Chemia Fizyczna Technologia Chemiczna II rok Wykład 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "Chemia Fizyczna Technologia Chemiczna II rok Wykład 1"

Transkrypt

1 Chemia Fizyczna Technologia Chemiczna II rok Wykład 1 Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Pozostali prowadzący: ćwiczenia rachunkowe Dr inż. Marek Kluczkowski Dr inż. Roman Pastewski Sam też prowadzę 2 grupy. Laboratorium: kierownik laboratorium: dr inż. Roman Pastewski 1

2 Kontakt,informacja i konsultacje Chemia A ; pokój 307 Telefon: wojtek@chem.pg.gda.pl tablica ogłoszeń Katedry Chemii Fizycznej lub Konsultacje: do uzgodnienia. Chem. Fiz. TCH II/01 2 Brak czasu i miejsca na omówienie szczegółów technicznych zaliczania przedmiotu. Obowiązuje to co już wisi w gablocie i jest w sieci WWW 2

3 Co to jest chemia fizyczna? Przedmiot: Definicja dziedziny nauki Przemiany fizyczne i chemiczne materii (bez wyróżniana jej rodzaju) i związane z nimi przepływy energii. Metoda: Matematyczno-fizyczna, tj. tworzenie modeli teoretycznych w oparciu o obserwacje doświadczalne. Formułowanie hipotez, teorii oraz praw natury w odniesieniu do swojego przedmiotu. Chem. Fiz. TCH II/01 3 Przedmiot nie jest tu wyróżniony na zasadzie rodzaju materii, jak w chemii nieorganicznej, organicznej, czy biochemii, chemii polimerów, peptydów, itp. Chemia fizyczna jest teorią chemii. Mogą oczywiście istnieć takie przedmioty jak Fizyczna Chemia Nieorganiczna, Fizyczna Chemia Organiczna. Nazwę swą Chemia Fizyczna zyskała w XIX wieku, kiedy to zaczęto do chemii przykładać rygory (i metodę) fizyki. Działy chemii fizycznej związane z oddziaływaniem specyficznych energii na materię Fizyka chemiczna. Działy (subdyscypliny) chemii fizycznej związane z oddziaływaniem z materią różnych from (rodzajów) energii: otochemia, sonochemia. 3

4 Pojęcia podstawowe (1) Materią jest wszystko, co posiada masę (bezwładność, Newton). Substancją chemiczną nazwiemy czystą, wyodrębnioną postać materii (miara ilości substancji, jednostka: mol) Energia jest to zdolność do wykonania pracy (upr.). (rodzaje energii, jednostka: dżul, J) Równoważność materii i energii E=mc 2 W praktyce, efekty relatywistyczne i kwantowe występują tylko w mikroświecie, w skali makroskopowej są one pomijalne. Chem. Fiz. TCH II/01 4 Jednostki, układ SI. Rodzaje energii: mechaniczna, cieplna, chemiczna, elektryczna, jądrowa, promienista (elektromagnetyczna). Nośniki energii: masa (mechaniczna, cieplna), wiązania chemiczne, pole elektromagnetyczne. Prawa zachowania: masy, energii (i pokrewne, np. pędu). 4

5 Pojęcia podstawowe (2) Energia kinetyczna energia ruchu: E k =½mv 2 Energia potencjalna zależna od położenia: w polu grawitacyjnym w polu elektrycznym (ziemskim) E p =mgh E p =q 1 q 2 /(4πε 0 r) Chem. Fiz. TCH II/01 5 Rodzaje energii: kinetyczna i potencjalna, prawo zachowania energii, różne rodzaje energii kinetycznej (translacji, rotacji, oscylacji). 5

6 Pojęcia podstawowe (3) Modelem teoretycznym jest pewien założony mechanizm zjawiska lub obraz i zespół właściwości obiektu, najczęściej uproszczony, starający się zawrzeć najistotniejsze jego cechy. Hipotezą jest pewne założenie dotyczące istoty badanego zjawiska, właściwie próba odgadnięcia modelu w oparciu o znane dotąd znane pojęcia i prawa. Teorią nazywamy hipotezę zweryfikowaną w wyniku dalszych badań, gdy zyskuje ona potwierdzenie i stosuje się do większej liczby przypadków (obiektów, zjawisk), często pokrewnych. Chem. Fiz. TCH II/01 6 Gdy hipotetyczny model zostanie zweryfikowany i stanie się modelem teoretycznym, zazwyczaj się go udoskonala, tj. uwzględnia elementy, które pierwotnie pominięto dla uproszczenia. Przykłady znanych modeli: kinetyczny model gazu, gaz doskonały, model atomu wodoru. Przykłady znanych ważnych hipotez: hipoteza atomowa Daltona, hipoteza okresowości Mendelejewa (spektakularnie potwierdzone). 6

7 Pojęcia podstawowe (4) Prawo natury (prawo fizykochemiczne) to jasno sformułowany fragment teorii dotyczący jednego konkretnego zjawiska, czyli powiązania między różnymi, obserwowalnymi wielkościami uwikłanymi w to zjawisko. Sformułowanie werbalne: Prawo Boyle a-mariotte a: W stałej temperaturze, objętość gazu zmienia się odwrotnie proporcjonalnie do jego ciśnienia. Wzór: V1 P2 dla T = const. = ; V1P 1 = V2P2 = VP = const. V P 2 1 Chem. Fiz. TCH II/01 7 Rodzaje praw fizycznych (fizykochemicznych): Ścisłe (spełniane zawsze), np. prawo Faradaya, Graniczne, gdy pewna wielkość determinująca obowiązywanie prawa ma zdążać granicznie do pewnej wartości, najczęściej do zera lub do nieskończoności (bardzo częste w chemii fizycznej), popularny przykład, prawo Boyle a-mariotte a. Empiryczne, przybliżone. Wzajemna przekładalność sformułowania werbalnego i wzoru (bardzo ważne). Podobnie jeszcze można przekładać na trzecią postać graficzną, czyli wyrażonej wzorem zależności funkcyjnej. Ważna umiejętność i należy ją ćwiczyć, albo odświeżyć z innych przedmiotów. 7

8 Główne działy: Termodynamika Równowagi chemiczne Równowagi fazowe Roztwory charakterystyka termodynamiczna Elektrochemia: jonika i elektrodyka. Zjawiska powierzchniowe i koloidy Kinetyka chemiczna Podstawy chemii kwantowej. Chem. Fiz. TCH II/01 8 8

