Obliczenia Naturalne - Algorytmy Mrówkowe cz. 4

Wielkość: px
Rozpocząć pokaz od strony:

Download "Obliczenia Naturalne - Algorytmy Mrówkowe cz. 4"

Transkrypt

1 Plan Literatura Obliczenia Naturalne - y Mrówkowe cz. 4 Paweł Paduch Politechnika Świętokrzyska 12 czerwca 2014 Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 1 z 37

2 Plan wykładu Wstęp Plan Literatura 1 Wstęp Plan Literatura 2 3 Definicja Główne problemy Rezultaty 4 Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 2 z 37

3 Literatura Wstęp Plan Literatura Marco Dorigo, Thomas Stützle - Ant Colony Optimization. Bradford Company, Scituate, MA, USA, 2004 Krzysztof Socha, Joshua Knowles, and Michael Sampels - A max-min ant system for the university course timetabling problem Proceedings of the 3rd International Workshop on Ant Algorithm, ANTS 2002, Lecture Notes in Computer Science, strony Springer-Verlag, 2002 Daniel Merkle, Martin Middendorf - An Ant Algorithm with a New Pheromone Evaluation Rule for Total Tardiness Problems. EvoWorkshops, strony , 2000 Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 3 z 37

4 Literatura Wstęp Plan Literatura Daniel Merkle, Martin Middendorf, Hartmut Schmeck - Ant colony optimization for resource-constrained project scheduling. IEEE Transactions on Evolutionary Computation, strony Morgan Kaufmann, 2000 Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 4 z 37

5 Cel Wstęp Głównym zadaniem planowania uniwersyteckieog rozkładu zajęć (ang. University Course Timetabling Problem - UCTP) jest przypisanie wydarzenia do przedziałów czasowych oraz do pomieszczeń tak, by wszystkie twarde założenia zostały spełnione oraz by było jak najmniej niespełnionych miękkich założeń. Problem UCTP wraz z podobnymi podproblemami jest NP-trudny, próbowano go już rozwiązywać za pomocą algorytmów ewolucyjnych, symulowanego wyżarzania, tabu search. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 5 z 37

6 Założenia Wstęp Dany jest zbiór n zajęć (Events) E Dany jest zbiór slotów czasowych T = {t 1, t 2,..., t k } Dla 5 dni w tygodniu i 9 godzin k = 45 Zbiór pomieszczeń R w których zajęcia mogłyby się odbywać Zbiór studentów S uczęszczających na zajęcia Zbiór F cech jakie spełniają pomieszczenia R a wymagane są do prowadzenia zajęć E Każdy student uczęszcza na pewną liczbę zajęć Każda sala ma określoną pojemność studentów Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 6 z 37

7 Wykonalność - założenia twarde Plan jest wykonalny gdy wszystkie zajęcia są przydzielone do slotów czasowych i pomieszczeń w ten sposób, że wszystkie twarde założenia są spełnione: żaden student (grupa studencka) nie uczestniczy w tym samym czasie w większej liczbie zajęć niż 1. pomieszczenie jest na tyle pojemne by wszyscy studenci się zmieścili i spełnia wymagania stawiane przez określone zajęcia (np. wyposażenie) w danym pomieszczeniu w tym samym czasie prowadzone mogą być tylko jedne zajęcia. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 7 z 37

8 Założenia miękkie Wykonalny plan jest jednocześnie karany za naruszenie założeń miękkich np. Student ma zajęcia w ostatniej godzinie danego dnia Student ma więcej niż 2 zajęcia pod rząd (u nas raczej chodzi o minimalizowanie okienek) Student ma dokładnie jedne zajęcia w ciągu całego dnia. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 8 z 37

9 Wyższość założeń Twarde ograniczenia muszą być spełnione przez wszystkie możliwe rozwiązania, miękkie zaś nie dotyczą wykonywalności, ale wpływają na jakość rozwiązania. Założenia twarde są stawiane zawsze wyżej niż założenia miękkie. Jeżeli w pewnym rozwiązaniu wszystkie założenia miękkie są spełnione ale złamane jest choćby jedno twarde to takie rozwiązanie ma mniej punktów niż inne ze spełnionymi wszystkim założeniami twardymi ale z dużą liczbą złamanych założeń miękkich. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz. 4 9 z 37

10 Reprezentacja Wstęp Rozwiązaniem jest wektor T E reprezentujący pary slotów czasowych i zajęć. Przypisaniem tych par do pomieszczeń zajmu się już deterministyczny algorytm. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

11 Konstruowanie grafu Aby użyć algorytmu mrówkowego do omawianego problemu musimy umieścić go na grafie. Dwa podejścia stosowane przez mrówki: Odwiedzanie kolejnych slotów czasowych próbując dopasować do nich zajęcia. Odwiedzanie kolejnych zajęć próbując dopasować sloty czasowe. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

12 Struktura sieci Pierwsze podejście wymaga użycia wirtualnych slotów czasowych T = {t 1, t 2,..., t E } i mapowania T T e 1 t 1 t 2 t n Start e 2 Stop e n Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

13 Struktura sieci Drugie podejście jest prostsze, mrówka przechodzi przez wszystkie zajęcia e E wybierając dla nich różne sloty czasowe t T. To gwarantuje, że każde zajęcia będą dokładnie raz w jednym slocie czasowym. Ponadto można ustawić na samym początku bardziej problematyczne zajęcia np. wymagające dużej auli. e 1 e 2 e n t 1 Start t 2 Stop t k Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

14 Mrówki przechodząc przez graf tworzą częściowe rozwiązania A i : E i T dla i = 0,..., E, gdzie E i = {e 1,..., e i }. Mrówka startuje pustym częściowym rozwiązaniem A 0 = 0. Po skonstruowaniu Ai 1 tworzone jest rozwiązanie A i jako suma poprzedniego rozwiązania i dołączenia bieżącej pary slotu czasowego i zajęć A i = A i 1 {(e i, t)} Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

15 Slot czasowy t jest wybierany losowo ze zbioru T zgodnie z prawdopodobieństwem p ei,t zależnego od macierzy feromonów τ(a i 1 ) [τ min, τ max ] E T (τ min, τ max R) oraz informacji heurystycznej η(a i 1 ) danej wzorem: p ei,t(τ(a i 1 ), η(a i 1 )) = (τ (ei,t)(a i 1 )) α (η (ei,t)(a i 1 )) β θ T (τ (e i,θ)(a i 1 )) α (η (ei,θ)(a i 1 )) β Zarówno τ jak i η mają w argumencie poprzednie częściowe rozwiązanie A i 1. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

16 Reprezentacja feromonowa W najprostszym podejściu feromon reprezentuje bezwzględną pozycję, gdzie zajęcia powinny być umieszczone. Macierz feromonowa dana jest τ(a i ) = τ, i = 1,..., E. Oznacza to że feromon nie zależy od częściowego rozwiązania. A i. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

17 Macierz feromonowa W bardziej zaawansowanych rozwiązaniach można dodać dodatkową macierz µ R E E + określająca, które zajęcia mogą być wykonywane w tym samym czasie a które nie. Teraz τ (e,t) (A i ) może być wyrażona: { τmax jeżeli A 1 i (t) = 0 τ (e,t) (A i ) = min e A 1 i (t) µ(e, e ) dla pozostałych. Zapisując informacje zwrotną do µ algorytm uczy się, które zajęcia może łączyć a których nie. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

18 Informacja heurystyczna Najprostsza informacja heurystyczna będzie zależeć od liczby naruszonych warunków twardych i miękkich danych funkcją V (e,t) (A i 1 ). 1 η (e,t) (A i 1 ) = 1 + V (e,t) (A i 1 ) Wyliczanie V może być kosztowne i niepotrzebne w przypadku użycia Local Search. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

19 Wstęp Na początku inicjowana jest macierz feromonów wartością τ max. W każdej iteracji m mrówek tworzy swoje własne kompletne rozwiązanie, przypisując wszystkie zajęcia do slotów czasowych. Mrówki pobierają zajęcia w ustalonej wcześniej kolejności, sloty czasowe wybierają zaś zgodnie z opisanym wcześniej prawdopodobieństwem. Po stworzeniu wszystkich par zajęcie-slot czasowy przetwarzane są one na plan zajęć. Najlepiej dopasowany plan jest jeszcze ulepszany za pomocą algorytmu lokalnego wyszukiwania. Jeżeli nowe plan jest lepszy od poprzednich zostaje zapamiętany. Następnie na podstawie najlepszego dotychczasowego planu aktualizujemy feromon. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

20 Wstęp 1 MAX-MIN UCTP (Inicjalizacja) Wejście: Instancja problemu I 1: τ max 1/ρ 2: τ(e, t) τ max (e, t) E T 3: Oblicz c(e, e ) (e, e ) E 2 4: Oblicz d(e) 5: Posortuj E według, dając e 1 e 2... e n Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

21 Wstęp 2 MAX-MIN UCTP (Główna pętla) 6: while Nie upłynął czas do 7: for a = 1 to m do 8: A 0 0 9: for i = 1 to E do 10: Wybierz slot czasowy t według p ei,t dla zajęć e i 11: A i A i 1 (e i, t) 12: end for 13: C rozwiązanie po przekształceniu A n na plan zajęć 14: C ib najlepsze z C i w C ib 15: end for 16: C ib rozwiązanie po użyciu lokalnego wyszukiwania na C ib 17: C gb najlepsze z C ib oraz C gb 18: Zaktualizuj feromon τ używając C gb, τ min, τ max 19: end while Wyjście: Zoptymalizowany kandydat C gb rozwiązania dla I Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

22 - objaśnienia c(e, e ) = { 1 jeżeli są studenci uczestniczący w e oraz e 0 dla pozostałych. d(e) = {e E\{e} c(e, e ) 0} Kolejność zdefiniowana jest następująco: e e : d(e) > d(e ) d(e) = d(e ) l(e) < l(e ) Gdzie l jest funkcją różnowartościową l : E N i jest używana tylko do trzymania więzi. Tylko rozwiązania z najmniejszą liczbą naruszonych warunków wybierane są do poprawienia metodą Local Search. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

23 Aktualizacja feromonu Do aktualizowania feromonu raz na iterację wybierane jest tylko najlepsze globalne rozwiązanie. { (1 ρ) τ(e,t) + 1 jeżeli A τ(e, t) = gb (e) = t (1 ρ) τ (e,t) dla pozostałych. żeby wartość feromonu była pomiędzy τ min, τ max τ min jeżeli τ (e,t) < τ min τ(e, t) = τ max jeżeli τ (e,t) > τ max dla pozostałych τ (e,t) Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

24 Zalecane parametry Zalecanymi parametrami są: ρ = 0, 3 τ max = 1 ρ = 3, 33 τ min około 0,0019-0,0078 (zależne od skali problemu) α = 1 β = 0 - wyłączenie heurystyki liczba mrówek m = 10 Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

25 Problem harmonogramowania Definicja Główne problemy Rezultaty Problem harmonogramowania (ang. Scheduling Problems) to kolejny problem do rozwiązania którego użyto algorytmu ACO. Problem ten zwykle występuje w harmonogramowaniu produkcji, gdzie na m maszynach trzeba wykonać n zadań w g operacjach. Trzeba tak poukładać zadania, by wykorzystanie zasobów było najlepsze. W zależności od rodzaju problemu harmonogramowania, różne jego wersje mogą różnić się pewnymi ograniczeniami lub dodatkowymi założeniami, jak np. relacje pomiędzy poszczególnymi procesami czy uwzględnienie problemu transportu. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

26 Definicja Główne problemy Rezultaty Główne problemy harmonogramowania rozwiązywane za pomocą ACO to między innymi: problem otwarty OSP (ang. open-shop problem), problem gniazdowy JSP, (ang. job shop problem), problem permutacyjny przepływowy PFSP (ang. permutation flow shop problem), SMTTP (ang. single-machine total tardiness problem), SMTWTP (ang. single-machine total weighted tardiness problem), RCPSP (ang. resource-constrained project scheduling problem), GSP (ang. group shop problem) SMTTPSDST (ang. single-machine total tardiness problem with sequence dependent setup times). Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

27 Rezultaty Wstęp Definicja Główne problemy Rezultaty ACO stosuje się do wielu problemów harmonogramowania jednak wydajność algorytmów mrówkowych w zależności od typu problemu może się różnić. ACO osiąga bardzo dobre wyniki w zastosowaniu do rozwiązania problemów SMTWTP, OSP czy RCPSP. Jednak przy PFSP czy JSP rezultaty są dalekie od tych osiąganych za pomocą innych algorytmów. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

28 Ogólnie Wstęp Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Problem podzbioru (ang. Subset Problem) polega na odpowiednim wybraniu elementów z podanego zbioru według pewnych zasad. Wybór musi być dokonany tak, by był optymalny. Zastosowanie ACO do problemu podzbioru charakteryzują dwie cechy. kolejność podzbioru nie jest istotna, w ten sposób ślady feromonowe związane są z elementami, a nie połączeniami pomiędzy nimi. liczba elementów w rozwiązaniu budowanym przez różne mrówki może być różna. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

29 Pokrycie zbioru Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Pokrycie zbioru (ang. set covering), gdzie mając na wejściu wiele zbiorów, które mają elementy wspólne, trzeba wybrać minimalny zestaw tych zbiorów by zawierały wszystkie elementy, jakie znajdywały się w zbiorach danych na wejściu. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

30 Problem - WCGTPP Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Problem podziału drzewa w grafie ograniczonym wagowo (ang. Weight Constrained Graph Tree Partition Problem - WCGTPP), gdzie mamy nieskierowany graf G(N, A) składający się z n węzłów i l krawędzi. Każdej krawędzi (i, j) jest przypisany koszt c ij a każdemu węzłowi i jest przypisana waga w i. Celem jest znalezienie minimalnego lasu rozpinającego F złożonego z p drzew tak, by waga każdego drzewa mieściła się w wyznaczonym przedziale [W, W + ]. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

31 Arc-Weighted l-cardinality Tree Problem Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Arc-Weighted l-cardinality Tree Problem. Jest uogólnieniem problemu wyznaczenia minimalnego drzewa rozpinającego, który polega na znalezieniu poddrzewa z dokładnie l krawędziami w grafie G = (N, A) z wagami krawędzi (lub węzłów) takimi, by suma wag była minimalna. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

32 Problem wielo-plecakowy Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Problem wielo-plecakowy (ang. Multiple Knapsack Problem - MKP). Mamy kilka kontenerów (plecaków) o ograniczonych zasobach (np. pojemności). Dany jest zestaw przedmiotów konsumujących pewne zasoby (np. pojemność) oraz mających pewną wartość (np. waga, cena). Należy tak dopasować przedmioty do kontenerów, by wartość w nich była jak najbardziej optymalna i jednocześnie nie przekroczyć granicznej objętości. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

33 Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Problem największego zbioru niezależnego Problem największego zbioru niezależnego (ang. Maximum Independent Set Problem). Polega na znalezieniu maksymalnego podzbioru wierzchołków danego grafu takich, pomiędzy którymi nie istnieje żadna krawędź łącząca je bezpośrednio. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

34 Problem maksymalnej kliki Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Problem maksymalnej kliki (ang. Maximum Clique Problem). Jest to problem wyznaczenia w grafie maksymalnego zbioru wierzchołków, w którym każda para jest połączona krawędzią. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

35 Inne Wstęp Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Z innych problemów NP-trudnych do rozwiązania których użyto algorytmów mrówkowych można wymienić problem najkrótszego wspólnego podciągu (ang. Shortest Common Supersequence Problem), problem pakowania (ang. Bin Packing Problem), przewidywanie ułożenia białek bazując na sekwencji aminokwasów (ang. Protein Folding), w problemach uczenia się maszyn. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

36 Pytania Wstęp Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania? Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

37 koniec Wstęp Ogólnie y mrówkowe w problemach podzbioru Inne zastosowania Dziękuję Państwu za uwagę. Paweł Paduch Obliczenia Naturalne - y Mrówkowe cz z 37

Systemy mrówkowe. Opracowali: Dawid Strucker, Konrad Baranowski

Systemy mrówkowe. Opracowali: Dawid Strucker, Konrad Baranowski Systemy mrówkowe Opracowali: Dawid Strucker, Konrad Baranowski Wprowadzenie Algorytmy mrówkowe oparte są o zasadę inteligencji roju (ang. swarm intelligence). Służą głównie do znajdowania najkrótszej drogi

Bardziej szczegółowo

Obliczenia inspirowane Naturą

Obliczenia inspirowane Naturą Obliczenia inspirowane Naturą Wykład 10 - Mrówki w labiryntach Jarosław Miszczak IITiS PAN Gliwice 05/05/2016 1 / 48 Na poprzednim wykładzie 1... 2... 3... 2 / 48 1 Motywacja biologiczna Podstawowe mechanizmy

Bardziej szczegółowo

Algorytmy mrówkowe (ang. Ant Colony Optimization)

Algorytmy mrówkowe (ang. Ant Colony Optimization) Algorytmy mrówkowe (ang. Ant Colony Optimization) 1. Wprowadzenie do ACO a) mrówki naturalne b) mrówki sztuczne c) literatura (kilka pozycji) 2. ACO i TSP 1. Wprowadzenie do ACO a) mrówki naturalne ślepe,

Bardziej szczegółowo

Obliczenia Naturalne - Algorytmy Mrówkowe

Obliczenia Naturalne - Algorytmy Mrówkowe Plan Literatura Obliczenia Naturalne - Algorytmy Mrówkowe Paweł Paduch Politechnika Świętokrzyska 8 maja 2014 Paweł Paduch Obliczenia Naturalne - Algorytmy Mrówkowe 1 z 43 Plan wykładu Plan Literatura

Bardziej szczegółowo

Algorytmy Mrówkowe. Daniel Błaszkiewicz. 11 maja 2011. Instytut Informatyki Uniwersytetu Wrocławskiego

Algorytmy Mrówkowe. Daniel Błaszkiewicz. 11 maja 2011. Instytut Informatyki Uniwersytetu Wrocławskiego Algorytmy Mrówkowe Instytut Informatyki Uniwersytetu Wrocławskiego 11 maja 2011 Opis Mrówki w naturze Algorytmy to stosunkowo nowy gatunek algorytmów optymalizacyjnych stworzony przez Marco Dorigo w 1992

Bardziej szczegółowo

Metody Programowania

Metody Programowania POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Metody Programowania www.pk.edu.pl/~zk/mp_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład 8: Wyszukiwanie

Bardziej szczegółowo

Laboratorium technik optymalizacji: układanie uniwersyteckiego planu zajęć

Laboratorium technik optymalizacji: układanie uniwersyteckiego planu zajęć Laboratorium technik optymalizacji: układanie uniwersyteckiego planu zajęć Marek Kubiak Opis problemu Rozważany problem układania uniwersyteckiego planu zajęć (ang. University Course Timetabling Problem

Bardziej szczegółowo

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle

Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Badania operacyjne: Wykład Zastosowanie kolorowania grafów w planowaniu produkcji typu no-idle Paweł Szołtysek 12 czerwca 2008 Streszczenie Planowanie produkcji jest jednym z problemów optymalizacji dyskretnej,

Bardziej szczegółowo

Algorytmy mrówkowe. P. Oleksyk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne

Algorytmy mrówkowe. P. Oleksyk. Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne y mrówkowe P. Oleksyk Wydział Informatyki Zachodniopomorski Uniwersytet Technologiczny w Szczecinie Inteligentne systemy informatyczne 14 kwietnia 2015 1 Geneza algorytmu - biologia 2 3 4 5 6 7 8 Geneza

Bardziej szczegółowo

Problemy z ograniczeniami

Problemy z ograniczeniami Problemy z ograniczeniami 1 2 Dlaczego zadania z ograniczeniami Wiele praktycznych problemów to problemy z ograniczeniami. Problemy trudne obliczeniowo (np-trudne) to prawie zawsze problemy z ograniczeniami.

Bardziej szczegółowo

Programowanie dynamiczne i algorytmy zachłanne

Programowanie dynamiczne i algorytmy zachłanne Programowanie dynamiczne i algorytmy zachłanne Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii

Bardziej szczegółowo

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek

Algorytmy i str ruktury danych. Metody algorytmiczne. Bartman Jacek Algorytmy i str ruktury danych Metody algorytmiczne Bartman Jacek jbartman@univ.rzeszow.pl Metody algorytmiczne - wprowadzenia Znamy strukturę algorytmów Trudność tkwi natomiast w podaniu metod służących

Bardziej szczegółowo

Algorytmy mrówkowe. Plan. » Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji» Testowanie

Algorytmy mrówkowe. Plan. » Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji» Testowanie Algorytmy mrówkowe w środowiskach dynamicznych Dariusz Maksim, promotor: prof. nzw. dr hab. Jacek Mańdziuk 1/51 Plan» Algorytm mrówkowy» Warianty» CVRP» Demo» Środowisko dynamiczne» Pomysł modyfikacji»

Bardziej szczegółowo

Algorytmy stochastyczne laboratorium 03

Algorytmy stochastyczne laboratorium 03 Algorytmy stochastyczne laboratorium 03 Jarosław Piersa 10 marca 2014 1 Projekty 1.1 Problem plecakowy (1p) Oznaczenia: dany zbiór przedmiotów x 1,.., x N, każdy przedmiot ma określoną wagę w(x i ) i wartość

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Algorytmy zachłanne, programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk(Wydział Fizyki) WP w. IX Jesień 2014 1 / 26 Algorytmy zachłanne Strategia polegająca

Bardziej szczegółowo

Algorytmy mrówkowe w dynamicznych problemach transportowych

Algorytmy mrówkowe w dynamicznych problemach transportowych y w dynamicznych problemach transportowych prof. dr hab Jacek Mandziuk MiNI, PW 3 czerwca 2013 Cel pracy Zbadanie zachowania algorytmu go zwykłego oraz z zaimplementowanymi optymalizacjami dla problemów

Bardziej szczegółowo

Podejście zachłanne, a programowanie dynamiczne

Podejście zachłanne, a programowanie dynamiczne Podejście zachłanne, a programowanie dynamiczne Algorytm zachłanny pobiera po kolei elementy danych, za każdym razem wybierając taki, który wydaje się najlepszy w zakresie spełniania pewnych kryteriów

Bardziej szczegółowo

Optymalizacja. Wybrane algorytmy

Optymalizacja. Wybrane algorytmy dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Andrzej Jaszkiewicz Problem optymalizacji kombinatorycznej Problem optymalizacji kombinatorycznej jest problemem

Bardziej szczegółowo

Wykorzystanie algorytmów mrówkowych w dynamicznym problem

Wykorzystanie algorytmów mrówkowych w dynamicznym problem Wykorzystanie algorytmów mrówkowych w dynamicznym problemie marszrutyzacji Promotor: dr inż. Aneta Poniszewska-Marańda Współpromotor: mgr inż. Łukasz Chomątek 18 stycznia 2013 Przedmiot i cele pracy dyplomowej

Bardziej szczegółowo

Algorytm genetyczny (genetic algorithm)-

Algorytm genetyczny (genetic algorithm)- Optymalizacja W praktyce inżynierskiej często zachodzi potrzeba znalezienia parametrów, dla których system/urządzenie będzie działać w sposób optymalny. Klasyczne podejście do optymalizacji: sformułowanie

Bardziej szczegółowo

Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP

Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP Algorytm dyskretnego PSO z przeszukiwaniem lokalnym w problemie dynamicznej wersji TSP Łukasz Strąk lukasz.strak@gmail.com Uniwersytet Śląski, Instytut Informatyki, Będzińska 39, 41-205 Sosnowiec 9 grudnia

Bardziej szczegółowo

HARMONOGRAMOWANIE Z OGRANICZENIAMI PROJEKTÓW WSPÓŁBIEŻNYCH

HARMONOGRAMOWANIE Z OGRANICZENIAMI PROJEKTÓW WSPÓŁBIEŻNYCH HARMONOGRAMOWANIE Z OGRANICZENIAMI PROJEKTÓW WSPÓŁBIEŻNYCH Bożena MARCIŃCZYK, Bożena SKOŁUD Streszczenie: W artykule przedstawiono zastosowanie meta heurystycznej metody algorytmu mrówkowego w harmonogramowaniu

Bardziej szczegółowo

Strategie Zespołowe (SZ) dr inż. Tomasz Białaszewski

Strategie Zespołowe (SZ) dr inż. Tomasz Białaszewski Strategie Zespołowe (SZ) dr inż. Tomasz Białaszewski Tematyka wykładu Algorytmy Inteligencji Roju (Swarm Intelligence, SI) Optymalizacja kolonią mrówek (Ant Colony Optimization, ACO) Optymalizacja rojem

Bardziej szczegółowo

RÓWNOLEGŁY ALGORYTM POSZUKIWANIA Z ZABRONIENIAMI UKŁADANIA PLANU ZAJĘĆ

RÓWNOLEGŁY ALGORYTM POSZUKIWANIA Z ZABRONIENIAMI UKŁADANIA PLANU ZAJĘĆ RÓWNOLEGŁY ALGORYTM POSZUKIWANIA Z ZABRONIENIAMI UKŁADANIA PLANU ZAJĘĆ Wojciech BOŻEJKO, Łukasz GNIEWKOWSKI Streszczenie: Praca dotyczy zastosowania równoległego algorytmu poszukiwania z zabronieniami

Bardziej szczegółowo

Metody przeszukiwania

Metody przeszukiwania Metody przeszukiwania Co to jest przeszukiwanie Przeszukiwanie polega na odnajdywaniu rozwiązania w dyskretnej przestrzeni rozwiązao. Zwykle przeszukiwanie polega na znalezieniu określonego rozwiązania

Bardziej szczegółowo

Planowanie przedsięwzięć

Planowanie przedsięwzięć K.Pieńkosz Badania Operacyjne Planowanie przedsięwzięć 1 Planowanie przedsięwzięć Model przedsięwzięcia lista operacji relacje poprzedzania operacji modele operacji funkcja celu planowania K.Pieńkosz Badania

Bardziej szczegółowo

Wybrane podstawowe rodzaje algorytmów

Wybrane podstawowe rodzaje algorytmów Wybrane podstawowe rodzaje algorytmów Tomasz Głowacki tglowacki@cs.put.poznan.pl Zajęcia finansowane z projektu "Rozwój i doskonalenie kształcenia na Politechnice Poznańskiej w zakresie technologii informatycznych

Bardziej szczegółowo

Problemy optymalizacyjne - zastosowania

Problemy optymalizacyjne - zastosowania Problemy optymalizacyjne - zastosowania www.qed.pl/ai/nai2003 PLAN WYKŁADU Zło ono obliczeniowa - przypomnienie Problemy NP-zupełne klika jest NP-trudna inne problemy NP-trudne Inne zadania optymalizacyjne

Bardziej szczegółowo

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie

Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Algorytm Dijkstry znajdowania najkrótszej ścieżki w grafie Używane struktury danych: V - zbiór wierzchołków grafu, V = {1,2,3...,n} E - zbiór krawędzi grafu, E = {(i,j),...}, gdzie i, j Î V i istnieje

Bardziej szczegółowo

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ). Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

Algorytmiczna teoria grafów

Algorytmiczna teoria grafów Przedmiot fakultatywny 20h wykładu + 20h ćwiczeń 21 lutego 2014 Zasady zaliczenia 1 ćwiczenia (ocena): kolokwium, zadania programistyczne (implementacje algorytmów), praca na ćwiczeniach. 2 Wykład (egzamin)

Bardziej szczegółowo

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne

Algorytmy i struktury danych. Drzewa: BST, kopce. Letnie Warsztaty Matematyczno-Informatyczne Algorytmy i struktury danych Drzewa: BST, kopce Letnie Warsztaty Matematyczno-Informatyczne Drzewa: BST, kopce Definicja drzewa Drzewo (ang. tree) to nieskierowany, acykliczny, spójny graf. Drzewo może

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Programowanie dynamiczne Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. X Jesień 2013 1 / 21 Dziel i zwyciężaj przypomnienie 1 Podział problemu na 2 lub

Bardziej szczegółowo

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI

ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI J.NAWROCKI, M. ANTCZAK, H. ĆWIEK, W. FROHMBERG, A. HOFFA, M. KIERZYNKA, S.WĄSIK ĆWICZENIE NR 1 WPROWADZENIE DO INFORMATYKI ZAD. 1. Narysowad graf nieskierowany. Zmodyfikowad go w taki sposób, aby stał

Bardziej szczegółowo

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład VII. Kryptografia Kierunek Informatyka - semestr V. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład VII Kierunek Informatyka - semestr V Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Problem pakowania plecaka System kryptograficzny Merklego-Hellmana

Bardziej szczegółowo

Tomasz M. Gwizdałła 2012/13

Tomasz M. Gwizdałła 2012/13 METODY METODY OPTYMALIZACJI OPTYMALIZACJI Tomasz M. Gwizdałła 2012/13 Informacje wstępne Tomasz Gwizdałła Katedra Fizyki Ciała Stałego UŁ Pomorska 149/153, p.523b tel. 6355709 tomgwizd@uni.lodz.pl http://www.wfis.uni.lodz.pl/staff/tgwizdalla

Bardziej szczegółowo

WYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH

WYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH Inżynieria Rolnicza 7(105)/2008 WYKORZYSTANIE ALGORYTMÓW GENETYCZNYCH I MRÓWKOWYCH W PROBLEMACH TRANSPORTOWYCH Justyna Zduńczuk, Wojciech Przystupa Katedra Zastosowań Matematyki, Uniwersytet Przyrodniczy

Bardziej szczegółowo

Co to jest grupowanie

Co to jest grupowanie Grupowanie danych Co to jest grupowanie 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2 0.1 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Szukanie grup, obszarów stanowiących lokalne gromady punktów Co to jest grupowanie

Bardziej szczegółowo

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325

prowadzący dr ADRIAN HORZYK /~horzyk e-mail: horzyk@agh tel.: 012-617 Konsultacje paw. D-13/325 PODSTAWY INFORMATYKI WYKŁAD 8. prowadzący dr ADRIAN HORZYK http://home home.agh.edu.pl/~ /~horzyk e-mail: horzyk@agh agh.edu.pl tel.: 012-617 617-4319 Konsultacje paw. D-13/325 DRZEWA Drzewa to rodzaj

Bardziej szczegółowo

Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.

Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich. Pojęcia podstawowe c.d. Rachunek podziałów Elementy teorii grafów Klasy zgodności Rachunek podziałów i elementy teorii grafów będą stosowane w procedurach redukcji argumentów i dekompozycji funkcji boolowskich.

Bardziej szczegółowo

Metody Optymalizacji: Przeszukiwanie z listą tabu

Metody Optymalizacji: Przeszukiwanie z listą tabu Metody Optymalizacji: Przeszukiwanie z listą tabu Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje: wtorek

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA DRZEWA i LASY Drzewem nazywamy graf spójny nie zawierający cykli elementarnych. Lasem nazywamy graf nie zawierający cykli elementarnych. Przykłady drzew i lasów takie krawędzie są wykluczone drzewo las

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Twierdzenie 2.1 Niech G będzie grafem prostym

Bardziej szczegółowo

Matematyka dyskretna - 7.Drzewa

Matematyka dyskretna - 7.Drzewa Matematyka dyskretna - 7.Drzewa W tym rozdziale zajmiemy się drzewami: specjalnym przypadkiem grafów. Są one szczególnie przydatne do przechowywania informacji, umożliwiającego szybki dostęp do nich. Definicja

Bardziej szczegółowo

Wstęp do Techniki Cyfrowej... Teoria automatów

Wstęp do Techniki Cyfrowej... Teoria automatów Wstęp do Techniki Cyfrowej... Teoria automatów Alfabety i litery Układ logiczny opisywany jest przez wektory, których wartości reprezentowane są przez ciągi kombinacji zerojedynkowych. Zwiększenie stopnia

Bardziej szczegółowo

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA

OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) Algorytmy i Struktury Danych PIŁA OSTASZEWSKI Paweł (55566) PAWLICKI Piotr (55567) 16.01.2003 Algorytmy i Struktury Danych PIŁA ALGORYTMY ZACHŁANNE czas [ms] Porównanie Algorytmów Rozwiązyjących problem TSP 100 000 000 000,000 10 000 000

Bardziej szczegółowo

Projektowanie i analiza algorytmów

Projektowanie i analiza algorytmów POLITECHNIKA KRAKOWSKA - WIEiK KATEDRA AUTOMATYKI i TECHNIK INFORMACYJNYCH Projektowanie i analiza algorytmów www.pk.edu.pl/~zk/piaa_hp.html Wykładowca: dr inż. Zbigniew Kokosiński zk@pk.edu.pl Wykład

Bardziej szczegółowo

Algorytmy i struktury danych.

Algorytmy i struktury danych. Algorytmy i struktury danych. Wykład 4 Krzysztof M. Ocetkiewicz Krzysztof.Ocetkiewicz@eti.pg.gda.pl Katedra Algorytmów i Modelowania Systemów, WETI, PG Problem plecakowy mamy plecak o określonej pojemności

Bardziej szczegółowo

Genomika Porównawcza. Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski

Genomika Porównawcza. Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski Genomika Porównawcza Agnieszka Rakowska Instytut Informatyki i Matematyki Komputerowej Uniwersytet Jagiellooski 1 Plan prezentacji 1. Rodzaje i budowa drzew filogenetycznych 2. Metody ukorzeniania drzewa

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy PLAN WYKŁADU Algorytm mrówowy OPTYMALIZACJA GLOBALNA Wyład 8 dr inż. Agniesza Bołtuć (ANT SYSTEM) Inspiracja: Zachowanie mrówe podczas poszuiwania żywności, Zachowanie to polega na tym, że jeśli do żywności

Bardziej szczegółowo

PROBLEMY HAROMONOGRAMOWANIA PRODUKCJI

PROBLEMY HAROMONOGRAMOWANIA PRODUKCJI Łukasz Sobaszek, mgr inż. Wydział Mechaniczny, Politechnika Lubelska PROBLEMY HAROMONOGRAMOWANIA PRODUKCJI Artykuł zawiera informacje dotyczące procesu harmonogramowania produkcji, problemów występujących

Bardziej szczegółowo

Algorytmy Mrówkowe. Daniel Błaszkiewicz 11 maja 2011

Algorytmy Mrówkowe. Daniel Błaszkiewicz 11 maja 2011 Algorytmy Mrówkowe Daniel Błaszkiewicz 11 maja 2011 1 Wprowadzenie Popularnym ostatnimi laty podejściem do tworzenia nowych klas algorytmów do szukania rozwiązań problemów nie mających algorytmów rozwiązujących

Bardziej szczegółowo

Metody optymalizacji dyskretnej

Metody optymalizacji dyskretnej Metody optymalizacji dyskretnej Spis treści Spis treści Metody optymalizacji dyskretnej...1 1 Wstęp...5 2 Metody optymalizacji dyskretnej...6 2.1 Metody dokładne...6 2.2 Metody przybliżone...6 2.2.1 Poszukiwanie

Bardziej szczegółowo

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego

Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Porównanie wydajności CUDA i OpenCL na przykładzie równoległego algorytmu wyznaczania wartości funkcji celu dla problemu gniazdowego Mariusz Uchroński 3 grudnia 2010 Plan prezentacji 1. Wprowadzenie 2.

Bardziej szczegółowo

Obliczenia z wykorzystaniem sztucznej inteligencji

Obliczenia z wykorzystaniem sztucznej inteligencji Obliczenia z wykorzystaniem sztucznej inteligencji wykład III Systemy mrówkowe Joanna Kołodziejczyk marzec 2016 Joanna Kołodziejczyk Obliczenia z wykorzystaniem sztucznej inteligencji marzec 2016 1 / 38

Bardziej szczegółowo

Algorytmy genetyczne dla problemu komiwojażera (ang. traveling salesperson)

Algorytmy genetyczne dla problemu komiwojażera (ang. traveling salesperson) Algorytmy genetyczne dla problemu komiwojażera (ang. traveling salesperson) 1 2 Wprowadzenie Sztandarowy problem optymalizacji kombinatorycznej. Problem NP-trudny. Potrzeba poszukiwania heurystyk. Chętnie

Bardziej szczegółowo

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy)

Dynamiczny przydział pamięci w języku C. Dynamiczne struktury danych. dr inż. Jarosław Forenc. Metoda 1 (wektor N M-elementowy) Rok akademicki 2012/2013, Wykład nr 2 2/25 Plan wykładu nr 2 Informatyka 2 Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr III, studia niestacjonarne I stopnia Rok akademicki 2012/2013

Bardziej szczegółowo

ZASTOSOWANIE ALGORYTMÓW MRÓWKOWYCH W ROZWIĄZANIU PROBLEMU SZEREGOWANIA ZADAŃ APPLICATION OF ANT COLONY SYSTEMS IN SOLVING OF TASK SCHEDULING PROBLEM

ZASTOSOWANIE ALGORYTMÓW MRÓWKOWYCH W ROZWIĄZANIU PROBLEMU SZEREGOWANIA ZADAŃ APPLICATION OF ANT COLONY SYSTEMS IN SOLVING OF TASK SCHEDULING PROBLEM GRZEGORZ FILO ZASTOSOWANIE ALGORYTMÓW MRÓWKOWYCH W ROZWIĄZANIU PROBLEMU SZEREGOWANIA ZADAŃ APPLICATION OF ANT COLONY SYSTEMS IN SOLVING OF TASK SCHEDULING PROBLEM S t r e s z c z e n i e A b s t r a c

Bardziej szczegółowo

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu

Data Mining Wykład 9. Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster. Plan wykładu. Sformułowanie problemu Data Mining Wykład 9 Analiza skupień (grupowanie) Grupowanie hierarchiczne O-Cluster Plan wykładu Wprowadzanie Definicja problemu Klasyfikacja metod grupowania Grupowanie hierarchiczne Sformułowanie problemu

Bardziej szczegółowo

Algorytmy ewolucyjne 1

Algorytmy ewolucyjne 1 Algorytmy ewolucyjne 1 2 Zasady zaliczenia przedmiotu Prowadzący (wykład i pracownie specjalistyczną): Wojciech Kwedlo, pokój 205. Konsultacje dla studentów studiów dziennych: poniedziałek,środa, godz

Bardziej szczegółowo

Zaawansowane programowanie

Zaawansowane programowanie Zaawansowane programowanie wykład 3: inne heurystyki prof. dr hab. inż. Marta Kasprzak Instytut Informatyki, Politechnika Poznańska Heurystyką nazywamy algorytm (metodę) zwracający rozwiązanie przybliżone.

Bardziej szczegółowo

Przykład planowania sieci publicznego transportu zbiorowego

Przykład planowania sieci publicznego transportu zbiorowego TRANSPORT PUBLICZNY Przykład planowania sieci publicznego transportu zbiorowego Źródło: Bieńczak M., 2015 Politechnika Poznańska, Wydział Maszyn Roboczych i Transportu 1 METODYKA ZAŁOśENIA Dostarczanie

Bardziej szczegółowo

Algorytm memetyczny dla rzeczywistego problemu planowania tras pojazdów

Algorytm memetyczny dla rzeczywistego problemu planowania tras pojazdów Algorytm memetyczny dla rzeczywistego problemu planowania tras pojazdów Andrzej Jaszkiewicz, Przemysław Wesołek 3 grudnia 2013 Kontekst problemu Firma dystrybucyjna Kilka statystyk (wiedza z danych miesięcznych)

Bardziej szczegółowo

Złożoność obliczeniowa klasycznych problemów grafowych

Złożoność obliczeniowa klasycznych problemów grafowych Złożoność obliczeniowa klasycznych problemów grafowych Oznaczenia: G graf, V liczba wierzchołków, E liczba krawędzi 1. Spójność grafu Graf jest spójny jeżeli istnieje ścieżka łącząca każdą parę jego wierzchołków.

Bardziej szczegółowo

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów

LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów LEMRG algorytm generowania pokoleń reguł decyzji dla baz danych z dużą liczbą atrybutów Łukasz Piątek, Jerzy W. Grzymała-Busse Katedra Systemów Ekspertowych i Sztucznej Inteligencji, Wydział Informatyki

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

Heurystyki. Strategie poszukiwań

Heurystyki. Strategie poszukiwań Sztuczna inteligencja Heurystyki. Strategie poszukiwań Jacek Bartman Zakład Elektrotechniki i Informatyki Instytut Techniki Uniwersytet Rzeszowski DLACZEGO METODY PRZESZUKIWANIA? Sztuczna Inteligencja

Bardziej szczegółowo

CLUSTERING. Metody grupowania danych

CLUSTERING. Metody grupowania danych CLUSTERING Metody grupowania danych Plan wykładu Wprowadzenie Dziedziny zastosowania Co to jest problem klastrowania? Problem wyszukiwania optymalnych klastrów Metody generowania: k centroidów (k - means

Bardziej szczegółowo

Zadanie 5 - Algorytmy genetyczne (optymalizacja)

Zadanie 5 - Algorytmy genetyczne (optymalizacja) Zadanie 5 - Algorytmy genetyczne (optymalizacja) Marcin Pietrzykowski mpietrzykowski@wi.zut.edu.pl wersja 1.0 1 Cel Celem zadania jest zapoznanie się z Algorytmami Genetycznymi w celu rozwiązywanie zadania

Bardziej szczegółowo

Algorytmy heurystyczne w UCB dla DVRP

Algorytmy heurystyczne w UCB dla DVRP Algorytmy heurystyczne w UCB dla DVRP Seminarium IO na MiNI 24.03.2015 Michał Okulewicz based on the decision DEC-2012/07/B/ST6/01527 Plan prezentacji Definicja problemu DVRP UCB na potrzeby DVRP Algorytmy

Bardziej szczegółowo

Algorytmy mrówkowe wprowadzenie.

Algorytmy mrówkowe wprowadzenie. Algorytmy mrówkowe wprowadzenie. Jakub Zajkowski 1 Wstęp i rys historyczny Algorytmy mrówkowe to grupa procesów służących przede wszystkim do poszukiwania dróg w grafie. Z formalnego punktu widzenia algorytmy

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Złożoność obliczeniowa, poprawność programów Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk(Wydział Fizyki) WP w. XII Jesień 2013 1 / 20 Złożoność obliczeniowa Problem Ile czasu

Bardziej szczegółowo

Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH

Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Marcel Stankowski Wrocław, 23 czerwca 2009 INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Przeszukiwanie przestrzeni rozwiązań, szukanie na ślepo, wszerz, w głąb. Spis treści: 1. Wprowadzenie 3. str. 1.1 Krótki Wstęp

Bardziej szczegółowo

Zagadnienie najkrótszej drogi w sieci

Zagadnienie najkrótszej drogi w sieci L L Zagadnienie najkrótszej drogi w sieci 1 Rozważmy sieć, gdzie graf jest grafem skierowanym (digrafem) a jest funkcją określoną na zbiorze łuków. Wartość tej funkcji na łuku!"$#%'&, którą oznaczać będziemy

Bardziej szczegółowo

Wyznaczanie optymalnej trasy problem komiwojażera

Wyznaczanie optymalnej trasy problem komiwojażera Wyznaczanie optymalnej trasy problem komiwojażera Optymalizacja w podejmowaniu decyzji Opracowała: mgr inż. Natalia Malinowska Wrocław, dn. 28.03.2017 Wydział Elektroniki Politechnika Wrocławska Plan prezentacji

Bardziej szczegółowo

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO

SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO SCHEMAT ROZWIĄZANIA ZADANIA OPTYMALIZACJI PRZY POMOCY ALGORYTMU GENETYCZNEGO. Rzeczywistość (istniejąca lub projektowana).. Model fizyczny. 3. Model matematyczny (optymalizacyjny): a. Zmienne projektowania

Bardziej szczegółowo

Optymalizacja. Algorytmy dokładne

Optymalizacja. Algorytmy dokładne dr hab. inż. Instytut Informatyki Politechnika Poznańska www.cs.put.poznan.pl/mkomosinski, Maciej Hapke Organizacja zbioru rozwiązań w problemie SAT Wielokrotny podział na dwia podzbiory: x 1 = T, x 1

Bardziej szczegółowo

Obliczenia z wykorzystaniem sztucznej inteligencji

Obliczenia z wykorzystaniem sztucznej inteligencji Obliczenia z wykorzystaniem sztucznej inteligencji wykład III Systemy mrówkowe Joanna Kołodziejczyk 31 marzec 2014 Plan wykładu 1 Inspiracje biologiczne Informacje ogólne Naturalna optymalizacja 2 Artificial

Bardziej szczegółowo

Metody uporządkowania

Metody uporządkowania Metody uporządkowania W trakcie faktoryzacji macierzy rzadkiej ilość zapełnień istotnie zależy od sposobu numeracji równań. Powstaje problem odnalezienia takiej numeracji, przy której: o ilość zapełnień

Bardziej szczegółowo

Metoda podziału i ograniczeń

Metoda podziału i ograniczeń Seminarium: Algorytmy heurystyczne Metoda podziału i ograniczeń Mateusz Łyczek Wrocław, 16 marca 011 r. 1 Metoda podziału i ograniczeń Metoda podziału i ograniczeń służy do rozwiązywania problemów optymalizacyjnych.

Bardziej szczegółowo

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa

Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa Wstęp do sieci neuronowych, wykład 12 Łańcuchy Markowa M. Czoków, J. Piersa 2012-01-10 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego 3 1 Łańcucha Markowa 2 Istnienie Szukanie stanu stacjonarnego

Bardziej szczegółowo

WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI

WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI POLITECHNIKA WARSZAWSKA WYDZIAŁ MECHANICZNY ENERGETYKI I LOTNICTWA MEL WPROWADZENIE DO SZTUCZNEJ INTELIGENCJI NS 586 Dr inż. Franciszek Dul 5. ROZWIĄZYWANIE PROBLEMÓW Z OGRANICZENIAMI Problemy z ograniczeniami

Bardziej szczegółowo

Matematyka Dyskretna - zadania

Matematyka Dyskretna - zadania zad. 1. Chcemy zdefiniować rekurencyjnie zbiór Z wszystkich trójkątów równoramiennych ABC, gdzie współrzędne wierzchołków będą liczbami całkowitymi, wierzchołek A zawsze będzie leżeć w początku układu

Bardziej szczegółowo

Algorytmy i Struktury Danych

Algorytmy i Struktury Danych Algorytmy i Struktury Danych Kopce Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych Wykład 11 1 / 69 Plan wykładu

Bardziej szczegółowo

Programowanie Równoległe i Rozproszone. Algorytm Kung a. Algorytm Kung a. Programowanie Równoległe i Rozproszone Wykład 8. Przygotował: Lucjan Stapp

Programowanie Równoległe i Rozproszone. Algorytm Kung a. Algorytm Kung a. Programowanie Równoległe i Rozproszone Wykład 8. Przygotował: Lucjan Stapp Programowanie Równoległe i Rozproszone Lucjan Stapp Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska (l.stapp@mini.pw.edu.pl) 1/34 PRiR Algorytm Kunga Dany jest odcinek [a,b] i ciągła funkcja

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2014 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2014 1 / 24 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Programowanie obiektowe

Programowanie obiektowe Programowanie obiektowe Sieci powiązań Paweł Daniluk Wydział Fizyki Jesień 2015 P. Daniluk (Wydział Fizyki) PO w. IX Jesień 2015 1 / 21 Sieci powiązań Można (bardzo zgrubnie) wyróżnić dwa rodzaje powiązań

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

Algorytmy zrandomizowane

Algorytmy zrandomizowane Algorytmy zrandomizowane http://zajecia.jakubw.pl/nai ALGORYTMY ZRANDOMIZOWANE Algorytmy, których działanie uzależnione jest od czynników losowych. Algorytmy typu Monte Carlo: dają (po pewnym czasie) wynik

Bardziej szczegółowo

Harmonogramowanie produkcji

Harmonogramowanie produkcji Harmonogramowanie produkcji Harmonogramowanie produkcji jest ściśle związane z planowaniem produkcji. Polega na: rozłożeniu w czasie przydziału zasobów do zleceń produkcyjnych, podziale zleceń na partie

Bardziej szczegółowo

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np.

Drzewa binarne. Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0. jest drzewem binarnym Np. Drzewa binarne Drzewo binarne to dowolny obiekt powstały zgodnie z regułami: jest drzewem binarnym Jeśli T 0 i T 1 są drzewami binarnymi to T 0 T 1 jest drzewem binarnym Np. ( ) ( ( )) Wielkość drzewa

Bardziej szczegółowo

Zarządzanie zasobami w harmonogramowaniu wieloobiektowych przedsięwzięć budowlanych z wykorzystaniem teorii szeregowania zadań

Zarządzanie zasobami w harmonogramowaniu wieloobiektowych przedsięwzięć budowlanych z wykorzystaniem teorii szeregowania zadań Zarządzanie zasobami w harmonogramowaniu wieloobiektowych przedsięwzięć budowlanych z wykorzystaniem teorii szeregowania zadań 42 Dr inż Michał Podolski Politechnika Wrocławska 1 Wprowadzenie Harmonogramowanie

Bardziej szczegółowo

4.3 Grupowanie według podobieństwa

4.3 Grupowanie według podobieństwa 4.3 Grupowanie według podobieństwa Przykłady obiektów to coś więcej niż wektory wartości atrybutów. Reprezentują one poszczególne rasy psów. Ważnym pytaniem, jakie można sobie zadać, jest to jak dobrymi

Bardziej szczegółowo

Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH. Heurystyka, co to jest, potencjalne zastosowania

Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH. Heurystyka, co to jest, potencjalne zastosowania Politechnika Wrocławska Wydział Elektroniki INFORMATYKA SYSTEMÓW AUTONOMICZNYCH Autor: Łukasz Patyra indeks: 133325 Prowadzący zajęcia: dr inż. Marek Piasecki Ocena pracy: Wrocław 2007 Spis treści 1 Wstęp

Bardziej szczegółowo

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych

Algorytm Genetyczny. zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Algorytm Genetyczny zastosowanie do procesów rozmieszczenia stacji raportujących w sieciach komórkowych Dlaczego Algorytmy Inspirowane Naturą? Rozwój nowych technologii: złożone problemy obliczeniowe w

Bardziej szczegółowo

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki.

SPÓJNOŚĆ. ,...v k. }, E={v 1. v k. i v k. ,...,v k-1. }. Wierzchołki v 1. v 2. to końce ścieżki. SPÓJNOŚĆ Graf jest spójny, gdy dla każdego podziału V na dwa rozłączne podzbiory A i B istnieje krawędź z A do B. Definicja równoważna: Graf jest spójny, gdy każde dwa wierzchołki są połączone ścieżką

Bardziej szczegółowo

Symulowane wyżarzanie dla problemu harmonogramowania projektu z ograniczonymi zasobami. Marcin Klimek *

Symulowane wyżarzanie dla problemu harmonogramowania projektu z ograniczonymi zasobami. Marcin Klimek * Zeszyty Naukowe WWSI, No 15, Vol. 10, 2016, s. 53-65 Symulowane wyżarzanie dla problemu harmonogramowania projektu z ograniczonymi zasobami Marcin Klimek * Państwowa Szkoła Wyższa w Białej Podlaskiej,

Bardziej szczegółowo

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne)

Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) Algorytmy memetyczne (hybrydowe algorytmy ewolucyjne) 1 2 Wstęp Termin zaproponowany przez Pablo Moscato (1989). Kombinacja algorytmu ewolucyjnego z algorytmem poszukiwań lokalnych, tak że algorytm poszukiwań

Bardziej szczegółowo

Algorytmy i Struktury Danych.

Algorytmy i Struktury Danych. Algorytmy i Struktury Danych. Grafy Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 8 Bożena Woźna-Szcześniak (AJD) Algorytmy i Struktury Danych. Wykład 8 1 / 39 Plan wykładu

Bardziej szczegółowo