W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1

Wielkość: px
Rozpocząć pokaz od strony:

Download "W. Guzicki Zadanie 23 z Informatora Maturalnego poziom rozszerzony 1"

Transkrypt

1 W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 1 Zadanie 3. Rozwiąż równanie: sin 5x cos x + sin x = 0. W rozwiązaniach podobnych zadań często korzystamy ze wzorów trygonometrycznych z następujących dwóch grup. Po pierwsze mamy wzory na funkcje trygonometryczne sumy i różnicy kątów: sin(α + β) = sin α cos β + sin β cos α, sin(α β) = sin α cos β sin β cos α, cos(α + β) = cos α cos β sin α sin β, cos(α β) = cos α cos β + sin α sin β. Po drugie, mamy wzory na sumy i różnice funkcji trygonometrycznych: sin α + sin β = sin α + β sin α sin β = sin α β cos α + cos β = cos α + β cos α cos β = sin α + β cos α β, cos α + β, cos α β, sin β α. Ze wzorów pierwszej grupy łatwo wynikają wzory na funkcje trygonometryczne podwojonego kąta: sin α = sin(α + α) = sin α cos α + sin α cos α = sin α cos α, cos α = cos(α + α) = cos α cos α sin α sin α = cos α sin α = = cos α 1 = 1 sin α. Te wzory można uogólnić na większe wielokrotności kąta. Każdy wzór można zapisać na kilka sposobów; szczególnie przydatne jest wyrażenie funkcji trygonometrycznych wielokrotności kąta za pomocą funkcji sinus lub funkcji cosinus (tam, gdzie jest to możliwe). Najpierw wyprowadzimy wzory na funkcje potrojonego kąta: sin 3α = sin(α + α) = sin α cos α + sin α cos α = = sin α cos α cos α + sin α(1 sin α) = sin α cos α + sin α sin 3 α = = sin α(1 sin α) + sin α sin 3 α = sin α sin 3 α + sin α sin 3 α = = 3 sin α sin 3 α = sin α(3 sin α) = sin α( cos α 1), cos 3α = cos(α + α) = cos α cos α sin α sin α = = ( cos α 1) cos α sin α cos α sin α = cos 3 α cos α sin α cos α = = cos 3 α cos α (1 cos α) cos α = cos 3 α cos α cos α + cos 3 α = = cos 3 α 3 cos α = cos α( cos α 3) = cos α(1 sin α).

2 W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony Następnie wyprowadzimy wzory na sin α i cos α: sin α = sin( α) = sin α cos α = sin α cos α (1 sin α) = = (sin α sin 3 α) cos α, cos α = cos( α) = cos α sin α = (1 sin α) ( sin α cos α) = = 1 sin α + sin α sin α cos α = = 1 sin α + sin α sin α(1 sin α) = = 1 sin α + sin α sin α + sin α) = 1 8 sin α + 8 sin α. Wreszcie potrzebny nam będzie wzór na sin 5α: sin 5α = sin(α + α) = sin α cos α + sin α cos α = = (sin α sin 3 α) cos α cos α + sin α(1 8 sin α + 8 sin α) = = (sin α sin 3 α) cos α + sin α 8 sin 3 α + 8 sin 5 α = = (sin α sin 3 α)(1 sin α) + sin α 8 sin 3 α + 8 sin 5 α = = (sin α sin 3 α sin 3 α + sin 5 α) + sin α 8 sin 3 α + 8 sin 5 α = = (sin α 3 sin 3 α + sin 5 α) + sin α 8 sin 3 α + 8 sin 5 α = = sin α 1 sin 3 α + 8 sin 5 α + sin α 8 sin 3 α + 8 sin 5 α = = 5 sin α 0 sin 3 α + 16 sin 5 α. Powszechnie znane są wartości funkcji trygonometrycznych dla kilku kątów: 30, 5 oraz 60. Korzystając ze wzorów na funkcje trygonometryczne sumy i różnicy kątów możemy obliczyć wartości funkcji trygonometrycznych dla kilku innych kątów. Na przykład: sin 15 = sin(5 30 ) = sin 5 cos 30 sin 30 cos 5 = 6 =. sin 75 = sin( ) = sin 5 cos 30 + sin 30 cos 5 = 6 + =. Korzystając ze wzorów redukcyjnych możemy też obliczyć: 3 1 = = 6 sin 195 = sin 15 =, 6 + sin 55 = sin 75 =. Teraz przejdziemy do rozwiązywania równań trygonometrycznych. Zaczniemy od innego równania.

3 W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 3 Zadanie 3a. Rozwiąż równanie: sin 5x sin 3x + sin x = 0. Rozwiązanie. Sposób I. Przekształcamy lewą stronę równania: sin 5x sin 3x + sin x = (sin 5x + sin x) sin 3x = sin 5x + x cos 5x x = sin 3x cos x sin 3x = sin 3x( cos x 1). sin 3x = Nasze równanie ma zatem postać równoważną Możliwe są zatem dwa przypadki. sin 3x( cos x 1) = 0. Przypadek 1. sin 3x = 0. Zatem 3x = n 180 dla pewnej liczby całkowitej n. Stąd otrzymujemy pierwszą serię rozwiązań: x = n 60, gdzie n jest dowolną liczbą całkowitą. Te rozwiązania możemy zapisać także inaczej: x 1 = 0 + n 360, x = 60 + n 360, x 3 = 10 + n 360, x = n 360, x 5 = 0 + n 360, x 6 = n 360. Przypadek. cos x 1 = 0. Zatem cos x = 1, cos x = cos 60. Stąd otrzymujemy następne dwie serie rozwiązań: x = 60 + n 360 lub x = n 360, x = 30 + n 180 lub x = n 180. Te rozwiązania można także zapisać inaczej: x 7 = 30 + n 360, x 8 = 10 + n 360, x 9 = n 360, x 10 = n , 30, 60, 10, 150, 180, 10, 0, 300 oraz 330.