9 Układ (definicja) Układ jest to fragment rzeczywistości poddany obserwacji bądź rozważaniom teoretycznym i wyodrębniony z niej fizycznie lub umownie Poza układem istnieje jego otoczenie. układ + otoczenie = wszechświat Chem. Fiz. TCH II/01 9 Termodynamika będzie się przewijała właściwie przez całą chemię fizyczną. Zajmować się tu będziemy przede wszystkim tzw. termodynamiką fenomenologiczną (opisową w skali makro), a jedynie w niewielkiej części termodynamiką statystyczną (dochodzi do wniosków w skali makro na podstawie badania rozkładów statystycznych zachowania się cząsteczek w układach. Układ jest jednym z podstawowych pojęć. Układ wyodrębniony umownie (mentalnie, w wyobraźni) jest po prostu obiektem, który wyobrażamy sobie w celach rozważań teoretycznych i nadajemy mu rozmaite cechy. W zależności od tych cech wyróżniamy 3 główne kategorie układów. 9

10 Istnieją trzy rodzaje układów: Otwarte (mogą wymieniać z otoczeniem materię i energię) Zamknięte (mogą wymieniać energię, ale nie materię) Izolowane (nie wymieniają z otoczeniem ani materii, ani energii). Chem. Fiz. TCH II/01 10 Można też klasyfikować układy inaczej, stosując inne kryteria (np. wyróżniamy układy jednorodne i niejednorodne; jednoskładnikowe i wieloskładnikowe). Ten drugi z wymienionych podziałów wydaje się oczywisty, ale omówimy to bliżej przy okazji równowag fazowych (składniki w sensie termodynamicznym). Układy jednorodne to takie, w których występuje tylko jedna faza. W układach niejednorodnych dwie lub więcej faz. Te pierwsze nazywamy też homogenicznymi, te drugie heterogenicznymi. Fazą nazywamy postać danej materii, która charakteryzuje się jednorodnym stanem składem chemicznym i stanem fizycznym. Może istnieć więc układ równocześnie jednoskładnikowy i wielofazowy (np. ciecz i jej para, jeden składnik dwie fazy). Dwie odmiany alotropowe pierwiastka też stanowią różne fazy tego samego składnika, choć bowiem mają ten sam skład chemiczny, to stan fizyczny (np. układ krystalograficzny) jest odmienny. 10

11 Rodzaje układów: otwarte zamknięte izolowane Chem. Fiz. TCH II/

12 Sposoby przekazywania energii: Na sposób pracy. Wprowadzenie do Na sposób ciepła (jako ciepło). Rodzaje pracy Mechaniczna (objętościowa), praca zmiany powierzchni, praca elektryczna, praca odkształcenia. Chem. Fiz. TCH II/01 12 Na początku rozważać będziemy jedynie układy, w których jedyną pracą wymienianą z otoczeniem jest praca objętościowa. Praca mechaniczna jest iloczynem siły działającej i drogi (przesunięcia). Stąd 1 J = 1 N 1 mw przypadku gazów jest to praca związana z przesunięciem tłoka ograniczającego układ (poruszającego się bez tarcia. Jeżeli tłok ogranicza układ od góry, to praca będzie iloczynem jego przesunięcia i ciężaru. Jeżeli układ wykonuje pracę, gaz rozpręża się, tłok się podnosi, to pracy wykonanej przez układ przyznajemy znak (-). Jeżeli to tłok swoim ciężarem zmniejsza objętość układu, to praca wykonana na układzie ma znak (+). Pamiętajmy, że punktem odniesienia jest dla nas (chemików) UKŁAD. Jeśli to on zyskuje energię, ma ona znak (+), jeśli ją traci znak (-). Niektóre dziedziny i specjaliści (oraz starsze podręczniki) stosują odmienne konwencje, np. mechanicy, których interesuje uzyskanie energii z układów (silników, maszyn). Jak my ją uzyskujemy ma znak (+). 12

13 CIEPŁO Chem. Fiz. TCH II/01 13 Jeśli przepływ energii pomiędzy układem a otoczeniem związany jest z różnicą temperatur pomiędzy nim, to mówimy, że energia przekazywana jest na sposób ciepła (jako ciepło). Układy, które mogą wymieniać energię jako ciepło, ograniczone sąściankami określanymi jako diatermiczne. Układy, które (mimo istniejącej pomiędzy nimi a ich otoczeniem różnicy temperatur) nie mogą wymieniać ciepła z otoczeniem, ograniczone są ściankami nazywanym adiabatycznymi. Podobnie określamy przemiany zachodzące w takich układach. Jak widzimy na rysunku, mimo, że w obu przypadkach termometry wskazują różnicę temperatur (otoczenia wyższa), to ciepło (żółta strzałka) wchodzi do układu po lewej (zielony), który jest zatem ograniczony ściankami diatermicznymi, zaś prawy (czerwony) ma ścianki uniemożliwiające przekaz energii jako ciepła (adiabatyczne). 13

14 przed po Proces endotermiczny z wymianą ciepła z otoczeniem Chem. Fiz. TCH II/01 14 Przemiany zachodzące w układzie określamy jako egzoenergetyczne, jeśli towarzyszy im wydzielanie energii, a znak tej energii to (-). W szczególności, procesowi towarzyszy wydzielanie ciepła, to proces nazywamy egzotermicznym, a ciepło ma znak (-). Przemiany (procesy) endoenergetyczne (endotermiczne) zachodzą, gdy energia (ciepło) jest podczas nich pobierana (znak (+)). Na rysunku widoczny jest przebieg procesu endotermicznego w układzie umożliwiającym wymianę ciepła. Zaraz po jego rozpoczęciu i bezpośrednio po zakończeniu temperatury otoczenia i układu są takie same (ustalone), a szybkość wnikania ciepła jest ustalona (zależy od różnicy temperatur). 14

15 przed po Proces endotermiczny w układzie z osłoną adiabatyczną Chem. Fiz. TCH II/01 15 W tym przypadku, zaraz po rozpoczęciu procesu dane są temperatury otoczenia i układu (w otoczeniu wyższa). Ponieważ ciepło nie może przekroczyć bariery adiabatycznej, proces prowadzi do obniżenia temperatury układu (ciepło jest pobierane z wnętrza samego układu). Temperatura otoczenia się nie zmienia. Przy procesie egzotermicznym w układzie z osłoną adiabatyczną sytuacja jest odwrotna, tzn. po ukończeniu procesu we wnętrzu układu panuje temperatura wyższa niż na początku. 15

16 Własności fizyczne układów: Ekstensywne (addytywne, zależne od ilości i rodzaju składników, wielkości układu) x n = i = 1 (np. masa układu lub objętość układu) Intensywne nie są addytywne. (np. temperatura, ciśnienie, gęstość, wielkości molowe) x i Chem. Fiz. TCH II/01 16 W ramach jednej fazy własności intensywne są są stałe, a zmieniają się pomiędzy fazami (skokowo na granicy). W układzie jednorodnym znajdującym się w stanie równowagi termodynamicznej, dowolna własność intensywna jest stała taka sama dla całego układu, jak i dla dowolnej jego części. Dlaczego wielkości molowe są intensywne (np. objętość molowa, masa molowa)? Stanem równowagi termodynamicznej nazywamy stan, w którym w układzie nie zachodzążadne zmiany. Jeżeli takowe zachodziły samorzutnie, to po dojściu do stanu równowagi ustają (o ile na układ nie oddziaływuje otoczenie, ale to jest warunkiem zmian samorzutnych). 16

