HUHBKYCZNA METODA OBLICZANIA ROZKŁADÓW WESŁKO&CI CZĄSTEK RADIOAKTYWNYCH OPADAJĄCYCH Hi POWIERZCHNIĄ ZIEMI

Wielkość: px
Rozpocząć pokaz od strony:

Download "HUHBKYCZNA METODA OBLICZANIA ROZKŁADÓW WESŁKO&CI CZĄSTEK RADIOAKTYWNYCH OPADAJĄCYCH Hi POWIERZCHNIĄ ZIEMI"

Transkrypt

1 Ludwika Kownacka Centralne Laboratorium Ochrony Badiologicznej Warszawa HUHBKYCZNA METODA OBLICZANIA ROZKŁADÓW WESŁKO&CI CZĄSTEK RADIOAKTYWNYCH OPADAJĄCYCH Hi POWIERZCHNIĄ ZIEMI S t r e s z c z e n i e Przedstawiono praktyczne zastosowanie metody obliczania względnej koncentracji cząstek ciężkich, opadająeyeh na powierzchnię ziemi z chmury radioaktywnej»powsta» lej po naziemnym wybucha jądrowynu Obliczenia przeprowadzono w oparciu o prosty, liniowy model chmury 5 której rozmiary i maksymalna wysokość, jaką osiąga 19 atmosferze smieniają się яг zależności od stocy wybuchu«bozkład wiał- Mości cząstek w chaurze jest określony poprzes funkcję logarytmiczne-normalną«prędkości opadania cząstek liczone są różnymi metodami, w zależności od ich wielkości«lozkład wielkości oaąstek, otrzymany na powierzchni ziemi ^ako funkcja odległości od źródła, liczono przy.założenia liniowości zmian prędkości wiatru z wysokością«kmaęrycane obliczenie przeprowadzono na maszynie cyfrowej GIER dla małych mocy wybuchów, których chmury mieszczą się 0 troposferze 1 dla odległości zawartych w strefie opadu lokalnego, tj«do 1000 km» Otrzymano krzywe rozkładu ilości cząstek w funkcji ich wielkości dla określonej mocy wybuchu i określonej odległości od źródła«znaleziono wyraźne różnice w kształcie rozkładów dla różnych mocy wybuchów oraz różnych wielkości cząstek. Numerical method of the sijce-^i»tr4^tttion calculation for radioactive particlee falling on to the earth nnsfao«s u m m a r y T3a» paper deals wita theoretical prediction of lative concentration of heavy particles falling on to earth «orfaee tsom a elouö oaaseä by naolear explosion»

2 ; The calculation иегэ based upon a simple linear model of radioactive cloud, «hose size and maximum, liöt in the atmosphere is the function of explosion yield e Particle size distribution in the cloud Is determined by the log~normal function, and their fall-rates «ore calculated by 'various methods depending of their respective size. The particle size-distribution oa the ground as the function of the distance from the source «as calculated by assuming the «ind velocity is & linear function of the hight. The a± equations were obtained determining the relative concentration of the particle on the earth surface GXSS computer»as used forfch<snumerical caleuiatio!3, for the small esplosion3 0 pr-oducins clouds la the troposphere and for the distances covered the local fallout. Curv ß of theffiae-dißtributionof the psx-feiclee for several distances and explosion yield are presented«significant differences in the shape particle sia@-dis~ t-ribution for different espxcsxoa yields «re» found» Tematem pracy jest obliczanie względnej koncentracji cząstek ciężkich opadających na powierzchnię ziemi z chmury powstałej po wybuchu jądrowym, lub też z chmury pochodzenia przemysłowego* Chmura taka składa się z cząstek różnej wielkości, które opadają na powierzchnię ziemi, gdzie otrzymujemy różne ich koncentracje jako funkcje poziomej odległości od źródła«cząstki ciężkie opadają w strefie do kilkuset kilometrów w linii wiatru, W warunkach bezchmurnej pogody opadanie ich zachodzi głównie pod wpływem siły ciężkości» Dodatkowymi czynnikami, które mogą grać niewielką rolę w tym procesie, są: dyfuzja, zderzenia w ruchu cieplnym i siły pola elektrycznego ziemi. Czynnikiem zwiększającym udział siły ciężkości jest koagulaoja* Punkt upadku cząstki na powierzchnię ziemi jest uzależniony od jej wielkości /masy/, początkowej wysokości i grubości chmury oraz od warunków atmosferycznych«wzory określające względną koncentrację oząetek na

3 j»o«3i a?7»ohßi si mi jako fuxjkoje, odległości od źródła ot-. to parawadzając szereg daleko idących uproszczeń chmury i atmosfery* Zsgadaienie rozpatrywane jest «płaszczenie s, a* Oś z jest skierowana pionowo d góry, oś x w kiermaku ~j?oda± go wletru» Zakiaäaiay Halowy model cłuaury - tsszystkiö ssąstki zebrane są»sdłasł- osi t? ałupie o ^öaofitkow&^ podstawi» 3 W każdym elemencie,j dnoatkor?ytb objętości haury iatid^je identycaa.y roskład ilości cząstek г??мl śnoaci od ich «ielkoścd i określony popraes fußkc^e logas^ćaiicsao-aorraalną. f/r/, kfeórej gęstość prawdcpofiosię язотрэа [1»2,3,4] s si ] (1) proad.eń najczęściej spotykany» Następnie sakłeoatay pewien rozkład pionowy Jf/?/, który określa zmiany ilości cząstek»raz ze wzrostem wysokości«ponieważ dla każdej ohmury istnieje poziom maksymalnej koncentracji cząstek /2 Щ Л *iec kształt funkcji H/z/ można określić poprzez dwie funkcje: 1/ dla z^. Ъ т pionową zmianę ilości cząstek określa funkcja rosnąca N^/z/, 2/ dla z^z^ zmianę te określa funkcja malejąca W każdym punkcie wybranego modelu chmury koncentrac^. cząstek jest określona przez funkcję: щ/ат/ = f/p/ N/z/ (2) Szukaną wartością jest względna koncentracja n/x,r/ w dowolnym punkcie x na powierzchni ziemi«równanie toru cząstki w płaszczyźnie /x f z/ można zapisać w postaci: iй w

