch III. Dekompozcja szeregu,

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 3. tel.: (061)

PROGNOZOWANIE. Ćwiczenia 3.  tel.: (061) Ćwiczeia 3 mgr iż.. Mara Krueger mara.krueger@edu.wsl.com.pl mara.krueger@ilim.poza.pl el.: (06 850 49 57 Meod progozowaia krókoermiowego sał poziom red sezoowość Y Y Y Czas Czas Czas Model aiw Modele

Bardziej szczegółowo

PROGNOZY I SYMULACJE

PROGNOZY I SYMULACJE Forecasing is he ar of saing wha will happen, and hen explaining wh i didn. Ch. Chafield (986) PROGNOZY I SYMULACJE Kaarzna Chud Laskowska konsulacje: p. 400A środa -4 czwarek -4 srona inerneowa: hp://kc.sd.prz.edu.pl/

Bardziej szczegółowo

PROGNOZY I SYMULACJE

PROGNOZY I SYMULACJE orecasig is he ar of saig wha will happe, ad he explaiig wh i did. Ch. Chafield (986 PROGNOZY I YMULACJE Kaarza Chud Laskowska kosulacje: p. 400A środa -4 czwarek -4 sroa iereowa: hp://kc.sd.prz.edu.pl/

Bardziej szczegółowo

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny

E k o n o m e t r i a S t r o n a 1. Nieliniowy model ekonometryczny E k o n o m e r i a S r o n a Nieliniowy model ekonomeryczny Jednorównaniowy model ekonomeryczny ma posać = f( X, X,, X k, ε ) gdzie: zmienna objaśniana, X, X,, X k zmienne objaśniające, ε - składnik losowy,

Bardziej szczegółowo

PROGNOZOWANIE. mgr inż. Martyna Malak. Katedra Systemów Logistycznych.

PROGNOZOWANIE. mgr inż. Martyna Malak. Katedra Systemów Logistycznych. 1 PROGNOZOWANIE Kaedra Ssemów Logiscznch mgr inż. Marna Malak marna.malak@wsl.com.pl Panel TABLICE 1 2 3 DEFINICJA PROGNOZY Prognozowanie? Przewidwanie 4 DEFINICJA PRZEWIDYWANIA Przewidwanie wnioskowanie

Bardziej szczegółowo

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych

Politechnika Częstochowska Wydział Inżynierii Mechanicznej i Informatyki. Sprawozdanie #2 z przedmiotu: Prognozowanie w systemach multimedialnych Poliechnika Częsochowska Wydział Inżynierii Mechanicznej i Informayki Sprawozdanie #2 z przedmiou: Prognozowanie w sysemach mulimedialnych Andrzej Siwczyński Andrzej Rezler Informayka Rok V, Grupa IO II

Bardziej szczegółowo

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM

PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM PROGNOZOWANIE W ZARZĄDZANIU PRZEDSIĘBIORSTWEM prof. dr hab. Paweł Dimann 1 Znaczenie prognoz w zarządzaniu firmą Zarządzanie firmą jes nieusannym procesem podejmowania decyzji, kóry może być zdefiniowany

Bardziej szczegółowo

Instytut Logistyki i Magazynowania

Instytut Logistyki i Magazynowania Insu Logiski i Magaznowania Ćwiczenia 1 mgr Dawid Doliński Dawid.Dolinski@ilim.poznan.pl lub Dawid.Dolinski@wsl.com.pl Tel. 0(61) 850 49 45 ZALICZENIE PRZEDMIOTU 5 punków Blok zajęć z Panem mgr D.Dolińskim

Bardziej szczegółowo

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz

Kombinowanie prognoz. - dlaczego należy kombinować prognozy? - obejmowanie prognoz. - podstawowe metody kombinowania prognoz Noaki do wykładu 005 Kombinowanie prognoz - dlaczego należy kombinować prognozy? - obejmowanie prognoz - podsawowe meody kombinowania prognoz - przykłady kombinowania prognoz gospodarki polskiej - zalecenia

Bardziej szczegółowo

ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK

ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK ANALIZA, PROGNOZOWANIE I SYMULACJA EXCEL AUTOR: MARTYNA KUPCZYK 1 ANALIZA, PROGNOZOWANIE I SYMULACJA 2 POBRAĆ Z INTERNETU Plaforma WSL on-line Nazwisko prowadzącego Maryna Kupczyk Folder z nazwą przedmiou - Analiza, prognozowanie i symulacja Plik o nazwie Baza do ćwiczeń

Bardziej szczegółowo

Krzywe na płaszczyźnie.