4 W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony Rozwiązanie. Sposób II. Skorzystamy ze wzorów wyprowadzonych na początku tego tekstu. Nasze równanie ma postać równoważną: (5 sin x 0 sin 3 x + 16 sin 5 x) (3 sin x sin 3 x) + sin x = 0, 16 sin 5 x 16 sin 3 x + 3 sin x = 0. Podstawmy t = sin x. Otrzymujemy następujące równanie piątego stopnia: Mamy teraz dwa przypadki. 16t 5 16t 3 + 3t = 0, t(16t 16t + 3) = 0. Przypadek 1. t = 0, sin x = 0. Zatem x = n 180, gdzie n jest dowolną liczbą całkowitą. Te rozwiązania możemy zapisać inaczej: x 1 = 0 + n 360, x = n 360. Przypadek. 16t 16t + 3 = 0. Otrzymaliśmy równanie dwukwadratowe. Podstawiamy u = t : 16u 16u + 3 = 0. Obliczamy wyróżnik trójmianu po lewej stronie: = ( 16) 16 3 = 16 (16 1) = 16 = 6. Zatem u 1 = 16 8 = 1 oraz u = Stąd otrzymujemy cztery rozwiązania równania: = 3. t 1 = 1, t = 1 3, t 3 = oraz t = Mamy zatem osiem rozwiązań równania trygonometrycznego: sin x = 1, sin x = sin( 30 ). Wówczas 3. x 3 = 10 + n 360, x = n 360. sin x = 1, sin x = sin 30. Wówczas x 5 = 30 + n 360, x 6 = n 360.

5 W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 5 sin x = 3, sin x = sin( 60 ). Wówczas x 7 = 0 + n 360, x 8 = n 360. sin x = 3, sin x = sin 60. Wówczas x 9 = 60 + n 360, x 10 = 10 + n , 30, 60, 10, 150, 180, 10, 0, 300 oraz 330. Zadanie 3b. Rozwiąż równanie: sin 5x sin 3x sin x = 0. Rozwiązanie. Sposób I. Przekształcamy lewą stronę równania: 5x 3x sin 5x sin 3x sin x = (sin 5x sin 3x) sin x = sin cos = sin x cos x sin x = sin x( cos x 1). 5x + 3x sin x = Nasze równanie ma zatem postać równoważną Możliwe są zatem dwa przypadki. sin x( cos x 1) = 0. Przypadek 1. sin x = 0. Zatem x = n 180 dla pewnej liczby całkowitej n. Te rozwiązania możemy zapisać także inaczej: x 1 = 0 + n 360, x = n 360. Przypadek. cos x 1 = 0. Zatem cos x = 1, cos x = cos 60. Stąd otrzymujemy następne dwie serie rozwiązań: x = 60 + n 360 lub x = n 360, x = 15 + n 90 lub x = 75 + n 90.

6 W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 6 Te rozwiązania można także zapisać inaczej: x 3 = 15 + n 360, x = n 360, x 5 = n 360, x 6 = 85 + n 360, x 7 = 75 + n 360, x 8 = n 360, x 9 = 55 + n 360, x 10 = 35 + n , 15, 75, 105, 165, 180, 195, 55, 85 oraz 35. Rozwiązanie. Sposób II. Skorzystamy ze wzorów wyprowadzonych na początku tego tekstu. Nasze równanie ma postać równoważną: (5 sin x 0 sin 3 x + 16 sin 5 x) (3 sin x sin 3 x) sin x = 0, 16 sin 5 x 16 sin 3 x + sin x = 0. Podstawmy t = sin x. Otrzymujemy następujące równanie piątego stopnia: 16t 5 16t 3 + t = 0, t(16t 16t + 1) = 0. Mamy teraz dwa przypadki. Przypadek 1. t = 0, sin x = 0. Zatem x = n 180, gdzie n jest dowolną liczbą całkowitą. Te rozwiązania możemy zapisać inaczej: x 1 = 0 + n 360, x = n 360. Przypadek. 16t 16t + 1 = 0. Otrzymaliśmy równanie dwukwadratowe. Podstawiamy u = t : 16u 16u + 1 = 0. Obliczamy wyróżnik trójmianu po lewej stronie: = ( 16) 16 = 16 (16 ) = 16 1 = 19.

7 W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 7 Zatem = 8 3 i stąd u 1 = Teraz zauważamy, że 3 = 3 = 3 8 oraz u = = = ( 3 1) 8 i podobnie + 3 = ( 3 + 1). 8 Stąd otrzymujemy cztery rozwiązania równania: t 1 = u 1 = =, t = 6 u 1 =, t 3 = 6 + u =, t = 6 + u =. Mamy zatem osiem rozwiązań równania trygonometrycznego: sin x = 6, sin x = sin( 15 ). Wówczas x 3 = n 360, x = 35 + n 360. sin x = 6, sin x = sin 15. Wówczas x 5 = 15 + n 360, x 6 = n 360. sin x = 6+, sin x = sin( 75 ). Wówczas x 7 = 55 + n 360, x 8 = 85 + n 360. sin x = 6, sin x = sin 75. Wówczas x 9 = 75 + n 360, x 10 = n 360. = , 15, 75, 105, 165, 180, 195, 55, 85 oraz 35.

8 W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 8 Zauważmy, że pierwszy sposób rozwiązania obu równań nie różnił się istotnie. Drugi sposób rozwiązania w równaniu 3b prowadził do bardziej skomplikowanego równania wielomianowego i wymagał znajomości wartości funkcji sinus dla kątów 15 i 75. Przejdźmy teraz do rozwiązania równania z zadania 3. Okaże się, że sposób drugi prowadzi do jeszcze większych komplikacji. Rozwiązanie. Sposób I. Przekształcamy lewą stronę równania: sin 5x cos x + sin x = (sin 5x + sin x) cos x = sin 5x + x cos 5x x cos x = = sin 3x cos x cos x = cos x( sin 3x 1). Nasze równanie ma zatem postać równoważną cos x( sin 3x 1) = 0. Możliwe są zatem dwa przypadki. Przypadek 1. cos x = 0. Zatem x = 90 + n 180 dla pewnej liczby całkowitej n. Stąd otrzymujemy pierwszą serię rozwiązań: x = 5 + n 90, gdzie n jest dowolną liczbą całkowitą. Te rozwiązania możemy zapisać także inaczej: x 1 = 5 + n 360, x = n 360, x 3 = 5 + n 360, x = n 360. Przypadek. sin 3x 1 = 0. Zatem sin 3x = 1, sin 3x = cos 30. Stąd otrzymujemy następne dwie serie rozwiązań: 3x = 30 + n 360 lub 3x = n 360, x = 10 + n 10 lub x = 50 + n 10. Te rozwiązania można także zapisać inaczej: x 5 = 10 + n 360, x 6 = n 360, x 7 = 50 + n 360, x 8 = 50 + n 360, x 9 = n 360, x 10 = 90 + n , 5, 50, 130, 135, 170, 5, 50, 90 oraz 315.

9 W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 9 Rozwiązanie. Sposób II. Skorzystamy ze wzorów wyprowadzonych na początku tego tekstu. Nasze równanie ma postać równoważną: (5 sin x 0 sin 3 x + 16 sin 5 x) (1 sin x) + sin x = 0, 16 sin 5 x 0 sin 3 x + sin x + 6 sin x 1 = 0. Podstawmy t = sin x. Otrzymujemy następujące równanie piątego stopnia: 16t 5 0t 3 + t + 6t 1 = 0. Przekształćmy to równanie w sposób równoważny: Mamy teraz dwa przypadki. Przypadek 1. t 1 = 0, t = 1. Zatem t = Stąd otrzymujemy cztery serie rozwiązań: 16t 5 8t 3 1t 3 + 6t + t 1 = 0, 8t 3 (t 1) 6t(t 1) + (t 1) = 0, (t 1)(8t 3 6t + 1) = 0. lub t =, sin x = sin( 5 ) lub sin x = sin 5. x 1 = 5 + n 360, x = n 360, x 3 = 5 + n 360, x = n 360. Przypadek. 8t 3 6t + 1 = 0. Otrzymaliśmy równanie trzeciego stopnia, które nie ma rozwiązań wymiernych (co można łatwo sprawdzić). Popatrzmy najpierw na wykres wielomianu stojącego po lewej stronie równania. Zauważamy, że ten wielomian ma trzy pierwiastki rzeczywiste (a więc nie ma także dobrych wzorów na pierwiastki tego wielomianu). Będziemy mogli jednak domyślić się, jakie liczby są tymi pierwiastkami. Będziemy szukać wśród sinusów

10 W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 10 znanych kątów. y t 1 t t 3 x Przybliżone wartości tych pierwiastków są równe: t 1 0,93969, t 0,17368 oraz t 3 0,7660. Można się przekonać, że są to też przybliżone wartości trzech sinusów: sin( 70 ) 0,93969, sin 10 0,17368 oraz sin 50 0,7660. Można się przekonać, że te trzy sinusy rzeczywiście są pierwiastkami rozważanego wielomianu. Zauważmy bowiem, że Zatem 8t 3 6t = (3t t 3 ) = (3 sin x sin 3 x) = sin 3x. 8 sin 3 ( 70 ) 6 sin( 70 ) + 1 = sin( 10 ) + 1 = sin = 1 = sin = = = 0, 8 sin sin = sin = = = 0, 8 sin sin = sin = sin = = Zatem rzeczywiście = = 0. t 1 = sin( 70 ), t = sin 10 oraz t 3 = sin 50.

11 W. Guzicki Zadanie 3 z Informatora Maturalnego poziom rozszerzony 11 Stąd dostajemy sześć serii rozwiązań. sin x = sin( 70 ). Wówczas x 5 = 50 + n 360, x 6 = 90 + n 360. sin x = sin 10. Wówczas sin x = sin 50. Wówczas x 7 = 10 + n 360, x 8 = n 360. x 9 = 50 + n 360, x 10 = n , 5, 50, 130, 135, 170, 5, 50, 90 oraz 315. Uwaga. Na zakończenie zauważmy, że liczba sin 10 jest pierwiastkiem wielomianu trzeciego stopnia, który nie ma pierwiastków wymiernych. Stąd wynika, że odcinek długości sin 10 nie jest konstruowalny za pomocą cyrkla i linijki. A więc kąta 10 także nie można skonstruować za pomocą cyrkla i linijki.

1 Granice funkcji. Definicja 1 (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f(x) w punkcie x = a, co zapisujemy.

