Obliczenia Naturalne - Algorytmy Mrówkowe cz. 4

Wielkość: px
Rozpocząć pokaz od strony:

Download "Obliczenia Naturalne - Algorytmy Mrówkowe cz. 4"

Transkrypt

1 Plan Literatura Obliczenia Naturalne - y Mrówkowe cz. 4 Paweł Paduch Politechnika Świętokrzyska 12 czerwca 2014 Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 1 z 37

2 Plan wykładu Wstęp Plan Literatura 1 Wstęp Plan Literatura 2 3 Definicja Główne problemy Rezultaty 4 Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 2 z 37

3 Literatura Wstęp Plan Literatura Marco Dorigo, Thomas Stützle - Ant Colony Optimization. Bradford Company, Scituate, MA, USA, 2004 Krzysztof Socha, Joshua Knowles, and Michael Sampels - A max-min ant system for the university course timetabling problem Proceedings of the 3rd International Workshop on Ant Algorithm, ANTS 2002, Lecture Notes in Computer Science, strony Springer-Verlag, 2002 Daniel Merkle, Martin Middendorf - An Ant Algorithm with a New Pheromone Evaluation Rule for Total Tardiness Problems. EvoWorkshops, strony , 2000 Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 3 z 37

4 Literatura Wstęp Plan Literatura Daniel Merkle, Martin Middendorf, Hartmut Schmeck - Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation, strony Morgan Kaufmann, 2000 Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 4 z 37

5 Cel Wstęp Głównym zadaniem planowania uniwersyteckieog rozkładu zajęć (ang. University Course Timetabling Problem - UCTP) jest przypisanie wydarzenia do przedziałów czasowych oraz do pomieszczeń tak, by wszystkie twarde założenia zostały spełnione oraz by było jak najmniej niespełnionych miękkich założeń. Problem UCTP wraz z podobnymi podproblemami jest NP-trudny, próbowano go już rozwiązywać za pomocą algorytmów ewolucyjnych, symulowanego wyżarzania, tabu search. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 5 z 37

6 Założenia Wstęp Dany jest zbiór n zajęć (Events) E Dany jest zbiór slotów czasowych T = {t 1, t 2,..., t k } Dla 5 dni w tygodniu i 9 godzin k = 45 Zbiór pomieszczeń R w których zajęcia mogłyby się odbywać Zbiór studentów S uczęszczających na zajęcia Zbiór F cech jakie spełniają pomieszczenia R a wymagane są do prowadzenia zajęć E Każdy student uczęszcza na pewną liczbę zajęć Każda sala ma określoną pojemność studentów Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 6 z 37

7 Wykonalność - założenia twarde Plan jest wykonalny gdy wszystkie zajęcia są przydzielone do slotów czasowych i pomieszczeń w ten sposób, że wszystkie twarde założenia są spełnione: żaden student (grupa studencka) nie uczestniczy w tym samym czasie w większej liczbie zajęć niż 1. pomieszczenie jest na tyle pojemne by wszyscy studenci się zmieścili i spełnia wymagania stawiane przez określone zajęcia (np. wyposażenie) w danym pomieszczeniu w tym samym czasie prowadzone mogą być tylko jedne zajęcia. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 7 z 37

8 Założenia miękkie Wykonalny plan jest jednocześnie karany za naruszenie założeń miękkich np. Student ma zajęcia w ostatniej godzinie danego dnia Student ma więcej niż 2 zajęcia pod rząd (u nas raczej chodzi o minimalizowanie okienek) Student ma dokładnie jedne zajęcia w ciągu całego dnia. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 8 z 37

9 Wyższość założeń Twarde ograniczenia muszą być spełnione przez wszystkie możliwe rozwiązania, miękkie zaś nie dotyczą wykonywalności, ale wpływają na jakość rozwiązania. Założenia twarde są stawiane zawsze wyżej niż założenia miękkie. Jeżeli w pewnym rozwiązaniu wszystkie założenia miękkie są spełnione ale złamane jest choćby jedno twarde to takie rozwiązanie ma mniej punktów niż inne ze spełnionymi wszystkim założeniami twardymi ale z dużą liczbą złamanych założeń miękkich. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 9 z 37

10 Reprezentacja Wstęp Rozwiązaniem jest wektor T E reprezentujący pary slotów czasowych i zajęć. Przypisaniem tych par do pomieszczeń zajmu się już deterministyczny algorytm. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

11 Konstruowanie grafu Aby użyć algorytmu mrówkowego do omawianego problemu musimy umieścić go na grafie. Dwa podejścia stosowane przez mrówki: Odwiedzanie kolejnych slotów czasowych próbując dopasować do nich zajęcia. Odwiedzanie kolejnych zajęć próbując dopasować sloty czasowe. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

12 Struktura sieci Pierwsze podejście wymaga użycia wirtualnych slotów czasowych T = {t 1, t 2,..., t E } i mapowania T T e 1 t 1 t 2 t n Start e 2 Stop e n Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

13 Struktura sieci Drugie podejście jest prostsze, mrówka przechodzi przez wszystkie zajęcia e E wybierając dla nich różne sloty czasowe t T. To gwarantuje, że każde zajęcia będą dokładnie raz w jednym slocie czasowym. Ponadto można ustawić na samym początku bardziej problematyczne zajęcia np. wymagające dużej auli. e 1 e 2 e n t 1 Start t 2 Stop t k Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

14 Mrówki przechodząc przez graf tworzą częściowe rozwiązania A i : E i T dla i = 0,..., E, gdzie E i = {e 1,..., e i }. Mrówka startuje pustym częściowym rozwiązaniem A 0 = 0. Po skonstruowaniu Ai 1 tworzone jest rozwiązanie A i jako suma poprzedniego rozwiązania i dołączenia bieżącej pary slotu czasowego i zajęć A i = A i 1 {(e i, t)} Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