Krzywe na płaszczyźnie. Krzwe na płaszczźnie. Współrzędne paramerczne i biegunowe. Współrzędne biegunowe. Dan jes punk O, zwan biegunem, kór sanowi począek półprosej, zwanej półosią. Dowoln punk P na płaszczźnie można opisać

Bardziej szczegółowo

DYNAMIKA KONSTRUKCJI

DYNAMIKA KONSTRUKCJI 10. DYNAMIKA KONSTRUKCJI 1 10. 10. DYNAMIKA KONSTRUKCJI 10.1. Wprowadzenie Ogólne równanie dynamiki zapisujemy w posaci: M d C d Kd =P (10.1) Zapis powyższy oznacza, że równanie musi być spełnione w każdej

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 2. mgr Dawid Doliński Ćwiczenia 2 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

Prognozowanie średniego miesięcznego kursu kupna USD

Prognozowanie średniego miesięcznego kursu kupna USD Prognozowanie średniego miesięcznego kursu kupna USD Kaarzyna Halicka Poliechnika Białosocka, Wydział Zarządzania, Kaedra Informayki Gospodarczej i Logisyki, e-mail: k.halicka@pb.edu.pl Jusyna Godlewska

Bardziej szczegółowo

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH

WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH SaSof Polska, el. 12 428 43 00, 601 41 41 51, info@sasof.pl, www.sasof.pl WYKORZYSTANIE STATISTICA DATA MINER DO PROGNOZOWANIA W KRAJOWYM DEPOZYCIE PAPIERÓW WARTOŚCIOWYCH Joanna Maych, Krajowy Depozy Papierów

Bardziej szczegółowo

Konspekty wykładów z ekonometrii

Konspekty wykładów z ekonometrii Konspek wkładów z ekonomerii Budowa i werfikaca modelu - reść przkładu W wniku ssemacznch badań popu na warzwa w pewnm mieście, orzmano nasępuące szeregi czasowe: przros (zmian) popu na warzwa (w zł. na

Bardziej szczegółowo

Analiza rynku projekt

Analiza rynku projekt Analiza rynku projek A. Układ projeku 1. Srona yułowa Tema Auor 2. Spis reści 3. Treść projeku 1 B. Treść projeku 1. Wsęp Po co? Na co? Dlaczego? Dlaczego robię badania? Jakimi meodami? Dla Kogo o jes

Bardziej szczegółowo

ANALIZA DYNAMIKI ZJAWISK (dok.) WYGŁADZANIE szeregu czasowego

ANALIZA DYNAMIKI ZJAWISK (dok.) WYGŁADZANIE szeregu czasowego D. Miszczńska,M.Miszczński, Maeriał do wkładu 6 ze Saski, 009/0 [] ANALIZA DYNAMIKI ZJAWISK (dok.). szereg czasow, chroologicz (momeów, okresów). średi poziom zjawiska w czasie (średia armecza, średia

Bardziej szczegółowo

ANALIZA SZEREGÓW CZASOWYCH

ANALIZA SZEREGÓW CZASOWYCH ANALIZA SZEREGÓW CZASWYCH Szereg czasow zbór warośc baanej cech lub warośc baanego zjawska zaobserwowanch w różnch momenach czasu uporząkowan chronologczne. Skłank szeregu czasowego:. enencja rozwojowa

Bardziej szczegółowo

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy?

Metody prognozowania: Szeregi czasowe. Dr inż. Sebastian Skoczypiec. ver Co to jest szereg czasowy? Meody prognozowania: Szeregi czasowe Dr inż. Sebasian Skoczypiec ver. 11.20.2009 Co o jes szereg czasowy? Szereg czasowy: uporządkowany zbiór warości badanej cechy lub warości określonego zjawiska, zaobserwowanych

Bardziej szczegółowo

PROGNOZOWANIE. Ćwiczenia 3. mgr Dawid Doliński

PROGNOZOWANIE. Ćwiczenia 3. mgr Dawid Doliński Ćwiczenia 3 mgr Dawid Doliński Modele szeregów czasowych sały poziom rend sezonowość Y Y Y Czas Czas Czas Modele naiwny Modele średniej arymeycznej Model Browna Modele ARMA Model Hola Modele analiyczne

Bardziej szczegółowo

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH

PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Barbara Baóg Iwona Foryś PROGNOZOWANIE ZUŻYCIA CIEPŁEJ I ZIMNEJ WODY W SPÓŁDZIELCZYCH ZASOBACH MIESZKANIOWYCH Wsęp Koszy dosarczenia wody

Bardziej szczegółowo

PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk

PROJEKT nr 1 Projekt spawanego węzła kratownicy. Sporządził: Andrzej Wölk PROJEKT nr 1 Projek spawanego węzła kraownicy Sporządził: Andrzej Wölk Projek pojedynczego węzła spawnego kraownicy Siły: 1 = 10 3 = -10 Kąy: α = 5 o β = 75 o γ = 75 o Schema węzła kraownicy Dane: Grubość

Bardziej szczegółowo

Pobieranie próby. Rozkład χ 2

Pobieranie próby. Rozkład χ 2 Graficzne przedsawianie próby Hisogram Esymaory przykład Próby z rozkładów cząskowych Próby ze skończonej populacji Próby z rozkładu normalnego Rozkład χ Pobieranie próby. Rozkład χ Posać i własności Znaczenie

Bardziej szczegółowo

WNIOSKOWANIE STATYSTYCZNE

WNIOSKOWANIE STATYSTYCZNE Wnioskowanie saysyczne w ekonomerycznej analizie procesu produkcyjnego / WNIOSKOWANIE STATYSTYCZNE W EKONOMETRYCZNEJ ANAIZIE PROCESU PRODUKCYJNEGO Maeriał pomocniczy: proszę przejrzeć srony www.cyf-kr.edu.pl/~eomazur/zadl4.hml

Bardziej szczegółowo

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU

POMIAR PARAMETRÓW SYGNAŁOW NAPIĘCIOWYCH METODĄ PRÓKOWANIA I CYFROWEGO PRZETWARZANIA SYGNAŁU Pomiar paramerów sygnałów napięciowych. POMIAR PARAMERÓW SYGNAŁOW NAPIĘCIOWYCH MEODĄ PRÓKOWANIA I CYFROWEGO PRZEWARZANIA SYGNAŁU Cel ćwiczenia Poznanie warunków prawidłowego wyznaczania elemenarnych paramerów

Bardziej szczegółowo

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD

Parytet stóp procentowych a premia za ryzyko na przykładzie kursu EURUSD Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Marcin Gajewski Uniwersye Łódzki 4.12.2008 Parye sóp procenowych a premia za ryzyko na przykładzie kursu EURUD Niezabazpieczony UIP)

Bardziej szczegółowo

SZEREG CZASOWY Y zjawisko badane w różnych okresach lub momentach czasu. Dynamika zjawiska to zmiana zjawiska w czasie. Przykład. Y średni kurs akcji

SZEREG CZASOWY Y zjawisko badane w różnych okresach lub momentach czasu. Dynamika zjawiska to zmiana zjawiska w czasie. Przykład. Y średni kurs akcji SZEREG CZASOWY Y zjawisko badane w różnch okresach lub momentach czasu. Dnamika zjawiska to zmiana zjawiska w czasie. Przkład. Y średni kurs akcji firm OPTMUS na giełdzie Okres: notowania od 1.03.2010

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne Podsawowe człony dynamiczne charakerysyki czasowe. Człon proporcjonalny = 2. Człony całkujący idealny 3. Człon inercyjny = = + 4. Człony całkujący rzeczywisy () = + 5. Człon różniczkujący rzeczywisy ()

Bardziej szczegółowo

ROZDZIAŁ 11 WPŁYW ZMIAN KURSU WALUTOWEGO NA RYNEK PRACY

ROZDZIAŁ 11 WPŁYW ZMIAN KURSU WALUTOWEGO NA RYNEK PRACY Rszard Sefański ROZDZIAŁ 11 WPŁYW ZMIAN KURSU WALUTOWEGO NA RYNEK PRACY Absrak Ocena wpłwu zmian kursu waluowego na rnek prac jes szczególnie isona dla polskiej gospodarki w najbliższch laach. Spośród

Bardziej szczegółowo

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI

ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XIII/3, 202, sr. 253 26 ESTYMACJA KRZYWEJ DOCHODOWOŚCI STÓP PROCENTOWYCH DLA POLSKI Adam Waszkowski Kaedra Ekonomiki Rolnicwa i Międzynarodowych Sosunków

Bardziej szczegółowo

Metody rachunku kosztów Metoda rachunku kosztu działań Podstawowe pojęcia metody ABC Kalkulacja obiektów kosztowych metodą ABC Zasobowy rachunek

Metody rachunku kosztów Metoda rachunku kosztu działań Podstawowe pojęcia metody ABC Kalkulacja obiektów kosztowych metodą ABC Zasobowy rachunek Meody rachunku koszów Meoda rachunku koszu Podsawowe pojęcia meody ABC Kalkulacja obieków koszowych meodą ABC Zasobowy rachunek koszów Kalkulacja koszów meodą ABC podsawową informacja dla rachunkowości

Bardziej szczegółowo

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010

PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 STUDIA I PRACE WYDZIAŁU NAUK EKONOMICZNYCH I ZARZĄDZANIA NR 15 Chrisian Lis PUNKTOWA I PRZEDZIAŁOWA PREDYKCJA PRZEWOZÓW PASAŻERÓW W ŻEGLUDZE PROMOWEJ NA BAŁTYKU W LATACH 2008 2010 Wprowadzenie Przedmioem

Bardziej szczegółowo

Analiza popytu. Ekonometria. Metody i analiza problemów ekonomicznych. (pod red. Krzysztofa Jajugi), Wydawnictwo AE Wrocław, 1999.

