Wyznaczanie środka ścinania w prętach o przekrojach niesymetrycznych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wyznaczanie środka ścinania w prętach o przekrojach niesymetrycznych"

Transkrypt

1 Insttut Mechaniki i Inżnierii Obliceniowej Wdiał Mechanicn echnologicn Politechnika Śląska LBORORIUM WYRZYMŁOŚCI MERIŁÓW Wnacanie środka ścinania w prętach o prekrojach niesmetrcnch

2 WYZNCZNIE ŚRODK ŚCINNI CEL ĆWICZENI Ćwicenie ma na celu doświadcalną werfikację teoretcnego sposobu wnacania środka ścinania (oblicenia analitcne na podstawie wprowadonch ależności) ora sprawdenie położenia środka ścinania w stosunku do położenia środka ciężkości w prekrojach niesmetrcnch. 2. WPROWDZENIE W wielu praktcnch prpadkach obciążenia pręta siłą poprecną prechodącą np. pre środek ciężkości pręta powoduje ona nie tlko ginanie i ścinanie, ale również skręcanie pręta. Stuacja taka ma miejsce wówcas, gd pręt nie jest smetrcn wględem osi równoległej do osi diałania sił (np. ceownik obciążon jak na rs. 2). Nieuwględnienie tego faktu w obliceniach bło w presłości prcną wielu katastrofalnch w swch skutkach uskodeń. W celu uniknięcia wstąpienia skręcania należ presunąć linię diałania sił do odpowiedniego położenia, w którm nie wstępuje skręcanie (miejsce to wane jest środkiem ścinania). 3. PODSWY EOREYCZNE 3.1 Środek ścinania Roważm pręt obciążon siłą poprecną (rs. 1a). Diałanie takiej sił jest równoważone w prekroju poprecnm układem elementarnch sił stcnch d. Wiedąc, że na konture prekroju naprężenia stcne mają kierunek stcn do tego konturu (rs. 1b) stwierdam, że w prekroju wstępują składowe naprężeń stcnch x i x. x x x x x x x x a) b) c) Rs. 1. Pręt obciążon siłą poprecną i rokład naprężeń stcnch

3 WYZNCZNIE ŚRODK ŚCINNI... 3 Zgodnie twierdeniem o równowartości odpowiadającch sobie naprężeń stcnch w prekrojach podłużnch pręta pojawia się naprężenie x i x (rs. 1c): x x ak więc w prekroju poprecnm pręta pojawiają się sił wewnętrne x d, x d ora siła poprecna, które musą spełniać ogólne warunki równowagi: Pi xd Pi xd M io d W prpadku gd prekrój poprecn posiada osie smetrii, aś siła poprecna prechodi pre punkt ich precięcia, warunki równowagi (2) są spełnione. W prekrojach niesmetrcnch nie ostaje spełnione równanie równowagi momentów. Efektem tego będie nie tlko presunięcie się prekrojów poprecnch wględem siebie, ale i ich obrót w swej płascźnie. ak więc opróc ścięcia wstąpi również skręcenie pręta wwołane momentem skręcającm o wartości: M s x x d (3) Układ sił i M s można redukować do sił wewnętrnej P w =, lec presuniętej wględem środka prekroju o wartości k 1. k 1 x x x x x d Podobnie można wnacć wielkość k 2 presunięcia sił poprecnej w prpadku diałania jej wdłuż drugiej osi prekroju pręta. ak więc: Środkiem ścinania nawam taki punkt o współrędnch k 1 i k 2, leżąc w płascźnie prekroju poprecnego, pre któr prechodąca siła poprecna wwołuje w pręcie jednie ścinanie be skręcania. Gd siła poprecna ma kierunek prechodąc pre środek ścinania, to w prekrojach pręta wstąpi włącnie ścinanie be skręcania pręta. W prpadku prekroju smetrcnego środek ścinania leż awse na osi smetrii. x (1) (2) (4) 3.2 Współrędne środka ścinania w pręcie o prekroju ceowm Ropatruje się diałanie sił poprecnej w pręcie o prekroju ceowm obciążonm na końcu siłą skupioną P (rs. 2).

4 WYZNCZNIE ŚRODK ŚCINNI... 4 P P x x l Rs. 2. Ceownik obciążon siłą poprecną W prekroju poprecnm odległm o x ( x l ) od utwierdenia siła P redukuje się do sił poprecnej ora momentu gnącego M g (rs. 3). M g Rs. 3. Sił wewnętrne w prekroju ceownika odległm od końca Zakłada się, że na grubości ścianki ceownika naprężenia stcne są stałe. Ich wartość można określić na podstawie woru Żurawskiego. I tak dla naprężeń stcnch wstępującch w półkach (rs. 8.4): Dla środnika aś: S 1 x (5) gi S 1 x, (6) bi gdie: S ( 1 ) moment statcn wględem osi obojętnej odciętej cęści prekroju półek pre oś 1; S ( 1 ) moment statcn wględem osi obojętnej odciętej cęści prekroju środnika pre oś 1 ; b grubość środnika; g grubość półki; I moment bewładności prekroju wględem osi.

5 WYZNCZNIE ŚRODK ŚCINNI... 5 B b H h 1 h g d 1 d 2 x m 1 c Rs. 4. Określanie momentów statcnch Moment statcne wnosą odpowiednio: S d d d1 Bd1; d bd 2 1 H / 2 h/ 2 S B d b d h/2 1 ora gdie: H h h 1 S 1 B b (7) S gm, (8) 1 h 2 1 ; h H h 1 (9) 2 Wkorstując ależności na moment statcne (7) i (8) we worach na naprężenia stcne (5) i (6) otrmuje się: x hm (1) 2I x bh 4 BH h 8bI Wkres tch naprężeń uwidocniono na rs. 5a. (11)

6 WYZNCZNIE ŚRODK ŚCINNI... 6 x x h x a) b) Rs. 5. (a) Wkres naprężeń stcnch ora (b) wnik redukcji sił w prekroju Zwraca uwagę preciwn nak naprężeń x w górnej i dolnej półce ceownika. W wniku redukcji w prekroju otrmujem sił i (rs. 5b): Sił tworą parę sił o momencie M Bb 2 xd 2 hmgdm 4 hg B b I I (12) xd (13) M h (14) Parę sił można premieścić w swej płascźnie i astąpić nową parą sił (rs. 6). k Par tch sił dają równoważne moment: Rs. 6. Ceownik anaconą współrędną k Ostatecnie M h = k ; k h 2 4I (15) gh 2 k B b (16) Współrędna k wnaca położenie środka ścinania w prekroju ceowm wględem osi środnika.

7 WYZNCZNIE ŚRODK ŚCINNI PRZEBIEG ĆWICZENI Ćwicenie demonstruje skręcanie pręta cienkościennego o niesmetrcnm prekroju poprecnm pr obciążeniu go siłą poprecną i doświadcalne określenie współrędnch środka ścinania. Po teoretcnm i doświadcalnm określeniu współrędnch środka ścinania należ porównać wniki i preprowadić ich dskusję. Pomiaru dokonuje się na pręcie cienkościennm jednostronnie utwierdonm i obciążonm na drugim końcu siłą poprecną. Pręt posiada prekrój poprecn otwart (ceow). Długość pręta jest tak dobrana, b pr niewielkich obciążeniach swobodnego końca uskać dostatecnie duże odkstałcenia. Na swobodnm końcu pręta najduje się ramka presuwną salką, na której awiesa się ciężarki. Salka presuwa się po wskalowanm w milimetrach pręcie. Pr presuwaniu salki ciężarkami wdłuż ramki od środka ścinania prekroju do środka ścinania prekroju pręta kierunek diałania sił poprecnej prenosi się głównej osi bewładności na linię do niej równoległą. Do obserwacji efektu skręcania prekroju poprecnego pręta służ cujnik egarow amocowan na statwie. W prpadku prejścia kierunku sił poprecnej pre środek ścinania prekrój pręta nie ulegnie skręceniu wsstkie punkt prekroju poprecnego presuną się tlko w kierunku diałania sił. Wskaówka cujnika wówcas nie wchli się. Natomiast każdemu innemu położeniu sił towars również obrót prekroju, co sgnaliuje wskaówka cujnika. Pred prstąpieniem do ćwicenia należ wnacć wartość dopuscalnego obciążenia, które można prłożć do pręta ( dop = 6MPa). W tm celu należ mierć długość pręta l ora wmiar prekroju poprecnego: B, H, g ora b (rs. 4). Wniki należ amieścić w tab. 1. Korstając ależności na wartość maksmalnch naprężeń pr ginaniu należ porównać je naprężeniami dopuscalnmi tm sposobem można wnacć obciążenie dopuscalne. Oblicenia te można preprowadić po akońconm ćwiceniu w celu sprawdenia poprawności prjętego obciążenia. Dla pomieronch wielkości prekroju poprecnego należ wnacć położenie środka ciężkości, moment bewładności I i wskaźnik wtrmałości na ginanie W. Z warunku dopuscalnch naprężeń należ oblicć wartość dopuscalnego obciążenia P dop uwględniając ciężar: a) ramki P 1 = 9.7N; b) salki P 2 = 4.6N. Wkonując ćwicenie należ w pierwsej kolejności demontować ramkę wra salką ceownika (ceownik nieobciążon) i werować cujnik egarow. Następnie, po ponownm amontowaniu ramki salką i prjmując środek ciężkości jako punkt pocątkow pomiarów, należ ustawić na jego wsokości salkę i obciążć po kolei ciężarkami: P i = (brak ciężarków), P 3, P 4, P 5, pr cm: P 1 + P 2 + P i < P dop Dla każdego obciążeń należ naleźć takie położenie salki obciążnikami, dla którego wchlenie cujnika egarowego wnosi. Wniki należ estawić w tab. 2.

8 WYZNCZNIE ŚRODK ŚCINNI... 8 Wmiar geometrcne pręta [mm] Wielkości wlicone Długość pręta (l) Współrędna s środka ciężkości [mm] Wsokość prekroju (H) Współrędna s środka ciężkości [mm] Serokość półki (B) Moment bewładności I [mm 4 ] Serokość środnika (b) Wskaźnik wtrmałości W [mm 3 ] Wsokość półki (g) abela 1 Siła [kg] P 1 +P 2 P 3 P 4 P 5 Siła [N] P 1 +P 2 P 3 P 4 P 5 Położenie salki wględem osi środnika pr braku skręcania k [mm] abela 2 5. OPRCOWNIE WYNIKÓW I WYYCZNE DO SPRWOZDNI Sprawodanie powinno awierać: I. Cel ćwicenia II. Wstęp teoretcn III. Rsunek i opis stanowiska pomiarowego IV. Cęść obliceniową, w której należ: 1. Uupełnić tab. 1 i tab Wnacć położenie środka ciężkości prekroju. 3. Wnacć na podstawie ależności teoretcnch położenie środka ścinania. 4. Wnacć dopuscalną wartość sił obciążającej P dop. 5. Wnacć położenie środka ścinania wsstkich pomiarów ropatrując wpadkową równoległego układu sił (P 1 ora P 2 + P i ). 6. Sporądić w skali 2:1 (np. na papiere milimetrowm) rsunek prekroju i anacć na nim: - położenie środka ciężkości; - główne centralne osie bewładności i ; - położenie środka ścinania wnacone ależności teoretcnch ora wnacone doświadcalnie. V. Wnioski ćwicenia.

9 WYZNCZNIE ŚRODK ŚCINNI PRZYKŁDOWE PYNI KONROLNE 1. Podać definicję środka ścinania. 2. Omówić sposób wnacania naprężeń stcnch wwołanch siłą poprecną. 3. Wnacć rokład naprężeń stcnch w prekroju teowm ścinanm siłą. 4. Gdie najduje się środek ścinania w prpadku pręta o prekroju smetrcnm? 5. C położenie środka ścinania ależ od wartości sił poprecnej? 6. Jak położona jest linia łącąca środki ścinania poscególnch prekrojów poprecnch w stosunku do osi pręta prostego o stałm prekroju? 7. C środek ścinania może leżeć poa prekrojem poprecnm? 8. C środek ścinania pokrwa się e środkiem ciężkości prekroju? 7. LIERUR 1. Beluch W., Burcński., Fedeliński P., John., Kokot G., Kuś W.: Laboratorium wtrmałości materiałów. Wd. Politechniki Śląskiej, Skrpt nr 2285, Gliwice, Bąk R., Burcński.: Wtrmałość materiałów elementami ujęcia komputerowego, WN, Warsawa Borusak., Sgulski R., Wreśniowski K.: Wtrmałość materiałów. Doświadcalne metod badań, PWN, Warsawa-Ponań Dląg Z., Jakubowic., Orłoś Z.: Wtrmałość materiałów, t. I-II, WN, Warsawa Ćwicenia wtrmałości materiałów. Laboratorium, Praca bior. pod red. Lambera., Skrpt ucelniane Pol. Śl., nr 1527, Gliwice 199.

10 Insttut Mechaniki i Inżnierii Obliceniowej Wdiał Mechanicn echnologicn, Politechnika Śląska PROOKÓŁ Z ĆWICZENI WYZNCZNIE ŚRODK ŚCINNI Kierunek: Grupa: Sekcja: Data wkonania ćwicenia: Prowadąc: Podpis B H h b P g Długość pręta 1 [mm] Wsokość prekroju H [mm] Serokość półki B [mm] Serokość środnika b [mm] Wsokość półki g [mm] Siła [kg] P 1 +P 2 P 3 P 4 P 5 Położenie salki wględem osi środnika pr braku skręcania k [mm] k

napór cieczy - wypadkowy ( hydrostatyczny )

napór cieczy - wypadkowy ( hydrostatyczny ) 5. apór hdrostatcn i równowaga ciał płwającch Płn najdując się w stanie równowagi oddiałwuje na ścian ogranicające ropatrwaną jego objętość i sił te nawane są naporami hdrostatcnmi. Omawiana problematka

Bardziej szczegółowo

MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH

MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH Oga Kopac, am Łogowski, Wojciech Pawłowski, ichał Płotkowiak, Krstof mber Konsutacje naukowe: prof. r hab. JERZY RKOWSKI Ponań /3 ECHIK BUDOWI Praca sił normanch Siła normana prpomnienie (): Jest to siła

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił

1. REDUKCJA DOWOLNYCH UKŁADÓW SIŁ. Redukcja płaskiego układu sił . REDUKCJA DOWOLNYCH UKŁADÓW IŁ Redukcja płaskiego układu sił Zadanie. Znaleźć wartość licbową i równanie linii diałania wpadkowej cterech sił predstawionch na rsunku. Wartości licbowe sił są następujące:

Bardziej szczegółowo

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 ĆWICZENIE NR 1 TEMAT: Próba statycna rociągania metali. Obowiąująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 Podać nacenie następujących symboli: d o -.....................................................................

Bardziej szczegółowo

Adam Bodnar: Wytrzymałość Materiałów. Proste zginanie

Adam Bodnar: Wytrzymałość Materiałów. Proste zginanie dam Bodnar: trmałość ateriałów. Proste ginanie. PROSTE GINNIE.. Naprężenia i odkstałcenia Proste ginanie pręta prmatcnego wstępuje wówcas gd układ sił ewnętrnch po jednej stronie jego prekroju poprecnego

Bardziej szczegółowo

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie

J. Szantyr - Wykład 4 Napór hydrostatyczny Napór hydrostatyczny na ściany płaskie J. antr - Wkład Napór hdrostatcn Napór hdrostatcn na ścian płaskie Napór elementarn: d n( p pa ) d nρgd Napór całkowit: ρg nd ρgn d gdie: C Napór hdrostatcn na ścianę płaską predstawia układ elementarnch

Bardziej szczegółowo

4.2.1. Środek ciężkości bryły jednorodnej

4.2.1. Środek ciężkości bryły jednorodnej 4..1. Środek ciężkości rł jednorodnej Brłą jednorodną nawam ciało materialne, w którm masa jest romiescona równomiernie w całej jego ojętości. Dla takic ciał arówno gęstość, jak i ciężar właściw są wielkościami

Bardziej szczegółowo

Część 1 2. PRACA SIŁ WEWNĘTRZNYCH 1 2. PRACA SIŁ WEWNĘTRZNYCH Wstęp

Część 1 2. PRACA SIŁ WEWNĘTRZNYCH 1 2. PRACA SIŁ WEWNĘTRZNYCH Wstęp Cęść 1. PRC SIŁ WEWNĘTRZNYCH 1.. PRC SIŁ WEWNĘTRZNYCH.1. Wstęp Na wstępie prpomnijm, że gd premiescenie danego eementu jest funkcją diałającej nań sił Δ = f(p), to praca sił na tm premiesceniu jest równa:

Bardziej szczegółowo

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

Belki złożone i zespolone

Belki złożone i zespolone Belki łożone i espolone efinicja belki łożonej siła rowarswiająca projekowanie połąceń prkła obliceń efinicja belki espolonej ałożenia echnicnej eorii ginania rokła naprężeń normalnch prkła obliceń Belki

Bardziej szczegółowo

DryLin T System prowadnic liniowych

DryLin T System prowadnic liniowych DrLin T Sstem prowadnic liniowch Prowadnice liniowe DrLin T ostał opracowane do astosowań wiąanch automatką i transportem materiałów. Chodiło o stworenie wdajnej, beobsługowej prowadnic liniowej do astosowania

Bardziej szczegółowo

Postać Jordana macierzy

Postać Jordana macierzy Rodiał 8 Postać Jordana macier 8.1. Macier Jordana Niech F = R lub F = C. Macier J r () F r r postaci 1. 1... J r () =..........,.... 1 gdie F, nawam klatką Jordana stopnia r. Ocwiście J 1 () = [. Definicja

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

3. Metody rozwiązywania zagadnień polowych

3. Metody rozwiązywania zagadnień polowych 3. Metod rowiąwania agadnień polowch 3.. Dokładne metod anali pola Dokładne metod anali pola powalają na uskanie dokładnego rowiąania równania róŝnickowego lub całkowego w dowolnm punkcie obsaru diałania

Bardziej szczegółowo

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne

Bardziej szczegółowo

Przykład 3.1. Projektowanie przekroju zginanego

Przykład 3.1. Projektowanie przekroju zginanego Prkład.1. Projektowane prekroju gnanego Na belkę wkonaną materału o wtrmałośc różnej na ścskane rocągane dałają dwe sł P 1 P. Znając wartośc tch sł, schemat statcn belk, wartośc dopuscalnego naprężena

Bardziej szczegółowo

MECHANIKA OGÓLNA. Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014

MECHANIKA OGÓLNA. Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 MECHANIKA OGÓLNA Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Licba godin: sem. II *) - wkład 30 god., ćwicenia 30 god. sem. III *) - wkład 30 god., ćwicenia 30 god., ale dla kier.

Bardziej szczegółowo

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - DREWNO

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - DREWNO Użtkownik: Biuro Inżnierskie SPECBUD Autor: mg inż. Jan Kowalski Ttuł: Konstrukcje drewniane wg PN-EN Belka - 1 - Kalkulator Konstrukcji Drewnianch EN v.1.0 OBLICZENIA WYTRZYMAŁOŚCIOWE - DREWNO 2013 SPECBUD

Bardziej szczegółowo

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane

Bardziej szczegółowo

Przykład: Nośność na wyboczenie słupa przegubowego z stęŝeniami pośrednimi

Przykład: Nośność na wyboczenie słupa przegubowego z stęŝeniami pośrednimi 3,0 ARKUSZ OBLICZEIOWY Dokument Ref: SX00a-E-EU Strona 1 4 Ttuł Prkład: ośność na wbocenie słupa pregubowego e Dot. Eurokodu E 1993-1-1 Wkonał Matthias Oppe Data cerwiec 00 Sprawdił Christian Müller Data

Bardziej szczegółowo

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia

Bardziej szczegółowo

Rozdział 9. Baza Jordana

Rozdział 9. Baza Jordana Rodiał 9 Baa Jordana Niech X będie n wmiarową prestrenią wektorową nad ciałem F = R lub F = C Roważm dowoln endomorfim f : X X Wiem, że postać macier endomorfimu ależ od wboru ba w prestreni X Wiem również,

Bardziej szczegółowo

Ruch kulisty bryły. Kinematyka

Ruch kulisty bryły. Kinematyka Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu miennch wkład MATEMATYKI Automatka i robotka studia niestacjonarne sem II, rok ak 2009/2010 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R ndef ={( 1, 2,, n ): 1 R 2

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

Równoważne układy sił

Równoważne układy sił Równoważne układ sił Równoważnmi układami sił nawam takie układ, którch skutki diałania na ten sam obiekt są jednakowe. Jeżeli układ sił da się astąpić jedną siłą, to siłę tą nawam siłą wpadkową. Wpadkowa

Bardziej szczegółowo

5.7. Przykład liczbowy

5.7. Przykład liczbowy 5.7. Prład licbow onać oblicenia nośności beli podsuwnicowej e sali S75 pręsłami o długościach l m swobodnie podparmi na słupach esaad obsługiwanej pre dwie suwnice naorowe o jednaowch paramerach usuowanej

Bardziej szczegółowo

SYNTHESIS OF MOTION FOR A FOUR-LEGGED ROBOT

SYNTHESIS OF MOTION FOR A FOUR-LEGGED ROBOT Dr inŝ. Maciej T. Trojnacki Premsłow Insttut Automatki i Pomiarów Al. Jeroolimskie 0, 0-486 Warsawa Telefon: +48 8740 341, email: mtrojnacki@piap.pl SYNTEZA UCHU OBOTA CZTEONOśNEO W prac predstawiono nowatorską

Bardziej szczegółowo

WYTRZYMAŁOŚĆ ZŁOŻONA

WYTRZYMAŁOŚĆ ZŁOŻONA TRAŁOŚĆ ŁOŻONA rpadki wtrmałości łożonej praktce inżnierskiej najcęściej spotka się łożone prpadki ociążeń konstrukcji. Do prawidłowego rowiąwania tc agadnień koniecna jest najomość wceśniej omówionc prostc

Bardziej szczegółowo

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8

Wyznaczanie reakcji dynamicznych oraz wyważanie ciała w ruchu obrotowym wokół stałej osi 8 Wnacanie reakcji dnaicnch ora wważanie ciała w ruchu oroow wokół sałej osi 8 Wprowadenie Jeśli dowolne ciało swne o asie jes w ruchu oroow wokół osi, o na podporach powsają reakcje A i B. Składowe ch reakcji

Bardziej szczegółowo

TEORIA SPRĘŻYSTOŚCI 10

TEORIA SPRĘŻYSTOŚCI 10 W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

Przykład: Belka swobodnie podparta bez stęŝeń bocznych

Przykład: Belka swobodnie podparta bez stęŝeń bocznych Dokument Ref: SX001a-EN-EU Strona 1 8 Dot. Eurokodu EN Wkonał Alain Bureau Data grudień 004 Sprawdił Yvan Galéa Data grudień 004 Prkład: Belka swobodnie podparta be stęŝeń bocnch Prkład ilustruje asad

Bardziej szczegółowo

BADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL strona 1/7

BADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL strona 1/7 BADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL strona 1/7 BADANIE CYFROWYCH UKŁADÓW ELEKTRONICZNYCH TTL 1. Wiadomości wstępne Monolitcne układ scalone TTL ( ang. Trasistor Transistor Logic) stanowią obecnie

Bardziej szczegółowo

Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste

Mechanika Robotów. Wojciech Lisowski. 2 Opis położenia i orientacji efektora Model geometryczny zadanie proste Katedra Robotki i Mechatroniki Akademia Górnico-Hutnica w Krakowie Mechanika Robotów Wojciech Lisowski Opis położenia i orientacji efektora Model geometrcn adanie proste Mechanika Robotów KRIM, AGH w Krakowie

Bardziej szczegółowo

Fale skrętne w pręcie

Fale skrętne w pręcie ae skrętne w ręcie + -(+) eement ręta r π ) ( 4 Lokane skręcenie o () moment skręcając moduł stwności r romień ręta r 4 ) ( π Pod włwem wadkowego momentu eement ręta uskuje rsiesenie kątowe i sełnion jest

Bardziej szczegółowo

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa: PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci

Bardziej szczegółowo

P R O J E K T N R 1 WYTRZYMAŁOŚCI MATERIAŁÓW. Zawiera: Wyznaczenie wymiarów przekroju poprzecznego belki zginanej poprzecznie

P R O J E K T N R 1 WYTRZYMAŁOŚCI MATERIAŁÓW. Zawiera: Wyznaczenie wymiarów przekroju poprzecznego belki zginanej poprzecznie atedra Wtrzmałości Materiałów Rok akad. 005/06 Wdział Inżnierii Lądowej emestr zimow Politechniki rakowskiej P R O J E T N R 1 Z WYTRZYMAŁOŚCI MATERIAŁÓW Zawiera: Wznaczenie wmiarów przekroju poprzecznego

Bardziej szczegółowo

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

Politechnika Białostocka INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Temat ćwiczenia: Próba skręcania pręta o przekroju okrągłym Numer ćwiczenia: 4 Laboratorium z

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

Fizyka w symulacji komputerowej i modelowaniu komputerowym Równania Naviera-Stokesa. Łukasz Pepłowski

Fizyka w symulacji komputerowej i modelowaniu komputerowym Równania Naviera-Stokesa. Łukasz Pepłowski Fika w smulacji komuterowej i modelowaniu komuterowm Równania Naiera-Stokesa Łukas Pełowski Plan Na odstawie: K. Jacha Komuterowe modelowanie dnamicnch oddiałwań ciał metodą unktów swobodnch M. Mitosek

Bardziej szczegółowo

2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar

2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar 2.1. kreślenie i rodje wektorów. Mnożenie wektor pre sklr Wielkości ficne wstępujące w mechnice i innch diłch fiki możn podielić n sklr i wektor. A określić wielkość sklrną, wstrc podć tlko jedną licę.

Bardziej szczegółowo

Informacje uzupełniające: Wyboczenie z płaszczyzny układu w ramach portalowych. Spis treści

Informacje uzupełniające: Wyboczenie z płaszczyzny układu w ramach portalowych. Spis treści S032a-PL-EU Informacje uupełniające: Wybocenie płascyny układu w ramach portalowych Ten dokument wyjaśnia ogólną metodę (predstawioną w 6.3.4 E1993-1-1 sprawdania nośności na wybocenie płascyny układu

Bardziej szczegółowo

,..., u x n. , 2 u x 2 1

,..., u x n. , 2 u x 2 1 . Równania różnickowe cąstkowe Definicja. Równaniem różnickowm cąstkowm (rrc) nawam równanie różnickowe, w którm wstępuje funkcja niewiadoma dwóch lub więcej miennch i jej pochodne cąstkowe. Ogólna postać

Bardziej szczegółowo

MECHANIKA BUDOWLI. Architektura sem. II letni Wykład VII. dr inż. Marek BARTOSZEK. KTKB p.126 WB

MECHANIKA BUDOWLI. Architektura sem. II letni Wykład VII. dr inż. Marek BARTOSZEK. KTKB p.126 WB MECHANIKA BUDOWLI Arcitektura sem. II letni Wkład VII dr inż. Marek BARTOSZEK KTKB p.16 WB marek.bartosek@polsl.pl ttp://kateko.rb.polsl.pl/ 11-3- Za wsstkie uwagi odnośnie poniżsc wkładów gór diękuję.

Bardziej szczegółowo

PITAGORAS ARYSTOTELES ERATOSTENES. Wprowadzenie. O kulistości Ziemi. Starożytni postulatorzy kulistości Ziemi

PITAGORAS ARYSTOTELES ERATOSTENES. Wprowadzenie. O kulistości Ziemi. Starożytni postulatorzy kulistości Ziemi O kulistości Ziemi Starożtni postulator kulistości Ziemi Wprowaenie PITAGOAS sugerował, iż Ziemia jest kstałtu kulistego. Jenak postulat ten opierał się racej na tm, iż kula bła uważana a figurę oskonałą,

Bardziej szczegółowo

Ścinanie i skręcanie. dr hab. inż. Tadeusz Chyży

Ścinanie i skręcanie. dr hab. inż. Tadeusz Chyży Ścinanie i skręcanie dr hab. inż. Tadeusz Chyży 1 Ścinanie proste Ścinanie czyste Ścinanie techniczne 2 Ścinanie Czyste ścinanie ma miejsce wtedy, gdy na czterech ścianach prostopadłościennej kostki występują

Bardziej szczegółowo

Doświadczalne sprawdzenie twierdzeń Bettiego i Maxwella LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW

Doświadczalne sprawdzenie twierdzeń Bettiego i Maxwella LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Instytut Mechaniki i Inżynierii Obliczeniowej Wydział Mechaniczny Technologiczny Politechnika Śląska www.imio.polsl.pl fb.com/imiopolsl twitter.com/imiopolsl LABORATORIUM WYTRZYMAŁOŚCI MATERIAŁÓW Doświadczalne

Bardziej szczegółowo

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach. CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o

Bardziej szczegółowo

14. Krzywe stożkowe i formy kwadratowe

14. Krzywe stożkowe i formy kwadratowe . Krwe stożkowe i form kwdrtowe.. Kwdrki Powierchnią stopni drugiego, lub krótko kwdrką, nwm biór punktów P(,,), którch współrędne spełniją równnie: 33 3 3 kwdrt wr miesne 3 wr liniowe wr woln gdie. 33

Bardziej szczegółowo

Zestaw zadań 15: Funkcjonały dwuliniowe i formy kwadratowe (1) Sprawdzić, czy następujące odwzorowania ξ : R 3 R 3 R: x y. x y z. f(x)g(x)dx.

Zestaw zadań 15: Funkcjonały dwuliniowe i formy kwadratowe (1) Sprawdzić, czy następujące odwzorowania ξ : R 3 R 3 R: x y. x y z. f(x)g(x)dx. Zestaw adań 5: Funkcjonał dwuliniowe i form kwadratowe () Sprawdić, c następujące odworowania ξ : R 3 R 3 R: x x a) ξ( x, c) ξ( x, x ) = xx + + ; b) ξ(, x ) = xx + 2 + ; d) ξ( x, x x ) = x + x + 2; ) =

Bardziej szczegółowo

WYKŁAD 6. MODELE OBIEKTÓW 3-D3 część 2. 1. Powierzchnie opisane parametrycznie. Plan wykładu: Powierzchnie opisane parametrycznie

WYKŁAD 6. MODELE OBIEKTÓW 3-D3 część 2. 1. Powierzchnie opisane parametrycznie. Plan wykładu: Powierzchnie opisane parametrycznie WYKŁAD 6. owierchnie opisane paraetrcnie MODELE OIEKÓW -D cęść (,v (,v (,v f (,v f (,v f (,v v in in v v a a lan wkład: owierchnie opisane paraetrcnie v a v Krwe paraetrcne w -D D (krwa Herite a v in (,v

Bardziej szczegółowo

REGULAMIN ZAJĘĆ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

REGULAMIN ZAJĘĆ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW REGULAMIN ZAJĘĆ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW Przed przystąpieniem do zajęć studenci zapoznają się z regulaminem oraz ramową instrukcją BHP obowiązującymi w pomieszczeniach laboratoryjnych.

Bardziej szczegółowo

Zginanie belek o przekroju prostokątnym i dwuteowym naprężenia normalne i styczne, projektowanie 8

Zginanie belek o przekroju prostokątnym i dwuteowym naprężenia normalne i styczne, projektowanie 8 Zinanie belek o przekroju prostokątnm i dwuteowm naprężenia normalne i stczne, projektowanie 8 Na rs. 8.1 przedstawiono belkę obciążoną momentami zinającmi w płaszczźnie x. oment nąceo dla tak obciążonej

Bardziej szczegółowo

, wówczas siła poprzeczna Q z ( x) 0 dx (patrz rys. 11.1). M y (x) d M y ( x) Rys. 11.1

, wówczas siła poprzeczna Q z ( x) 0 dx (patrz rys. 11.1). M y (x) d M y ( x) Rys. 11.1 dam Bodnar: Wtrmałość Materałów. Poprecne gnane. POPRECNE GINNIE.. Naprężena odkstałcena Poprecnm gnane wstępuje wówcas, gd do pobocnc pręta prmatcnego o smetrcnm prekroju poprecnm prłożone jest obcążene

Bardziej szczegółowo

Załącznik Nr:.. KROKWIE POŁACI STROMEJ-poz.1 ;

Załącznik Nr:.. KROKWIE POŁACI STROMEJ-poz.1 ; Załącnik Nr:.. KROKWIE POŁACI STROMEJ-po.1 ; I. Element 1-krokiew frontowa-połaci stromej krycie blachą na deskowaniu: Krokiew _prekrój nominalny-14/15 cm KROKIEW UKOSNA -prekrój nie skorodowany Serokość

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7 ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

Profile zimnogięte. Tabele wytrzymałościowe

Profile zimnogięte. Tabele wytrzymałościowe Profile zimnogięte Tabele wytrzymałościowe SPIS TREŚCI Tabela charakterystyk geometrycznych przekrojów kształtowników Z Tab. 1... 4 Tabela charakterystyk geometrycznych przekrojów kształtowników C Tab.

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t

Zestaw zadań 12: Przekształcenia liniowe. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t. x y + 2t 2x 3y + 5z t x z t Zesaw adań : Preksałcenia liniowe () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + +, b) n = m = 3, ϕ( +, 3 + + + +, d) n = m = 3, ϕ( +, c) n = m = 3, ϕ( e) n

Bardziej szczegółowo

KRYSTYNA JEŻOWIECKA-KABSCH HENRYK SZEWCZYK MECHANIKA PŁYNÓW

KRYSTYNA JEŻOWIECKA-KABSCH HENRYK SZEWCZYK MECHANIKA PŁYNÓW KRYSTYNA JEŻOWIECKA-KABSCH HENRYK SZEWCZYK MECHANIKA PŁYNÓW OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ WROCŁAW Wanie poręcnika jest otowane pre Ministra Eukacji Naroowej Recenenci ALICJA JARŻA ZDZISŁAW

Bardziej szczegółowo

UKŁADY TENSOMETRII REZYSTANCYJNEJ

UKŁADY TENSOMETRII REZYSTANCYJNEJ Ćwicenie 8 UKŁADY TESOMETII EZYSTACYJEJ Cel ćwicenia Celem ćwicenia jest ponanie: podstawowych właściwości metrologicnych tensometrów, asad konstrukcji pretworników siły, ora budowy stałoprądowych i miennoprądowych

Bardziej szczegółowo

Graficzne modelowanie scen 3D. Wykład 4

Graficzne modelowanie scen 3D. Wykład 4 Wkład 4 Podstawowe pojęcia i definicje . Modelowanie. Definicja Model awiera wsstkie dane i obiekt ora wiąki pomięd nimi, które są niebędne do prawidłowego wświetlenia i realiowania interakcji aplikacją,

Bardziej szczegółowo

Przykład 4.2. Sprawdzenie naprężeń normalnych

Przykład 4.2. Sprawdzenie naprężeń normalnych Przykład 4.. Sprawdzenie naprężeń normalnych Sprawdzić warunki nośności przekroju ze względu na naprężenia normalne jeśli naprężenia dopuszczalne są równe: k c = 0 MPa k r = 80 MPa 0, kn 0 kn m 0,5 kn/m

Bardziej szczegółowo

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera)

Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego (Katera) Politechnika Łódzka FTMS Kierunek: nformatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 V 2009 Nr. ćwiczenia: 112 Temat ćwiczenia: Wyznaczanie przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu miennch wkład MATEMATYKI Automatka i robotka studia niestacjonarne sem I, rok ak 2009/2010 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R ndef ={( 1, 2,, n ): 1 R 2 R

Bardziej szczegółowo

ĆWICZENIE 5 BADANIE ZASILACZY UPS

ĆWICZENIE 5 BADANIE ZASILACZY UPS ĆWICZENIE 5 BADANIE ZASILACZY UPS Cel ćwicenia: aponanie budową i asadą diałania podstawowych typów asilacy UPS ora pomiar wybranych ich parametrów i charakterystyk. 5.1. Podstawy teoretycne 5.1.1. Wstęp

Bardziej szczegółowo

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t

Zestaw zadań 12: Przekształcenia liniowe. Macierze przekształceń liniowych. z z + 2 2x + y. x y z. x y + 2t 2x + 3y + 5z t x + z t Zesaw adań : Preksałcenia liniowe. Maciere preksałceń liniowch () Kóre podanch niżej preksałceń ϕ : K n K m są preksałceniami liniowmi: a) n = m = 3, ϕ( + ) = +, b) n = m = 3, ϕ( ) = +, 3 + + + +, d) n

Bardziej szczegółowo

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁAD ELEKTROENERGETYKI Ćwicenie: URZĄDZENIA PRZECIWWYBUCHOWE BADANIE TRANSFORMATORA JEDNOFAZOWEGO Opracował: kpt.dr inż. R.Chybowski Warsawa

Bardziej szczegółowo

Zestaw pytań z konstrukcji i mechaniki

Zestaw pytań z konstrukcji i mechaniki Zestaw pytań z konstrukcji i mechaniki 1. Układ sił na przedstawionym rysunku a) jest w równowadze b) jest w równowadze jeśli jest to układ dowolny c) nie jest w równowadze d) na podstawie tego rysunku

Bardziej szczegółowo

II. CZĘŚĆ OBICZENIOWA

II. CZĘŚĆ OBICZENIOWA II. CZĘŚĆ OBICZENIOWA 1. Norm. - PN-B-03264:2002 "Konstrukcje betonowe, żelbetowe i sprężone" - PN-B-03150:2000 "Konstrukcje drewniane. Oblicenia statcne i projektowanie" - PN-82 B-02001 "Obciążenia stałe"

Bardziej szczegółowo

Profile zimnogięte. Typu Z i C

Profile zimnogięte. Typu Z i C Profile zimnogięte Typu Z i C Profile zimnogięte Głównym zastosowaniem produkowanych przez nas profili zimnogiętych są płatwie dachowe oraz rygle ścienne. Na elementy te (jako stosunkowo mało obciążone

Bardziej szczegółowo

Ćwiczenie 361 Badanie układu dwóch soczewek

Ćwiczenie 361 Badanie układu dwóch soczewek Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka

Bardziej szczegółowo

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów

Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 1. Kratownica Dla danej kratownicy wyznaczyć siły we wszystkich prętach metodą równoważenia węzłów 2. Szkic projektu rysunek jest w skali True 3. Ustalenie warunku statycznej niewyznaczalności układu Warunek

Bardziej szczegółowo

Wydawnictwo Wyższej Szkoły Komunikacji i Zarządzania w Poznaniu

Wydawnictwo Wyższej Szkoły Komunikacji i Zarządzania w Poznaniu CMYK ISBN 98-8-888-- Wdanicto Wżsej Skoł Komunikacji i Zarądania - Ponań, ul Różana a tel 8 9, fa 8 9 skiedu danicto@skiponanpl analia89indd Wdanicto Wżsej Skoł Komunikacji i Zarądania Ponaniu 9--8 ::

Bardziej szczegółowo

KONSTRUKCJE METALOWE II

KONSTRUKCJE METALOWE II 1 POLITECHNIKA POZNAŃSKA Wdział Budownictwa, Architektur i Inżnierii Środowiska Insttut Konstrukcji Budowlanch dr inż. Jacek Tasarek KONSTRUKCJE METALOWE II POZNAŃ, 004 1.ELEMENTY ZGINANE - BELKI 1.1.Wiadomości

Bardziej szczegółowo

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

KINEMATYKA. Pojęcia podstawowe

KINEMATYKA. Pojęcia podstawowe KINEMTYK Pojęcia podstawowe Kinematka jest diałem mechaniki ajmującm się badaniem uchu ciał be uwględniania pcn wwołującch ten uch. Jej celem jest opis tego uchu. Ruchem nawam mianę położenia ciała w odniesieniu

Bardziej szczegółowo

Global Positioning System (GPS) zasada działania

Global Positioning System (GPS) zasada działania Global Positioning Sstem GPS asada diałania Metoda wnacania pocji GPS apewnia pocję 3D -,, H. Parametr nawigacjn odległość odbiornika od SV. Odległość od SV wlicana na podstawie pomiaru casu podcas prebtej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

Ochrona_pporaz_ISiW J.P. Spis treści:

Ochrona_pporaz_ISiW J.P. Spis treści: Spis treści: 1. Napięcia normaliowane IEC...2 1.1 Podstawy prawne 2 1.2 Pojęcia podstawowe 2 2. Zasilanie odbiorców niepremysłowych...3 2.1 kłady sieciowe 4 3. Zasady bepiecnej obsługi urądeń elektrycnych...8

Bardziej szczegółowo

Mechanika teoretyczna

Mechanika teoretyczna Wypadkowa -metoda analityczna Mechanika teoretyczna Wykład nr 2 Wypadkowa dowolnego układu sił. Równowaga. Rodzaje sił i obciążeń. Rodzaje ustrojów prętowych. Składowe poszczególnych sił układu: Składowe

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Rok skolny 2015/16 POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopscająca (2); (3) - ocena dostatecna (3); (4) - ocena dobra (4);

Bardziej szczegółowo

ODKSZTAŁCENIE PLASTYCZNE MATERIAŁÓW IZOTROPOWYCH. Opis dla ośrodka ciągłego

ODKSZTAŁCENIE PLASTYCZNE MATERIAŁÓW IZOTROPOWYCH. Opis dla ośrodka ciągłego ODKSZTAŁCENIE LASTYCZNE MATERIAŁÓW IZOTROOWYCH. Opis dla ośrodka ciągłego (opracowano na podstawie: C.N. Reid, deformation geometr for Materials Scientists, ergamon ress, Oford, 97) Wstęp Omówim tera sposób

Bardziej szczegółowo

Liczba godzin Liczba tygodni w tygodniu w semestrze

Liczba godzin Liczba tygodni w tygodniu w semestrze 15. Przedmiot: WYTRZYMAŁOŚĆ MATERIAŁÓW Kierunek: Mechatronika Specjalność: mechatronika systemów energetycznych Rozkład zajęć w czasie studiów Liczba godzin Liczba godzin Liczba tygodni w tygodniu w semestrze

Bardziej szczegółowo

KONSTRUKCJE STALOWE W EUROPIE. Wielokondygnacyjne konstrukcje stalowe Część 8: Opis kalkulatora do obliczania nośności elementów konstrukcyjnych

KONSTRUKCJE STALOWE W EUROPIE. Wielokondygnacyjne konstrukcje stalowe Część 8: Opis kalkulatora do obliczania nośności elementów konstrukcyjnych KONSTRUKCJE STALOWE W EUROPIE Wielokondgnacjne konstrukcje stalowe Cęść 8: Opis kalkulatora do oblicania nośności elementów konstrukcjnch Wielokondgnacjne konstrukcje stalowe Cęść : Opis kalkulatora do

Bardziej szczegółowo

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH

MECHANIKA PRĘTÓW CIENKOŚCIENNYCH dr inż. Robert Szmit Przedmiot: MECHANIKA PRĘTÓW CIENKOŚCIENNYCH WYKŁAD nr Uniwersytet Warmińsko-Mazurski w Olsztynie Katedra Geotechniki i Mechaniki Budowli Opis stanu odkształcenia i naprężenia powłoki

Bardziej szczegółowo

LABORATORIUM Z WYTRZYMAŁOŚCI MATERIAŁÓW

LABORATORIUM Z WYTRZYMAŁOŚCI MATERIAŁÓW Praca zbiorowa pod redakcją: Tadeusza BURCZYŃSKIEGO, Witolda BELUCHA, Antoniego JOHNA LABORATORIUM Z WYTRZYMAŁOŚCI MATERIAŁÓW Autorzy: Witold Beluch, Tadeusz Burczyński, Piotr Fedeliński, Antoni John,

Bardziej szczegółowo

Widok ogólny podział na elementy skończone

Widok ogólny podział na elementy skończone MODEL OBLICZENIOWY KŁADKI Widok ogólny podział na elementy skończone Widok ogólny podział na elementy skończone 1 FAZA I odkształcenia od ciężaru własnego konstrukcji stalowej (odkształcenia powiększone

Bardziej szczegółowo

Laboratorium grafiki komputerowej i animacji. Ćwiczenie III - Biblioteka OpenGL - wprowadzenie, obiekty trójwymiarowe: punkty, linie, wielokąty

Laboratorium grafiki komputerowej i animacji. Ćwiczenie III - Biblioteka OpenGL - wprowadzenie, obiekty trójwymiarowe: punkty, linie, wielokąty Laboratorium grafiki komputerowej i animacji Ćwicenie III - Biblioteka OpenGL - wprowadenie, obiekty trójwymiarowe: punkty, linie, wielokąty Prygotowanie do ćwicenia: 1. Zaponać się ogólną charakterystyką

Bardziej szczegółowo

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi: Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane

Bardziej szczegółowo

Projekt belki zespolonej

Projekt belki zespolonej Pomoce dydaktyczne: - norma PN-EN 1994-1-1 Projektowanie zespolonych konstrukcji stalowo-betonowych. Reguły ogólne i reguły dla budynków. - norma PN-EN 199-1-1 Projektowanie konstrukcji z betonu. Reguły

Bardziej szczegółowo

PODSTAWY KONSTRUKCJI MASZYN

PODSTAWY KONSTRUKCJI MASZYN POLITECHNIA LUBELSA J. Banasek, J. Jonak PODSTAW ONSTRUCJI MASN WPROWADENIE DO PROJETOWANIA PREŁADNI ĘBATCH I DOBORU SPRĘGIEŁ MECHANICNCH Wydawnictwa Ucelniane 008 Opiniodawca: dr hab. inŝ. Stanisław rawiec

Bardziej szczegółowo

PROJEKT K O N S T R U K C J I

PROJEKT K O N S T R U K C J I PROJEKT K O N S T R U K C J I Spis treści Opis technicn... 2K Charakterstka obiektu... 2K Warunki gruntowo-wone, posaowienie...2k Funaent... 3K Ścian konstrukcjne...3k uowa... 3K Poscie ewnętrne ścian...3k

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo