Wyznaczanie środka ścinania w prętach o przekrojach niesymetrycznych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wyznaczanie środka ścinania w prętach o przekrojach niesymetrycznych"

Transkrypt

1 Insttut Mechaniki i Inżnierii Obliceniowej Wdiał Mechanicn echnologicn Politechnika Śląska LBORORIUM WYRZYMŁOŚCI MERIŁÓW Wnacanie środka ścinania w prętach o prekrojach niesmetrcnch

2 WYZNCZNIE ŚRODK ŚCINNI CEL ĆWICZENI Ćwicenie ma na celu doświadcalną werfikację teoretcnego sposobu wnacania środka ścinania (oblicenia analitcne na podstawie wprowadonch ależności) ora sprawdenie położenia środka ścinania w stosunku do położenia środka ciężkości w prekrojach niesmetrcnch. 2. WPROWDZENIE W wielu praktcnch prpadkach obciążenia pręta siłą poprecną prechodącą np. pre środek ciężkości pręta powoduje ona nie tlko ginanie i ścinanie, ale również skręcanie pręta. Stuacja taka ma miejsce wówcas, gd pręt nie jest smetrcn wględem osi równoległej do osi diałania sił (np. ceownik obciążon jak na rs. 2). Nieuwględnienie tego faktu w obliceniach bło w presłości prcną wielu katastrofalnch w swch skutkach uskodeń. W celu uniknięcia wstąpienia skręcania należ presunąć linię diałania sił do odpowiedniego położenia, w którm nie wstępuje skręcanie (miejsce to wane jest środkiem ścinania). 3. PODSWY EOREYCZNE 3.1 Środek ścinania Roważm pręt obciążon siłą poprecną (rs. 1a). Diałanie takiej sił jest równoważone w prekroju poprecnm układem elementarnch sił stcnch d. Wiedąc, że na konture prekroju naprężenia stcne mają kierunek stcn do tego konturu (rs. 1b) stwierdam, że w prekroju wstępują składowe naprężeń stcnch x i x. x x x x x x x x a) b) c) Rs. 1. Pręt obciążon siłą poprecną i rokład naprężeń stcnch

3 WYZNCZNIE ŚRODK ŚCINNI... 3 Zgodnie twierdeniem o równowartości odpowiadającch sobie naprężeń stcnch w prekrojach podłużnch pręta pojawia się naprężenie x i x (rs. 1c): x x ak więc w prekroju poprecnm pręta pojawiają się sił wewnętrne x d, x d ora siła poprecna, które musą spełniać ogólne warunki równowagi: Pi xd Pi xd M io d W prpadku gd prekrój poprecn posiada osie smetrii, aś siła poprecna prechodi pre punkt ich precięcia, warunki równowagi (2) są spełnione. W prekrojach niesmetrcnch nie ostaje spełnione równanie równowagi momentów. Efektem tego będie nie tlko presunięcie się prekrojów poprecnch wględem siebie, ale i ich obrót w swej płascźnie. ak więc opróc ścięcia wstąpi również skręcenie pręta wwołane momentem skręcającm o wartości: M s x x d (3) Układ sił i M s można redukować do sił wewnętrnej P w =, lec presuniętej wględem środka prekroju o wartości k 1. k 1 x x x x x d Podobnie można wnacć wielkość k 2 presunięcia sił poprecnej w prpadku diałania jej wdłuż drugiej osi prekroju pręta. ak więc: Środkiem ścinania nawam taki punkt o współrędnch k 1 i k 2, leżąc w płascźnie prekroju poprecnego, pre któr prechodąca siła poprecna wwołuje w pręcie jednie ścinanie be skręcania. Gd siła poprecna ma kierunek prechodąc pre środek ścinania, to w prekrojach pręta wstąpi włącnie ścinanie be skręcania pręta. W prpadku prekroju smetrcnego środek ścinania leż awse na osi smetrii. x (1) (2) (4) 3.2 Współrędne środka ścinania w pręcie o prekroju ceowm Ropatruje się diałanie sił poprecnej w pręcie o prekroju ceowm obciążonm na końcu siłą skupioną P (rs. 2).

4 WYZNCZNIE ŚRODK ŚCINNI... 4 P P x x l Rs. 2. Ceownik obciążon siłą poprecną W prekroju poprecnm odległm o x ( x l ) od utwierdenia siła P redukuje się do sił poprecnej ora momentu gnącego M g (rs. 3). M g Rs. 3. Sił wewnętrne w prekroju ceownika odległm od końca Zakłada się, że na grubości ścianki ceownika naprężenia stcne są stałe. Ich wartość można określić na podstawie woru Żurawskiego. I tak dla naprężeń stcnch wstępującch w półkach (rs. 8.4): Dla środnika aś: S 1 x (5) gi S 1 x, (6) bi gdie: S ( 1 ) moment statcn wględem osi obojętnej odciętej cęści prekroju półek pre oś 1; S ( 1 ) moment statcn wględem osi obojętnej odciętej cęści prekroju środnika pre oś 1 ; b grubość środnika; g grubość półki; I moment bewładności prekroju wględem osi.

5 WYZNCZNIE ŚRODK ŚCINNI... 5 B b H h 1 h g d 1 d 2 x m 1 c Rs. 4. Określanie momentów statcnch Moment statcne wnosą odpowiednio: S d d d1 Bd1; d bd 2 1 H / 2 h/ 2 S B d b d h/2 1 ora gdie: H h h 1 S 1 B b (7) S gm, (8) 1 h 2 1 ; h H h 1 (9) 2 Wkorstując ależności na moment statcne (7) i (8) we worach na naprężenia stcne (5) i (6) otrmuje się: x hm (1) 2I x bh 4 BH h 8bI Wkres tch naprężeń uwidocniono na rs. 5a. (11)

6 WYZNCZNIE ŚRODK ŚCINNI... 6 x x h x a) b) Rs. 5. (a) Wkres naprężeń stcnch ora (b) wnik redukcji sił w prekroju Zwraca uwagę preciwn nak naprężeń x w górnej i dolnej półce ceownika. W wniku redukcji w prekroju otrmujem sił i (rs. 5b): Sił tworą parę sił o momencie M Bb 2 xd 2 hmgdm 4 hg B b I I (12) xd (13) M h (14) Parę sił można premieścić w swej płascźnie i astąpić nową parą sił (rs. 6). k Par tch sił dają równoważne moment: Rs. 6. Ceownik anaconą współrędną k Ostatecnie M h = k ; k h 2 4I (15) gh 2 k B b (16) Współrędna k wnaca położenie środka ścinania w prekroju ceowm wględem osi środnika.