Analiza popytu. Ekonometria. Metody i analiza problemów ekonomicznych. (pod red. Krzysztofa Jajugi), Wydawnictwo AE Wrocław, 1999. Analiza popyu Eonomeria. Meody i analiza problemów eonomicznych (pod red. Krzyszofa Jajugi) Wydawnicwo AE Wrocław 1999. Popy P = f ( X X... X ε ) 1 2 m Zmienne onrolowane: np.: cena (C) nałady na relamę

Bardziej szczegółowo

licencjat Pytania teoretyczne:

licencjat Pytania teoretyczne: Plan wykładu: 1. Wiadomości ogólne. 2. Model ekonomeryczny i jego elemeny 3. Meody doboru zmiennych do modelu ekonomerycznego. 4. Szacownie paramerów srukuralnych MNK. Weryfikacja modelu KMNK 6. Prognozowanie

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI

LABORATORIUM PODSTAW ELEKTRONIKI PROSTOWNIKI ZESPÓŁ LABORATORIÓW TELEMATYKI TRANSPORTU ZAKŁAD TELEKOMUNIKJI W TRANSPORCIE WYDZIAŁ TRANSPORTU POLITECHNIKI WARSZAWSKIEJ LABORATORIUM PODSTAW ELEKTRONIKI INSTRUKCJA DO ĆWICZENIA NR 5 PROSTOWNIKI DO UŻYTKU

Bardziej szczegółowo

ANALIZA DYNAMIKI ZJAWISK SZEREG CZASOWY

ANALIZA DYNAMIKI ZJAWISK SZEREG CZASOWY D. Miszczńska, M.Miszczński, Maeriał do wkładu 5 ze Saski, 29/ [] ANALZA DYNAMK ZJAWSK. szereg czasow, chronologiczn (momenów, okresów) 2. średni oziom zjawiska w czasie (średnia armeczna, średnia chronologiczna)

Bardziej szczegółowo

3. Modele tendencji czasowej w prognozowaniu

3. Modele tendencji czasowej w prognozowaniu II Modele tendencji czasowej w prognozowaniu 1 Składniki szeregu czasowego W teorii szeregów czasowych wyróżnia się zwykle następujące składowe szeregu czasowego: a) składowa systematyczna; b) składowa

Bardziej szczegółowo

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki.

Ćwiczenia 3 ( ) Współczynnik przyrostu naturalnego. Koncepcja ludności zastojowej i ustabilizowanej. Prawo Lotki. Ćwiczenia 3 (22.04.2013) Współczynnik przyrosu nauralnego. Koncepcja ludności zasojowej i usabilizowanej. Prawo Loki. Współczynnik przyrosu nauralnego r = U Z L gdzie: U - urodzenia w roku Z - zgony w

Bardziej szczegółowo

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006

Ekonometria. Modele dynamiczne. Paweł Cibis 27 kwietnia 2006 Modele dynamiczne Paweł Cibis pcibis@o2.pl 27 kwietnia 2006 1 Wyodrębnianie tendencji rozwojowej 2 Etap I Wyodrębnienie tendencji rozwojowej Etap II Uwolnienie wyrazów szeregu empirycznego od trendu Etap

Bardziej szczegółowo

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH

DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH Franciszek SPYRA ZPBE Energopomiar Elekryka, Gliwice Marian URBAŃCZYK Insyu Fizyki Poliechnika Śląska, Gliwice DOBÓR PRZEKROJU ŻYŁY POWROTNEJ W KABLACH ELEKTROENERGETYCZNYCH. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Zmienne losowe typu ciągłego. Parametry zmiennych losowych. Izolda Gorgol wyciąg z prezentacji (wykład III)

Zmienne losowe typu ciągłego. Parametry zmiennych losowych. Izolda Gorgol wyciąg z prezentacji (wykład III) Zmienne losowe tpu ciągłego. Parametr zmiennch losowch. Izolda Gorgol wciąg z prezentacji (wkład III) Zmienna losowa tpu ciągłego Zmienna losowa X o ciągłej dstrbuancie F nazwa się zmienną losową tpu ciągłego,

Bardziej szczegółowo

Ocena efektywności procedury Congruent Specyfication dla małych prób

Ocena efektywności procedury Congruent Specyfication dla małych prób 243 Zeszyy Naukowe Wyższej Szkoły Bankowej we Wrocławiu Nr 20/2011 Wyższa Szkoła Bankowa w Toruniu Ocena efekywności procedury Congruen Specyficaion dla małych prób Sreszczenie. Procedura specyfikacji

Bardziej szczegółowo

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar.