1 Granice funkcji. Definicja 1 (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f(x) w punkcie x = a, co zapisujemy. Granice funkcji Definicja (Granica w sensie Cauchy ego). Mówimy, że liczba g jest granicą funkcji f() w punkcie = a, co zapisujemy f() = g (.) a jeżeli dla każdego ε > 0 można wskazać taką liczbę (istnieje

Bardziej szczegółowo

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C

Bardziej szczegółowo

Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem

Odpowiedzi i schematy oceniania Arkusz 23 Zadania zamknięte. Wskazówki do rozwiązania. Iloczyn dwóch liczb ujemnych jest liczbą dodatnią, zatem Odpowiedzi i schematy oceniania Arkusz Zadania zamknięte Numer zadania Poprawna odpowiedź Wskazówki do rozwiązania B W ( ) + 8 ( ) 8 W ( 7) ( 7) ( 7 ) 8 ( 7) ( 8) 8 ( 8) Iloczyn dwóch liczb ujemnych jest

Bardziej szczegółowo

Matematyka:Matematyka I - ćwiczenia/granice funkcji

Matematyka:Matematyka I - ćwiczenia/granice funkcji Matematyka:Matematyka I - ćwiczenia/granice funkcji 1 Matematyka:Matematyka I - ćwiczenia/granice funkcji Granice funkcji Zadanie 1 Wykorzystując definicję Heinego granicy funkcji, znaleźć (1) Zadanie

Bardziej szczegółowo

1. Rozwiązać układ równań { x 2 = 2y 1

1. Rozwiązać układ równań { x 2 = 2y 1 Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

PLANIMETRIA. Poziom podstawowy

PLANIMETRIA. Poziom podstawowy LANIMETRIA oziom podstawowy Zadanie ( pkt) W prostokątnym trójkącie ABC dana jest długość przyprostokątnej AC = Na przeciwprostokątnej AB wybrano punkt D, a na przyprostokątnej BC punkt E w taki sposób,

Bardziej szczegółowo

TEST WIADOMOŚCI: Równania i układy równań

TEST WIADOMOŚCI: Równania i układy równań Poziom nauczania: Gimnazjum, klasa II Przedmiot: Matematyka Dział: Równania i układy równań Czas trwania: 45 minut Wykonała: Joanna Klimeczko TEST WIADOMOŚCI: Równania i układy równań Liczba punktów za

Bardziej szczegółowo

Zadania z parametrem

Zadania z parametrem Zadania z paramerem Zadania z paramerem są bardzo nielubiane przez maurzysów Nie jes ławo odpowiedzieć na pyanie: dlaczego? Nie są o zadania o dużej skali rudności Myślę, że głównym powodem akiego sanu

Bardziej szczegółowo

Liczby zespolone C := R 2.

Liczby zespolone C := R 2. C := R 2. R 2 (a, b) = (a, 0) + (0, b) = a (1, 0) + b (0, 1). R C, R x (x, 0) C. i := (0, 1), 1 = (1, 0) (a, b) = a(1, 0) + b(0, 1) = a + bi. R 2 (a, b) = z = a + bi C. a- część rzeczywista liczby zespolonej

Bardziej szczegółowo

KARTY PRACY UCZNIA. Twierdzenie Pitagorasa i jego zastosowanie. samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób,

KARTY PRACY UCZNIA. Twierdzenie Pitagorasa i jego zastosowanie. samodzielnej pracy ucznia. Zawarte w nich treści są ułożone w taki sposób, KARTY PRACY UCZNIA Twierdzenie Pitagorasa i jego zastosowanie opracowanie: mgr Teresa Kargol, nauczyciel matematyki w PSP nr 162 w Łodzi Karty pracy to materiały pomocnicze, które mogą służyć do samodzielnej

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

TWIERDZENIE PITAGORASA

TWIERDZENIE PITAGORASA PODSTAWY > Figury płaskie (2) TWIERDZENIE PITAGORASA Twierdzenie Pitagorasa dotyczy trójkąta prostokątnego, to znaczy takiego, który ma jeden kąt prosty. W trójkącie prostokątnym boki, które tworzą kąt

Bardziej szczegółowo

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM ROZSZERZONY LISTOPAD 015 Instrukcja dla zdającego Czas pracy: 180 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 16

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu

Rozdział 6. Pakowanie plecaka. 6.1 Postawienie problemu Rozdział 6 Pakowanie plecaka 6.1 Postawienie problemu Jak zauważyliśmy, szyfry oparte na rachunku macierzowym nie są przerażająco trudne do złamania. Zdecydowanie trudniejszy jest kryptosystem oparty na

Bardziej szczegółowo

Kwantowa natura promieniowania elektromagnetycznego

Kwantowa natura promieniowania elektromagnetycznego Kwantowa natura promieniowania elektromagnetycznego Zjawisko fotoelektryczne. Zadanie 1. Jaką prędkość posiada fotoelektron wytworzony przez kwant γ o energii E γ=1,27mev? W porównaniu z pracą wyjścia

Bardziej szczegółowo

MATEMATYKA 9. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 2017/2018 FUNKCJE WYKŁADNICZE, LOGARYTMY

MATEMATYKA 9. INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 2017/2018 FUNKCJE WYKŁADNICZE, LOGARYTMY INSTYTUT MEDICUS Kurs przygotowawczy do matury i rekrutacji na studia medyczne Rok 017/018 www.medicus.edu.pl tel. 501 38 39 55 MATEMATYKA 9 FUNKCJE WYKŁADNICZE, LOGARYTMY Dla dowolnej liczby a > 0, liczby

Bardziej szczegółowo

s n = a k (2) lim s n = S, to szereg (1) nazywamy zbieżnym. W przeciwnym przypadku mówimy, że szereg jest rozbieżny.