15 Slot czasowy t jest wybierany losowo ze zbioru T zgodnie z prawdopodobieństwem p ei,t zależnego od macierzy feromonów τ(a i 1 ) [τ min, τ max ] E T (τ min, τ max R) oraz informacji heurystycznej η(a i 1 ) danej wzorem: p ei,t(τ(a i 1 ), η(a i 1 )) = (τ (ei,t)(a i 1 )) α (η (ei,t)(a i 1 )) β θ T (τ (e i,θ)(a i 1 )) α (η (ei,θ)(a i 1 )) β Zarówno τ jak i η mają w argumencie poprzednie częściowe rozwiązanie A i 1. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

16 Reprezentacja feromonowa W najprostszym podejściu feromon reprezentuje bezwzględną pozycję, gdzie zajęcia powinny być umieszczone. Macierz feromonowa dana jest τ(a i ) = τ, i = 1,..., E. Oznacza to że feromon nie zależy od częściowego rozwiązania. A i. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

17 Macierz feromonowa W bardziej zaawansowanych rozwiązaniach można dodać dodatkową macierz µ R E E + określająca, które zajęcia mogą być wykonywane w tym samym czasie a które nie. Teraz τ (e,t) (A i ) może być wyrażona: { τmax jeżeli A 1 i (t) = 0 τ (e,t) (A i ) = min e A 1 i (t) µ(e, e ) dla pozostałych. Zapisując informacje zwrotną do µ algorytm uczy się, które zajęcia może łączyć a których nie. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

18 Informacja heurystyczna Najprostsza informacja heurystyczna będzie zależeć od liczby naruszonych warunków twardych i miękkich danych funkcją V (e,t) (A i 1 ). 1 η (e,t) (A i 1 ) = 1 + V (e,t) (A i 1 ) Wyliczanie V może być kosztowne i niepotrzebne w przypadku użycia Local Search. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

19 Wstęp Na początku inicjowana jest macierz feromonów wartością τ max. W każdej iteracji m mrówek tworzy swoje własne kompletne rozwiązanie, przypisując wszystkie zajęcia do slotów czasowych. Mrówki pobierają zajęcia w ustalonej wcześniej kolejności, sloty czasowe wybierają zaś zgodnie z opisanym wcześniej prawdopodobieństwem. Po stworzeniu wszystkich par zajęcie-slot czasowy przetwarzane są one na plan zajęć. Najlepiej dopasowany plan jest jeszcze ulepszany za pomocą algorytmu lokalnego wyszukiwania. Jeżeli nowe plan jest lepszy od poprzednich zostaje zapamiętany. Następnie na podstawie najlepszego dotychczasowego planu aktualizujemy feromon. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

20 Wstęp 1 MAX-MIN UCTP (Inicjalizacja) Wejście: Instancja problemu I 1: τ max 1/ρ 2: τ(e, t) τ max (e, t) E T 3: Oblicz c(e, e ) (e, e ) E 2 4: Oblicz d(e) 5: Posortuj E według, dając e 1 e 2... e n Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

21 Wstęp 2 MAX-MIN UCTP (Główna pętla) 6: while Nie upłynął czas do 7: for a = 1 to m do 8: A 0 0 9: for i = 1 to E do 10: Wybierz slot czasowy t według p ei,t dla zajęć e i 11: A i A i 1 (e i, t) 12: end for 13: C rozwiązanie po przekształceniu A n na plan zajęć 14: C ib najlepsze z C i w C ib 15: end for 16: C ib rozwiązanie po użyciu lokalnego wyszukiwania na C ib 17: C gb najlepsze z C ib oraz C gb 18: Zaktualizuj feromon τ używając C gb, τ min, τ max 19: end while Wyjście: Zoptymalizowany kandydat C gb rozwiązania dla I Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

22 - objaśnienia c(e, e ) = { 1 jeżeli są studenci uczestniczący w e oraz e 0 dla pozostałych. d(e) = {e E\{e} c(e, e ) 0} Kolejność zdefiniowana jest następująco: e e : d(e) > d(e ) d(e) = d(e ) l(e) < l(e ) Gdzie l jest funkcją różnowartościową l : E N i jest używana tylko do trzymania więzi. Tylko rozwiązania z najmniejszą liczbą naruszonych warunków wybierane są do poprawienia metodą Local Search. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

23 Aktualizacja feromonu Do aktualizowania feromonu raz na iterację wybierane jest tylko najlepsze globalne rozwiązanie. { (1 ρ) τ(e,t) + 1 jeżeli A τ(e, t) = gb (e) = t (1 ρ) τ (e,t) dla pozostałych. żeby wartość feromonu była pomiędzy τ min, τ max τ min jeżeli τ (e,t) < τ min τ(e, t) = τ max jeżeli τ (e,t) > τ max dla pozostałych τ (e,t) Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

24 Zalecane parametry Zalecanymi parametrami są: ρ = 0, 3 τ max = 1 ρ = 3, 33 τ min około 0,0019-0,0078 (zależne od skali problemu) α = 1 β = 0 - wyłączenie heurystyki liczba mrówek m = 10 Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

25 Problem harmonogramowania Definicja Główne problemy Rezultaty Problem harmonogramowania (ang. Scheduling Problems) to kolejny problem do rozwiązania którego użyto algorytmu ACO. Problem ten zwykle występuje w harmonogramowaniu produkcji, gdzie na m maszynach trzeba wykonać n zadań w g operacjach. Trzeba tak poukładać zadania, by wykorzystanie zasobów było najlepsze. W zależności od rodzaju problemu harmonogramowania, różne jego wersje mogą różnić się pewnymi ograniczeniami lub dodatkowymi założeniami, jak np. relacje pomiędzy poszczególnymi procesami czy uwzględnienie problemu transportu. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

26 Definicja Główne problemy Rezultaty Główne problemy harmonogramowania rozwiązywane za pomocą ACO to między innymi: problem otwarty OSP (ang. open-shop problem), problem gniazdowy JSP, (ang. job shop problem), problem permutacyjny przepływowy PFSP (ang. permutation flow shop problem), SMTTP (ang. single-machine total tardiness problem), SMTWTP (ang. single-machine total weighted tardiness problem), RCPSP (ang. resource-constrained project scheduling problem), GSP (ang. group shop problem) SMTTPSDST (ang. single-machine total tardiness problem with sequence dependent setup times). Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