17 Parametry stanu: Wielkości ekstensywne wystarczające do całkowitego scharakteryzowania stanu układu. P, V, T Równanie stanu: f(p,v,t)=0 Dla gazu doskonałego: pv=nrt Chem. Fiz. TCH II/01 17 Okazuje się, że dla jednoznacznego scharakteryzowania stanu układu nie trzeba określać wartości wszystkich jego własności fizycznych. W termodynamice wystarczą te trzy, a nawet dwa spośród nich, związane są bowiem ze sobą równaniem stanu. Równanie stanu gazu rzeczywistego omówimy nieco później ze względu na konieczność dostosowania wykładu do potrzeb ćwiczeń rachunkowych. 17

18 Temperatura i zerowa zasada Dwa ciała, które osiągnęły stan równowagi cieplnej, mają taką samą temperaturę, a ciepło nie jest już między nimi wymieniane. Jeżeli ciało A pozostaje w równowadze termicznej z ciałem B i z ciałem C, to ciała B i C także pozostają ze sobą w równowadze termicznej (cieplnej). Chem. Fiz. TCH II/01 18 Temperatura jest to parametr, który posiada identyczną wartość dla wszystkich ciał znajdujących się w stanie równowagi termicznej. Zerowa zasada wynika z wcześniej określonych pojęć ciepła (jako postaci energii wymienianej dzięki istnieniu różnicy temperatur), równowagi termodynamicznej (w tym przypadku termicznej), oraz kontaktu diatermicznego, który należy zapewnić między ciałami, aby mogło dojść do ustalenia się stanu równowagi termicznej. Postulaty te (twierdzenia przyjmowane bez dowodu) są podstawą pomiaru temperatury. 18

19 Praca objętościowa Pzewn dw = P zewn Sdx = P zewn dv Pgazu P S = F dx 2 S = π r Chem. Fiz. TCH II/01 19 Widzimy tutaj przeźroczysty cylinder, w którym przesuw tłoka dx został zaznaczony. Objętość układu zamkniętego tłokiem zmieniła się o dv. Praca przy rozprężaniu (wykonywana przez układ, dv>0) ma znak (-), przy sprężaniu (wykonywana na układzie, dv<0) ma znak (+). 19

20 Praca objętościowa Trzy sposoby wykonywania pracy przez układ: 1. Przeciwko stałemu ciśnieniu zewnętrznemu (P zewn = const). k w = dw = P dv = P p k zewn p ( V V ) 2. Przeciwko zerowemu ciśnieniu zewnętrznemu (ekspansja do próżni, szczególny przypadek poprzedniego), P zewn = 0. w = 0 zewn k p Chem. Fiz. TCH II/01 20 Jeżeli przypadek 2 trudno sobie wyobrazić w układzie z tłokiem, to należy uprzytomnić sobie, że tłok jest nieważki i porusza się bez oporów. Oto, co nazywamy układem wyobrażonym. Fizyczna realizacja może być trudna (podobnie jak przegrody adiabatycznej). 20

21 Praca objętościowa (c.d.) 3. Sposób kwasistatyczny: P zewn = P gazu ±dp, w szczególności izotermicznie. nrt dw = dv V w = k dw = nrt = p k p dv V V nrt ln V p k Chem. Fiz. TCH II/01 21 dp jest nieskończenie małą różnicą ciśnienia. Zatem w sposobie tym ciśnienie zewnętrzne jest cały czas prawie takie samo jak ciśnienie gazu. Oczywiście proces trwałby wtedy nieskończenie długo, bowiem byłby bardzo powolny, stąd nazwa. 21

22 Praca objętościowa (c.d.) Praca objętościowa zależy od drogi jaką realizowana jest przemiana. Jest ona całką z funkcji P=f(V)dV i polem powierzchni pod wykresem w układzie współrzędnych P-V. Chem. Fiz. TCH II/01 22 Praca objętościowa jest w sposób oczywisty różna dla drogi A (pokazana jako zacieniowane pole) i B. w A < w B 22

23 Kto to jest? Wasz wykładowca (dla nieobecnych na wykładzie) Chem. Fiz. TCH II/

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Chemia Fizyczna Technologia Chemiczna II rok Wykład 1 Kierownik przedmiotu: Dr hab. inż. Wojciech Chrzanowski Kontakt,informacja i konsultacje Chemia A ; pokój 307 Telefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl

Bardziej szczegółowo

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kontakt,informacja i konsultacje. Co to jest chemia fizyczna?

Chemia Fizyczna Technologia Chemiczna II rok Wykład 1. Kontakt,informacja i konsultacje. Co to jest chemia fizyczna? Chemia Fizyczna Technologia Chemiczna II ro Wyład 1 Kierowni rzedmiotu: Dr hab. inż. Wojciech Chrzanowsi Kontat,informacja i onsultacje Chemia A ; oój 307 Telefon: 347-2769 E-mail: wojte@chem.g.gda.l tablica

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Temperatura i ciepło Praca jaką wykonuje gaz I zasada termodynamiki Przemiany gazowe izotermiczna izobaryczna izochoryczna adiabatyczna Co to jest temperatura? 40 39 38 Temperatura

Bardziej szczegółowo

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12

Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 Podstawowe pojęcia Masa atomowa (cząsteczkowa) - to stosunek masy atomu danego pierwiastka chemicznego (cząsteczki związku chemicznego) do masy 1/12 atomu węgla 12 C. Mol - jest taką ilością danej substancji,

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrównawcze z fizyki -Zestaw 4 -eoria ermodynamika Równanie stanu gazu doskonałego Izoprzemiany gazowe Energia wewnętrzna gazu doskonałego Praca i ciepło w przemianach gazowych Silniki cieplne

Bardziej szczegółowo

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami

WYKŁAD 2 TERMODYNAMIKA. Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami WYKŁAD 2 TERMODYNAMIKA Termodynamika opiera się na czterech obserwacjach fenomenologicznych zwanych zasadami Zasada zerowa Kiedy obiekt gorący znajduje się w kontakcie cieplnym z obiektem zimnym następuje

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

TERMODYNAMIKA FENOMENOLOGICZNA

TERMODYNAMIKA FENOMENOLOGICZNA TERMODYNAMIKA FENOMENOLOGICZNA Przedmiotem badań są własności układów makroskopowych w zaleŝności od temperatury. Układ makroskopowy Np. 1 mol substancji - tyle składników ile w 12 gramach węgla C 12 N

Bardziej szczegółowo

DRUGA ZASADA TERMODYNAMIKI

DRUGA ZASADA TERMODYNAMIKI DRUGA ZASADA TERMODYNAMIKI Procesy odwracalne i nieodwracalne termodynamicznie, samorzutne i niesamorzutne Proces nazywamy termodynamicznie odwracalnym, jeśli bez spowodowania zmian w otoczeniu możliwy

Bardziej szczegółowo

Wykład 7: Przekazywanie energii elementy termodynamiki

Wykład 7: Przekazywanie energii elementy termodynamiki Wykład 7: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ emperatura Fenomenologicznie wielkość informująca o tym jak ciepłe/zimne

Bardziej szczegółowo

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały

Wykład 1 i 2. Termodynamika klasyczna, gaz doskonały Wykład 1 i 2 Termodynamika klasyczna, gaz doskonały dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki

Bardziej szczegółowo

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A

= = Budowa materii. Stany skupienia materii. Ilość materii (substancji) n - ilość moli, N liczba molekuł (atomów, cząstek), N A Budowa materii Stany skupienia materii Ciało stałe Ciecz Ciała lotne (gazy i pary) Ilość materii (substancji) n N = = N A m M N A = 6,023 10 mol 23 1 n - ilość moli, N liczba molekuł (atomów, cząstek),

Bardziej szczegółowo

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej.

Temperatura jest wspólną własnością dwóch ciał, które pozostają ze sobą w równowadze termicznej. 1 Ciepło jest sposobem przekazywania energii z jednego ciała do drugiego. Ciepło przepływa pod wpływem różnicy temperatur. Jeżeli ciepło nie przepływa mówimy o stanie równowagi termicznej. Zerowa zasada

Bardziej szczegółowo

TERMODYNAMIKA I TERMOCHEMIA

TERMODYNAMIKA I TERMOCHEMIA TERMODYNAMIKA I TERMOCHEMIA Termodynamika - opisuje zmiany energii towarzyszące przemianom chemicznym; dział fizyki zajmujący się zjawiskami cieplnymi. Termochemia - dział chemii zajmujący się efektami

Bardziej szczegółowo

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa

ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Prawo zachowania energii: ZADANIA Z CHEMII Efekty energetyczne reakcji chemicznej - prawo Hessa Ogólny zasób energii jest niezmienny. Jeżeli zwiększa się zasób energii wybranego układu, to wyłącznie kosztem

Bardziej szczegółowo

Fizyka Termodynamika Chemia reakcje chemiczne

Fizyka Termodynamika Chemia reakcje chemiczne Termodynamika zajmuje się badaniem efektów energetycznych towarzyszących procesom fizykochemicznym i chemicznym. Termodynamika umożliwia: 1. Sporządzanie bilansów energetycznych dla reakcji chemicznych

Bardziej szczegółowo

Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1

Wykład Praca (1.1) c Całka liniowa definiuje pracę wykonaną w kierunku działania siły. Reinhard Kulessa 1 1.6 Praca Wykład 2 Praca zdefiniowana jest jako ilość energii dostarczanej przez siłę działającą na pewnej drodze i matematycznie jest zapisana jako: W = c r F r ds (1.1) ds F θ c Całka liniowa definiuje

Bardziej szczegółowo

Krótki przegląd termodynamiki

Krótki przegląd termodynamiki Wykład I Przejścia fazowe 1 Krótki przegląd termodynamiki Termodynamika fenomenologiczna oferuje makroskopowy opis układów statystycznych w stanie równowagi termodynamicznej bądź w stanach jemu bliskich.

Bardziej szczegółowo

Termodynamika. Energia wewnętrzna ciał

Termodynamika. Energia wewnętrzna ciał ermodynamika Energia wewnętrzna ciał Cząsteczki ciał stałych, cieczy i gazów znajdują się w nieustannym ruchu oddziałując ze sobą. Sumę energii kinetycznej oraz potencjalnej oddziałujących cząsteczek nazywamy

Bardziej szczegółowo

Podstawy termodynamiki

Podstawy termodynamiki Podstawy termodynamiki Organizm żywy z punktu widzenia termodynamiki Parametry stanu Funkcje stanu: U, H, F, G, S I zasada termodynamiki i prawo Hessa II zasada termodynamiki Kierunek przemian w warunkach

Bardziej szczegółowo

Wykład 4. Przypomnienie z poprzedniego wykładu

Wykład 4. Przypomnienie z poprzedniego wykładu Wykład 4 Przejścia fazowe materii Diagram fazowy Ciepło Procesy termodynamiczne Proces kwazistatyczny Procesy odwracalne i nieodwracalne Pokazy doświadczalne W. Dominik Wydział Fizyki UW Termodynamika

Bardziej szczegółowo

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku

TERMODYNAMIKA. przykłady zastosowań. I.Mańkowski I LO w Lęborku TERMODYNAMIKA przykłady zastosowań I.Mańkowski I LO w Lęborku 2016 UKŁAD TERMODYNAMICZNY Dla przykładu układ termodynamiczny stanowią zamknięty cylinder z ruchomym tłokiem, w którym znajduje się gaz tak

Bardziej szczegółowo

II Zasada Termodynamiki c.d.

II Zasada Termodynamiki c.d. Wykład 5 II Zasada Termodynamiki c.d. Pojęcie entropii i temperatury absolutnej II zasada termodynamiki dla procesów nierównowagowych Równania Gibbsa dla procesów quasistatycznych Równania Eulera Relacje

Bardziej szczegółowo

Termochemia elementy termodynamiki

Termochemia elementy termodynamiki Termochemia elementy termodynamiki Termochemia nauka zajmująca się badaniem efektów cieplnych reakcji chemicznych Zasada zachowania energii Energia całkowita jest sumą energii kinetycznej i potencjalnej.