4 gdzieг 7 Щ = a»z - prędkość wiatru określona przez liniową funkcję wysokości, /a - gradient pionowy wiatru/, 7 - prędkość grawitacyjnego opadania cząstek. Dla cząstek małych, przy r ^ r ^ /= 200 /u/: V g /1/ = Ar 2 gdzie A s prsy r > r 1 /2/. B rv2 я ( 0 } 1 / 2 (5) Br ^ ^ ^ я( 8 о ч? ус Całkując równanie (J) otrzymamy trajektorie cząstek, które spadną w punkcie x na powierzchni ziead. z całego ełupe chmury Szukana koncentracja cząstek na powierzchni sied куп si Z równania (6) uwzględniając (Ц-) i (5) dla ъ s otrzymamy zależności:. dla i dla r >-л, (9) które wykreślamy w płaszczyźnie /r,x/, Z rys. 1 widać, ze dla każdej określonej odległości x = x 0 istnieje promień krytyczny г^х, Z^, taki że w odległości x > x Q wypaoc ją tylko cząstki «nie ja ze r < z^* W związku z tym, przy obliczaniu koncentracji oząstek na powierzchni ziemi wyróżnia się dwa przypadki«

5 - 95* -.! gdy x^/x t 7 / <r^ Koncentracja cząstek na powie- " - rzchni ziemi w punkcie x wyraża się poprzez trzy równania: a/ o <r <r k /x,z o / b/ V х 'V < r < о/ г. < г <, f1 /x,r/ =* afetlma ) f/r/ ^а,^ II* gdy г к/ х» 2 н/ ^ Г1 koncentracja cząstek na po- """ "~ wierzchni ziemi wynosi w przedziale wielkości cząstek: a/o<r<p1 b/ г., <г < V х ' 2 «/ o/ Ifc/x.Z,/ < p <Р, " 1,A«/ = s i(v-v") f/r/ Ш В С P /2У /2/. Sa«sść równań tego typu określa całkowicie koncentrację 02ąst*k s dowolnej odległości od punktu źródłowego dla dowolnej ohnury«

6 Zgodnie z powyższą teorią przyjęto model chmury radioaktywnej spełniający założenia odnośnie funkcji Ж/г/ w postaoi: Щ/z/ s 0 dla z ^ h Щ/z/ - 2? 2 /г/ = 1 dla z = Z m =0 dla z ^H gdzie.» ь _ «yaokośó podstawy chmury, E - wysokość wierzchołka chmury и chwili osiągnięcia przez nią maksymalnej wysokości» Funkcja u/z/ dła h <и <2 Щ dla Z a (z ^H będzie Щ/ъ/ miała z - = 1 - postać: - к МММСЯЖ - h. H-z m W obliczeniach, zgodnie z pracami [5] i [6], przyjęto następujące wartości dla h i H: H = 2, S 1 log ą h a 1,6 + 5,4 log q Założono, że poziom maksymalnej koncentracji cząstek w chmurze występuje aa 1/3 wysokości chmury, czyli: Z B - 1,9 + 5,97 log q H, Z m, h - wyrażone są w km, zaś q - w kt. Rozpatrywano widmo wielkości cząstek w zakresie od 10 Ai do 5«10*^u, przy r o = loo^u. Przy tych założeniach równania określające koncentrację względną cząstek dla danej odległości od punktu wybuchu o danej mocy q będą miały postać:

7 gdy a/ b/ ас^/х 2 т / 4? <fe s 200/U о/ а/ Ю/Ц^г 4200/Ц Ь/ ÜQO/J с/ Б Zgodnie z powyższymi założeniami dla każdej wartości x istnieje ograniczenie z dołu i z góry aa «ielkośoi oząatek, które spadną «danej odległości х, оо ороиоаомеne jest skończonymi rozmiaranl oneary. Wzory na graniozną wielkość cząstki aają postne»

8 г шах r min > 200 / u - iby obliczyć to zagadnienie, uwzględniając wszystkie powyższe warunki, wykonano program na maszynę GIER» Obliczenia miały dotyczyć procesów zachodząoych w troposferze, która w naszych szerokościach waha się od 9 do 14 km, więc obliczenia wykonano dla wybuchów o mocy od 1 kt skokowo co 5, aż do 41 kt» Otrzymane z maszyny wartości wysokości h, H i Z m dla tych aocy wybuohu przedstawione są na rys. 2» Obliczenia koncentracji cząstek na powierzchni ziemi wykonano dla odległości 5, 10, 20, 50, 100, 200, 500 i 1000 km. Zależności r^ od z dla z = Z Q, przedstawione na rys» 3» są zgodne z przewidywanymi /rys, 1/» Jest to rodzina krzywych dla wszystkich branych pod uwagę mocy wybuchu» Zakres wielkości r^n do rj^^ zmienia się w zależności od mocy wybuchu oraz odległości» Aby otrzymać krzywe określające koncentrację cząstek w tym zakresie zaprogramowano liczenie tak, żeby krzywą określano 10 punktó«. Dla każdej mocy wybuchu dla różnych odległości otrzymano krzywe, które określają koncentrację cząstek na powierzchni ziemi i przedstawione są na rysunkach: 4-7» Wnioski 1/. We wszystkich metodach określania obszarów skażonych, znanych z literatury, graniczną prędkość opadania cząstek oblicza się zgodnie г ttzorem Stokesa [4J. Jednakże z obserwacji wiadomo, że prędkość opadania

9 csąstek dużyo.a nie jest zgodna z tym wzorem, i dla nich należy stosować «zór Newtona [5]» Bys«8 przedstawia zmianę prędkości opadania cząstek w atmosferze w zależności od ich wielkości«wprowadzając dwie prędkcści opadania matematycznie utrudniamy nieco całe zagadnienie. Jednakże wyniki uzyakane tą drogą są duśo bardziej zgodne z rzeczywistością* Na podstawie uzyskanych wykresów widać, że: - dla cząstek małych /do г а 200,u/ maksimum koncentracji uzyskane na powierzchni ziemi dla poszczególnych odległości jest przesunięte w stosunku do rozkładu f/r/ w kierunku cząstek o większych rozmiarach /rys o 4/ rozkład dąży do symetrii - dla cząstek ssigkszych /r >200yu/ maksimum to jest przesunięte s kierunku cząstek małych? pogłębia sie. asymetria rozkładu /rys e 5Л 2/e. Jeżeli rjx,zv różni się bardzo od г л = 100/U 5 to promień odpowiadający aaksiomm koncentracji na powierzchni si mi różni się od r^ is - dla r^ <C r o ^sitcśc promienia odpowiadającego maksimum koncentracji na ziemi jest większa od r^ /rysс Vi - dla г^ у r 0 wartość promienia jest mniejsza ой r k /rys. 5/. 3/e Xa większa jest moc wybuchu, tym rozkład koncentracji cząstek na powierzchni ziemi obejmuje szerszy zakres wielkości. Widać to wyraźnie dla cząstek dużych«względny udział cząstek dużych w rozkładzie koncentracji na ziemi rośnie wraz ze wzrostem mocy wybucliui - dla г ^100>u wraz ze «zrostem mocy wybuchu rośnie różnica rjjjgjj - v mąn i koncentracja względna, ponieważ rośnie funkcja f/r/ w tym przedziale wielkości;