27 Rezultaty Wstęp Definicja Główne problemy Rezultaty ACO stosuje się do wielu problemów harmonogramowania jednak wydajność algorytmów mrówkowych w zależności od typu problemu może się różnić. ACO osiąga bardzo dobre wyniki w zastosowaniu do rozwiązania problemów SMTWTP, OSP czy RCPSP. Jednak przy PFSP czy JSP rezultaty są dalekie od tych osiąganych za pomocą innych algorytmów. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

28 Ogólnie Wstęp Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Problem podzbioru (ang. Subset Problem) polega na odpowiednim wybraniu elementów z podanego zbioru według pewnych zasad. Wybór musi być dokonany tak, by był optymalny. Zastosowanie ACO do problemu podzbioru charakteryzują dwie cechy. kolejność podzbioru nie jest istotna, w ten sposób ślady feromonowe związane są z elementami, a nie połączeniami pomiędzy nimi. liczba elementów w rozwiązaniu budowanym przez różne mrówki może być różna. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

29 Pokrycie zbioru Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Pokrycie zbioru (ang. set covering), gdzie mając na wejściu wiele zbiorów, które mają elementy wspólne, trzeba wybrać minimalny zestaw tych zbiorów by zawierały wszystkie elementy, jakie znajdywały się w zbiorach danych na wejściu. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

30 Problem - WCGTPP Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Problem podziału drzewa w grafie ograniczonym wagowo (ang. Weight Constrained Graph Tree Partition Problem - WCGTPP), gdzie mamy nieskierowany graf G(N, A) składający się z n węzłów i l krawędzi. Każdej krawędzi (i, j) jest przypisany koszt c ij a każdemu węzłowi i jest przypisana waga w i. Celem jest znalezienie minimalnego lasu rozpinającego F złożonego z p drzew tak, by waga każdego drzewa mieściła się w wyznaczonym przedziale [W, W + ]. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

31 Arc-Weighted l-cardinality Tree Problem Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Arc-Weighted l-cardinality Tree Problem. Jest uogólnieniem problemu wyznaczenia minimalnego drzewa rozpinającego, który polega na znalezieniu poddrzewa z dokładnie l krawędziami w grafie G = (N, A) z wagami krawędzi (lub węzłów) takimi, by suma wag była minimalna. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

32 Problem wielo-plecakowy Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Problem wielo-plecakowy (ang. Multiple Knapsack Problem - MKP). Mamy kilka kontenerów (plecaków) o ograniczonych zasobach (np. pojemności). Dany jest zestaw przedmiotów konsumujących pewne zasoby (np. pojemność) oraz mających pewną wartość (np. waga, cena). Należy tak dopasować przedmioty do kontenerów, by wartość w nich była jak najbardziej optymalna i jednocześnie nie przekroczyć granicznej objętości. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

33 Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Problem największego zbioru niezależnego Problem największego zbioru niezależnego (ang. Maximum Independent Set Problem). Polega na znalezieniu maksymalnego podzbioru wierzchołków danego grafu takich, pomiędzy którymi nie istnieje żadna krawędź łącząca je bezpośrednio. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

34 Problem maksymalnej kliki Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Problem maksymalnej kliki (ang. Maximum Clique Problem). Jest to problem wyznaczenia w grafie maksymalnego zbioru wierzchołków, w którym każda para jest połączona krawędzią. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

35 Inne Wstęp Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Z innych problemów NP-trudnych do rozwiązania których użyto algorytmów mrówkowych można wymienić problem najkrótszego wspólnego podciągu (ang. Shortest Common Supersequence Problem), problem pakowania (ang. Bin Packing Problem), przewidywanie ułożenia białek bazując na sekwencji aminokwasów (ang. Protein Folding), w problemach uczenia się maszyn. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

36 Pytania Wstęp Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania? Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

37 koniec Wstęp Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Dziękuję Państwu za uwagę. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

Metody Programowania

Metody Programowania POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie

Bardziej szczegółowo

Algorytmy Mrówkowe. Daniel Błaszkiewicz. 11 maja 2011. Instytut Informatyki Uniwersytetu Wrocławskiego

Algorytmy Mrówkowe. Daniel Błaszkiewicz. 11 maja 2011. Instytut Informatyki Uniwersytetu Wrocławskiego Algorytmy Mrówkowe Instytut Informatyki Uniwersytetu Wrocławskiego 11 maja 2011 Opis Mrówki w naturze Algorytmy to stosunkowo nowy gatunek algorytmów optymalizacyjnych stworzony przez Marco Dorigo w 1992

Bardziej szczegółowo

Problemy z ograniczeniami

Problemy z ograniczeniami Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.

Bardziej szczegółowo

Podejście zachłanne, a programowanie dynamiczne

Podejście zachłanne, a programowanie dynamiczne Podejście zachłanne, a programowanie dynamiczne Algorytm zachłanny pobiera po kolei elementy danych, za każdym razem wybierając taki, który wydaje się najlepszy w zakresie spełniania pewnych kryteriów

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

RÓWNOLEGŁY ALGORYTM POSZUKIWANIA Z ZABRONIENIAMI UKŁADANIA PLANU ZAJĘĆ

RÓWNOLEGŁY ALGORYTM POSZUKIWANIA Z ZABRONIENIAMI UKŁADANIA PLANU ZAJĘĆ RÓWNOLEGŁY ALGORYTM POSZUKIWANIA Z ZABRONIENIAMI UKŁADANIA PLANU ZAJĘĆ Wojciech BOŻEJKO, Łukasz GNIEWKOWSKI Streszczenie: Praca dotyczy zastosowania równoległego algorytmu poszukiwania z zabronieniami

Bardziej szczegółowo

Strategie Zespołowe (SZ) dr inż. Tomasz Białaszewski

Strategie Zespołowe (SZ) dr inż. Tomasz Białaszewski Strategie Zespołowe (SZ) dr inż. Tomasz Białaszewski Tematyka wykładu Algorytmy Inteligencji Roju (Swarm Intelligence, SI) Optymalizacja kolonią mrówek (Ant Colony Optimization, ACO) Optymalizacja rojem