Bardziej szczegółowo

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej

Układ termodynamiczny Parametry układu termodynamicznego Proces termodynamiczny Układ izolowany Układ zamknięty Stan równowagi termodynamicznej termodynamika - podstawowe pojęcia Układ termodynamiczny - wyodrębniona część otaczającego nas świata. Parametry układu termodynamicznego - wielkości fizyczne, za pomocą których opisujemy stan układu termodynamicznego,

Bardziej szczegółowo

Wykład 3. Zerowa i pierwsza zasada termodynamiki:

Wykład 3. Zerowa i pierwsza zasada termodynamiki: Wykład 3 Zerowa i pierwsza zasada termodynamiki: Termodynamiczne funkcje stanu. Parametry extensywne i intensywne. Pojęcie równowagi termodynamicznej. Tranzytywność stanu równowagi i pojęcie temperatury

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ

Termodynamika. Część 4. Procesy izoparametryczne Entropia Druga zasada termodynamiki. Janusz Brzychczyk, Instytut Fizyki UJ Termodynamika Część 4 Procesy izoparametryczne Entropia Druga zasada termodynamiki Janusz Brzychczyk, Instytut Fizyki UJ Pierwsza zasada termodynamiki procesy kwazistatyczne Zgodnie z pierwszą zasadą termodynamiki,

Bardziej szczegółowo

Wykład 6: Przekazywanie energii elementy termodynamiki

Wykład 6: Przekazywanie energii elementy termodynamiki Wykład 6: Przekazywanie energii elementy termodynamiki dr inż. Zbigniew Szklarski szkla@agh.edu.pl http://layer.uci.agh.edu.pl/z.szklarski/ Temperatura Fenomenologicznie wielkość informująca o tym jak

Bardziej szczegółowo

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron

Elementy termodynamiki i wprowadzenie do zespołów statystycznych. Katarzyna Sznajd-Weron Elementy termodynamiki i wprowadzenie do zespołów statystycznych Katarzyna Sznajd-Weron Wielkości makroskopowe - termodynamika Termodynamika - metoda fenomenologiczna Fenomenologia w fizyce: widzimy jak

Bardziej szczegółowo

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36

Wykład 1. Anna Ptaszek. 5 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego. Chemia fizyczna - wykład 1. Anna Ptaszek 1 / 36 Wykład 1 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 5 października 2015 1 / 36 Podstawowe pojęcia Układ termodynamiczny To zbiór niezależnych elementów, które oddziałują ze sobą tworząc integralną

Bardziej szczegółowo

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 14. Termodynamika fenomenologiczna cz.ii.  Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 14. Termodynamika fenomenologiczna cz.ii Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html GAZY DOSKONAŁE Przez

Bardziej szczegółowo

Warunki izochoryczno-izotermiczne

Warunki izochoryczno-izotermiczne WYKŁAD 5 Pojęcie potencjału chemicznego. Układy jednoskładnikowe W zależności od warunków termodynamicznych potencjał chemiczny substancji czystej definiujemy następująco: Warunki izobaryczno-izotermiczne

Bardziej szczegółowo

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły.

PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. PRACA Pracą mechaniczną nazywamy iloczyn wartości siły i wartości przemieszczenia, które nastąpiło zgodnie ze zwrotem działającej siły. Pracę oznaczamy literą W Pracę obliczamy ze wzoru: W = F s W praca;

Bardziej szczegółowo

1 I zasada termodynamiki

1 I zasada termodynamiki 1 I zasada termodynamiki 1.1 Pojęcie podstawowe W chemii fizycznej wszechświat dzielimy na dwie części : układ i otoczenie. Układ jest interesującą nas częścią rzeczywistości (przyrody, wszechświata) może

Bardziej szczegółowo

Wykład 6. Klasyfikacja przemian fazowych

Wykład 6. Klasyfikacja przemian fazowych Wykład 6 Klasyfikacja przemian fazowych JS Klasyfikacja Ehrenfesta Ehrenfest klasyfikuje przemiany fazowe w oparciu o potencjał chemiczny. nieciągłość Przemiany fazowe pierwszego rodzaju pochodne potencjału

Bardziej szczegółowo

WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ

WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ Podstawowe pojęcia w termodynamice technicznej 1/1 WYBRANE ZAGADNIENIA Z TERMODYNAMIKI TECHNICZNEJ 1. WIADOMOŚCI WSTĘPNE 1.1. Przedmiot i zakres termodynamiki technicznej Termodynamika jest działem fizyki,

Bardziej szczegółowo

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak

Wykład FIZYKA I. 5. Energia, praca, moc. http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html. Dr hab. inż. Władysław Artur Woźniak Wykład FIZYKA I 5. Energia, praca, moc Dr hab. inż. Władysław Artur Woźniak Instytut Fizyki Politechniki Wrocławskiej http://www.if.pwr.wroc.pl/~wozniak/fizyka1.html ENERGIA, PRACA, MOC Siła to wielkość

Bardziej szczegółowo

Zasady termodynamiki

Zasady termodynamiki Zasady termodynamiki Energia wewnętrzna (U) Opis mikroskopowy: Jest to suma średnich energii kinetycznych oraz energii oddziaływań międzycząsteczkowych i wewnątrzcząsteczkowych. Opis makroskopowy: Jest

Bardziej szczegółowo

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron

Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Równowaga w układach termodynamicznych. Katarzyna Sznajd-Weron Zagadka na początek wykładu Diagram fazowy wody w powiększeniu, problem metastabilności aktualny (Nature, 2011) Niższa temperatura topnienia

Bardziej szczegółowo

Termodynamika Część 3

Termodynamika Część 3 Termodynamika Część 3 Formy różniczkowe w termodynamice Praca i ciepło Pierwsza zasada termodynamiki Pojemność cieplna i ciepło właściwe Ciepło właściwe gazów doskonałych Ciepło właściwe ciała stałego

Bardziej szczegółowo

Termodynamika Termodynamika

Termodynamika Termodynamika Termodynamika 1. Wiśniewski S.: Termodynamika techniczna, WNT, Warszawa 1980, 1987, 1993. 2. Jarosiński J., Wiejacki Z., Wiśniewski S.: Termodynamika, skrypt PŁ. Łódź 1993. 3. Zbiór zadań z termodynamiki

Bardziej szczegółowo

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w

FIZYKA STATYSTYCZNA. d dp. jest sumaryczną zmianą pędu cząsteczek zachodzącą na powierzchni S w FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

CIEPŁO O ZNANE CZY NIEZNANE?

CIEPŁO O ZNANE CZY NIEZNANE? CIEPŁO O ZNANE CZY NIEZNANE? prof. dr hab. Małgorzata Jóźwiak 1 Temperatura 2 Temperatura jest wielkości cią charakteryzującą stopień nagrzania danego ciała. a. 3 Temperaturę ciała można określić jako

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej

Fizykochemiczne podstawy inżynierii procesowej Fizykochemiczne podstawy inżynierii procesowej Wykład II Podstawowe definicje cd. Podstawowe idealizacje termodynamiczne I i II Zasada termodynamiki Proste przemiany termodynamiczne PRZYPOMNIENIE Z OSTATNIEGO

Bardziej szczegółowo

Wykład 5. Kalorymetria i przejścia fazowe

Wykład 5. Kalorymetria i przejścia fazowe Wykład 5 Kalorymetria Ciepło przemian fazowych Bilans cieplny Proces kwazistatyczny Procesy odwracalne i nieodwracalne Praca Energia wewnętrzna Podstawowe przemiany gazowe W. Dominik Wydział Fizyki UW

Bardziej szczegółowo

T E R M O D Y N A M I K A

T E R M O D Y N A M I K A T E R M O D Y N A M I K A st. kpt dr inż. Jerzy Gałaj st. kpt. mgr inż. Marek Świątkiewicz Katedra Techniki Pożarniczej Zakład Hydromechaniki i Przeciwpożarowego Zaopatrzenia w Wodę pokój nr 310 e-mail:

Bardziej szczegółowo

S ścianki naczynia w jednostce czasu przekazywany

S ścianki naczynia w jednostce czasu przekazywany FIZYKA STATYSTYCZNA W ramach fizyki statystycznej przyjmuje się, że każde ciało składa się z dużej liczby bardzo małych cząstek, nazywanych cząsteczkami. Cząsteczki te znajdują się w ciągłym chaotycznym

Bardziej szczegółowo

Wykład 3. Entropia i potencjały termodynamiczne

Wykład 3. Entropia i potencjały termodynamiczne Wykład 3 Entropia i potencjały termodynamiczne dr hab. Agata Fronczak, prof. PW Wydział Fizyki, Politechnika Warszawska 1 stycznia 2017 dr hab. A. Fronczak (Wydział Fizyki PW) Wykład: Elementy fizyki statystycznej

Bardziej szczegółowo

Stany skupienia materii

Stany skupienia materii Stany skupienia materii Ciała stałe Ciecze Płyny Gazy Plazma 1 Stany skupienia materii Ciała stałe - ustalony kształt i objętość - uporządkowanie dalekiego zasięgu - oddziaływania harmoniczne Ciecze -

Bardziej szczegółowo

Podstawowe pojęcia 1

Podstawowe pojęcia 1 Tomasz Lubera Podstawowe pojęcia 1 Układ część przestrzeni wyodrębniona myślowo lub fizycznie z otoczenia Układ izolowany niewymieniający masy i energii z otoczeniem Układ zamknięty wymieniający tylko

Bardziej szczegółowo

Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata.

Miejsce biofizyki we współczesnej nauce. Obszary zainteresowania biofizyki. - Powrót do współczesności. - obiekty mikroświata. Zakład Biofizyki Miejsce biofizyki we współczesnej nauce - trochę historii - Powrót do współczesności Obszary zainteresowania biofizyki - ekosystemy - obiekty makroświata - obiekty mikroświata - język

Bardziej szczegółowo

CIEPŁO ZNANE CZY NIEZNANE? dr hab. prof. nadzw. UŁ Małgorzata Jóźwiak

CIEPŁO ZNANE CZY NIEZNANE? dr hab. prof. nadzw. UŁ Małgorzata Jóźwiak CIEPŁO ZNANE CZY NIEZNANE? dr hab. prof. nadzw. UŁ Małgorzata Jóźwiak 1 Temperatura 2 Temperatura jest wielkością charakteryzującą stopień nagrzania danego ciała. 3 Temperaturę ciała można określić jako

Bardziej szczegółowo

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny

Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Termodynamika Część 6 Związki i tożsamości termodynamiczne Potencjały termodynamiczne Warunki równowagi termodynamicznej Potencjał chemiczny Janusz Brzychczyk, Instytut Fizyki UJ Związek pomiędzy równaniem

Bardziej szczegółowo

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego

Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5. Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Szkła specjalne Przejście szkliste i jego termodynamika Wykład 5 Ryszard J. Barczyński, 2017 Materiały edukacyjne do użytku wewnętrznego Czy przejście szkliste jest termodynamicznym przejściem fazowym?

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 5 stycznia 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 5 stycznia 2019 1 / 27 Wielkości

Bardziej szczegółowo

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23

Stany materii. Masa i rozmiary cząstek. Masa i rozmiary cząstek. m n mol. n = Gaz doskonały. N A = 6.022x10 23 Stany materii Masa i rozmiary cząstek Masą atomową ierwiastka chemicznego nazywamy stosunek masy atomu tego ierwiastka do masy / atomu węgla C ( C - izoto węgla o liczbie masowej ). Masą cząsteczkową nazywamy

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

Fizyka 14. Janusz Andrzejewski

Fizyka 14. Janusz Andrzejewski Fizyka 14 Janusz Andrzejewski Egzaminy Egzaminy odbywają się w salach 3 oraz 314 budynek A1 w godzinach od 13.15 do 15.00 I termin 4 luty 013 poniedziałek II termin 1 luty 013 wtorek Na wykład zapisanych

Bardziej szczegółowo

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów

Temperatura, ciepło, oraz elementy kinetycznej teorii gazów Temperatura, ciepło, oraz elementy kinetycznej teorii gazów opis makroskopowy równowaga termodynamiczna temperatura opis mikroskopowy średnia energia kinetyczna molekuł Równowaga termodynamiczna A B A

Bardziej szczegółowo

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika

Podstawy Procesów i Konstrukcji Inżynierskich. Dynamika Podstawy Procesów i Konstrukcji Inżynierskich Dynamika Prowadzący: Kierunek Wyróżniony przez PKA Mechanika klasyczna Mechanika klasyczna to dział mechaniki w fizyce opisujący : - ruch ciał - kinematyka,

Bardziej szczegółowo

Przemiany termodynamiczne

Przemiany termodynamiczne Przemiany termodynamiczne.:: Przemiana adiabatyczna ::. Przemiana adiabatyczna (Proces adiabatyczny) - proces termodynamiczny, podczas którego wyizolowany układ nie nawiązuje wymiany ciepła, lecz całość

Bardziej szczegółowo

Podstawy fizyki wykład 6

Podstawy fizyki wykład 6 Podstawy fizyki wykład 6 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Elementy termodynamiki Temperatura Rozszerzalność cieplna Ciepło Praca a ciepło Pierwsza zasada termodynamiki Gaz doskonały

Bardziej szczegółowo

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska

TERMODYNAMIKA Zajęcia wyrównawcze, Częstochowa, 2009/2010 Ewa Mandowska 1. Bilans cieplny 2. Przejścia fazowe 3. Równanie stanu gazu doskonałego 4. I zasada termodynamiki 5. Przemiany gazu doskonałego 6. Silnik cieplny 7. II zasada termodynamiki TERMODYNAMIKA Zajęcia wyrównawcze,

Bardziej szczegółowo

Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja)

Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja) Spotkania z fizyka 2. Rozkład materiału nauczania (propozycja) Temat lekcji Siła wypadkowa siła wypadkowa, składanie sił o tym samym kierunku, R składanie sił o różnych kierunkach, siły równoważące się.

Bardziej szczegółowo

TERMODYNAMIKA. Pojęcia podstawowe. TERMODYNAMIKA pojęcia podstawowe

TERMODYNAMIKA. Pojęcia podstawowe. TERMODYNAMIKA pojęcia podstawowe TERMODYNAMIKA Opisuje i bada efekty procesów chemicznych i fizycznych. Zawiera zbiór reguł znanych jako zasady lub prawa termodynamiki. Jest podstawowym aparatem naukowym chemika służącym do przewidywania

Bardziej szczegółowo

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych.

GAZ DOSKONAŁY. Brak oddziaływań między cząsteczkami z wyjątkiem zderzeń idealnie sprężystych. TERMODYNAMIKA GAZ DOSKONAŁY Gaz doskonały to abstrakcyjny, matematyczny model gazu, chociaż wiele gazów (azot, tlen) w warunkach normalnych zachowuje się w przybliżeniu jak gaz doskonały. Model ten zakłada:

Bardziej szczegółowo

Ciśnienie i temperatura model mikroskopowy

Ciśnienie i temperatura model mikroskopowy Ciśnienie i temperatura model mikroskopowy Mikroskopowy model ciśnienia gazu wzór na ciśnienie gazu Mikroskopowa interpretacja temperatury Średnia energia cząsteczki gazu zasada ekwipartycji energii Czy

Bardziej szczegółowo

Termodynamika (1) Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. poniedziałek, 23 października 2017

Termodynamika (1) Bogdan Walkowiak. Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka. poniedziałek, 23 października 2017 Wykład 1 Termodynamika (1) Bogdan Walkowiak Zakład Biofizyki Instytut Inżynierii Materiałowej Politechnika Łódzka Biofizyka 1 Zaliczenie Aby zaliczyć przedmiot należy: uzyskać pozytywną ocenę z laboratorium

Bardziej szczegółowo

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m

Jednostki podstawowe. Tuż po Wielkim Wybuchu temperatura K Teraz ok. 3K. Długość metr m TERMODYNAMIKA Jednostki podstawowe Wielkość Nazwa Symbol Długość metr m Masa kilogramkg Czas sekunda s Natężenieprąduelektrycznego amper A Temperaturatermodynamicznakelwin K Ilość materii mol mol Światłość

Bardziej szczegółowo

Przegląd termodynamiki II

Przegląd termodynamiki II Wykład II Mechanika statystyczna 1 Przegląd termodynamiki II W poprzednim wykładzie po wprowadzeniu podstawowych pojęć i wielkości, omówione zostały pierwsza i druga zasada termodynamiki. Tutaj wykorzystamy

Bardziej szczegółowo

Ćwiczenie 5: Wymiana masy. Nawilżanie powietrza.

Ćwiczenie 5: Wymiana masy. Nawilżanie powietrza. 1 Część teoretyczna Powietrze wilgotne układ złożony z pary wodnej i powietrza suchego, czyli mieszaniny azotu, tlenu, wodoru i pozostałych gazów Z punktu widzenia różnego typu przemian skład powietrza

Bardziej szczegółowo

Plan Zajęć. Ćwiczenia rachunkowe

Plan Zajęć. Ćwiczenia rachunkowe Plan Zajęć 1. Termodynamika, 2. Grawitacja, Kolokwium I 3. Elektrostatyka + prąd 4. Pole Elektro-Magnetyczne Kolokwium II 5. Zjawiska falowe 6. Fizyka Jądrowa + niepewność pomiaru Kolokwium III Egzamin

Bardziej szczegółowo

CIEPŁO ZNANE CZY NIEZNANE? dr hab. prof. nadzw. UŁ Małgorzata Jóźwiak

CIEPŁO ZNANE CZY NIEZNANE? dr hab. prof. nadzw. UŁ Małgorzata Jóźwiak CIEPŁO ZNANE CZY NIEZNANE? dr hab. prof. nadzw. UŁ Małgorzata Jóźwiak 1 Temperatura 2 Temperatura jest wielkością charakteryzującą stopień nagrzania danego ciała. 3 Temperaturę ciała można określić jako

Bardziej szczegółowo

Zasady dynamiki Newtona

Zasady dynamiki Newtona Zasady dynamiki Newtona Każde ciało trwa w stanie spoczynku lub porusza się ruchem prostoliniowym i jednostajnym, jeśli siły przyłożone nie zmuszają ciała do zmiany tego stanu Jeżeli na ciało nie działa

Bardziej szczegółowo

Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny

Równowagi fazowe. Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowagi fazowe Zakład Chemii Medycznej Pomorski Uniwersytet Medyczny Równowaga termodynamiczna Przemianom fazowym towarzyszą procesy, podczas których nie zmienia się skład chemiczny układu, polegają

Bardziej szczegółowo

Ciepło właściwe. Autorzy: Zbigniew Kąkol Bartek Wiendlocha

Ciepło właściwe. Autorzy: Zbigniew Kąkol Bartek Wiendlocha Ciepło właściwe Autorzy: Zbigniew Kąkol Bartek Wiendlocha 01 Ciepło właściwe Autorzy: Zbigniew Kąkol, Bartek Wiendlocha W module zapoznamy się z jednym z kluczowych pojęć termodynamiki - ciepłem właściwym.

Bardziej szczegółowo

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii:

3. Przejścia fazowe pomiędzy trzema stanami skupienia materii: Temat: Zmiany stanu skupienia. 1. Energia sieci krystalicznej- wielkość dzięki której można oszacować siły przyciągania w krysztale 2. Energia wiązania sieci krystalicznej- ilość energii potrzebnej do

Bardziej szczegółowo

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu

Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Przedmiot: Chemia budowlana Zakład Materiałoznawstwa i Technologii Betonu Ćw. 4 Kinetyka reakcji chemicznych Zagadnienia do przygotowania: Szybkość reakcji chemicznej, zależność szybkości reakcji chemicznej

Bardziej szczegółowo

Kontakt,informacja i konsultacje

Kontakt,informacja i konsultacje Kontakt,informacja i konsultacje Chemia A ; pokój 307 elefon: 347-2769 E-mail: wojtek@chem.pg.gda.pl tablica ogłoszeń Katedry Chemii Fizycznej http://www.pg.gda.pl/chem/dydaktyka/ lub http://www.pg.gda.pl/chem/katedry/fizyczna

Bardziej szczegółowo

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym).

Podstawowe prawa opisujące właściwości gazów zostały wyprowadzone dla gazu modelowego, nazywanego gazem doskonałym (idealnym). Spis treści 1 Stan gazowy 2 Gaz doskonały 21 Definicja mikroskopowa 22 Definicja makroskopowa (termodynamiczna) 3 Prawa gazowe 31 Prawo Boyle a-mariotte a 32 Prawo Gay-Lussaca 33 Prawo Charlesa 34 Prawo

Bardziej szczegółowo

BIOTERMODYNAMIKA. PODSTAWY BIOENERGETYKI I TERMOKINETYKI

BIOTERMODYNAMIKA. PODSTAWY BIOENERGETYKI I TERMOKINETYKI BIOTERMODYNAMIKA. PODSTAWY BIOENERGETYKI I TERMOKINETYKI Rozdział 7 BIOTERMODYNAMIKA 7.1. Wstęp Feliks Jaroszyk Biotermodynamika jest dyscypliną naukową, wykorzystującą rozważania termodynamiki fenomenologicznej

Bardziej szczegółowo

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ

CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ CIEPLNE I MECHANICZNE WŁASNOŚCI CIAŁ Ciepło i temperatura Pojemność cieplna i ciepło właściwe Ciepło przemiany Przejścia między stanami Rozszerzalność cieplna Sprężystość ciał Prawo Hooke a Mechaniczne

Bardziej szczegółowo

Stany równowagi i zjawiska transportu w układach termodynamicznych

Stany równowagi i zjawiska transportu w układach termodynamicznych Stany równowagi i zjawiska transportu w układach termodynamicznych dr hab. Jerzy Nakielski Katedra Biofizyki i Biologii Komórki plan wykładu: 1. Funkcje stanu dla termodynamicznego układu otwartego 2.

Bardziej szczegółowo

Elementy termodynamiki

Elementy termodynamiki Elementy termodynamiki Katarzyna Sznajd-Weron Katedra Fizyki Teoretycznej Politechnika Wrocławska 11 marca 2019 Katarzyna Sznajd-Weron (K4) Wstęp do Fizyki Statystycznej 11 marca 2019 1 / 37 Dwa poziomy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA I Budowa materii Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia. Uczeń: rozróżnia

Bardziej szczegółowo

Wymagania edukacyjne z fizyki w klasie drugiej gimnazjum rok szkolny 2016/2017

Wymagania edukacyjne z fizyki w klasie drugiej gimnazjum rok szkolny 2016/2017 Wymagania edukacyjne z fizyki w klasie drugiej gimnazjum rok szkolny 2016/2017 Siła wypadkowa siła wypadkowa, składanie sił o tym samym kierunku, siły równoważące się. Dział V. Dynamika (10 godzin lekcyjnych)

Bardziej szczegółowo

Wykład z Termodynamiki II semestr r. ak. 2009/2010

Wykład z Termodynamiki II semestr r. ak. 2009/2010 Wykład z Termodynamiki II semestr r. ak. 2009/2010 Literatura do wykładu 1. F. Reif - "Fizyka Statystyczna- PWN 1971. 2. K. Zalewski, - "Wykłady z termodynamiki fenomenologicznej i statystycznej- PWN 1978.

Bardziej szczegółowo

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład

Kinetyczna teoria gazów Termodynamika. dr Mikołaj Szopa Wykład Kinetyczna teoria gazów Termodynamika dr Mikołaj Szopa Wykład 7.11.015 Kinetyczna teoria gazów Kinetyczna teoria gazów. Termodynamika Termodynamika klasyczna opisuje tylko wielkości makroskopowe takie

Bardziej szczegółowo

Termodynamika cz.1. Ziarnista budowa materii. Jak wielka jest liczba Avogadro? Podstawowe definicje. Notes. Notes. Notes. Notes

Termodynamika cz.1. Ziarnista budowa materii. Jak wielka jest liczba Avogadro? Podstawowe definicje. Notes. Notes. Notes. Notes Termodynamika cz.1 dr inż. Ireneusz Owczarek CNMiF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 1 dr inż. Ireneusz Owczarek Termodynamika cz.1 Ziarnista budowa materii Ziarnista budowa

Bardziej szczegółowo

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku

Fizyka 1 Wróbel Wojciech. w poprzednim odcinku w poprzednim odcinku 1 Kinetyczna teoria gazów AZ DOSKONAŁY Liczba rozważanych cząsteczek gazu jest bardzo duża. Średnia odległość między cząsteczkami jest znacznie większa niż ich rozmiar. Cząsteczki

Bardziej szczegółowo

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej

Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej Rozkład nauczania fizyki w klasie II liceum ogólnokształcącego w Zespole Szkół nr 53 im. S. Sempołowskiej rok szkolny 204/205 Warszawa, 29 sierpnia 204r. Zespół Przedmiotowy z chemii i fizyki Temat lekcji

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 19 TERMODYNAMIKA CZĘŚĆ 2. I ZASADA TERMODYNAMIKI Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie 1 1 punkt

Bardziej szczegółowo

v p dr dt = v dr= v dt

v p dr dt = v dr= v dt Rozpędzanie obiektów Praca sił przy rozpędzaniu obiektów b W = a b F dr = a m v dv dt dr = k v p dr dt =v dr=v dt m v dv = m v 2 k 2 2 m v p 2 Wyrażenie ( mv 2 / 2 )nazywamy energią kinetyczną rozpędzonego

Bardziej szczegółowo

DYNAMIKA dr Mikolaj Szopa

DYNAMIKA dr Mikolaj Szopa dr Mikolaj Szopa 17.10.2015 Do 1600 r. uważano, że naturalną cechą materii jest pozostawanie w stanie spoczynku. Dopiero Galileusz zauważył, że to stan ruchu nie zmienia się, dopóki nie ingerujemy I prawo

Bardziej szczegółowo

Fizykochemiczne podstawy inżynierii procesowej

Fizykochemiczne podstawy inżynierii procesowej Fizykochemiczne podstawy inżynierii procesowej Wykład I - 1 Sprawy formalne 2 Fizykochemiczne podstawy inżynierii procesowej Sprawy formalne: Forma: Wykład w postaci prezentacji komputerowych Przeznaczenie:

Bardziej szczegółowo

Kryteria samorzutności procesów fizyko-chemicznych

Kryteria samorzutności procesów fizyko-chemicznych Kryteria samorzutności procesów fizyko-chemicznych 2.5.1. Samorzutność i równowaga 2.5.2. Sens i pojęcie entalpii swobodnej 2.5.3. Sens i pojęcie energii swobodnej 2.5.4. Obliczanie zmian entalpii oraz

Bardziej szczegółowo

Termodynamiczny opis przejść fazowych pierwszego rodzaju

Termodynamiczny opis przejść fazowych pierwszego rodzaju Wykład II Przejścia fazowe 1 Termodynamiczny opis przejść fazowych pierwszego rodzaju Woda występuje w trzech stanach skupienia jako ciecz, jako gaz, czyli para wodna, oraz jako ciało stałe, a więc lód.

Bardziej szczegółowo

Wykład 3. Fizykochemia biopolimerów- wykład 3. Anna Ptaszek. 30 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego

Wykład 3. Fizykochemia biopolimerów- wykład 3. Anna Ptaszek. 30 października Katedra Inżynierii i Aparatury Przemysłu Spożywczego Wykład 3 - wykład 3 Katedra Inżynierii i Aparatury Przemysłu Spożywczego 30 października 2013 1/56 Warunek równowagi fazowej Jakich układów dotyczy równowaga fazowa? Równowaga fazowa dotyczy układów: jednoskładnikowych

Bardziej szczegółowo