7 WYZNCZNIE ŚRODK ŚCINNI PRZEBIEG ĆWICZENI Ćwicenie demonstruje skręcanie pręta cienkościennego o niesmetrcnm prekroju poprecnm pr obciążeniu go siłą poprecną i doświadcalne określenie współrędnch środka ścinania. Po teoretcnm i doświadcalnm określeniu współrędnch środka ścinania należ porównać wniki i preprowadić ich dskusję. Pomiaru dokonuje się na pręcie cienkościennm jednostronnie utwierdonm i obciążonm na drugim końcu siłą poprecną. Pręt posiada prekrój poprecn otwart (ceow). Długość pręta jest tak dobrana, b pr niewielkich obciążeniach swobodnego końca uskać dostatecnie duże odkstałcenia. Na swobodnm końcu pręta najduje się ramka presuwną salką, na której awiesa się ciężarki. Salka presuwa się po wskalowanm w milimetrach pręcie. Pr presuwaniu salki ciężarkami wdłuż ramki od środka ścinania prekroju do środka ścinania prekroju pręta kierunek diałania sił poprecnej prenosi się głównej osi bewładności na linię do niej równoległą. Do obserwacji efektu skręcania prekroju poprecnego pręta służ cujnik egarow amocowan na statwie. W prpadku prejścia kierunku sił poprecnej pre środek ścinania prekrój pręta nie ulegnie skręceniu wsstkie punkt prekroju poprecnego presuną się tlko w kierunku diałania sił. Wskaówka cujnika wówcas nie wchli się. Natomiast każdemu innemu położeniu sił towars również obrót prekroju, co sgnaliuje wskaówka cujnika. Pred prstąpieniem do ćwicenia należ wnacć wartość dopuscalnego obciążenia, które można prłożć do pręta ( dop = 6MPa). W tm celu należ mierć długość pręta l ora wmiar prekroju poprecnego: B, H, g ora b (rs. 4). Wniki należ amieścić w tab. 1. Korstając ależności na wartość maksmalnch naprężeń pr ginaniu należ porównać je naprężeniami dopuscalnmi tm sposobem można wnacć obciążenie dopuscalne. Oblicenia te można preprowadić po akońconm ćwiceniu w celu sprawdenia poprawności prjętego obciążenia. Dla pomieronch wielkości prekroju poprecnego należ wnacć położenie środka ciężkości, moment bewładności I i wskaźnik wtrmałości na ginanie W. Z warunku dopuscalnch naprężeń należ oblicć wartość dopuscalnego obciążenia P dop uwględniając ciężar: a) ramki P 1 = 9.7N; b) salki P 2 = 4.6N. Wkonując ćwicenie należ w pierwsej kolejności demontować ramkę wra salką ceownika (ceownik nieobciążon) i werować cujnik egarow. Następnie, po ponownm amontowaniu ramki salką i prjmując środek ciężkości jako punkt pocątkow pomiarów, należ ustawić na jego wsokości salkę i obciążć po kolei ciężarkami: P i = (brak ciężarków), P 3, P 4, P 5, pr cm: P 1 + P 2 + P i < P dop Dla każdego obciążeń należ naleźć takie położenie salki obciążnikami, dla którego wchlenie cujnika egarowego wnosi. Wniki należ estawić w tab. 2.

8 WYZNCZNIE ŚRODK ŚCINNI... 8 Wmiar geometrcne pręta [mm] Wielkości wlicone Długość pręta (l) Współrędna s środka ciężkości [mm] Wsokość prekroju (H) Współrędna s środka ciężkości [mm] Serokość półki (B) Moment bewładności I [mm 4 ] Serokość środnika (b) Wskaźnik wtrmałości W [mm 3 ] Wsokość półki (g) abela 1 Siła [kg] P 1 +P 2 P 3 P 4 P 5 Siła [N] P 1 +P 2 P 3 P 4 P 5 Położenie salki wględem osi środnika pr braku skręcania k [mm] abela 2 5. OPRCOWNIE WYNIKÓW I WYYCZNE DO SPRWOZDNI Sprawodanie powinno awierać: I. Cel ćwicenia II. Wstęp teoretcn III. Rsunek i opis stanowiska pomiarowego IV. Cęść obliceniową, w której należ: 1. Uupełnić tab. 1 i tab Wnacć położenie środka ciężkości prekroju. 3. Wnacć na podstawie ależności teoretcnch położenie środka ścinania. 4. Wnacć dopuscalną wartość sił obciążającej P dop. 5. Wnacć położenie środka ścinania wsstkich pomiarów ropatrując wpadkową równoległego układu sił (P 1 ora P 2 + P i ). 6. Sporądić w skali 2:1 (np. na papiere milimetrowm) rsunek prekroju i anacć na nim: - położenie środka ciężkości; - główne centralne osie bewładności i ; - położenie środka ścinania wnacone ależności teoretcnch ora wnacone doświadcalnie. V. Wnioski ćwicenia.

9 WYZNCZNIE ŚRODK ŚCINNI PRZYKŁDOWE PYNI KONROLNE 1. Podać definicję środka ścinania. 2. Omówić sposób wnacania naprężeń stcnch wwołanch siłą poprecną. 3. Wnacć rokład naprężeń stcnch w prekroju teowm ścinanm siłą. 4. Gdie najduje się środek ścinania w prpadku pręta o prekroju smetrcnm? 5. C położenie środka ścinania ależ od wartości sił poprecnej? 6. Jak położona jest linia łącąca środki ścinania poscególnch prekrojów poprecnch w stosunku do osi pręta prostego o stałm prekroju? 7. C środek ścinania może leżeć poa prekrojem poprecnm? 8. C środek ścinania pokrwa się e środkiem ciężkości prekroju? 7. LIERUR 1. Beluch W., Burcński., Fedeliński P., John., Kokot G., Kuś W.: Laboratorium wtrmałości materiałów. Wd. Politechniki Śląskiej, Skrpt nr 2285, Gliwice, Bąk R., Burcński.: Wtrmałość materiałów elementami ujęcia komputerowego, WN, Warsawa Borusak., Sgulski R., Wreśniowski K.: Wtrmałość materiałów. Doświadcalne metod badań, PWN, Warsawa-Ponań Dląg Z., Jakubowic., Orłoś Z.: Wtrmałość materiałów, t. I-II, WN, Warsawa Ćwicenia wtrmałości materiałów. Laboratorium, Praca bior. pod red. Lambera., Skrpt ucelniane Pol. Śl., nr 1527, Gliwice 199.

10 Insttut Mechaniki i Inżnierii Obliceniowej Wdiał Mechanicn echnologicn, Politechnika Śląska PROOKÓŁ Z ĆWICZENI WYZNCZNIE ŚRODK ŚCINNI Kierunek: Grupa: Sekcja: Data wkonania ćwicenia: Prowadąc: Podpis B H h b P g Długość pręta 1 [mm] Wsokość prekroju H [mm] Serokość półki B [mm] Serokość środnika b [mm] Wsokość półki g [mm] Siła [kg] P 1 +P 2 P 3 P 4 P 5 Położenie salki wględem osi środnika pr braku skręcania k [mm] k

napór cieczy - wypadkowy ( hydrostatyczny )

napór cieczy - wypadkowy ( hydrostatyczny ) 5. apór hdrostatcn i równowaga ciał płwającch Płn najdując się w stanie równowagi oddiałwuje na ścian ogranicające ropatrwaną jego objętość i sił te nawane są naporami hdrostatcnmi. Omawiana problematka

Bardziej szczegółowo

MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH

MECHANIKA BUDOWLI 2 PRACA SIŁ WEWNĘTRZNYCH W PRĘTACH Oga Kopac, am Łogowski, Wojciech Pawłowski, ichał Płotkowiak, Krstof mber Konsutacje naukowe: prof. r hab. JERZY RKOWSKI Ponań /3 ECHIK BUDOWI Praca sił normanch Siła normana prpomnienie (): Jest to siła

Bardziej szczegółowo

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne.

Strukturalne elementy symetrii. Krystalograficzne grupy przestrzenne. Uniwerstet Śląski Insttut Chemii Zakład Krstalografii Laboratorium Krstalografii Strukturalne element smetrii. Krstalograficne grup prestrenne. god. Cel ćwicenia: aponanie się diałaniem elementów smetrii

Bardziej szczegółowo

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 ĆWICZENIE NR 1 TEMAT: Próba statycna rociągania metali. Obowiąująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 Podać nacenie następujących symboli: d o -.....................................................................

Bardziej szczegółowo

4.2.1. Środek ciężkości bryły jednorodnej

4.2.1. Środek ciężkości bryły jednorodnej 4..1. Środek ciężkości rł jednorodnej Brłą jednorodną nawam ciało materialne, w którm masa jest romiescona równomiernie w całej jego ojętości. Dla takic ciał arówno gęstość, jak i ciężar właściw są wielkościami

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY

ANALIZA KONSTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY Cw3_biornik.doc ANALIZA KONTRUKCJI POWŁOKOWEJ. CIENKOŚCIENNY ZBIORNIK CIŚNIENIOWY 1. W P R O W A D Z E N I E Ciało utworone pre dwie akrwione powierchnie nawane jest powłoką, jeśli preciętna odlełość pomięd

Bardziej szczegółowo

Belki złożone i zespolone

Belki złożone i zespolone Belki łożone i espolone efinicja belki łożonej siła rowarswiająca projekowanie połąceń prkła obliceń efinicja belki espolonej ałożenia echnicnej eorii ginania rokła naprężeń normalnch prkła obliceń Belki

Bardziej szczegółowo

DryLin T System prowadnic liniowych

DryLin T System prowadnic liniowych DrLin T Sstem prowadnic liniowch Prowadnice liniowe DrLin T ostał opracowane do astosowań wiąanch automatką i transportem materiałów. Chodiło o stworenie wdajnej, beobsługowej prowadnic liniowej do astosowania

Bardziej szczegółowo

3. Metody rozwiązywania zagadnień polowych

3. Metody rozwiązywania zagadnień polowych 3. Metod rowiąwania agadnień polowch 3.. Dokładne metod anali pola Dokładne metod anali pola powalają na uskanie dokładnego rowiąania równania róŝnickowego lub całkowego w dowolnm punkcie obsaru diałania

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

MECHANIKA OGÓLNA. Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014

MECHANIKA OGÓLNA. Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 MECHANIKA OGÓLNA Semestr: II (Mechanika I), III (Mechanika II), rok akad. 2013/2014 Licba godin: sem. II *) - wkład 30 god., ćwicenia 30 god. sem. III *) - wkład 30 god., ćwicenia 30 god., ale dla kier.

Bardziej szczegółowo

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne

Bardziej szczegółowo

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - DREWNO

- 1 - OBLICZENIA WYTRZYMAŁOŚCIOWE - DREWNO Użtkownik: Biuro Inżnierskie SPECBUD Autor: mg inż. Jan Kowalski Ttuł: Konstrukcje drewniane wg PN-EN Belka - 1 - Kalkulator Konstrukcji Drewnianch EN v.1.0 OBLICZENIA WYTRZYMAŁOŚCIOWE - DREWNO 2013 SPECBUD

Bardziej szczegółowo

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane

Bardziej szczegółowo

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu

J. Szantyr - Wykład 7 Ruch ogólny elementu płynu J. Santr - Wkład 7 Rch ogóln element płn Rch ogóln ciała stwnego można predstawić jako smę premiescenia liniowego i obrot. Ponieważ płn nie mają stwności postaciowej, w rch płn dochodi dodatkowo do odkstałcenia

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu miennch wkład MATEMATYKI Automatka i robotka studia niestacjonarne sem II, rok ak 2009/2010 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R ndef ={( 1, 2,, n ): 1 R 2

Bardziej szczegółowo

5.7. Przykład liczbowy

5.7. Przykład liczbowy 5.7. Prład licbow onać oblicenia nośności beli podsuwnicowej e sali S75 pręsłami o długościach l m swobodnie podparmi na słupach esaad obsługiwanej pre dwie suwnice naorowe o jednaowch paramerach usuowanej

Bardziej szczegółowo

Ruch kulisty bryły. Kinematyka

Ruch kulisty bryły. Kinematyka Ruch kulist bł. Kinematka Ruchem kulistm nawam uch, w casie któego jeden punktów bł jest stale nieuchom. Ruch kulist jest obotem dookoła chwilowej osi obotu (oś ta mienia swoje położenie w casie). a) b)

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

SYNTHESIS OF MOTION FOR A FOUR-LEGGED ROBOT

SYNTHESIS OF MOTION FOR A FOUR-LEGGED ROBOT Dr inŝ. Maciej T. Trojnacki Premsłow Insttut Automatki i Pomiarów Al. Jeroolimskie 0, 0-486 Warsawa Telefon: +48 8740 341, email: mtrojnacki@piap.pl SYNTEZA UCHU OBOTA CZTEONOśNEO W prac predstawiono nowatorską

Bardziej szczegółowo

Ć w i c z e n i e K 3

Ć w i c z e n i e K 3 Akademia Górniczo Hutnicza Wydział Inżynierii Mechanicznej i Robotyki Katedra Wytrzymałości, Zmęczenia Materiałów i Konstrukcji Nazwisko i Imię: Nazwisko i Imię: Wydział Górnictwa i Geoinżynierii Grupa

Bardziej szczegółowo

TEORIA SPRĘŻYSTOŚCI 10

TEORIA SPRĘŻYSTOŚCI 10 W YKŁ ADY Z T EOII S ĘŻYSTOŚCI ZADANIE BOUSSINESQA I FLAMANTA olitechnika onańska Kopac, Kawck, Łodgowski, łotkowiak, Świtek, Tmpe Olga Kopac, Kstof Kawck, Adam Łodgowski, Michał łotkowiak, Agnieska Świtek,

Bardziej szczegółowo

Fale skrętne w pręcie

Fale skrętne w pręcie ae skrętne w ręcie + -(+) eement ręta r π ) ( 4 Lokane skręcenie o () moment skręcając moduł stwności r romień ręta r 4 ) ( π Pod włwem wadkowego momentu eement ręta uskuje rsiesenie kątowe i sełnion jest

Bardziej szczegółowo

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa: PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci

Bardziej szczegółowo

2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar

2.1. Określenie i rodzaje wektorów. Mnożenie wektora przez skalar 2.1. kreślenie i rodje wektorów. Mnożenie wektor pre sklr Wielkości ficne wstępujące w mechnice i innch diłch fiki możn podielić n sklr i wektor. A określić wielkość sklrną, wstrc podć tlko jedną licę.

Bardziej szczegółowo

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6

Rozwiązywanie belek prostych i przegubowych wyznaczanie reakcji i wykresów sił przekrojowych 6 ozwiązwanie beek prostch i przegubowch wznaczanie reakcji i wkresów sił przekrojowch 6 Obciążenie beki mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe q rs. 6.. s. 6. rzed przstąpieniem

Bardziej szczegółowo

Informacje uzupełniające: Wyboczenie z płaszczyzny układu w ramach portalowych. Spis treści

Informacje uzupełniające: Wyboczenie z płaszczyzny układu w ramach portalowych. Spis treści S032a-PL-EU Informacje uupełniające: Wybocenie płascyny układu w ramach portalowych Ten dokument wyjaśnia ogólną metodę (predstawioną w 6.3.4 E1993-1-1 sprawdania nośności na wybocenie płascyny układu

Bardziej szczegółowo

PITAGORAS ARYSTOTELES ERATOSTENES. Wprowadzenie. O kulistości Ziemi. Starożytni postulatorzy kulistości Ziemi

PITAGORAS ARYSTOTELES ERATOSTENES. Wprowadzenie. O kulistości Ziemi. Starożytni postulatorzy kulistości Ziemi O kulistości Ziemi Starożtni postulator kulistości Ziemi Wprowaenie PITAGOAS sugerował, iż Ziemia jest kstałtu kulistego. Jenak postulat ten opierał się racej na tm, iż kula bła uważana a figurę oskonałą,

Bardziej szczegółowo

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach. CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o

Bardziej szczegółowo

WYKŁAD 6. MODELE OBIEKTÓW 3-D3 część 2. 1. Powierzchnie opisane parametrycznie. Plan wykładu: Powierzchnie opisane parametrycznie

WYKŁAD 6. MODELE OBIEKTÓW 3-D3 część 2. 1. Powierzchnie opisane parametrycznie. Plan wykładu: Powierzchnie opisane parametrycznie WYKŁAD 6. owierchnie opisane paraetrcnie MODELE OIEKÓW -D cęść (,v (,v (,v f (,v f (,v f (,v v in in v v a a lan wkład: owierchnie opisane paraetrcnie v a v Krwe paraetrcne w -D D (krwa Herite a v in (,v

Bardziej szczegółowo

KRYSTYNA JEŻOWIECKA-KABSCH HENRYK SZEWCZYK MECHANIKA PŁYNÓW

KRYSTYNA JEŻOWIECKA-KABSCH HENRYK SZEWCZYK MECHANIKA PŁYNÓW KRYSTYNA JEŻOWIECKA-KABSCH HENRYK SZEWCZYK MECHANIKA PŁYNÓW OFICYNA WYDAWNICZA POLITECHNIKI WROCŁAWSKIEJ WROCŁAW Wanie poręcnika jest otowane pre Ministra Eukacji Naroowej Recenenci ALICJA JARŻA ZDZISŁAW

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7

Rozwiązywanie ram płaskich wyznaczanie reakcji i wykresów sił przekrojowych 7 ozwiązwanie ram płaskich wznaczanie reakcji i wkresów sił przekrojowch 7 Obciążenie ram płaskiej, podobnie jak w przpadku beek rozdział 6, mogą stanowić sił skupione, moment skupione oraz obciążenia ciągłe

Bardziej szczegółowo

SKRĘCANIE WAŁÓW OKRĄGŁYCH

SKRĘCANIE WAŁÓW OKRĄGŁYCH KRĘCANIE AŁÓ OKRĄGŁYCH kręcanie występuje wówczas gdy para sił tworząca moment leży w płaszczyźnie prostopadłej do osi elementu konstrukcyjnego zwanego wałem Rysunek pokazuje wał obciążony dwiema parami

Bardziej szczegółowo

Graficzne modelowanie scen 3D. Wykład 4

Graficzne modelowanie scen 3D. Wykład 4 Wkład 4 Podstawowe pojęcia i definicje . Modelowanie. Definicja Model awiera wsstkie dane i obiekt ora wiąki pomięd nimi, które są niebędne do prawidłowego wświetlenia i realiowania interakcji aplikacją,

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

ĆWICZENIE 5 BADANIE ZASILACZY UPS

ĆWICZENIE 5 BADANIE ZASILACZY UPS ĆWICZENIE 5 BADANIE ZASILACZY UPS Cel ćwicenia: aponanie budową i asadą diałania podstawowych typów asilacy UPS ora pomiar wybranych ich parametrów i charakterystyk. 5.1. Podstawy teoretycne 5.1.1. Wstęp

Bardziej szczegółowo

Profile zimnogięte. Typu Z i C

Profile zimnogięte. Typu Z i C Profile zimnogięte Typu Z i C Profile zimnogięte Głównym zastosowaniem produkowanych przez nas profili zimnogiętych są płatwie dachowe oraz rygle ścienne. Na elementy te (jako stosunkowo mało obciążone

Bardziej szczegółowo

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁAD ELEKTROENERGETYKI Ćwicenie: URZĄDZENIA PRZECIWWYBUCHOWE BADANIE TRANSFORMATORA JEDNOFAZOWEGO Opracował: kpt.dr inż. R.Chybowski Warsawa

Bardziej szczegółowo

KONSTRUKCJE STALOWE W EUROPIE. Wielokondygnacyjne konstrukcje stalowe Część 8: Opis kalkulatora do obliczania nośności elementów konstrukcyjnych

KONSTRUKCJE STALOWE W EUROPIE. Wielokondygnacyjne konstrukcje stalowe Część 8: Opis kalkulatora do obliczania nośności elementów konstrukcyjnych KONSTRUKCJE STALOWE W EUROPIE Wielokondgnacjne konstrukcje stalowe Cęść 8: Opis kalkulatora do oblicania nośności elementów konstrukcjnch Wielokondgnacjne konstrukcje stalowe Cęść : Opis kalkulatora do

Bardziej szczegółowo

Wydawnictwo Wyższej Szkoły Komunikacji i Zarządzania w Poznaniu

Wydawnictwo Wyższej Szkoły Komunikacji i Zarządzania w Poznaniu CMYK ISBN 98-8-888-- Wdanicto Wżsej Skoł Komunikacji i Zarądania - Ponań, ul Różana a tel 8 9, fa 8 9 skiedu danicto@skiponanpl analia89indd Wdanicto Wżsej Skoł Komunikacji i Zarądania Ponaniu 9--8 ::

Bardziej szczegółowo

KONSTRUKCJE METALOWE II

KONSTRUKCJE METALOWE II 1 POLITECHNIKA POZNAŃSKA Wdział Budownictwa, Architektur i Inżnierii Środowiska Insttut Konstrukcji Budowlanch dr inż. Jacek Tasarek KONSTRUKCJE METALOWE II POZNAŃ, 004 1.ELEMENTY ZGINANE - BELKI 1.1.Wiadomości

Bardziej szczegółowo

Ćwiczenie 361 Badanie układu dwóch soczewek

Ćwiczenie 361 Badanie układu dwóch soczewek Nazwisko... Data... Wdział... Imię... Dzień tg.... Godzina... Ćwiczenie 36 Badanie układu dwóch soczewek Wznaczenie ogniskowch soczewek metodą Bessela Odległość przedmiotu od ekranu (60 cm 0 cm) l Soczewka

Bardziej szczegółowo

Ochrona_pporaz_ISiW J.P. Spis treści:

Ochrona_pporaz_ISiW J.P. Spis treści: Spis treści: 1. Napięcia normaliowane IEC...2 1.1 Podstawy prawne 2 1.2 Pojęcia podstawowe 2 2. Zasilanie odbiorców niepremysłowych...3 2.1 kłady sieciowe 4 3. Zasady bepiecnej obsługi urądeń elektrycnych...8

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Rok skolny 2015/16 POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopscająca (2); (3) - ocena dostatecna (3); (4) - ocena dobra (4);

Bardziej szczegółowo

Global Positioning System (GPS) zasada działania

Global Positioning System (GPS) zasada działania Global Positioning Sstem GPS asada diałania Metoda wnacania pocji GPS apewnia pocję 3D -,, H. Parametr nawigacjn odległość odbiornika od SV. Odległość od SV wlicana na podstawie pomiaru casu podcas prebtej

Bardziej szczegółowo

Projekt belki zespolonej

Projekt belki zespolonej Pomoce dydaktyczne: - norma PN-EN 1994-1-1 Projektowanie zespolonych konstrukcji stalowo-betonowych. Reguły ogólne i reguły dla budynków. - norma PN-EN 199-1-1 Projektowanie konstrukcji z betonu. Reguły

Bardziej szczegółowo

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 WYMAGANIA EDUKACYJNE Z PRZEDMIOTU: KONSTRUKCJE BUDOWLANE klasa III Podstawa opracowania: PROGRAM NAUCZANIA DLA ZAWODU TECHNIK BUDOWNICTWA 311204 1 DZIAŁ PROGRAMOWY V. PODSTAWY STATYKI I WYTRZYMAŁOŚCI MATERIAŁÓW

Bardziej szczegółowo

PODSTAWY KONSTRUKCJI MASZYN

PODSTAWY KONSTRUKCJI MASZYN POLITECHNIA LUBELSA J. Banasek, J. Jonak PODSTAW ONSTRUCJI MASN WPROWADENIE DO PROJETOWANIA PREŁADNI ĘBATCH I DOBORU SPRĘGIEŁ MECHANICNCH Wydawnictwa Ucelniane 008 Opiniodawca: dr hab. inŝ. Stanisław rawiec

Bardziej szczegółowo

Laboratorium grafiki komputerowej i animacji. Ćwiczenie III - Biblioteka OpenGL - wprowadzenie, obiekty trójwymiarowe: punkty, linie, wielokąty

Laboratorium grafiki komputerowej i animacji. Ćwiczenie III - Biblioteka OpenGL - wprowadzenie, obiekty trójwymiarowe: punkty, linie, wielokąty Laboratorium grafiki komputerowej i animacji Ćwicenie III - Biblioteka OpenGL - wprowadenie, obiekty trójwymiarowe: punkty, linie, wielokąty Prygotowanie do ćwicenia: 1. Zaponać się ogólną charakterystyką

Bardziej szczegółowo

PROJEKT K O N S T R U K C J I

PROJEKT K O N S T R U K C J I PROJEKT K O N S T R U K C J I Spis treści Opis technicn... 2K Charakterstka obiektu... 2K Warunki gruntowo-wone, posaowienie...2k Funaent... 3K Ścian konstrukcjne...3k uowa... 3K Poscie ewnętrne ścian...3k

Bardziej szczegółowo

ROBOT Millennium wersja 20.1 - Podręcznik użytkownika strona: 371 9. ZAŁĄCZNIKI. Robobat www.robobat.com

ROBOT Millennium wersja 20.1 - Podręcznik użytkownika strona: 371 9. ZAŁĄCZNIKI. Robobat www.robobat.com ROBO Milleium wersja. - Podręcik użtkowika stroa: 37 9. ZAŁĄCZNIKI Robobat www.robobat.com stroa: 37 ROBO Milleium wersja. - Podręcik użtkowika 9.. Załącik - Elemet prętowe (ieliiowa aalia w programie

Bardziej szczegółowo

1. Wprowadzenie... 2. 2. Oznaczenia... 4. 3. Model obliczeniowy i granice stosowania... 5

1. Wprowadzenie... 2. 2. Oznaczenia... 4. 3. Model obliczeniowy i granice stosowania... 5 Informaje uupełniająe: Projektowanie podstawy słupa utwierdonego W tym dokumenie predstawiono asady dotyąe projektowania podstaw słupów utwierdonyh. Zasady te ograniają się do symetrynyh, nieustywnionyh

Bardziej szczegółowo

Tabele charakterystyk geometrycznych i przekrojów profili Z i C

Tabele charakterystyk geometrycznych i przekrojów profili Z i C Tabele charakterstk geometrcznch i przekrojów profili Z i C Z PROFILE Z η L Oferowane kształtowniki posiadają znak budowlan B. Program produkcji, stosowan powszechnie na płatwie i rgle w halach stalowch.

Bardziej szczegółowo

Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze

Wykład 4. Zasada zachowania energii. Siły zachowawcze i niezachowawcze Wład 4 Zasada achowania enegii Sił achowawce i nieachowawce Wsstie istniejące sił możem podielić na sił achowawce i sił nie achowawce. Siła jest achowawca jeżeli paca tóą wonuję ta siła nad puntem mateialnm

Bardziej szczegółowo

Pozyskiwanie danych przestrzennych, wykorzystywanie map numerycznych i analogowych, posługiwanie się systemami GIS

Pozyskiwanie danych przestrzennych, wykorzystywanie map numerycznych i analogowych, posługiwanie się systemami GIS Poskiwanie danch pesennch, wkoswanie map numecnch i analogowch, posługiwanie się ssemami GIS Maeiał ddakcne dla eneów wasaów ealiowanch w amach pojeku "Naucciel na pakkach. Pogam doskonalenia awodowego

Bardziej szczegółowo

2.3.1. Iloczyn skalarny

2.3.1. Iloczyn skalarny 2.3.1. Ilon sklrn Ilonem sklrnm (sklrowm) dwóh wektorów i nwm sklr równ ilonowi modułów ou wektorów pre kosinus kąt wrtego międ nimi. α O Rs. 2.8. Ilustrj do definiji ilonu sklrnego Jeżeli kąt międ wektormi

Bardziej szczegółowo

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi:

Stan naprężenia. Przykład 1: Tarcza (płaski stan naprężenia) Określić siły masowe oraz obciążenie brzegu tarczy jeśli stan naprężenia wynosi: Stan naprężenia Przkład 1: Tarcza (płaski stan naprężenia) Określić sił masowe oraz obciążenie brzegu tarcz jeśli stan naprężenia wnosi: 5 T σ. 8 Składowe sił masowch obliczam wkonując różniczkowanie zapisane

Bardziej szczegółowo

PRZEZNACZENIE I OPIS PROGRAMU

PRZEZNACZENIE I OPIS PROGRAMU PROGRAM ZESP1 (12.91) Autor programu: Zbigniew Marek Michniowski Program do analizy wytrzymałościowej belek stalowych współpracujących z płytą żelbetową. PRZEZNACZENIE I OPIS PROGRAMU Program służy do

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI KIERUNEK: Automatyka i Robotyka (AiR) SPECJALNOŚĆ: Robotyka (ARR) PRACA DYPLOMOWA MAGISTERSKA Wyposażenie robota dwukołowego w cujniki ewnętrne Equipping a two

Bardziej szczegółowo

Ć W I C Z E N I E N R M-2

Ć W I C Z E N I E N R M-2 INSYU FIZYKI WYDZIAŁ INŻYNIERII PRODUKCJI I ECHNOLOGII MAERIAŁÓW POLIECHNIKA CZĘSOCHOWSKA PRACOWNIA MECHANIKI Ć W I C Z E N I E N R M- ZALEŻNOŚĆ OKRESU DRGAŃ WAHADŁA OD AMPLIUDY Ćwiczenie M-: Zależność

Bardziej szczegółowo

POŁĄCZENIA ŚRUBOWE I SPAWANE Dane wstępne: Stal S235: f y := 215MPa, f u := 360MPa, E:= 210GPa, G:=

POŁĄCZENIA ŚRUBOWE I SPAWANE Dane wstępne: Stal S235: f y := 215MPa, f u := 360MPa, E:= 210GPa, G:= POŁĄCZENIA ŚRUBOWE I SPAWANE Dane wstępne: Stal S235: f y : 25MPa, f u : 360MPa, E: 20GPa, G: 8GPa Współczynniki częściowe: γ M0 :.0, :.25 A. POŁĄCZENIE ŻEBRA Z PODCIĄGIEM - DOCZOŁOWE POŁĄCZENIE KATEGORII

Bardziej szczegółowo

Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego

Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego Wyznaczanie modułu sprężystości za pomocą wahadła torsyjnego Obowiązkowa znajomość zagadnień Charakterystyka odkształceń sprężystych, pojęcie naprężenia. Prawo Hooke a, moduł Kirchhoffa i jego wpływ na

Bardziej szczegółowo

B. OBLICZENIA STATYCZNE

B. OBLICZENIA STATYCZNE . OLICENI STTCNE ESTWIENIE POCJI OLICENIOWCH. Nr. Po. obliceniowa Nawa eleentu. Str. 1 ałożenia prjęte w scheacie obliceniow estawienie obciążeń. 3 Scheat obliceniow stropu na I kongnacją. 4 4 Po. S-1/1

Bardziej szczegółowo

CZĄSTECZKA (VB) Dogodną i użyteczną metodę przewidywania kształtu cząsteczki stanowi koncepcja hybrydyzacji.

CZĄSTECZKA (VB) Dogodną i użyteczną metodę przewidywania kształtu cząsteczki stanowi koncepcja hybrydyzacji. ZĄSTEZKA (VB) Dogodną i użtecną metodę prewidwania kstałtu cąstecki stanowi koncepcja hbrdacji YBRYDYZAJA - wmiesanie funkcji falowch, tworenie orbitali miesanch orbitali atomowch mającch najcęściej tę

Bardziej szczegółowo

Rodzaje obciążeń, odkształceń i naprężeń

Rodzaje obciążeń, odkształceń i naprężeń Rodzaje obciążeń, odkształceń i naprężeń 1. Podział obciążeń i odkształceń Oddziaływania na konstrukcję, w zależności od sposobu działania sił, mogą być statyczne lun dynamiczne. Obciążenia statyczne występują

Bardziej szczegółowo

Jacek Jarnicki Politechnika Wrocławska

Jacek Jarnicki Politechnika Wrocławska Informacje organacjne. Układ predmotu Grafka komputerowa Doc. dr nż. Jacek Jarnck Insttut Informatk, Automatk Robotk p. 6 C-3, tel. 7-3-8-3 jacek.jarnck@pwr.wroc.pl www.sk.ar.pwr.wroc.pl semestr VI -,

Bardziej szczegółowo

Raport wymiarowania stali do programu Rama3D/2D:

Raport wymiarowania stali do programu Rama3D/2D: 2. Element poprzeczny podestu: RK 60x40x3 Rozpiętość leff=1,0m Belka wolnopodparta 1- Obciążenie ciągłe g=3,5kn/mb; 2- Ciężar własny Numer strony: 2 Typ obciążenia: Suma grup: Ciężar własny, Stałe Rodzaj

Bardziej szczegółowo

PF11- Dynamika bryły sztywnej.

PF11- Dynamika bryły sztywnej. Instytut Fizyki im. Mariana Smoluchowskiego Wydział Fizyki, Astronomii i Informatyki Stosowanej Uniwersytetu Jagiellońskiego Zajęcia laboratoryjne w I Pracowni Fizycznej dla uczniów szkół ponadgimnazjalych

Bardziej szczegółowo

UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NARZĘDZIEM JEDNOOSTRZOWYM

UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NARZĘDZIEM JEDNOOSTRZOWYM MODELOWANIE INŻYNIESKIE ISSN 896-77X 40, s. 7-78, Gliwice 00 UZĘBIENIA CZOŁOWE O ŁUKOWO KOŁOWEJ LINII ZĘBÓW KSZTAŁTOWANE NAZĘDZIEM JEDNOOSTZOWYM PIOT FĄCKOWIAK Instytut Technologii Mechanicnej, Politechnika

Bardziej szczegółowo

OBLICZENIA FILTRACJI PRZEZ ZAPORĘ ZIEMNĄ BEZ ELEMENTÓW USZCZELNIAJĄCYCH Z DRENAŻEM

OBLICZENIA FILTRACJI PRZEZ ZAPORĘ ZIEMNĄ BEZ ELEMENTÓW USZCZELNIAJĄCYCH Z DRENAŻEM Konstrucje i budowle iene OBICZENIA FITRACJI PRZEZ ZAPORĘ ZIEMNĄ BEZ EEMENTÓW USZCZENIAJĄCYCH Z DRENAŻEM Zapora iena posadowiona na podłożu nieprepuscalny Wsystie onacenia do obliceń najdują się na sceacie

Bardziej szczegółowo

Przykład: Płatew swobodnie podparta o przekroju z dwuteownika IPE

Przykład: Płatew swobodnie podparta o przekroju z dwuteownika IPE Dokument Ref: SX01a-PL-EU Strona 1 z Dot. Eurocodu EN Wkonanł Mladen Lukic Data Jan 006 Sprawdził Alain Bureau Data Jan 006 Przkład: Płatew swobodnie podparta o przekroju z Przkład ten podaje szczegół

Bardziej szczegółowo

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym

Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym Ćwiczenie E6 Wyznaczanie momentu magnetycznego obwodu w polu magnetycznym E6.1. Cel ćwiczenia Na zamkniętą pętlę przewodnika z prądem, umieszczoną w jednorodnym polu magnetycznym, działa skręcający moment

Bardziej szczegółowo

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca

1. Pojazdy i maszyny robocze 2. Metody komputerowe w projektowaniu maszyn 3. Inżynieria produkcji Jednostka prowadząca Kod przedmiotu: PLPILA02-IPMIBM-I-2p7-2012-S Pozycja planu: B7 1. INFORMACJE O PRZEDMIOCIE A. Podstawowe dane 1 Nazwa przedmiotu Wytrzymałość materiałów I 2 Rodzaj przedmiotu Podstawowy/obowiązkowy 3 Kierunek

Bardziej szczegółowo

Przedmiot: Mechanika z Wytrzymałością materiałów

Przedmiot: Mechanika z Wytrzymałością materiałów Przedmiot: Mechanika z Wytrzymałością materiałów kierunek: ZARZĄDZANIE i INŻYNIERIA PRODUKCJI studia niestacjonarne pierwszego stopnia - N1 rok 2, semestr letni Kurs obejmuje: Wykłady (12 h) Ćwiczenia

Bardziej szczegółowo

ROZKŁAD BŁĘDÓW PRZY PROJEKTOWANIU POŚREDNIEGO OŚWIETLENIA ELEKTRYCZNEGO ZA POMOCĄ OPRAW KWADRATOWYCH

ROZKŁAD BŁĘDÓW PRZY PROJEKTOWANIU POŚREDNIEGO OŚWIETLENIA ELEKTRYCZNEGO ZA POMOCĄ OPRAW KWADRATOWYCH Andrej PAWLAK Krystof ZAREMBA ROZKŁAD BŁĘDÓW PRZY PROJEKTOWANIU POŚREDNIEGO OŚWIETLENIA ELEKTRYCZNEGO ZA POMOCĄ OPRAW KWADRATOWYCH STRESZCZENIE W wielkoowierchniowych instalacjach oświetlenia ośredniego

Bardziej szczegółowo

2. Charakterystyki geometryczne przekroju

2. Charakterystyki geometryczne przekroju . CHRKTERYSTYKI GEOMETRYCZNE PRZEKROJU 1.. Charakterystyki geometryczne przekroju.1 Podstawowe definicje Z przekrojem pręta związane są trzy wielkości fizyczne nazywane charakterystykami geometrycznymi

Bardziej szczegółowo

Analiza transformatora

Analiza transformatora ĆWICZENIE 4 Analia transformatora. CEL ĆWICZENIA Celem ćwicenia jest ponanie bodowy, schematu astępcego ora ocena pracy transformatora.. PODSTAWY TEORETYCZNE. Budowa Podstawowym adaniem transformatora

Bardziej szczegółowo

System Zarządzania Jakością PN/EN ISO 9001:2009. Kształtowniki typu Z, C, Σ

System Zarządzania Jakością PN/EN ISO 9001:2009. Kształtowniki typu Z, C, Σ System Zarządzania Jakością PN/EN ISO 9001:2009 Kształtowniki typu Z, C, Σ Profil produkcji Profile typu Z, C, Σ produkowane przez firmę Blachy Pruszyński mogą mieć wysokość przeprofilowania od 100 do

Bardziej szczegółowo

Ćw. 5. Określenie współczynnika strat mocy i sprawności przekładni ślimakowej.

Ćw. 5. Określenie współczynnika strat mocy i sprawności przekładni ślimakowej. Laboratorium Podstaw Konstrukcji Masyn - - Ćw. 5. Określenie współcynnika strat mocy i sprawności prekładni ślimakowej.. Podstawowe wiadomości i pojęcia. Prekładnie ślimakowe są to prekładnie wichrowate,

Bardziej szczegółowo

METODA MATEMATYCZNEGO MODELOWANIA PŁATAMI BÉZIERA KSZTAŁTU ZIARNA PSZENŻYTA

METODA MATEMATYCZNEGO MODELOWANIA PŁATAMI BÉZIERA KSZTAŁTU ZIARNA PSZENŻYTA I N Ż YNIERIA R OLNICZA A GRICULTURAL E NGINEERING 01: Z. (14) T.1 S. 5- ISSN 149-764 Polske Towarstwo Inżner Rolnce http://www.ptr.org METODA MATEMATYCZNEGO MODELOWANIA PŁATAMI BÉZIERA KSZTAŁTU ZIARNA

Bardziej szczegółowo

Wewnętrzny stan bryły

Wewnętrzny stan bryły Stany graniczne Wewnętrzny stan bryły Bryła (konstrukcja) jest w równowadze, jeżeli oddziaływania zewnętrzne i reakcje się równoważą. P α q P P Jednak drugim warunkiem równowagi jest przeniesienie przez

Bardziej szczegółowo

Przedmiot przedsięwzięcia i jego lokalizacja

Przedmiot przedsięwzięcia i jego lokalizacja Predmiot predsięwięcia i jego lokaliacja Predmiotem opisanego predsięwięcia jest opracowanie koncepcji programowo-prestrennej Trasy Mostu Północnego od węła ulicą Marymoncką do węła ulicą Modlińską wra

Bardziej szczegółowo

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa Metody dokładne w astosowaniu do rowiąywania łańcuchów Markowa Beata Bylina, Paweł Górny Zakład Informatyki, Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej Plac Marii Curie-Skłodowskiej 5, 2-31

Bardziej szczegółowo

Marcin Zdanowicz Mechanika budowli Przewodnik do ćwiczeń dla studentów architektury CZĘŚĆ I

Marcin Zdanowicz Mechanika budowli Przewodnik do ćwiczeń dla studentów architektury CZĘŚĆ I ŃSTWOW WYŻSZ SZKOŁ ZWODOW W NYSIE SKRYT NR 8 arcin Zdanowicz echanika budowli rzewodnik do ćwiczeń dla studentów architektur CZĘŚĆ I OFICYN WYDWNICZ WSZ W NYSIE NYS 5 SEKRETRZ OFICYNY: Tomasz Drewniak

Bardziej szczegółowo

Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej

Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej Metody badań kamienia naturalnego: Oznaczanie wytrzymałości na zginanie pod działaniem siły skupionej 1. Zasady metody Zasada metody polega na stopniowym obciążaniu środka próbki do badania, ustawionej

Bardziej szczegółowo

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia.

( ) σ v. Adam Bodnar: Wytrzymałość Materiałów. Analiza płaskiego stanu naprężenia. Adam Bdnar: Wtrzmałść Materiałów Analiza płaskieg stanu naprężenia 5 ANALIZA PŁASKIEGO STANU NAPRĘŻENIA 5 Naprężenia na dwlnej płaszczźnie Jak pamiętam płaski stan naprężenia w punkcie cechuje t że wektr

Bardziej szczegółowo

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny

Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) sprężyny Doświadczalne wyznaczanie współczynnika sztywności (sprężystości) Wprowadzenie Wartość współczynnika sztywności użytej można wyznaczyć z dużą dokładnością metodą statyczną. W tym celu należy zawiesić pionowo

Bardziej szczegółowo

Jakie nowe możliwości daje właścicielom i zarządcom budynków znowelizowana Ustawa termomodrnizacyjna

Jakie nowe możliwości daje właścicielom i zarządcom budynków znowelizowana Ustawa termomodrnizacyjna dr inż. Wiesław Sarosiek mgr inż. Beata Sadowska mgr inż. Adam Święcicki Katedra Podstaw Budownictwa i Fiyki Budowli Politechniki Białostockiej Narodowa Agencja Posanowania Energii S.A. Filia w Białymstoku

Bardziej szczegółowo

Grodzice. Profile GU

Grodzice. Profile GU Grodzice Profile GU Grodzice gorącowalcowane ArcelorMittal posiada dwie walcownie, w którch wtwarzane są grodzice: w Esch/Alzette w Luksemburgu oraz w Dąbrowie Górniczej w Polsce. Walcownia w Dąbrowie

Bardziej szczegółowo

20. BADANIE SZTYWNOŚCI SKRĘTNEJ NADWOZIA. 20.1. Cel ćwiczenia. 20.2. Wprowadzenie

20. BADANIE SZTYWNOŚCI SKRĘTNEJ NADWOZIA. 20.1. Cel ćwiczenia. 20.2. Wprowadzenie 20. BADANIE SZTYWNOŚCI SKRĘTNEJ NADWOZIA 20.1. Cel ćwiczenia Celem ćwiczenia jest wykonanie pomiaru sztywności skrętnej nadwozia samochodu osobowego. 20.2. Wprowadzenie Sztywność skrętna jest jednym z

Bardziej szczegółowo

Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-03150

Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-03150 Politechnika Gdańska Wydział Inżynierii Lądowej i Środowiska Przykłady obliczeń jednolitych elementów drewnianych wg PN-B-0350 Jerzy Bobiński Gdańsk, wersja 0.32 (204) Drewno parametry (wspólne) Dane wejściowe

Bardziej szczegółowo

Modelowanie w pakiecie Matlab/Simulink

Modelowanie w pakiecie Matlab/Simulink Modelowanie w paiecie Matlab/Siulin I. Siłowni pneuatycny ebranowy I.1. Model ateatycny siłownia pneuatycnego ebranowego apisany a poocą równań różnicowych Sygnałe wejściowy siłownia jest ciśnienie P podawane

Bardziej szczegółowo

Materiały pomocnicze do ćwiczeń laboratoryjnych

Materiały pomocnicze do ćwiczeń laboratoryjnych Materiały pomocnicze do ćwiczeń laboratoryjnych Badanie napędów elektrycznych z luzownikami w robocie Kawasaki FA006E wersja próbna Literatura uzupełniająca do ćwiczenia: 1. Cegielski P. Elementy programowania

Bardziej szczegółowo

Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne

Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT. Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne Zakład Konstrukcji Żelbetowych SŁAWOMIR GUT Nr albumu: 79983 Kierunek studiów: Budownictwo Studia I stopnia stacjonarne PROJEKT WYBRANYCH ELEMENTÓW KONSTRUKCJI ŻELBETOWEJ BUDYNKU BIUROWEGO DESIGN FOR SELECTED

Bardziej szczegółowo

HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE

HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE ELEKTRYKA 213 Zesyt 1 (225) Rok LIX Marcin FICE Politechnika Śląska w Gliwicach HAMOWANIE REKUPERACYJNE W MIEJSKIM POJEŹDZIE HYBRYDOWYM Z NAPĘDEM NA KOŁA TYLNE Strescenie. W artykule predstawiono wyniki

Bardziej szczegółowo

Automatyczna kompensacja mocy biernej z systemem monitorowania kopalnianej sieci 6 kv

Automatyczna kompensacja mocy biernej z systemem monitorowania kopalnianej sieci 6 kv dr inż MARIAN HYLA Politechnika Śląska w Gliwicach Automatycna kompensacja mocy biernej systemem monitorowania kopalnianej sieci 6 kv W artykule predstawiono koncepcję, realiację ora efekty diałania centralnego

Bardziej szczegółowo