EKONOMETRIA wykład 2. Prof. dr hab. Eugeniusz Gatnar. EKONOMERIA wykład Prof. dr hab. Eugeniusz Ganar eganar@mail.wz.uw.edu.pl Przedziały ufności Dla paramerów srukuralnych modelu: P bˆ j S( bˆ z prawdopodobieńswem parameru b bˆ S( bˆ, ( m j j j, ( m j b

Bardziej szczegółowo

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych

Programowanie nieliniowe optymalizacja funkcji wielu zmiennych Ekonomia matematczna II Ekonomia matematczna II Prowadząc ćwiczenia Programowanie nieliniowe optmalizacja unkcji wielu zmiennch Modele programowania liniowego często okazują się niewstarczające w modelowaniu

Bardziej szczegółowo

ĆWICZENIE NR 43 U R I (1)

ĆWICZENIE NR 43 U R I (1) ĆWCZENE N 43 POMY OPO METODĄ TECHNCZNĄ Cel ćwiczenia: wyznaczenie warości oporu oporników poprzez pomiary naężania prądu płynącego przez opornik oraz napięcia na oporniku Wsęp W celu wyznaczenia warości

Bardziej szczegółowo

Klucz odpowiedzi i schemat punktowania do próbnego zestawu egzaminacyjnego z zakresu przedmiotów matematyczno-przyrodniczych

Klucz odpowiedzi i schemat punktowania do próbnego zestawu egzaminacyjnego z zakresu przedmiotów matematyczno-przyrodniczych Klucz odpowiedzi i schemat punktowania do próbnego zestawu egzaminacjnego z zakresu przedmiotów matematczno-przrodniczch Z a d a n i a z a m k n i ę t e Numer zadania 3 4 5 6 7 8 9 0 3 4 5 6 7 8 9 0 3

Bardziej szczegółowo

PROGNOZOWANIE. mgr Żaneta Pruska. Katedra Systemów Logistycznych.

PROGNOZOWANIE. mgr Żaneta Pruska. Katedra Systemów Logistycznych. PROGNOZOWANIE Kaedra Ssemów Logisczch mgr Żaea Pruska zaea_pruska@wp.pl zaea.pruska@wsl.com.pl PROJEKT 0 pk. (grup 4-osobowe) Projek: Wersja w Wordzie Powia zawierać opis projeku z zasosowaiem eapów progozowaia.

Bardziej szczegółowo

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych

Dobór przekroju żyły powrotnej w kablach elektroenergetycznych Dobór przekroju żyły powronej w kablach elekroenergeycznych Franciszek pyra, ZPBE Energopomiar Elekryka, Gliwice Marian Urbańczyk, Insyu Fizyki Poliechnika Śląska, Gliwice. Wsęp Zagadnienie poprawnego

Bardziej szczegółowo

Prognozowanie popytu. mgr inż. Michał Adamczak

Prognozowanie popytu. mgr inż. Michał Adamczak Prognozowanie popytu mgr inż. Michał Adamczak Plan prezentacji 1. Definicja prognozy 2. Klasyfikacja prognoz 3. Szereg czasowy 4. Metody prognozowania 4.1. Model naiwny 4.2. Modele średniej arytmetycznej

Bardziej szczegółowo

Zadania zamknięte. Numer zadania

Zadania zamknięte. Numer zadania Liczba punktów za zadania zamknięte i otwarte: 31 Zadania zamknięte Zasady przyznawania punktów: za każdą poprawną odpowiedź 1 punkt za błędną odpowiedź brak odpowiedzi 0 punktów Numer zadania Poprawna

Bardziej szczegółowo

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx

25. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU. y +y tgx=sinx 5. RÓWNANIA RÓŻNICZKOWE PIERWSZEGO RZĘDU 5.1. Pojęcia wstępne. Klasfikacja równań i rozwiązań Rozróżniam dwa zasadnicze tp równań różniczkowch: równania różniczkowe zwczajne i równania różniczkowe cząstkowe.

Bardziej szczegółowo

Dendrochronologia Tworzenie chronologii

Dendrochronologia Tworzenie chronologii Dendrochronologia Dendrochronologia jes nauką wykorzysującą słoje przyrosu rocznego drzew do określania wieku (daowania) obieków drewnianych (budynki, przedmioy). Analizy różnych paramerów słojów przyrosu

Bardziej szczegółowo

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE

SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE SYMULACYJNA ANALIZA PRODUKCJI ENERGII ELEKTRYCZNEJ I CIEPŁA Z ODNAWIALNYCH NOŚNIKÓW W POLSCE Janusz Sowiński, Rober Tomaszewski, Arur Wacharczyk Insyu Elekroenergeyki Poliechnika Częsochowska Aky prawne

Bardziej szczegółowo

Ocena płynności wybranymi metodami szacowania osadu 1

Ocena płynności wybranymi metodami szacowania osadu 1 Bogdan Ludwiczak Wprowadzenie Ocena płynności wybranymi meodami szacowania osadu W ubiegłym roku zaszły znaczące zmiany doyczące pomiaru i zarządzania ryzykiem bankowym. Są one konsekwencją nowowprowadzonych

Bardziej szczegółowo

PROCESY AUTOREGRESYJNE ZE ZMIENNYM PARAMETREM 1. Joanna Górka. Wydział Nauk Ekonomicznych i Zarządzania UMK w Toruniu Katedra Ekonometrii i Statystyki

PROCESY AUTOREGRESYJNE ZE ZMIENNYM PARAMETREM 1. Joanna Górka. Wydział Nauk Ekonomicznych i Zarządzania UMK w Toruniu Katedra Ekonometrii i Statystyki PROCESY AUTOREGRESYJNE ZE ZMIENNYM PARAMETREM Joanna Górka Wdział Nauk Ekonomicznch i Zarządzania UMK w Toruniu Kaedra Ekonomerii i Saski WSTĘP Niesacjonarne proces o średniej zero mogą bć reprezenowane

Bardziej szczegółowo

Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy

Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia. związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy Analiza dynami zjawisk Na poprzednim wykładzie omówiliśmy podstawowe zagadnienia związane z badaniem dynami zjawisk. Dzisiaj dokładniej zagłębimy się w tej tematyce. Indywidualne indeksy dynamiki Indywidualne

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

PROGNOZOWANIE. mgr Żaneta Pruska. Katedra Systemów Logistycznych.

PROGNOZOWANIE. mgr Żaneta Pruska. Katedra Systemów Logistycznych. PROGNOZOWANIE Kaedra Ssemów Logisczch mgr Żaea Pruska zaea_pruska@wp.pl zaea.pruska@wsl.com.pl PROJEKT 5 pk. (grup 4-osobowe) Projek: Wersja w Wordzie Powia zawierać opis projeku z zasosowaiem eapów progozowaia.

Bardziej szczegółowo

Postęp techniczny. Model lidera-naśladowcy. Dr hab. Joanna Siwińska-Gorzelak

Postęp techniczny. Model lidera-naśladowcy. Dr hab. Joanna Siwińska-Gorzelak Posęp echniczny. Model lidera-naśladowcy Dr hab. Joanna Siwińska-Gorzelak Założenia Rozparujemy dwa kraje; kraj 1 jes bardziej zaawansowany echnologicznie (lider); kraj 2 jes mniej zaawansowany i nie worzy

Bardziej szczegółowo

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2)

Metody Eulera i Eulera-Cauchy'ego rozwiązywania równań różniczkowych zwyczajnych. y 3 := x 2 (1) ( ) Rozwiązanie dokładne równania (1) (2) euler-przkl_.xmcd Metod Eulera i Eulera-Cauch'ego rozwiązwania równań różniczkowch zwczajnch ' ( x, ) : x () + Rozwiązanie dokładne równania () ( x, C) : + C exp( atan( x) ) () Sprawdzenie: d dx ( x, C)

Bardziej szczegółowo

Metody prognozowania: Jakość prognoz Wprowadzenie (1) 6. Oszacowanie przypuszczalnej trafności prognozy

Metody prognozowania: Jakość prognoz Wprowadzenie (1) 6. Oszacowanie przypuszczalnej trafności prognozy Metod prognozowania: Jakość prognoz Dr inż. Sebastian Skoczpiec ver. 03.2012 Wprowadzenie (1) 1. Sformułowanie zadania prognostcznego: 2. Określenie przesłanek prognostcznch: 3. Zebranie danch 4. Określenie

Bardziej szczegółowo

ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH

ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH METODY ILOŚCIOWE W BADANIACH EKONOMICZNYCH Tom XV/4, 214, sr. 181 194 ZASTOSOWANIE WYBRANYCH MODELI ADAPTACYJNYCH W PROGNOZOWANIU BRAKUJĄCYCH DANYCH W SZEREGACH ZE ZŁOŻONĄ SEZONOWOŚCIĄ DLA LUK NIESYSTEMATYCZNYCH

Bardziej szczegółowo

Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu

Związek między ruchem harmonicznym a ruchem jednostajnym po okręgu Związek międz ruchem harmonicznm a ruchem jednosajnm po okręgu Rozważm rzu Q i R punku P na osie i : Q cos v r R sin R Q P δ Q cos ( δ ) R sin ( δ ) Jeżeli punk P porusza się ruchem jednosajnm po okręgu,

Bardziej szczegółowo

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 1. Wojciech Waloszek. Teresa Zawadzka.