10 - 100' öla г у 100ytt przy «zroście mocy s^buoku róśsioa r rośaie ś i e natomiastt k t j maae «ia malej«, ponieważ dla tak uu&jsh cząstek» rozkładzie f/r/ wrrtoścl są bardso mał*. Zaiaay te aalażą przed wszystkia od założonego rozkładu f/r/ dla i t s г а 'с й р а 1«Freiliag S.C»i Raöioactiv Fallout from Huclsar Book I«F243ce d e of a Gon o is й гаап о«ш 9 2о l@ll g W.V7«, EaDp R*E e s Greea^ielä S e M o s Glosa in llouto J.Meteo^öl«, 14, 1 /1957/e K.Po^ 0 spektri^ rsamieroe oseatic o ataosfernoj pyli, lad. ÄM5SSH«, S.g ofiz e 8 /1959/ O Staton Bob. i in»г Distribution anö Intensity of Fallout«Eep. WT-915/bel/, o Gates i<«u«. GyosOii SoÄ.s fhe Heaidual ladiological Hasard?гюа Che Air Detonation of es Atoaic Eain. Rep. A7SlP-501/Del/, 1960«бо Содааа Meynard J.H.i A ßlide-Rule Fallout Oalculstor. -». SOTM /51/ «

11 ich 1» Zel^żaość poaicdsy promienie i d l ł ś i й ś^óoła äo caiöa p powlörsehni asiead dla posiomu koncentracji я chmurz» а 2o Wysokość dolnej! i górnaj ores po sio EÜ oaksyiseln ;} koncentracji ш zal#żno6cl OS SLQQJ b h

12 too Id о /о юо Ü г[/л] 3. Zależność pomiędzy promieniem kxytyczcym i odl-egłośoią upadku osąstki na poralerachni ziemi dla o o mooj q я ,, 41 kt*

13 103 -

14 кг- ш -36kt tor*- KTS л, \ \ ЮОО 2000 S000 ЮООС Rys«5* Zależność względnej koncentsaoji cząstek od ich wielkości dla eybuclió* 0 mocy o s 11 i 36 И i odległości 1 o 20 i 50 кв,

15 X» töookm в Ш 6. Zależność względnej koncentracji osąstek od ioh wielkości dla «ybuohóp o mocy q. s 11, 26 i 4-1 kt oi*az odległośei x a 1000 kn«

16 -5 o е«н НФ си -Р Ей о о р э о о о S М o О оча к> б о y О N D'rll О S

17 Vfaopy/godz] нгоги Siokua Z opadające krople w 3 wjg obliczeń SOööO тот toao 100 SO foö J llłl II 500 tooo 8. Zależność prędkości opadania cząstek w atmosferze od ich wielkości*

WYDZIAŁ LABORATORIUM FIZYCZNE

WYDZIAŁ LABORATORIUM FIZYCZNE 1 W S E i Z W WARSZAWIE WYDZIAŁ LABORATORIUM FIZYCZNE Ćwiczenie Nr 3 Temat: WYZNACZNIE WSPÓŁCZYNNIKA LEPKOŚCI METODĄ STOKESA Warszawa 2009 2 1. Podstawy fizyczne Zarówno przy przepływach płynów (ciecze

Bardziej szczegółowo

Rachunek całkowy - całka oznaczona

Rachunek całkowy - całka oznaczona SPIS TREŚCI. 2. CAŁKA OZNACZONA: a. Związek między całką oznaczoną a nieoznaczoną. b. Definicja całki oznaczonej. c. Własności całek oznaczonych. d. Zastosowanie całek oznaczonych. e. Zamiana zmiennej

Bardziej szczegółowo

1) 2) 3) 5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25)

1) 2) 3)  5) 6) 7) 8) 9) 10) 11) 12) 13) 14) 15) 16) 17) 18) 19) 20) 21) 22) 23) 24) 25) 1) Wykresem funkcji kwadratowej f jest parabola o wierzchołku w początku układu współrzędnych i przechodząca przez punkt. Wobec tego funkcja f określona wzorem 2) Punkt należy do paraboli o równaniu. Wobec

Bardziej szczegółowo

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA

POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA POLITECHNIKA ŚWIĘTOKRZYSKA w Kielcach WYDZIAŁ MECHATRONIKI I BUDOWY MASZYN KATEDRA URZĄDZEŃ MECHATRONICZNYCH LABORATORIUM FIZYKI INSTRUKCJA ĆWICZENIE LABORATORYJNE NR 1 Temat: Wyznaczanie współczynnika

Bardziej szczegółowo

Elementy rachunku różniczkowego i całkowego

Elementy rachunku różniczkowego i całkowego Elementy rachunku różniczkowego i całkowego W paragrafie tym podane zostaną elementarne wiadomości na temat rachunku różniczkowego i całkowego oraz przykłady jego zastosowania w fizyce. Małymi literami

Bardziej szczegółowo

NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU

NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 85 Electrical Engineering 016 Krzysztof KRÓL* NATĘŻENIE POLA ELEKTRYCZNEGO PRZEWODU LINII NAPOWIETRZNEJ Z UWZGLĘDNIENIEM ZWISU W artykule zaprezentowano

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

ZASTOSOWANIE RÓWNANIA BOUSSINESQUE A DO OKREŚLANIA NAPRĘŻEŃ W GLEBIE WYWOŁANYCH ODDZIAŁYWANIEM ZESTAWÓW MASZYN

ZASTOSOWANIE RÓWNANIA BOUSSINESQUE A DO OKREŚLANIA NAPRĘŻEŃ W GLEBIE WYWOŁANYCH ODDZIAŁYWANIEM ZESTAWÓW MASZYN Inżynieria Rolnicza 4(10)/008 ZASTOSOWANIE RÓWNANIA BOUSSINESQUE A DO OKREŚLANIA NAPRĘŻEŃ W GLEBIE WYWOŁANYCH ODDZIAŁYWANIEM ZESTAWÓW MASZYN Yuri Chigarev, Rafał Nowowiejski, Jan B. Dawidowski Instytut

Bardziej szczegółowo

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI

FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI FUNKCJE ELEMENTARNE I ICH WŁASNOŚCI DEFINICJA (funkcji elementarnych) Podstawowymi funkcjami elementarnymi nazywamy funkcje: stałe potęgowe wykładnicze logarytmiczne trygonometryczne Funkcje, które można

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 6 Teoria funkcje cz. 2

Kurs ZDAJ MATURĘ Z MATEMATYKI MODUŁ 6 Teoria funkcje cz. 2 1 FUNKCJE Wykres i własności funkcji kwadratowej Funkcja kwadratowa może występować w 3 postaciach: postać ogólna: f(x) ax 2 + bx + c, postać kanoniczna: f(x) a(x - p) 2 + q postać iloczynowa: f(x) a(x

Bardziej szczegółowo

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie:

Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: Ciągi rekurencyjne Zadanie 1 Znaleźć wzór ogólny i zbadać istnienie granicy ciągu określonego rekurencyjnie: w dwóch przypadkach: dla i, oraz dla i. Wskazówka Należy poszukiwać rozwiązania w postaci, gdzie

Bardziej szczegółowo

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego

Nazwisko i imię: Zespół: Data: Ćwiczenie nr 1: Wahadło fizyczne. opis ruchu drgającego a w szczególności drgań wahadła fizycznego Nazwisko i imię: Zespół: Data: Cel ćwiczenia: Ćwiczenie nr 1: Wahadło fizyczne opis ruchu drgającego a w szczególności drgań wahadła fizycznego wyznaczenie momentów bezwładności brył sztywnych Literatura

Bardziej szczegółowo

STATYCZNA PRÓBA ROZCIĄGANIA

STATYCZNA PRÓBA ROZCIĄGANIA STATYCZNA PRÓBA ROZCIĄGANIA Próba statyczna rozciągania jest jedną z podstawowych prób stosowanych do określenia jakości materiałów konstrukcyjnych wg kryterium naprężeniowego w warunkach obciążeń statycznych.

Bardziej szczegółowo

GRAWITACYJNE ZAGĘSZCZANIE OSADÓW

GRAWITACYJNE ZAGĘSZCZANIE OSADÓW GRAWITACYJNE ZAGĘSZCZANIE OSADÓW Ćwiczenie nr 4 1. CHARAKTERYSTYKA PROCESU Ze względu na wysokie uwodnienie oraz niewielką ilość suchej masy, osady powstające w oczyszczalni ścieków należy poddawać procesowi

Bardziej szczegółowo

MATEMATYKA II. znaleźć f(g(x)) i g(f(x)).

MATEMATYKA II. znaleźć f(g(x)) i g(f(x)). MATEMATYKA II PAWEŁ ZAPAŁOWSKI Równania i nierówności Zadanie Wyznaczyć dziedziny i wzory dla f f, f g, g f, g g, gdzie () f() =, g() =, () f() = 3 + 4, g() = Zadanie Dla f() = 3 5 i g() = 8 znaleźć f(g()),

Bardziej szczegółowo

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = +

Badanie funkcji. Zad. 1: 2 3 Funkcja f jest określona wzorem f( x) = + Badanie funkcji Zad : Funkcja f jest określona wzorem f( ) = + a) RozwiąŜ równanie f() = 5 b) Znajdź przedziały monotoniczności funkcji f c) Oblicz największą i najmniejszą wartość funkcji f w przedziale

Bardziej szczegółowo

Wzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2)

Wzór Żurawskiego. Belka o przekroju kołowym. Składowe naprężenia stycznego można wyrazić następująco (np. [1,2]): T r 2 y ν ) (1) (2) Przykłady rozkładu naprężenia stycznego w przekrojach belki zginanej nierównomiernie (materiał uzupełniający do wykładu z wytrzymałości materiałów I, opr. Z. Więckowski, 11.2018) Wzór Żurawskiego τ xy

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 13 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, OA UAM Wstęp do astrofizyki I, Wykład

Bardziej szczegółowo

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni

Wydział Inżynierii Środowiska; kierunek Inż. Środowiska. Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Wydział Inżynierii Środowiska; kierunek Inż. Środowiska Lista 2. do kursu Fizyka. Rok. ak. 2012/13 sem. letni Tabele wzorów matematycznych i fizycznych oraz obszerniejsze listy zadań do kursu są dostępne

Bardziej szczegółowo

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla

A. fałszywa dla każdej liczby x.b. prawdziwa dla C. prawdziwa dla D. prawdziwa dla Zadanie 1 Liczba jest równa A. B. C. 10 D. Odpowiedź B. Zadanie 2 Liczba jest równa A. 3 B. 2 C. D. Odpowiedź D. Zadanie 3. Liczba jest równa Odpowiedź D. Zadanie 4. Liczba osobników pewnego zagrożonego

Bardziej szczegółowo

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2

Ćw. nr 31. Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 1 z 6 Zespół Dydaktyki Fizyki ITiE Politechniki Koszalińskiej Ćw. nr 3 Wahadło fizyczne o regulowanej płaszczyźnie drgań - w.2 Cel ćwiczenia Pomiar okresu wahań wahadła z wykorzystaniem bramki optycznej

Bardziej szczegółowo

Określ zbiór wartości i przedziały monotoniczności funkcji.

Określ zbiór wartości i przedziały monotoniczności funkcji. Zadanie 1 Sprowadź do postaci ogólnej funkcję kwadratową Zadanie 2 Wyznacz zbiór wartości funkcji Zadanie 3 Określ zbiór wartości i przedziały monotoniczności funkcji Zadanie 4 Wykres funkcji kwadratowej

Bardziej szczegółowo

Funkcje IV. Wymagania egzaminacyjne:

Funkcje IV. Wymagania egzaminacyjne: Wymagania egzaminacyjne: a) określa funkcję za pomocą wzoru, tabeli, wykresu, opisu słownego, b) odczytuje z wykresu funkcji: dziedzinę i zbiór wartości, miejsca zerowe, maksymalne przedziały, w których

Bardziej szczegółowo

EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA

EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA Centralna Komisja Egzaminacyjna EGZAMIN MATURALNY 2013 FIZYKA I ASTRONOMIA POZIOM PODSTAWOWY Kryteria oceniania odpowiedzi MAJ 2013 2 Egzamin maturalny z fizyki i astronomii Zadanie 1. (0 1) Obszar standardów

Bardziej szczegółowo

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3.