Bardziej szczegółowo

HARMONOGRAMOWANIE Z OGRANICZENIAMI PROJEKTÓW WSPÓŁBIEŻNYCH

HARMONOGRAMOWANIE Z OGRANICZENIAMI PROJEKTÓW WSPÓŁBIEŻNYCH HARMONOGRAMOWANIE Z OGRANICZENIAMI PROJEKTÓW WSPÓŁBIEŻNYCH Bożena MARCIŃCZYK, Bożena SKOŁUD Streszczenie: W artykule przedstawiono zastosowanie meta heurystycznej metody algorytmu mrówkowego w harmonogramowaniu

Bardziej szczegółowo

Problemy optymalizacyjne - zastosowania

Problemy optymalizacyjne - zastosowania Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne

Bardziej szczegółowo

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał

Bardziej szczegółowo

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana

Bardziej szczegółowo

Matematyka dyskretna - 7.Drzewa

Matematyka dyskretna - 7.Drzewa Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności

Bardziej szczegółowo

WYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH

WYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH Inżynieria Rolnicza 7(105)/2008 WYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH Justyna Zduńczuk, Wojciech Przystupa Katedra Zastosowań Matematyki, Uniwersytet Przyrodniczy

Bardziej szczegółowo

Genomika Porównawcza. Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski

Genomika Porównawcza. Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski Genomika Porównawcza Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski 1 Plan prezentacji 1. Rodzaje i budowa drzew filogenetycznych 2. Metody ukorzeniania drzewa

Bardziej szczegółowo

Metody optymalizacji dyskretnej

Metody optymalizacji dyskretnej Metody optymalizacji dyskretnej Spis treści Spis treści Metody optymalizacji dyskretnej...1 1 Wstęp...5 2 Metody optymalizacji dyskretnej...6 2.1 Metody dokładne...6 2.2 Metody przybliżone...6 2.2.1 Poszukiwanie

Bardziej szczegółowo

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki

Bardziej szczegółowo

CLUSTERING. Metody grupowania danych

CLUSTERING. Metody grupowania danych CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy) Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Heurystyki. Strategie poszukiwań

Heurystyki. Strategie poszukiwań Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja

Bardziej szczegółowo

4.3 Grupowanie według podobieństwa

4.3 Grupowanie według podobieństwa 4.3 Grupowanie według podobieństwa Przykłady obiektów to coś więcej niż wektory wartości atrybutów. Reprezentują one poszczególne rasy psów. Ważnym pytaniem, jakie można sobie zadać, jest to jak dobrymi

Bardziej szczegółowo

Harmonogramowanie produkcji

Harmonogramowanie produkcji Harmonogramowanie produkcji Harmonogramowanie produkcji jest ściśle związane z planowaniem produkcji. Polega na: rozłożeniu w czasie przydziału zasobów do zleceń produkcyjnych, podziale zleceń na partie

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ;

B jest globalnym pokryciem zbioru {d} wtedy i tylko wtedy, gdy {d} zależy od B i nie istnieje B T takie, że {d} zależy od B ; Algorytm LEM1 Oznaczenia i definicje: U - uniwersum, tj. zbiór obiektów; A - zbiór atrybutów warunkowych; d - atrybut decyzyjny; IND(B) = {(x, y) U U : a B a(x) = a(y)} - relacja nierozróżnialności, tj.

Bardziej szczegółowo

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA?

Plan wykładu. Przykład. Przykład 3/19/2011. Przykład zagadnienia transportowego. Optymalizacja w procesach biznesowych Wykład 2 DECYZJA? /9/ Zagadnienie transportowe Optymalizacja w procesach biznesowych Wykład --9 Plan wykładu Przykład zagadnienia transportowego Sformułowanie problemu Własności zagadnienia transportowego Metoda potencjałów

Bardziej szczegółowo

Drzewa rozpinajace, zbiory rozłaczne, czas zamortyzowany

Drzewa rozpinajace, zbiory rozłaczne, czas zamortyzowany , 1 2 3, czas zamortyzowany zajęcia 3. Wojciech Śmietanka, Tomasz Kulczyński, Błażej Osiński rozpinajace, 1 2 3 rozpinajace Mamy graf nieskierowany, ważony, wagi większe od 0. Chcemy wybrać taki podzbiór

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność

Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Algorytmy Równoległe i Rozproszone Część III - Układy kombinacyjne i P-zupełność Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@eti.pg.gda.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH Barbara Popowska bpopowsk@math.put.poznan.pl Politechnika Poznańska http://www.put.poznan.pl/ PROGRAM REFERATU 1. WPROWADZENIE 2. GRAF JAKO MODEL

Bardziej szczegółowo

ALGORYTMY I STRUKTURY DANYCH

ALGORYTMY I STRUKTURY DANYCH ALGORYTMY I STRUKTURY DANYCH Temat : Drzewa zrównoważone, sortowanie drzewiaste Wykładowca: dr inż. Zbigniew TARAPATA e-mail: Zbigniew.Tarapata@isi.wat.edu.pl http://www.tarapata.strefa.pl/p_algorytmy_i_struktury_danych/

Bardziej szczegółowo

Algorytmy i struktury danych

Algorytmy i struktury danych POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Algorytmy i struktury danych www.pk.edu.pl/~zk/aisd_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 5: Algorytmy

Bardziej szczegółowo

HARMONOGRAMOWANIE ROBÓT BUDOWLANYCH Z MINIMALIZACJĄ ŚREDNIEGO POZIOMU ZATRUDNIENIA

HARMONOGRAMOWANIE ROBÓT BUDOWLANYCH Z MINIMALIZACJĄ ŚREDNIEGO POZIOMU ZATRUDNIENIA HARMONOGRAMOWANIE ROBÓT BUDOWLANYCH Z MINIMALIZACJĄ ŚREDNIEGO POZIOMU ZATRUDNIENIA Wojciech BOśEJKO, Zdzisław HEJDUCKI, Michał PODOLSKI, Mariusz UCHROŃSKI Streszczenie: w pracy proponujemy zastosowanie