Eksploracja danych. KLASYFIKACJA I REGRESJA cz. 1. Wojciech Waloszek. Teresa Zawadzka. Eksploracja danych KLASYFIKACJA I REGRESJA cz. 1 Wojciech Waloszek wowal@ei.pg.gda.pl Teresa Zawadzka egra@ei.pg.gda.pl Kaedra Inżyrii Oprogramowania Wydział Elekroniki, Telekomunikacji i Informayki Poliechnika

Bardziej szczegółowo

METODY KOMPUTEROWE 10

METODY KOMPUTEROWE 10 MEODY KOMPUEROWE RÓWNANIA RÓŻNICZKOWE CZĄSKOWE Poechnka Poznańska Mchał Płokowak Adam Łodgowsk Mchał PŁOKOWIAK Adam ŁODYGOWSKI Konsace nakowe dr nż. Wod Kąko Poznań 00/00 MEODY KOMPUEROWE 0 RÓWNANIA RÓŻNICZKOWE

Bardziej szczegółowo

Magdalena Osińska, Joanna Górka Uniwersytet Mikołaja Kopernika w Toruniu

Magdalena Osińska, Joanna Górka Uniwersytet Mikołaja Kopernika w Toruniu DYNAMICZNE MODELE EKONOMETRYCZNE IX Ogólnopolskie Seminarium Naukowe, 6 8 września 5 w Toruniu Kaedra Ekonomerii i Saski, Uniwerse Mikołaja Kopernika w Toruniu Uniwerse Mikołaja Kopernika w Toruniu Idenfikacja

Bardziej szczegółowo

Po co w ogóle prognozujemy?

Po co w ogóle prognozujemy? Po co w ogóle prognozujemy? Pojęcie prognozy: racjonalne, naukowe przewidywanie przyszłych zdarzeń stwierdzenie odnoszącym się do określonej przyszłości formułowanym z wykorzystaniem metod naukowym, weryfikowalnym

Bardziej szczegółowo

Wykład 10. Funkcje wielu zmiennych

Wykład 10. Funkcje wielu zmiennych Wkład 1. Funkcje wielu zmiennch dr Mariusz Grządziel 6 maja 1 (ostatnie poprawki: 1 maja 1) Funkcje wielu zmiennch Przestrzeń dwuwmiarowa, oznaczana w literaturze matematcznej smbolem R, może bć utożsamiona

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania. Podstawy Automatyki Poliechnika Gdańska Wydział Elekroechniki i Auomayki Kaedra Inżynierii Sysemów Serowania Podsawy Auomayki Repeyorium z Podsaw auomayki Zadania do ćwiczeń ermin T15 Opracowanie: Kazimierz Duzinkiewicz,

Bardziej szczegółowo

Prognozowanie wska ników jako ciowych i ilo ciowych dla gospodarki polskiej z wykorzystaniem wybranych metod statystycznych

Prognozowanie wska ników jako ciowych i ilo ciowych dla gospodarki polskiej z wykorzystaniem wybranych metod statystycznych dr Anna Koz owska-grzybek mgr Marcin Kowalski Kaedra Mikroekonomii Akademia Ekonomiczna w Poznaniu Prognozowanie wska ników jako ciowych i ilo ciowych dla gospodarki polskiej z wykorzysaniem wybranych

Bardziej szczegółowo

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH

MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Krzyszof Pionek Kaedra Inwesycji Finansowych i Ubezpieczeń Akademia Ekonomiczna we Wrocławiu Wsęp MODELOWANIE EFEKTU DŹWIGNI W FINANSOWYCH SZEREGACH CZASOWYCH Nowoczesne echniki zarządzania ryzykiem rynkowym

Bardziej szczegółowo

ZADANIE 1 Poniżej znajduje się fragment wykresu funkcji y = f (x). ZADANIE 2 Na podstawie podanego wykresu funkcji f

ZADANIE 1 Poniżej znajduje się fragment wykresu funkcji y = f (x). ZADANIE 2 Na podstawie podanego wykresu funkcji f IMIE I NAZWISKO ZADANIE Poniżej znajduje się fragment wkresu funkcji = f (). -7 -- - - 6 7 Dorsuj brakujac a część wkresu wiedzac, że dziedzina funkcji f jest przedział,, a wkres jest smetrczn względem

Bardziej szczegółowo

Prognozowanie na podstawie szeregów czasowych.

Prognozowanie na podstawie szeregów czasowych. Progozowaie a podsawie szeregów czasowch. Sładowe szeregów czasowch. Szereg czasow sładowa ssemacza sładowa przpadowa red sał poziom sładowa oresowa wahaia clicze wahaia sezoowe Tred (edecja rozwojowa

Bardziej szczegółowo

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK

PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK PROGNOZOWANIE I SYMULACJE EXCEL 1 AUTOR: MARTYNA MALAK 1 PROGNOZOWANIE I SYMULACJE 2 http://www.outcome-seo.pl/excel1.xls DODATEK SOLVER WERSJE EXCELA 5.0, 95, 97, 2000, 2002/XP i 2003. 3 Dodatek Solver jest dostępny w menu Narzędzia. Jeżeli Solver nie jest

Bardziej szczegółowo

Analiza autokorelacji

Analiza autokorelacji Analiza autokorelacji Oblicza się wartości współczynników korelacji między y t oraz y t-i (dla i=1,2,...,k), czyli współczynniki autokorelacji różnych rzędów. Bada się statystyczną istotność tych współczynników.

Bardziej szczegółowo

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym

Strukturalne podejście w prognozowaniu produktu krajowego brutto w ujęciu regionalnym Jacek Baóg Uniwersye Szczeciński Srukuralne podejście w prognozowaniu produku krajowego bruo w ujęciu regionalnym Znajomość poziomu i dynamiki produku krajowego bruo wyworzonego w poszczególnych regionach

Bardziej szczegółowo

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS

FORECASTING THE DISTRIBUTION OF AMOUNT OF UNEMPLOYED BY THE REGIONS FOLIA UNIVERSITATIS AGRICULTURAE STETINENSIS Folia Univ. Agric. Stetin. 007, Oeconomica 54 (47), 73 80 Mateusz GOC PROGNOZOWANIE ROZKŁADÓW LICZBY BEZROBOTNYCH WEDŁUG MIAST I POWIATÓW FORECASTING THE DISTRIBUTION

Bardziej szczegółowo

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2015, 323(81)4,

FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Stetin., Oeconomica 2015, 323(81)4, FOLIA POMERANAE UNIVERSITATIS TECHNOLOGIAE STETINENSIS Folia Pomer. Univ. Technol. Sein., Oeconomica 205, 323(8)4, 25 32 Joanna PERZYŃSKA WYBRANE MIERNIKI TRAFNOŚCI PROGNOZ EX POST W WYZNACZANIU PROGNOZ

Bardziej szczegółowo

KONIUNKTURA W CIĘŻAROWYM TRANSPORCIE SAMOCHODOWYM. STAN W ROKU 2010 I PRZEWIDYWANIA NA ROK KOLEJNY

KONIUNKTURA W CIĘŻAROWYM TRANSPORCIE SAMOCHODOWYM. STAN W ROKU 2010 I PRZEWIDYWANIA NA ROK KOLEJNY Sławomir Dorosiewicz Insyu Transporu Samochodowego KONIUNKTURA W CIĘŻAROWYM TRANSPORCIE SAMOCHODOWYM. STAN W ROKU 2010 I PRZEWIDYWANIA NA ROK KOLEJNY W arykule podsumowano wyniki badań koniunkury w ransporcie

Bardziej szczegółowo

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression).

specyfikacji i estymacji modelu regresji progowej (ang. threshold regression). 4. Modele regresji progowej W badaniach empirycznych coraz większym zaineresowaniem cieszą się akie modele szeregów czasowych, kóre pozwalają na objaśnianie nieliniowych zależności między poszczególnymi

Bardziej szczegółowo

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie

Wykład 5 Elementy teorii układów liniowych stacjonarnych odpowiedź na dowolne wymuszenie Wykład 5 Elemeny eorii układów liniowych sacjonarnych odpowiedź na dowolne wymuszenie Prowadzący: dr inż. Tomasz Sikorski Insyu Podsaw Elekroechniki i Elekroechnologii Wydział Elekryczny Poliechnika Wrocławska

Bardziej szczegółowo

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym

ĆWICZENIE 4 Badanie stanów nieustalonych w obwodach RL, RC i RLC przy wymuszeniu stałym ĆWIZENIE 4 Badanie sanów nieusalonych w obwodach, i przy wymuszeniu sałym. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem w sanach nieusalonych w obwodach szeregowych, i Zapoznanie się ze sposobami

Bardziej szczegółowo

Podstawowe charakterystyki niezawodności. sem. 8. Niezawodność elementów i systemów, Komputerowe systemy pomiarowe 1

Podstawowe charakterystyki niezawodności. sem. 8. Niezawodność elementów i systemów, Komputerowe systemy pomiarowe 1 Podsawowe charakerysyki niezawodności sem. 8. Niezawodność elemenów i sysemów, Kompuerowe sysemy pomiarowe 1 Wsęp Niezawodność o prawdopodobieńswo pewnych zdarzeń Inensywność uszkodzeń λ wyraŝa prawdopodobieńswo

Bardziej szczegółowo