s n = a k (2) lim s n = S, to szereg (1) nazywamy zbieżnym. W przeciwnym przypadku mówimy, że szereg jest rozbieżny. Szeregi liczbowe Definicja Szeregiem liczbowym nazywamy wyrażenie a n = a + a 2 + a 3 + () Liczby a n, n =, 2,... nazywamy wyrazami szeregu. Natomiast sumę n s n = a k (2) nazywamy n-tą sumą częściową

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 007 Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7)

EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMATY PUNKTOWANIA (A1, A, A, A4, A6, A7) GRUDZIEŃ 01 Zadanie 1. (1 p.) Dane są dwie urny z kulami. W każdej

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

Kurs wyrównawczy dla kandydatów i studentów UTP

Kurs wyrównawczy dla kandydatów i studentów UTP Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno

Bardziej szczegółowo

XXIX OLIMPIADA FIZYCZNA (1979/1980). Etap II, zadanie doświadczalne D.

XXIX OLIMPIADA FIZYCZNA (1979/1980). Etap II, zadanie doświadczalne D. 9OF_II_D KO OF Szczecin: www.o.szc.pl XXIX OLIMPIADA FIZYCZNA (979/98). Etap II, zadanie doświadczalne D. Źródło: W. Gorzkowski: Olimpiady izyczne XXIII i XXIV. WSiP, Warszawa 977. Autor: Waldemar Gorzkowski,

Bardziej szczegółowo

KONKURSY MATEMATYCZNE. Treść zadań

KONKURSY MATEMATYCZNE. Treść zadań KONKURSY MATEMATYCZNE Treść zadań Wskazówka: w każdym zadaniu należy wskazać JEDNĄ dobrą odpowiedź. Zadanie 1 Wlewamy 1000 litrów wody do rurki w najwyższym punkcie systemu rurek jak na rysunku. Zakładamy,

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9

Bardziej szczegółowo

Zadanie 3 - (7 punktów) Iloczyn składników Jeśli zapis liczby 22 w postaci sumy zawiera składnik 1, lepiej pogrupować go z innym składnikiem

Zadanie 3 - (7 punktów) Iloczyn składników Jeśli zapis liczby 22 w postaci sumy zawiera składnik 1, lepiej pogrupować go z innym składnikiem Zadanie 1 - (7 punktów) Latające kartki Ponieważ są 64 liczby od 27 do 90 włącznie, mamy 64 strony, czyli 16 kartek (16= 64 : 4). Pod stroną 26. znajdują się strony 24., 22.,..., 4. i 2. wraz z ich nieparzystymi

Bardziej szczegółowo

NUMER IDENTYFIKATORA:

NUMER IDENTYFIKATORA: Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl

Bardziej szczegółowo

EGZAMIN MATURALNY 2013 MATEMATYKA

EGZAMIN MATURALNY 2013 MATEMATYKA entralna Komisja Egzaminacyjna EGZMIN MTURLNY 0 MTEMTYK POZIOM PODSTWOWY Kryteria oceniania odpowiedzi MJ 0 Egzamin maturalny z matematyki Zadanie (0 ) Obszar standardów Zadanie (0 ) Opis wymagań pojęcia

Bardziej szczegółowo

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję

Bardziej szczegółowo

PRACA KLASOWA PO REALIZACJI PROGRAMU NAUCZANIA W KLASIE 4

PRACA KLASOWA PO REALIZACJI PROGRAMU NAUCZANIA W KLASIE 4 PRACA KLASOWA PO REALZACJ PROGRAMU NAUCZANA W KLASE 4 PLAN PRACY KLASOWEJ Nr zad. Czynności sprawdzane Cele / Wymagania Odniesienie do podstawy programowej Odpowiedzi 1 zapisywanie liczby w systemie dziesiątkowym

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej

Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej Wyznaczanie statycznego i kinetycznego współczynnika tarcia przy pomocy równi pochyłej Równia pochyła jest przykładem maszyny prostej. Jej konstrukcja składa się z płaskiej powierzchni nachylonej pod kątem

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2008 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

EGZAMIN MATURALNY MATEMATYKA Poziom rozszerzony ZBIÓR ZADAŃ. Materiały pomocnicze dla uczniów i nauczycieli

EGZAMIN MATURALNY MATEMATYKA Poziom rozszerzony ZBIÓR ZADAŃ. Materiały pomocnicze dla uczniów i nauczycieli EGZAMIN MATURALNY MATEMATYKA Poziom rozszerzony ZBIÓR ZADAŃ Materiały pomocnicze dla uczniów i nauczycieli Centralna Komisja Egzaminacyjna 05 Publikacja opracowana przez zespół koordynowany przez Renatę

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P1 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 16 stron.. W zadaniach od 1. do 5. s podane 4 odpowiedzi:

Bardziej szczegółowo

7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka

7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka 7. OPRACOWYWANIE DANYCH I PROWADZENIE OBLICZEŃ powtórka Oczekiwane przygotowanie informatyczne absolwenta gimnazjum Zbieranie i opracowywanie danych za pomocą arkusza kalkulacyjnego Uczeń: wypełnia komórki

Bardziej szczegółowo

2.Prawo zachowania masy

2.Prawo zachowania masy 2.Prawo zachowania masy Zdefiniujmy najpierw pewne podstawowe pojęcia: Układ - obszar przestrzeni o określonych granicach Ośrodek ciągły - obszar przestrzeni którego rozmiary charakterystyczne są wystarczająco

Bardziej szczegółowo

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 D A D A A B A B B C B D C C C D B C C B. Schemat oceniania zadań otwartych.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 D A D A A B A B B C B D C C C D B C C B. Schemat oceniania zadań otwartych. Klucz odpowiedzi do zadań zamkniętych i schemat oceniania zadań otwartych LICEUM Klucz odpowiedzi do zadań zamkniętych 6 7 8 9 0 6 7 8 9 0 D A D A A B A B B C B D C C C D B C C B Zadanie. (pkt) Rozwiąż

Bardziej szczegółowo

Korzystając z wzorów de Morgana zwartość można także określić w terminach zbiorów domkniętych.

Korzystając z wzorów de Morgana zwartość można także określić w terminach zbiorów domkniętych. Rozdział 6 Zwartość 6.1 Przestrzenie zwarte Definicja 6.1.1. Przestrzeń topologiczna (X, T ) nazywa się zwarta jeśli jest przestrzenią Hausdorffa oraz z dowolnego pokrycia przestrzeni X zbiorami otwartymi

Bardziej szczegółowo

MATERIA DIAGNOSTYCZNY Z MATEMATYKI

MATERIA DIAGNOSTYCZNY Z MATEMATYKI dysleksja MATERIA DIAGNOSTYCZNY Z MATEMATYKI Arkusz II POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla ucznia 1. Sprawd, czy arkusz zawiera 12 ponumerowanych stron. Ewentualny brak zg o przewodnicz

Bardziej szczegółowo

nie zdałeś naszej próbnej matury z matematyki?

nie zdałeś naszej próbnej matury z matematyki? Szanowny Maturzysto, nie zdałeś naszej próbnej matury z matematyki? To prawie niemożliwe, ale jeżeli jednak tak, to Pewnie sądzisz, że przyczyna tkwi w bardzo trudnym arkuszu! Zobaczmy, jak to wygląda

Bardziej szczegółowo

SPRAWDZIAN W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ OD ROKU SZKOLNEGO 2014/2015

SPRAWDZIAN W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ OD ROKU SZKOLNEGO 2014/2015 Centralna Komisja Egzaminacyjna ul. J. Lewartowskiego 6, 00-190 Warszawa www.cke.edu.pl sekret.cke@cke.edu.pl SPRAWDZIAN W KLASIE SZÓSTEJ SZKOŁY PODSTAWOWEJ OD ROKU SZKOLNEGO 2014/2015 Cześć! W kwietniu

Bardziej szczegółowo

Test całoroczny z matematyki. Wersja A

Test całoroczny z matematyki. Wersja A Test całoroczny z matematyki klasa IV Wersja A Na kartce masz zapisanych 20 zadań. Opuść więc te, których rozwiązanie okaże się zbyt trudne dla Ciebie. Wrócisz do niego później. W niektórych zadaniach

Bardziej szczegółowo

BLOK I. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach:

BLOK I. 3. Korzystając z definicji pochodnej w punkcie, obliczyć pochodne podanych funkcji we wskazanych punktach: BLOK I. Rachunek różniczkowy i całkowy. Znaleźć przyrost funkcji f() = przy = zakładając, że przyrost zmiennej niezależnej jest równy: a), ; b), ;, 5.. Znaleźć iloraz różnicowy funkcji y = f() w punkcie

Bardziej szczegółowo

Zagadnienia transportowe

Zagadnienia transportowe Mieczysław Połoński Zakład Technologii i Organizacji Robót Inżynieryjnych Wydział Inżynierii i Kształtowania Środowiska SGGW Zagadnienia transportowe Z m punktów odprawy ma być wysłany jednorodny produkt

Bardziej szczegółowo

Ogólna charakterystyka kontraktów terminowych

Ogólna charakterystyka kontraktów terminowych Jesteś tu: Bossa.pl Kurs giełdowy - Część 10 Ogólna charakterystyka kontraktów terminowych Kontrakt terminowy jest umową pomiędzy dwiema stronami, z których jedna zobowiązuje się do nabycia a druga do

Bardziej szczegółowo

PAKIET MathCad - Część III

PAKIET MathCad - Część III Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw3.mcd 1/12 Katedra Informatyki Stosowanej - Studium Podstaw Informatyki PAKIET MathCad - Część III RÓWNANIA I UKŁADY RÓWNAŃ 1. Równania z jedną niewiadomą MathCad

Bardziej szczegółowo

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013

WOJEWÓDZKI KONKURS MATEMATYCZNY DLA SZKÓŁ PODSTAWOWYCH W ROKU SZKOLNYM 2012/2013 Etap szkolny 13 listopada 2012 r. Godzina 10.00 Kod ucznia Instrukcja dla ucznia 1. Sprawdź, czy zestaw zawiera 7 stron. Ewentualny brak stron lub inne usterki zgłoś nauczycielowi. 2. Na tej stronie i

Bardziej szczegółowo

XIII KONKURS MATEMATYCZNY

XIII KONKURS MATEMATYCZNY XIII KONKURS MTMTYZNY L UZNIÓW SZKÓŁ POSTWOWYH organizowany przez XIII Liceum Ogólnokształcace w Szczecinie FINŁ - 19 lutego 2013 Test poniższy zawiera 25 zadań. Za poprawne rozwiązanie każdego zadania

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

MATEMATYKA Klasa I ZAKRES PODSTAWOWY. Zakres na egzaminy poprawkowe w r. szk. 2012/13. 1. Liczby rzeczywiste

MATEMATYKA Klasa I ZAKRES PODSTAWOWY. Zakres na egzaminy poprawkowe w r. szk. 2012/13. 1. Liczby rzeczywiste Zakres na egzaminy poprawkowe w r. szk. 2012/13 MATEMATYKA Klasa I /nauczyciel M.Tatar/ ZAKRES PODSTAWOWY Hasła programowe Wymagania szczegółowe. Uczeń: 1. Liczby rzeczywiste Liczby naturalne Liczby całkowite,

Bardziej szczegółowo

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1 LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 80 minut Instrukcja dla zdaj¹cego. SprawdŸ, czy arkusz egzaminacyjny zawiera stron (zadania 0). Ewentualny brak zg³oœ przewodnicz¹cemu

Bardziej szczegółowo

INFORMATYKA studia licencjackie*

INFORMATYKA studia licencjackie* Uchwała Nr 38 Rady Wydziału Matematyki i Informatyki Uniwersytetu Mikołaja Kopernika w Toruniu z dnia 18 kwietnia 2012 roku w sprawie warunków i trybu rekrutacji na studia w roku 2013/2014 INFORMATYKA

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak nale

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron.

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. Miejsce na naklejk z kodem Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2010 KOD WPISUJE ZDAJ CY PESEL Miejsce na naklejk z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 pobrano z www.sqlmedia.pl Centralna Komisja Egzaminacyjna ARKUSZ WICZENIOWY Z MATEMATYKI MARZEC 01 POZIOM PODSTAWOWY 1. Sprawd, czy arkusz wiczeniowy zawiera strony (zadania 1 ).. Rozwi zania zada i odpowiedzi

Bardziej szczegółowo

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo.

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo. Konspekt lekcji Przedmiot: Informatyka Typ szkoły: Gimnazjum Klasa: II Nr programu nauczania: DKW-4014-87/99 Czas trwania zajęć: 90min Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia

Bardziej szczegółowo

Matematyka dla liceum/funkcja liniowa

Matematyka dla liceum/funkcja liniowa Matematyka dla liceum/funkcja liniowa 1 Matematyka dla liceum/funkcja liniowa Funkcja liniowa Wstęp Co zawiera dział Czytelnik pozna następujące informacje: co to jest i jakie ma własności funkcja liniowa

Bardziej szczegółowo

Surowiec Zużycie surowca Zapas A B C D S 1 0,5 0,4 0,4 0,2 2000 S 2 0,4 0,2 0 0,5 2800 Ceny 10 14 8 11 x

Surowiec Zużycie surowca Zapas A B C D S 1 0,5 0,4 0,4 0,2 2000 S 2 0,4 0,2 0 0,5 2800 Ceny 10 14 8 11 x Przykład: Przedsiębiorstwo może produkować cztery wyroby A, B, C, i D. Ograniczeniami są zasoby dwóch surowców S 1 oraz S 2. Zużycie surowca na jednostkę produkcji każdego z wyrobów (w kg), zapas surowca

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI ARKUSZ MATURA 010 PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Instrukcja dla zdajàcego POZIOM PODSTAWOWY Czas pracy: 170 minut 1. Sprawdê, czy arkusz zawiera 11 stron.. W zadaniach od 1. do. sà podane

Bardziej szczegółowo

KLAUZULE ARBITRAŻOWE

KLAUZULE ARBITRAŻOWE KLAUZULE ARBITRAŻOWE KLAUZULE arbitrażowe ICC Zalecane jest, aby strony chcące w swych kontraktach zawrzeć odniesienie do arbitrażu ICC, skorzystały ze standardowych klauzul, wskazanych poniżej. Standardowa

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 16 stron (zadania

Bardziej szczegółowo

9. Dyfrakcja światła laserowego na tkaninach i siatce dyfrakcyjnej oraz promieni X na krysztale. Obliczenia dyfrakcyjne.

9. Dyfrakcja światła laserowego na tkaninach i siatce dyfrakcyjnej oraz promieni X na krysztale. Obliczenia dyfrakcyjne. 9. Dyfrakcja światła laserowego na tkaninach i siatce dyfrakcyjnej oraz promieni X na krysztale. Obliczenia dyfrakcyjne. Opracowanie: dr hab inż. Jarosław Chojnacki Politechnika Gdańska, Gdańsk 016 Materiały:

Bardziej szczegółowo

Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk

Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk Marzena Kococik Olga Kuśmierczyk Szkoła Podstawowa im. Marii Konopnickiej w Krzemieniewicach Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk Konkursy wyzwalają aktywność

Bardziej szczegółowo

DRGANIA I FALE 0 0,5 1 1,5

DRGANIA I FALE 0 0,5 1 1,5 Włodzimierz Wolczyński 48 POWTÓRKA 1 DRGANIA I FALE Zadanie 1 Wykres wykonany w Excelu poniżej przedstawia zależność siły sprężystości w niutonach od wydłużenia sprężyny w metrach dla dwóch sprężyn. 25

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 15 stron (zadania

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2011 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

I. LOGICZNE STRUKTURY DRZEWIASTE

I. LOGICZNE STRUKTURY DRZEWIASTE I LOGICZNE STRUKTURY DRZEWIASTE Analizując dany problem uzyskuje się zadanie projektowe w postaci pewnego zbioru danych Metoda morfologiczna, która została opracowana w latach 1938-1948 przez amerykańskiego

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-R1_1P-082 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 2008 Czas pracy 180 minut Instrukcja

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI pobrano z www.sqlmedia.pl ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas

Bardziej szczegółowo

Podprzestrzeń wektorowa, baza, suma prosta i wymiar Javier de Lucas

Podprzestrzeń wektorowa, baza, suma prosta i wymiar Javier de Lucas Podprzestrzeń wektorowa, baza, suma prosta i wymiar Javier de Lucas Ćwiczenie 1. Niech W = {(x 1, x 2, x 3 ) K 3 : x 2 1 + x 2 2 + x 2 3 = x 1 x 2 + x 2 x 3 + x 3 x 1 }. Czy W jest podprzestrzeni a gdy

Bardziej szczegółowo

Rozwiązywanie układów równań stopnia pierwszego metodą wyznacznikową

Rozwiązywanie układów równań stopnia pierwszego metodą wyznacznikową Przedmowa Rozwiązywanie układów równań stopnia pierwszego metodą wyznacznikową To opracowanie jest napisane z myślą o gimnazjalistach, ale mogą z niego korzystać wszyscy którzy chcą się dowiedzieć lub

Bardziej szczegółowo

Optyka geometryczna i falowa

Optyka geometryczna i falowa Pojęcie podstawowe: promień świetlny. Optyka geometryczna i alowa Podstawowa obserwacja: jeżeli promień świetlny pada na granicę dwóch ośrodków to: ulega odbiciu na powierzchni granicznej za!amaniu przy

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-062 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 14

Bardziej szczegółowo

Trenuj przed sprawdzianem! Matematyka Test 4

Trenuj przed sprawdzianem! Matematyka Test 4 mię i nazwisko ucznia...................................................................... Klasa............... Numer w dzienniku.............. nformacja do zadań od 1. do 3. Historia telewizji w Polsce

Bardziej szczegółowo

RAPORT z diagnozy Matematyka na starcie

RAPORT z diagnozy Matematyka na starcie RAPORT z diagnozy Matematyka na starcie przeprowadzonej w klasach pierwszych szkół ponadgimnazjalnych 1 Analiza statystyczna Wskaźnik Wartość wskaźnika Wyjaśnienie Liczba uczniów Liczba uczniów, którzy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem (Wpisuje zdaj cy przed rozpocz ciem pracy) KOD ZDAJ CEGO MMA-RG1P-01 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 10 minut ARKUSZ II MAJ ROK 00 Instrukcja dla

Bardziej szczegółowo

Logika I. Wykład 2. Działania na zbiorach

Logika I. Wykład 2. Działania na zbiorach Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 2. Działania na zbiorach 1 Suma zbiorów Niech A i B będą dowolnymi zbiorami. Definicja 2.1. (suma zbiorów) Suma zbiorów

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-061 POZIOM PODSTAWOWY Czas pracy 10 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 1 stron.

Bardziej szczegółowo

KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap szkolny 24 listopada 2009 r.

KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap szkolny 24 listopada 2009 r. KOD Nr zad. 4 5 6 7 8 9 0 Razem Max liczba punktów Liczba punktów 4 5 4 5 45 Kuratorium Oświaty w Katowicach KONKURS PRZEDMIOTOWY Z MATEMATYKI Etap szkolny 4 listopada 009 r. Przeczytaj uwaŝnie poniŝszą

Bardziej szczegółowo

Współczesne nowoczesne budownictwo pozwala na wyrażenie indywidualnego stylu domu..

Współczesne nowoczesne budownictwo pozwala na wyrażenie indywidualnego stylu domu.. Współczesne nowoczesne budownictwo pozwala na wyrażenie indywidualnego stylu domu.. w którym będziemy mieszkać. Coraz więcej osób, korzystających ze standardowych projektów, decyduje się nadać swojemu

Bardziej szczegółowo

Rok 2010 wyznaczył datę powrotu do obowiązkowego egzaminu maturalnego z matematyki. Umiejętności, które są sprawdzane na maturze z matematyki,

Rok 2010 wyznaczył datę powrotu do obowiązkowego egzaminu maturalnego z matematyki. Umiejętności, które są sprawdzane na maturze z matematyki, Skrypt bezpłatny. Opracowany i wydrukowany w ramach projektu W drodze do kariery z Politechniką Świętokrzyską szanse na lepszą przyszłość uczniów szkół ponadgimnazjalnych, współfinansowanego ze środków

Bardziej szczegółowo

ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM

ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM ETAP I KONKURSU MATEMATYCZNEGO CONTINUUM DLA UCZNIÓW GIMNAZJUM Drogi gimnazjalisto! Serdecznie dziękujemy, że zdecydowałeś się na wzięcie udziału w naszym konkursie. Test (tzw. wielokrotnego wyboru) składa

Bardziej szczegółowo

STEROWNIK BIOLOGICZNYCH OCZYSZCZALNI ŚCIEKÓW

STEROWNIK BIOLOGICZNYCH OCZYSZCZALNI ŚCIEKÓW STEROWNIK BIOLOGICZNYCH OCZYSZCZALNI ŚCIEKÓW TYPU MINI ZIELONA GÓRA OPIS: Sterownik ST-04 przeznaczony jest do sterowania małych biologicznych oczyszczalni ścieków. Sterownik posiada 6 wejść cyfrowych,

Bardziej szczegółowo

Układ równań oznaczony, nieoznaczony, sprzeczny

Układ równań oznaczony, nieoznaczony, sprzeczny Układ równań oznaczony, nieoznaczony, sprzeczny Przedmowa To opracowanie jest napisane z myślą o gimnazjalistach, ale mogą z niego korzystać wszyscy którzy chcą się dowiedzieć lub przypomnieć sobie jaki

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 8 stycznia 2014 r. 120 minut Informacje dla

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI LISTOPAD 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI LISTOPAD 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego. Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu.

Bardziej szczegółowo