Bardziej szczegółowo

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski

Algorytmy i. Wykład 5: Drzewa. Dr inż. Paweł Kasprowski Algorytmy i struktury danych Wykład 5: Drzewa Dr inż. Paweł Kasprowski pawel@kasprowski.pl Drzewa Struktury przechowywania danych podobne do list ale z innymi zasadami wskazywania następników Szczególny

Bardziej szczegółowo

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania

Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Zastosowanie sztucznej inteligencji w testowaniu oprogramowania Problem NP Problem NP (niedeterministycznie wielomianowy, ang. nondeterministic polynomial) to problem decyzyjny, dla którego rozwiązanie

Bardziej szczegółowo

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie

Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie Zagadnienie transportowe (badania operacyjne) Mgr inż. Aleksandra Radziejowska AGH Akademia Górniczo-Hutnicza w Krakowie OPIS ZAGADNIENIA Zagadnienie transportowe służy głównie do obliczania najkorzystniejszego

Bardziej szczegółowo

WEKTOROWE KODOWANIE PERMUTACJI. NOWE OPERATORY GENETYCZNE

WEKTOROWE KODOWANIE PERMUTACJI. NOWE OPERATORY GENETYCZNE WEKTOROWE KODOWANIE PERMUTACJI. NOWE OPERATORY GENETYCZNE Mariusz MAKUCHOWSKI Streszczenie: W pracy proponuje się alternatywny sposób kodowania permutacji. Prezentuje się szereg jego własności niewystępujących

Bardziej szczegółowo

W dowolnym kwadracie 3x3 ustawiamy komórki na palące się (stan 3). Program powinien pokazywać ewolucję pożaru lasu.

W dowolnym kwadracie 3x3 ustawiamy komórki na palące się (stan 3). Program powinien pokazywać ewolucję pożaru lasu. 1. Symulacja pożaru lasu ver. 1 Las reprezentowany jest przez macierz 100x100. W lesie występują dwa rodzaje drzew: liściaste i iglaste. Przyjmijmy, że prostokąt A(1:50,1:100) wypełniony jest drzewami

Bardziej szczegółowo

Ćwiczenie 3 Programowanie dynamiczne

Ćwiczenie 3 Programowanie dynamiczne Ćwiczenie 3 Programowanie dynamiczne [źródło: Wprowadzenie do algorytmów, T.H. Cormen, Ch.E. Leiserson, R.L.Rivest, Wyd. Naukowo-Techniczne Warszawa, 2001; ZłoŜoność obliczeniowa problemów kombinatorycznych,

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Informacje podstawowe 1. Konsultacje: pokój

Bardziej szczegółowo

Akademickie Mistrzostwa Polski w Programowaniu Zespołowym

Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Akademickie Mistrzostwa Polski w Programowaniu Zespołowym Prezentacja rozwiązań zadań 30 października 2011 c h k f e j i a b d g Czy się zatrzyma? Autor zadania: Jakub Łącki Zgłoszenia: 104 z 914 (11%)

Bardziej szczegółowo

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza

1) Grafy eulerowskie własnoci algorytmy. 2) Problem chiskiego listonosza 165 1) Grafy eulerowskie własnoci algorytmy 2) Problem chiskiego listonosza 166 Grafy eulerowskie Def. Graf (multigraf, niekoniecznie spójny) jest grafem eulerowskim, jeli zawiera cykl zawierajcy wszystkie

Bardziej szczegółowo

Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl

Komputerowe Systemy Przemysłowe: Modelowanie - UML. Arkadiusz Banasik arkadiusz.banasik@polsl.pl Komputerowe Systemy Przemysłowe: Modelowanie - UML Arkadiusz Banasik arkadiusz.banasik@polsl.pl Plan prezentacji Wprowadzenie UML Diagram przypadków użycia Diagram klas Podsumowanie Wprowadzenie Języki

Bardziej szczegółowo

Algorytmy genetyczne

Algorytmy genetyczne Algorytmy genetyczne Motto: Zamiast pracowicie poszukiwać najlepszego rozwiązania problemu informatycznego lepiej pozwolić, żeby komputer sam sobie to rozwiązanie wyhodował! Algorytmy genetyczne służą

Bardziej szczegółowo

Egzaminy i inne zadania. Semestr II.

Egzaminy i inne zadania. Semestr II. Egzaminy i inne zadania. Semestr II. Poniższe zadania są wyborem zadań ze Wstępu do Informatyki z egzaminów jakie przeprowadziłem w ciągu ostatnich lat. Ponadto dołączyłem szereg zadań, które pojawiały

Bardziej szczegółowo

Standard określania klasy systemu informatycznego resortu finansów

Standard określania klasy systemu informatycznego resortu finansów Dane dokumentu Nazwa Projektu: Kontrakt Konsolidacja i Centralizacja Systemów Celnych i Podatkowych Studium Projektowe Konsolidacji i Centralizacji Systemów Celnych i Podatkowych (SPKiCSCP) Numer wersji

Bardziej szczegółowo

LABORATORIUM 2: Przeszukiwanie grafów cz. 2 strategie heurystyczne

LABORATORIUM 2: Przeszukiwanie grafów cz. 2 strategie heurystyczne Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE LABORATORIUM 2: Przeszukiwanie grafów cz. 2 strategie heurystyczne

Bardziej szczegółowo

Oprogramowanie w eksperymentach fizyki. Wykład 4, Paweł Staszel

Oprogramowanie w eksperymentach fizyki. Wykład 4, Paweł Staszel Oprogramowanie w eksperymentach fizyki Wykład 4, Paweł Staszel Plan 1. Obiekty (klasy) danych 2. Kontenery danych (data containers) 3. Moduły obiekty operujące na danych 4. Kontenery modułów (module containers)

Bardziej szczegółowo

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie

1.7. Eksploracja danych: pogłębianie, przeszukiwanie i wyławianie Wykaz tabel Wykaz rysunków Przedmowa 1. Wprowadzenie 1.1. Wprowadzenie do eksploracji danych 1.2. Natura zbiorów danych 1.3. Rodzaje struktur: modele i wzorce 1.4. Zadania eksploracji danych 1.5. Komponenty

Bardziej szczegółowo

ALGORYTM PERTURBACYJNY DLA PROBLEMU PRZEPŁYWOWEGO

ALGORYTM PERTURBACYJNY DLA PROBLEMU PRZEPŁYWOWEGO ALGORYTM PERTURBACYJNY DLA PROBLEMU PRZEPŁYWOWEGO Mariusz MAKUCHOWSKI Streszczenie: Proponowany w tej pracy algorytm perturbacyjny PNEH (dedykowany permutacyjnemu problemowi przepływowemu) pozwala na dostarczanie

Bardziej szczegółowo

Testowanie i walidacja oprogramowania

Testowanie i walidacja oprogramowania Testowanie i walidacja oprogramowania Inżynieria oprogramowania, sem.5 cz. 5 Rok akademicki 2010/2011 Dr inż. Wojciech Koziński Przykład Obliczmy sumę: 0+1+2+...+i, i є [0,100] read(i); if((i < 0)(i >

Bardziej szczegółowo

Algorytmy Równoległe i Rozproszone Część VI - Systemy rozproszone, podstawowe pojęcia

Algorytmy Równoległe i Rozproszone Część VI - Systemy rozproszone, podstawowe pojęcia Algorytmy Równoległe i Rozproszone Część VI - Systemy rozproszone, podstawowe pojęcia Łukasz Kuszner pokój 209, WETI http://www.kaims.pl/ kuszner/ kuszner@kaims.pl Oficjalna strona wykładu http://www.kaims.pl/

Bardziej szczegółowo

Różne reprezentacje mapy feromonowej w problemie plecakowym

Różne reprezentacje mapy feromonowej w problemie plecakowym Wydział Informatyki i Nauki o Materiałach Jarosław Dąbrowski 193207 Praca magisterska Różne reprezentacje mapy feromonowej w problemie plecakowym Promotor: dr inż. Mariusz Boryczka Sosnowiec, 2008 Spis

Bardziej szczegółowo

10. Wstęp do Teorii Gier

10. Wstęp do Teorii Gier 10. Wstęp do Teorii Gier Definicja Gry Matematycznej Gra matematyczna spełnia następujące warunki: a) Jest co najmniej dwóch racjonalnych graczy. b) Zbiór możliwych dezycji każdego gracza zawiera co najmniej

Bardziej szczegółowo

Alicja Marszałek Różne rodzaje baz danych

Alicja Marszałek Różne rodzaje baz danych Alicja Marszałek Różne rodzaje baz danych Rodzaje baz danych Bazy danych można podzielić wg struktur organizacji danych, których używają. Można podzielić je na: Bazy proste Bazy złożone Bazy proste Bazy

Bardziej szczegółowo

Ćwiczenie: JavaScript Cookies (3x45 minut)

Ćwiczenie: JavaScript Cookies (3x45 minut) Ćwiczenie: JavaScript Cookies (3x45 minut) Cookies niewielkie porcje danych tekstowych, które mogą być przesyłane między serwerem a przeglądarką. Przeglądarka przechowuje te dane przez określony czas.

Bardziej szczegółowo

Algorytmy ewolucyjne (3)

Algorytmy ewolucyjne (3) Algorytmy ewolucyjne (3) http://zajecia.jakubw.pl/nai KODOWANIE PERMUTACJI W pewnych zastosowaniach kodowanie binarne jest mniej naturalne, niż inne sposoby kodowania. Na przykład, w problemie komiwojażera

Bardziej szczegółowo

Dodatkowe możliwości RDF. Seminarium magisterskie Paweł Chrząszczewski

Dodatkowe możliwości RDF. Seminarium magisterskie Paweł Chrząszczewski Dodatkowe możliwości RDF Seminarium magisterskie Paweł Chrząszczewski Inne możliwości RDF RDF posiada szereg dodatkowych funkcji, takich jak wbudowane typy i właściwości reprezentujące grupy zasobów i

Bardziej szczegółowo

Obliczenia ewolucyjne - plan wykładu

Obliczenia ewolucyjne - plan wykładu Obliczenia ewolucyjne - plan wykładu Wprowadzenie Algorytmy genetyczne Programowanie genetyczne Programowanie ewolucyjne Strategie ewolucyjne Inne modele obliczeń ewolucyjnych Podsumowanie Ewolucja Ewolucja

Bardziej szczegółowo

Obliczenia Naturalne - Wstęp

Obliczenia Naturalne - Wstęp Literatura Wprowadzenie Obliczenia Naturalne - Wstęp Paweł Paduch Politechnika Świętokrzyska 18 lutego 2014 Paweł Paduch Obliczenia Naturalne - Wstęp 1 z 49 Plan wykładu Wstęp Literatura Wprowadzenie 1

Bardziej szczegółowo

Data Warehouse Physical Design: Part III

Data Warehouse Physical Design: Part III Data Warehouse Physical Design: Part III Robert Wrembel Poznan University of Technology Institute of Computing Science Robert.Wrembel@cs.put.poznan.pl www.cs.put.poznan.pl/rwrembel Lecture outline Group

Bardziej szczegółowo

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew

2012-01-16 PLAN WYKŁADU BAZY DANYCH INDEKSY - DEFINICJE. Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew 0-0-6 PLAN WYKŁADU Indeksy jednopoziomowe Indeksy wielopoziomowe Indeksy z użyciem B-drzew i B + -drzew BAZY DANYCH Wykład 9 dr inż. Agnieszka Bołtuć INDEKSY - DEFINICJE Indeksy to pomocnicze struktury

Bardziej szczegółowo

Ocena ilościowa ryzyka: analiza drzewa błędu (konsekwencji) Zajęcia 6. dr inż. Piotr T. Mitkowski. piotr.mitkowski@put.poznan.pl