Pierwsze dwa podpunkty tego zadania dotyczyły równowagi sił, dla naszych rozważań na temat dynamiki ruchu obrotowego interesujące będzie zadanie 3.3. Dynamika ruchu obrotowego Zauważyłem, że zadania dotyczące ruchu obrotowego bardzo często sprawiają maturzystom wiele kłopotów. A przecież wystarczy zrozumieć i stosować zasady dynamiki Newtona. Przeanalizujmy

Bardziej szczegółowo

Zasady oceniania karta pracy

Zasady oceniania karta pracy Zadanie 1.1. 5) stosuje zasadę zachowania energii oraz zasadę zachowania pędu do opisu zderzeń sprężystych i niesprężystych. Zderzenie, podczas którego wózki łączą się ze sobą, jest zderzeniem niesprężystym.

Bardziej szczegółowo

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd

Budowa i ewolucja gwiazd I. Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Budowa i ewolucja gwiazd I Skale czasowe Równania budowy wewnętrznej Modele Diagram H-R Ewolucja gwiazd Dynamiczna skala czasowa Dla Słońca: 3 h Twierdzenie o wiriale Temperatura wewnętrzna Cieplna skala

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Równanie przewodnictwa cieplnego (II)

Równanie przewodnictwa cieplnego (II) Wykład 5 Równanie przewodnictwa cieplnego (II) 5.1 Metoda Fouriera dla pręta ograniczonego 5.1.1 Pierwsze zagadnienie brzegowe dla pręta ograniczonego Poszukujemy rozwiązania równania przewodnictwa spełniającego

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu

DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Rys Model układu Ćwiczenie 7 DRGANIA SWOBODNE UKŁADU O DWÓCH STOPNIACH SWOBODY. Cel ćwiczenia Doświadczalne wyznaczenie częstości drgań własnych układu o dwóch stopniach swobody, pokazanie postaci drgań odpowiadających

Bardziej szczegółowo

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy

Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy Egzamin maturalny z fizyki i astronomii 5 Poziom podstawowy 14. Kule (3 pkt) Dwie małe jednorodne kule A i B o jednakowych masach umieszczono w odległości 10 cm od siebie. Kule te oddziaływały wówczas

Bardziej szczegółowo

Errata Zbioru zadań Zrozumieć fizykę cz. 1, pierwszego wydania

Errata Zbioru zadań Zrozumieć fizykę cz. 1, pierwszego wydania 1 Errata Zbioru zadań Zrozumieć fizykę cz. 1, pierwszego wydania (mimo usunięcia zadań w odpowiedziach zachowano numerację z pierwszego wydania) s. 32 10 wiersz od góry x 2 = d x 2 = d + v 2t 1 16 wiersz

Bardziej szczegółowo

Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP

Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP Matura z matematyki?- MATURALNIE, Ŝe ZDAM! Zadania treningowe klasa I III ETAP I Zadania zamknięte (pkt) Zadanie Liczba - jest miejscem zerowym funkcji liniowej = x + B. f ( x) = x C. f ( x) = x + D. f

Bardziej szczegółowo

Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 11 Teoria planimetria

Kurs ZDAJ MATURĘ Z MATEMATYKI - MODUŁ 11 Teoria planimetria 1 Pomimo, że ten dział, to typowa geometria wydawałoby się trudny dział to paradoksalnie troszkę tu odpoczniemy, jeśli chodzi o teorię. Dlaczego? Otóż jak zapewne doskonale wiesz, na maturze otrzymasz

Bardziej szczegółowo

Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:

Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem: WYKŁAD 13 DYNAMIKA MAŁYCH (AKUSTYCZNYCH) ZABURZEŃ W GAZIE Rozważmy nieustalony, adiabatyczny, jednowymiarowy ruch gazu nielepkiego i nieprzewodzącego ciepła. Mamy następujące równania rządzące tym ruchem:

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

Teoria. a, jeśli a < 0.

Teoria. a, jeśli a < 0. Teoria Definicja 1 Wartością bezwzględną liczby a R nazywamy liczbę a określoną wzorem a, jeśli a 0, a = a, jeśli a < 0 Zgodnie z powyższym określeniem liczba a jest równa odległości liczby a od liczby

Bardziej szczegółowo

Wstęp do Geofizyki. Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski

Wstęp do Geofizyki. Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Wstęp do Geofizyki Hanna Pawłowska Instytut Geofizyki, Wydział Fizyki, Uniwersytet Warszawski Wykład 3 Wstęp do Geofizyki - Fizyka atmosfery 2 /43 Powietrze opisuje się równaniem stanu gazu doskonałego,

Bardziej szczegółowo

3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu.

3) Naszkicuj wykres funkcji y=-xdo kwadratu+2x+1 i napisz równanie osi symetrii jej wykresu. Zadanie: 1) Dana jest funkcja y=-+7.nie wykonując wykresu podaj a) miejsce zerowe b)czy funkcja jest rosnąca czy malejąca(uzasadnij) c)jaka jest rzędna punktu przecięcia wykresu z osią y. ) Wykres funkcji

Bardziej szczegółowo

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH.

PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE RZĘDU PIERWSZEGO. METODA CZYNNIKA CAŁKUJĄCEGO. METODA ROZDZIELONYCH ZMIENNYCH. Równaniem różniczkowym zwyczajnym nazywamy równanie zawierające pochodne funkcji y(x) względem

Bardziej szczegółowo

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja)

Matematyka II. Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 2018/2019 wykład 13 (27 maja) Matematyka II Bezpieczeństwo jądrowe i ochrona radiologiczna Semestr letni 208/209 wykład 3 (27 maja) Całki niewłaściwe przedział nieograniczony Rozpatrujemy funkcje ciągłe określone na zbiorach < a, ),

Bardziej szczegółowo

WŁASNOŚCI FUNKCJI. Poziom podstawowy

WŁASNOŚCI FUNKCJI. Poziom podstawowy WŁASNOŚCI FUNKCJI Poziom podstawowy Zadanie ( pkt) Które z przyporządkowań jest funkcją? a) Każdej liczbie rzeczywistej przyporządkowana jest jej odwrotność b) Każdemu uczniowi klasy pierwszej przyporządkowane

Bardziej szczegółowo

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty

Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty Zestaw nr 7 Ekstremum funkcji jednej zmiennej. Punkty przegiȩcia wykresu. Asymptoty November 20, 2009 Przyk ladowe zadania z rozwi azaniami Zadanie 1. Znajdź równanie asymptot funkcji f jeśli: a) f(x)

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 FIZYKA I ASTRONOMIA POZIOM ROZSZERZONY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1.1 Narysowanie toru ruchu ciała w rzucie ukośnym. Narysowanie wektora siły działającej na ciało w

Bardziej szczegółowo

x+h=10 zatem h=10-x gdzie x>0 i h>0

x+h=10 zatem h=10-x gdzie x>0 i h>0 Zadania optymalizacyjne. Jaka jest największa możliwa wartość iloczynu dwóch liczb, których suma jest równa 60? Rozwiązanie: KROK USTALENIE WZORU Liczby oznaczamy przez a i b więc x+y=60 Następnie wyznaczamy

Bardziej szczegółowo

GRAWITACYJNE ZAGĘSZCZANIE OSADÓW

GRAWITACYJNE ZAGĘSZCZANIE OSADÓW PRZERÓBKA I UNIESZKODLIWIANIE OSADÓW ŚCIEKOWYCH Ćwiczenie nr 4 GRAWITACYJNE ZAGĘSZCZANIE OSADÓW 1. CHARAKTERYSTYKA PROCESU Proces zagęszczania osadów, który polega na rozdziale fazy stałej od ciekłej przy

Bardziej szczegółowo

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m.

Sprawdzian Na rysunku przedstawiono siłę, którą kula o masie m przyciąga kulę o masie 2m. Imię i nazwisko Data Klasa Wersja A Sprawdzian 1. 1. Orbita każdej planety jest elipsą, a Słońce znajduje się w jednym z jej ognisk. Treść tego prawa podał a) Kopernik. b) Newton. c) Galileusz. d) Kepler..

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 16 lutego 2018 Czas 90 minut Rozwiązania i punktacja

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 16 lutego 2018 Czas 90 minut Rozwiązania i punktacja Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów. Etap Wojewódzki 6 lutego 208 Czas 90 minut Rozwiązania i punktacja ZADANIA ZAMKNIĘTE Zadanie. ( punkt) Odległość między miastami A i B na mapie wynosi

Bardziej szczegółowo

Ćw.6. Badanie własności soczewek elektronowych

Ćw.6. Badanie własności soczewek elektronowych Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0, C. 0. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych,

IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. - funkcja dwóch zmiennych, IX. Rachunek różniczkowy funkcji wielu zmiennych. 1. Funkcja dwóch i trzech zmiennych - pojęcia podstawowe. Definicja 1.1. Niech D będzie podzbiorem przestrzeni R n, n 2. Odwzorowanie f : D R nazywamy

Bardziej szczegółowo

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Ruch jednowymiarowy. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Ruch jednowymiarowy Autorzy: Zbigniew Kąkol Kamil Kutorasiński 017 Ruch jednowymiarowy Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Dział Fizyki zajmujący się opisem ruchu ciał nazywamy kinematyką. Definicja

Bardziej szczegółowo

Repetytorium z matematyki ćwiczenia

Repetytorium z matematyki ćwiczenia Spis treści 1 Liczby rzeczywiste 1 2 Geometria analityczna. Prosta w układzie kartezjańskim Oxy 4 3 Krzywe drugiego stopnia na płaszczyźnie kartezjańskiej 6 4 Dziedzina i wartości funkcji 8 5 Funkcja liniowa

Bardziej szczegółowo

ANALIZA MATEMATYCZNA

ANALIZA MATEMATYCZNA ANALIZA MATEMATYCZNA TABLICE Spis treści: 1.) Pochodne wzory 2 2.) Całki wzory 3 3.) Kryteria zbieżności szeregów 4 4.) Przybliżona wartość wyrażenia 5 5.) Równanie płaszczyzny stycznej i prostej normalnej

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY Czas pracy 180 minut Instrukcja dla zdającego 1 Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:.

Zapisujemy:. Dla jednoczesnego podania funkcji (sposobu przyporządkowania) oraz zbiorów i piszemy:. Funkcja Funkcją (stosuje się też nazwę odwzorowanie) określoną na zbiorze o wartościach w zbiorze nazywamy przyporządkowanie każdemu elementowi dokładnie jednego elementu. nazywamy argumentem, zaś wartością

Bardziej szczegółowo

ZAŁĄCZNIK 7 - Lotnicza Pogoda w pytaniach i odpowiedziach.

ZAŁĄCZNIK 7 - Lotnicza Pogoda w pytaniach i odpowiedziach. Prąd strumieniowy (jet stream) jest wąskim pasem bardzo silnego wiatru na dużej wysokości (prędkość wiatru jest > 60 kts, czyli 30 m/s). Możemy go sobie wyobrazić jako rurę, która jest spłaszczona w pionie

Bardziej szczegółowo

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko

MECHANIKA 2. Zasady pracy i energii. Wykład Nr 12. Prowadzący: dr Krzysztof Polko MECHANIKA 2 Wykład Nr 12 Zasady pracy i energii Prowadzący: dr Krzysztof Polko WEKTOR POLA SIŁ Wektor pola sił możemy zapisać w postaci: (1) Prawa strona jest gradientem funkcji Φ, czyli (2) POTENCJAŁ

Bardziej szczegółowo

Miarą oddziaływania jest siła. (tzn. że siła informuje nas, czy oddziaływanie jest duże czy małe i w którą stronę się odbywa).

Miarą oddziaływania jest siła. (tzn. że siła informuje nas, czy oddziaływanie jest duże czy małe i w którą stronę się odbywa). Lekcja 4 Temat: Pomiar wartości siły ciężkości. 1) Dynamika dział fizyki zajmujący się opisem ruchu ciał z uwzględnieniem przyczyny tego ruchu. Przyczyną ruchu jest siła. dynamikos (gr.) = potężny, mający

Bardziej szczegółowo

7. WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELKACH

7. WYZNACZANIE SIŁ WEWNĘTRZNYCH W BELKACH 7. WYZNCZNIE SIŁ WEWNĘTRZNYCH W ELKCH Zadanie 7.1 Dla belki jak na rysunku 7.1.1 ułożyć równania sił wewnętrznych i sporządzić ich wykresy. Dane: q, a, M =. Rys.7.1.1 Rys.7.1. W zależności od rodzaju podpór

Bardziej szczegółowo

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str

FUNKCJE I RÓWNANIA KWADRATOWE. Lekcja 78. Pojęcie i wykres funkcji kwadratowej str FUNKCJE I RÓWNANIA KWADRATOWE Lekcja 78. Pojęcie i wykres funkcji kwadratowej str. 178-180. Funkcja kwadratowa to taka, której wykresem jest parabola. Definicja Funkcją kwadratową nazywamy funkcje postaci

Bardziej szczegółowo

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ

WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ WOJSKOWA AKADEMIA TECHNICZNA Wydział Mechaniczny Katedra Pojazdów Mechanicznych i Transportu LABORATORIUM TERMODYNAMIKI TECHNICZNEJ Instrukcja do ćwiczenia T-06 Temat: Wyznaczanie zmiany entropii ciała

Bardziej szczegółowo

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna

ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna Arkusz A04 2 Poziom podstawowy ZADANIA ZAMKNIETE W zadaniach 1-25 wybierz i zaznacz na karcie odpowiedzi poprawna odpowiedź Zadanie 1. (0-1) Liczba π spełnia nierówność: A. + 1 > 5 B. 1 < 2 C. + 2 3 4

Bardziej szczegółowo

Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n

Lekcja 2. Pojęcie równania kwadratowego. Str Teoria 1. Równaniem wielomianowym nazywamy równanie postaci: n Lekcja 1. Lekcja organizacyjna kontrakt. Podręcznik: A. Ceve, M. Krawczyk, M. Kruk, A. Magryś-Walczak, H. Nahorska Matematyka w zasadniczej szkole zawodowej. Wydawnictwo Podkowa. Zakres materiału: Równania

Bardziej szczegółowo

13. Równania różniczkowe - portrety fazowe

13. Równania różniczkowe - portrety fazowe 13. Równania różniczkowe - portrety fazowe Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie rzegorz Kosiorowski (Uniwersytet Ekonomiczny 13. wrównania Krakowie) różniczkowe - portrety fazowe 1 /

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY SIERPIEŃ 2014. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 03 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI Instrukcja

Bardziej szczegółowo

PRÓBNA MATURA ZADANIA PRZYKŁADOWE

PRÓBNA MATURA ZADANIA PRZYKŁADOWE ZESPÓŁ SZKÓŁ HOTELARSKO TURYSTYCZNO GASTRONOMICZNYCH NR UL. KRASNOŁĘCKA 3, WARSZAWA Z A D AN I A Z A M K N I Ę T E ) Liczba, której 5% jest równe 6, to : A. 0,3 C. 30. D. 0 5% 6 II sposób: x nieznana liczba

Bardziej szczegółowo

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury

KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO. dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury KINEMATYKA I DYNAMIKA CIAŁA STAŁEGO dr inż. Janusz Zachwieja wykład opracowany na podstawie literatury Funkcje wektorowe Jeśli wektor a jest określony dla parametru t (t należy do przedziału t (, t k )

Bardziej szczegółowo

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić.

Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Analiza i czytanie wykresów Czytanie wykresów to ważna umiejętność, jeden wykres zawiera więcej informacji, niż strona tekstu. Dlatego musisz umieć to robić. Aby dobrze odczytać wykres zaczynamy od opisu

Bardziej szczegółowo

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

LABORATORIUM MECHANIKI PŁYNÓW. Ćwiczenie N 2 RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ LABORATORIUM MECHANIKI PŁYNÓW Ćwiczenie N RÓWNOWAGA WZGLĘDNA W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ . Cel ćwiczenia Pomiar współrzędnych powierzchni swobodnej w naczyniu cylindrycznym wirującym wokół

Bardziej szczegółowo

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne.

Ćwiczenie 42 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ. Wprowadzenie teoretyczne. Ćwiczenie 4 WYZNACZANIE OGNISKOWEJ SOCZEWKI CIENKIEJ Wprowadzenie teoretyczne. Soczewka jest obiektem izycznym wykonanym z materiału przezroczystego o zadanym kształcie i symetrii obrotowej. Interesować

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ klasa 2b

LUBELSKA PRÓBA PRZED MATURĄ klasa 2b MATEMATYKA materiał ćwiczeniowy CZERWIEC 0 Instrukcja dla zdającego. Sprawdź, czy arkusz zawiera 4 stron.. Rozwiązania zadań i odpowiedzi zamieść w miejscu na to przeznaczonym.. W zadaniach od do są podane

Bardziej szczegółowo

FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA

FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA FUNKCJA POTĘGOWA, WYKŁADNICZA I LOGARYTMICZNA POTĘGA, DZIAŁANIA NA POTĘGACH Potęga o wykładniku naturalnym. Jest to po prostu pomnożenie przez siebie danej liczby tyle razy ile wynosi wykładnik. Zapisujemy

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys.

Ćwiczenie M-2 Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego Cel ćwiczenia: II. Przyrządy: III. Literatura: IV. Wstęp. l Rys. Ćwiczenie M- Pomiar przyśpieszenia ziemskiego za pomocą wahadła rewersyjnego. Cel ćwiczenia: pomiar przyśpieszenia ziemskiego przy pomocy wahadła fizycznego.. Przyrządy: wahadło rewersyjne, elektroniczny

Bardziej szczegółowo

Wykład IV. Półprzewodniki samoistne i domieszkowe

Wykład IV. Półprzewodniki samoistne i domieszkowe Wykład IV Półprzewodniki samoistne i domieszkowe Półprzewodniki (Si, Ge, GaAs) Konfiguracja elektronowa Si : 1s 2 2s 2 2p 6 3s 2 3p 2 = [Ne] 3s 2 3p 2 4 elektrony walencyjne Półprzewodnik samoistny Talent

Bardziej szczegółowo

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2

RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 RÓWNANIA RÓŻNICZKOWE WYKŁAD 2 Równania różniczkowe o zmiennych rozdzielonych Równania sprowadzalne do równań o zmiennych rozdzielonych Niech f będzie funkcją ciągłą na przedziale (a, b), spełniającą na

Bardziej szczegółowo

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek

17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Janusz Adamowski METODY OBLICZENIOWE FIZYKI 1 Rozdział 17 KLASYCZNA DYNAMIKA MOLEKULARNA 17.1 Podstawy metod symulacji komputerowych dla klasycznych układów wielu cząstek Rozważamy układ N punktowych cząstek

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 6 2016/2017, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

FUNKCJA LINIOWA - WYKRES

FUNKCJA LINIOWA - WYKRES FUNKCJA LINIOWA - WYKRES Wzór funkcji liniowej (Postać kierunkowa) Funkcja liniowa jest podstawowym typem funkcji. Jest to funkcja o wzorze: y = ax + b a i b to współczynniki funkcji, które mają wartości

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

Ćwiczenie nr 43: HALOTRON

Ćwiczenie nr 43: HALOTRON Wydział PRACOWNIA FIZYCZNA WFiIS AGH Imię i nazwisko 1. 2. Temat: Data wykonania Data oddania Zwrot do popr. Rok Grupa Zespół Nr ćwiczenia Data oddania Data zaliczenia OCENA Ćwiczenie nr 43: HALOTRON Cel

Bardziej szczegółowo

WSTĘP DO TEORII PLASTYCZNOŚCI

WSTĘP DO TEORII PLASTYCZNOŚCI 13. WSTĘP DO TORII PLASTYCZNOŚCI 1 13. 13. WSTĘP DO TORII PLASTYCZNOŚCI 13.1. TORIA PLASTYCZNOŚCI Teoria plastyczności zajmuje się analizą stanów naprężeń ciał, w których w wyniku działania obciążeń powstają

Bardziej szczegółowo

M10. Własności funkcji liniowej

M10. Własności funkcji liniowej M10. Własności funkcji liniowej dr Artur Gola e-mail: a.gola@ajd.czest.pl pokój 3010 Definicja Funkcję określoną wzorem y = ax + b, dla x R, gdzie a i b są stałymi nazywamy funkcją liniową. Wykresem funkcji

Bardziej szczegółowo

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź.

ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska. 2 3x. 2. Sformułuj odpowiedź. ZADANIA MATURALNE - ANALIZA MATEMATYCZNA - POZIOM ROZSZERZONY Opracowała - mgr Danuta Brzezińska Zad.1. (5 pkt) Sprawdź, czy funkcja określona wzorem x( x 1)( x ) x 3x dla x 1 i x dla x 1 f ( x) 1 3 dla

Bardziej szczegółowo

GRAWITACYJNE ZAGĘSZCZANIE OSADÓW

GRAWITACYJNE ZAGĘSZCZANIE OSADÓW UTYLIZACJA OSADÓW Ćwiczenie nr 4 GRAWITACYJNE ZAGĘSZCZANIE OSADÓW 1. CHARAKTERYSTYKA PROCESU A. Grawitacyjne zagęszczanie osadów: Zagęszczać osady można na wiele różnych sposobów. Miedzy innymi grawitacyjnie

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2010 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 2010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem EGZAMIN MATURALNY

Bardziej szczegółowo

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia

Najprostszy element. F+R = 0, u A = 0. u A = 0. Mamy problem - równania zawierają siły, a warunek umocowania - przemieszczenia MES skończony Najprostszy element Część I Najprostszy na świecie przykład rozwiązania zagadnienia za pomocą MES Dwie sprężyny Siły zewnętrzne i wewnętrzne działające na element A B R F F+R, u A R f f F

Bardziej szczegółowo

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia.

Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Praca domowa nr 2. Kinematyka. Dynamika. Nieinercjalne układy odniesienia. Grupa 1. Kinematyka 1. W ciągu dwóch sekund od wystrzelenia z powierzchni ziemi pocisk przemieścił się o 40 m w poziomie i o 53

Bardziej szczegółowo

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych

Pochodna i różniczka funkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Pochodna i różniczka unkcji oraz jej zastosowanie do obliczania niepewności pomiarowych Krzyszto Rębilas DEFINICJA POCHODNEJ Pochodna unkcji () w punkcie określona jest jako granica: lim 0 Oznaczamy ją

Bardziej szczegółowo

Statyka płynów - zadania

Statyka płynów - zadania Zadanie 1 Wyznaczyć rozkład ciśnień w cieczy znajdującej się w stanie spoczynku w polu sił ciężkości. Ponieważ na cząsteczki cieczy działa wyłącznie siła ciężkości, więc składowe wektora jednostkowej siły

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ klasa 2 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ klasa 2 poziom podstawowy Kod ucznia.. M A T E M A T Y K A klasa 2 - pp MAJ 2019 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz zawiera 16 stron. Ewentualny brak zgłoś przewodniczącemu zespołu nadzorującego

Bardziej szczegółowo

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ

RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ RUCH OBROTOWY- MECHANIKA BRYŁY SZTYWNEJ Wykład 7 2012/2013, zima 1 MOMENT PĘDU I ENERGIA KINETYCZNA W RUCHU PUNKTU MATERIALNEGO PO OKRĘGU Definicja momentu pędu L=mrv=mr 2 ω L=Iω I= mr 2 p L r ω Moment

Bardziej szczegółowo

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc.

Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. Blok 6: Pęd. Zasada zachowania pędu. Praca. Moc. ZESTAW ZADAŃ NA ZAJĘCIA ROZGRZEWKA 1. Przypuśćmy, że wszyscy ludzie na świecie zgromadzili się w jednym miejscu na Ziemi i na daną komendę jednocześnie

Bardziej szczegółowo

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii

Tadeusz Lesiak. Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Mechanika klasyczna Tadeusz Lesiak Wykład nr 4 Dynamika punktu materialnego: Praca i energia; zasada zachowania energii Energia i praca T. Lesiak Mechanika klasyczna 2 Praca Praca (W) wykonana przez stałą

Bardziej szczegółowo

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I

J. Szantyr Wykład nr 27 Przepływy w kanałach otwartych I J. Szantyr Wykład nr 7 Przepływy w kanałach otwartych Przepływy w kanałach otwartych najczęściej wymuszane są działaniem siły grawitacji. Jako wstępny uproszczony przypadek przeanalizujemy spływ warstwy

Bardziej szczegółowo

= sin. = 2Rsin. R = E m. = sin

= sin. = 2Rsin. R = E m. = sin Natężenie światła w obrazie dyfrakcyjnym Autorzy: Zbigniew Kąkol, Piotr Morawski Chcemy teraz znaleźć wyrażenie na rozkład natężenia w całym ekranie w funkcji kąta θ. Szczelinę dzielimy na N odcinków i

Bardziej szczegółowo

V Międzyszkolny Konkurs Matematyczny

V Międzyszkolny Konkurs Matematyczny V Międzyszkolny Konkurs Matematyczny im. Stefana Banacha dla uczniów szkół średnich Zespół Szkół Nr 1 im. Adama Mickiewicza w Lublińcu 42-700 Lubliniec, ul. Sobieskiego 22 18. kwiecień 2011 rok 1. W trapezie

Bardziej szczegółowo