Ocena ilościowa ryzyka: analiza drzewa błędu (konsekwencji) Zajęcia 6. dr inż. Piotr T. Mitkowski. piotr.mitkowski@put.poznan.pl Ocena ilościowa ryzyka: Zajęcia 6 analiza drzewa błędu (konsekwencji) dr inż. Piotr T. Mitkowski piotr.mitkowski@put.poznan.pl Materiały dydaktyczne, prawa zastrzeżone Piotr Mitkowski 1 Plan zajęć Metody

Bardziej szczegółowo

Wykrywanie anomalii w zbiorze danych o dużym wymiarze

Wykrywanie anomalii w zbiorze danych o dużym wymiarze Wykrywanie anomalii w zbiorze danych o dużym wymiarze Piotr Kroll Na podstawie pracy: Very Fast Outlier Detection In Large Multidimensional Data Set autorstwa: A. Chandhary, A. Shalay, A. Moore Różne rozwiązania

Bardziej szczegółowo

Customer Attribution Models. czyli o wykorzystaniu machine learning w domu mediowym.

Customer Attribution Models. czyli o wykorzystaniu machine learning w domu mediowym. Customer Attribution Models czyli o wykorzystaniu machine learning w domu mediowym. Proces decyzyjny MAILING SEO SEM DISPLAY RETARGETING PRZEGRANI??? ZWYCIĘZCA!!! Modelowanie atrybucja > Słowo klucz: wpływ

Bardziej szczegółowo

Rysunek 8. Rysunek 9.

Rysunek 8. Rysunek 9. Ad 2. Dodatek Excel Add-Ins for Operations Management/Industral Engineering został opracowany przez Paul A. Jensen na uniwersytecie w Teksasie. Dodatek można pobrać ze strony http://www.ormm.net. Po rozpakowaniu

Bardziej szczegółowo

Wykład XII. optymalizacja w relacyjnych bazach danych

Wykład XII. optymalizacja w relacyjnych bazach danych Optymalizacja wyznaczenie spośród dopuszczalnych rozwiązań danego problemu, rozwiązania najlepszego ze względu na przyjęte kryterium jakości ( np. koszt, zysk, niezawodność ) optymalizacja w relacyjnych

Bardziej szczegółowo

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania

Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Politechnika Poznańska Modele i narzędzia optymalizacji w systemach informatycznych zarządzania Joanna Józefowska POZNAŃ 2010/11 Spis treści Rozdział 1. Metoda programowania dynamicznego........... 5

Bardziej szczegółowo

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno

Podstawy programowania 2. Temat: Drzewa binarne. Przygotował: mgr inż. Tomasz Michno Instrukcja laboratoryjna 5 Podstawy programowania 2 Temat: Drzewa binarne Przygotował: mgr inż. Tomasz Michno 1 Wstęp teoretyczny Drzewa są jedną z częściej wykorzystywanych struktur danych. Reprezentują

Bardziej szczegółowo

Wyk lad 7: Drzewa decyzyjne dla dużych zbiorów danych

Wyk lad 7: Drzewa decyzyjne dla dużych zbiorów danych Wyk lad 7: Drzewa decyzyjne dla dużych zbiorów danych Funkcja rekurencyjna buduj drzewo(u, dec, T): 1: if (kryterium stopu(u, dec) = true) then 2: T.etykieta = kategoria(u, dec); 3: return; 4: end if 5:

Bardziej szczegółowo

Grafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3}

Grafy. Jeżeli, to elementy p i q nazywamy końcami krawędzi e. f a b c d e γ f {1} {1,2} {2,3} {2,3} {1,3} Grafy Definicja grafu nieskierowanego. Grafem nieskierowanym nazywamy uporządkowaną trójkę: gdzie: V- niepusty zbiór wierzchołków grafu G E- zbiór wszystkich krawędzi grafu G - funkcja ze zbioru E w zbiór

Bardziej szczegółowo

METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu

METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Kamil Figura Krzysztof Kaliński Bartek Kutera METODY SZTUCZNEJ INTELIGENCJI 2 Opis projektu Porównanie metod uczenia z rodziny TD z algorytmem Layered Learning na przykładzie gry w warcaby i gry w anty-warcaby

Bardziej szczegółowo

R E C E N Z J A. rozprawy doktorskiej mgr Wojciecha Bury nt. Wielokryterialne, mrowiskowe algorytmy optymalizacji w nawigacji samochodowej

R E C E N Z J A. rozprawy doktorskiej mgr Wojciecha Bury nt. Wielokryterialne, mrowiskowe algorytmy optymalizacji w nawigacji samochodowej Prof. dr hab. inż. Franciszek Seredyński Warszawa, 25.02.2015 Uniwersytet Kardynała Stefana Wyszyńskiego w Warszawie Wydział Matematyczno Przyrodniczy Szkoła Nauk Ścisłych ul. Wóycickiego 1/3, 01-938 Warszawa

Bardziej szczegółowo

Generowanie i optymalizacja harmonogramu za pomoca

Generowanie i optymalizacja harmonogramu za pomoca Generowanie i optymalizacja harmonogramu za pomoca na przykładzie generatora planu zajęć Matematyka Stosowana i Informatyka Stosowana Wydział Fizyki Technicznej i Matematyki Stosowanej Politechnika Gdańska

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DROGI i CYKLE w grafach Dla grafu (nieskierowanego) G = ( V, E ) drogą z wierzchołka v 0 V do v t V nazywamy ciąg (naprzemienny) wierzchołków i krawędzi grafu: ( v 0, e, v, e,..., v t, e t, v t ), spełniający

Bardziej szczegółowo

Podstawy systemów kryptograficznych z kluczem jawnym RSA

Podstawy systemów kryptograficznych z kluczem jawnym RSA Podstawy systemów kryptograficznych z kluczem jawnym RSA RSA nazwa pochodząca od nazwisk twórców systemu (Rivest, Shamir, Adleman) Systemów z kluczem jawnym można używać do szyfrowania operacji przesyłanych

Bardziej szczegółowo

Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36

Bazy danych wykład dwunasty. dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Bazy danych wykład dwunasty Wykonywanie i optymalizacja zapytań SQL Konrad Zdanowski Uniwersytet Kardynała Stefana Wyszyńskiego, Warszawa dwunasty Wykonywanie i optymalizacja zapytań SQL 1 / 36 Model kosztów

Bardziej szczegółowo

Programowanie gier planszowych

Programowanie gier planszowych III Konferencja Młodych Informatyków Uniwersytet Śląski Wydział Informatyki i Nauki o Materiałach Sosnowiec 2003 Programowanie gier planszowych Tomasz Rostański Streszczenie W niniejszej pracy zostanie

Bardziej szczegółowo

ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe

ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny, Politechnika Śląska www.imio.polsl.pl METODY HEURYSTYCZNE ĆWICZENIE 1: Przeszukiwanie grafów cz. 1 strategie ślepe opracował:

Bardziej szczegółowo

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego

Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Odkrywanie algorytmów kwantowych za pomocą programowania genetycznego Piotr Rybak Koło naukowe fizyków Migacz, Uniwersytet Wrocławski Piotr Rybak (Migacz UWr) Odkrywanie algorytmów kwantowych 1 / 17 Spis

Bardziej szczegółowo

Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC

Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC Adaptacja sterownika PLC do obiektu sterowania. Synteza algorytmu procesu i sterowania metodą GRAFCET i SFC Proces technologiczny (etap procesu produkcyjnego/przemysłowego) podstawa współczesnych systemów

Bardziej szczegółowo

φ(x 1,..., x n ) = a i x 2 i +

φ(x 1,..., x n ) = a i x 2 i + Teoria na egzamin z algebry liniowej Wszystkie podane pojęcia należy umieć określić i podać pprzykłady, ewentualnie kontrprzykłady. Ponadto należy znać dowody tam gdzie to jest zaznaczone. Liczby zespolone.

Bardziej szczegółowo

Test z informatyki. do Liceum Akademickiego do profilu matematyczno-informatycznofizycznego. 31 maja 2014 r., godz. 9.

Test z informatyki. do Liceum Akademickiego do profilu matematyczno-informatycznofizycznego. 31 maja 2014 r., godz. 9. Test z informatyki do Liceum Akademickiego do profilu matematyczno-informatycznofizycznego 31 maja 2014 r., godz. 9.15, czas: 45 minut Kod kandydata: Liczba punktów: Część I Zakreśl krzyżykiem prawidłowe

Bardziej szczegółowo

PageRank i HITS. Mikołajczyk Grzegorz

PageRank i HITS. Mikołajczyk Grzegorz PageRank i HITS Mikołajczyk Grzegorz PageRank Metoda nadawania indeksowanym stronom internetowym określonej wartości liczbowej, oznaczającej jej jakość. Algorytm PageRank jest wykorzystywany przez popularną

Bardziej szczegółowo

Komputery, obliczenia, algorytmy Tianhe-2 (MilkyWay-2), system Kylin Linux, 33862.7 Tflops, 17808.00 kw

Komputery, obliczenia, algorytmy Tianhe-2 (MilkyWay-2), system Kylin Linux, 33862.7 Tflops, 17808.00 kw Komputery, obliczenia, algorytmy Tianhe-2 (MilkyWay-2), system Kylin Linux, 33862.7 Tflops, 17808.00 kw Michał Rad 08.10.2015 Co i po co będziemy robić Cele zajęć informatycznych: Alfabetyzacja komputerowa

Bardziej szczegółowo

Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania

Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania Mariusz Juszczyk 16 marca 2010 Seminarium badawcze Wykład 1. Systemy przekazywania wiadomości z założeniem bezbłędności działania Wstęp Systemy przekazywania wiadomości wymagają wprowadzenia pewnych podstawowych

Bardziej szczegółowo

Sieci komputerowe. Wykład 8: Wyszukiwarki internetowe. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Sieci komputerowe. Wykład 8: Wyszukiwarki internetowe. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe Wykład 8: Wyszukiwarki internetowe Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 8 1 / 37 czyli jak znaleźć igłę w sieci Sieci komputerowe

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować

Bardziej szczegółowo

Definicja układu kombinacyjnego była stosunkowo prosta -tabela prawdy. Opis układu sekwencyjnego jest zadaniem bardziej złożonym.

Definicja układu kombinacyjnego była stosunkowo prosta -tabela prawdy. Opis układu sekwencyjnego jest zadaniem bardziej złożonym. 3.4. GRF UTOMTU, TBELE PRZEJŚĆ / WYJŚĆ Definicja układu kombinacyjnego była stosunkowo prosta -tabela prawdy. Opis układu sekwencyjnego jest zadaniem bardziej złożonym. Proste przypadki: Opis słowny, np.:

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

Zadania przykładowe do kolokwium z AA2

Zadania przykładowe do kolokwium z AA2 1 Zadania przykładowe do kolokwium z AA2 Zadanie 1 Dla tekstu ALA MA KOTA ALE ON MA ALERGIĘ zilustruj działanie algorytmów: a) LZ77, b) LZ78, c) LZSS. Załóż, że maksymalna długość dopasowania to 4, rozmiar

Bardziej szczegółowo

Schemat sprawdzianu. 25 maja 2010

Schemat sprawdzianu. 25 maja 2010 Schemat sprawdzianu 25 maja 2010 5 definicji i twierdzeń z listy 12(po 10 punktów) np. 1. Proszę sformułować twierdzenie Brouwera o punkcie stałym. 2. Niech X będzie przestrzenią topologiczną. Proszę określić,

Bardziej szczegółowo

MIO - LABORATORIUM. Imię i nazwisko Rok ak. Gr. Sem. Komputer Data ... 20 / EC3 VIII LAB...

MIO - LABORATORIUM. Imię i nazwisko Rok ak. Gr. Sem. Komputer Data ... 20 / EC3 VIII LAB... MIO - LABORATORIUM Temat ćwiczenia: TSP - Problem komiwojażera Imię i nazwisko Rok ak. Gr. Sem. Komputer Data Podpis prowadzącego... 20 / EC3 VIII LAB...... Zadanie Zapoznać się z problemem komiwojażera

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 3 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo