Jerzy Nawrocki, Wprowadzenie do informatyki

Wielkość: px
Rozpocząć pokaz od strony:

Download "Jerzy Nawrocki, Wprowadzenie do informatyki"

Transkrypt

1 Jerzy Nawrocki, Jerzy Nawrocki Wydział Informatyki Politechnika Poznańka Obliczenia i metody numeryczne = a 2 + b 2 a + (b/a) 2 =b + (a/b) 2 Metody numeryczne begin a:= 3e-25; b:= 4e-25; m:= qrt(a*a + b*b); writeln(m) end. begin a:= 3e-25; b:= 4e-25; if a > b then m:= a*qrt(+ (b/a)*(b/a)) ele m:= b*qrt(+ (a/b)*(a/b)); writeln(m) end..e+ 5.E-25 Metody numeryczne (2) Cel wykładu Przedtawić: klayczną reprezentację liczb poób obliczania tzw. funkcji tandardowych (e x, co x, π) zybką metodę obliczania wartości wielomianu Metody numeryczne (3) Metody numeryczne (4) Reprezentacja tałopozycyjna Reprezentacja tałopozycyjna Część całkowita Część ułamkowa a 3 a 2 a a b b 2 b 3 b 4 (-) ( a a a 2 + a 2 + b b b b ) Metody numeryczne (5) Metody numeryczne (6) Metody numeryczne

2 Jerzy Nawrocki, Reprezentacja tałopozycyjna Wada Metody numeryczne (7) Metody numeryczne (8) 7 Metody numeryczne (9) Metody numeryczne () 4 Metody numeryczne () Metody numeryczne (2) Metody numeryczne 2

3 Jerzy Nawrocki, Metody numeryczne (3) Metody numeryczne (4) c m c m x : x = (-) 2 c m {, } c= cecha m= mantya [/2, ) Metody numeryczne (5) Metody numeryczne (6) c m Metody numeryczne (7) Metody numeryczne (8) Metody numeryczne 3

4 Jerzy Nawrocki, Obliczanie pierwiatków g(a) = a Metody numeryczne (9) Tranformacja do problemu znajdowania miejca zerowego f(x) f(x) = x 2 a Metoda tycznych (metoda Newtona): x k+ x k f(x k ) Geom. interpretacja pochodnej: f (x k ) = f(x k ) / (x k x k+ ) gdzie f (x) = 2x. Po przekztałceniu: x k+ = ½ (x k + a/x k ) Metody numeryczne (2) Iteracyjne algorytmy numeryczne Algorytm Herona obliczania pierwiatka kwadratowego a x = a jeśli a >= jeśli a < x k+ = ½ (x k + a/x k ) Heron z Alekandrii Rycina z niemieckiego tłumaczenia Pneumatyki z 688 r. Metody numeryczne (2) Metody numeryczne (22) Wzór Taylora Wzór Maclaurina ~ 73 79: Cambridge Univerity 72: Royal Society 75: Wzór Taylora (zereg Taylora) (bez dowodu) Dla x = dotajemy: Brook Taylor ~ Metody numeryczne (23) Colin Maclaurin ( ) Metody numeryczne (24) Metody numeryczne 4

5 Jerzy Nawrocki, (e x ) = e x e = Wzór Maclaurina f(x) = e x N e x Σ x k / k! k= e() = 2,7.. e() = e x = + x/! + x 2 /2! + x 3 /3! + x 4 /4! +... num x T= den! e x x 2 x 3 2! 3! Colin Maclaurin ( ) e x x /! + x /! + x 2 /2! + x 3 /3! +.. = + x /! + x 2 /2! + x 3 /3! +.. Metody numeryczne (25) Metody numeryczne (26) e x e x e x = + x/! + x 2 /2! + x 3 /3! + x 4 /4! +... e x = + x/! + x 2 /2! + x 3 /3! + x 4 /4! +... e() = 2,7.. e() = T= num den *x *x *x * x! *2 x 2 2! *3 x 3 3! e() = 2,7.. e() = void main(){ float x; // Argument e(x) canf("%g", &x); printf("e(%g)= %g\n", x, e(x)); return; } e()= Metody numeryczne (27) Metody numeryczne (28) Colin Maclaurin ( ) Wzór Maclaurina f(x) = co x (co x) () = co x (co x) = in x (co x) = co x - (co x) (3) = in x (co x) (4) = co x... co x + x 2 /2! + + x 4 /4! +.. Metody numeryczne (29) co() = co(,57..) = co x + x 2 /2! + + x 4 /4! +.. T = num den *(-x 2 ) **2 *(-x -x 2 ) 2 2! *3*4 co(x) x 4 4! Metody numeryczne (3) Metody numeryczne 5

6 Jerzy Nawrocki, π π = /3 + /5 /7 + π tg(π/4)=??? arctg() = π/4 (-) k arctg(x) = Σ 2k+ k= x 2k+ T = num den *(-) *(-) *(-) Colin Maclaurin ( ) π/4 = x 3 /3 + x 5 /5 x 7 /7 + = /3 + /5 /7 + Metody numeryczne (3) Metody numeryczne (32) Wielomiany p(x) = a k x Σk= k = a x + a x + a 2 x 2 + Metody numeryczne (33) Nagłówek p Wywołanie p float p(float x, int n, float a[ ])... #define MaxN 5 void main(){ float x; // Zmienna x int n; // Stopien wielomianu float a[maxn+]; // Wpolczynniki wielomianu... printf("%g\n", p(x, n, a)); return; } Metody numeryczne (34) Wielomiany Schemat p(x) = a k x Σk= k = a x + a x + a 2 x 2 + p(x,) = a p(x,n) = a x n + a x n a n- x + a n p(x,) = a x + a float p(float x, int n, float a[ ]){ float reult, PowerX; int k = ; p(x,2) = a x 2 + a x + a 2 PowerX = ; p(x,3) = a x 3 + a x 2 + a 2 x + a 3 reult = a[] * PowerX; while (k < n){ k = k+; PowerX = PowerX * x; p(x,4) = a x 4 + a x 3 + a 2 x 2 + a 3 x + a 4 reult = reult + a[k] * PowerX; } return reult; } Metody numeryczne (35) Metody numeryczne (36) Metody numeryczne 6

7 Jerzy Nawrocki, Obliczanie wielomianu chemat p(x,n) = a x n + a x n a n- x + a n p(x,) = a p(x,) = a x + a = p(x, )x + a p(x,2) = a x 2 + a x + a 2 p(x,3) = a x 3 + a x 2 + a 2 x + a 3 Obliczanie wielomianu chemat p(x,n) = a x n + a x n a n- x + a n p(x,) = a p(x,) = a x + a = p(x, )x + a p(x,2) = a x 2 + a x + a 2 = (a x + a )x + a 2 = p(x,)x+a 2 p(x,3) = a x 3 + a x 2 + a 2 x + a 3 p(x,4) = a x 4 + a x 3 + a 2 x 2 + a 3 x + a 4 p(x,4) = a x 4 + a x 3 + a 2 x 2 + a 3 x + a 4 Metody numeryczne (37) Metody numeryczne (38) Obliczanie wielomianu chemat Schemat p(x,n) = a x n + a x n a n- x + a n p(x,) = a p(x,) = a x + a = p(x, )x + a p(x,2) = a x 2 + a x + a 2 = (a x + a )x + a 2 = p(x,)x+a 2 p(x,3) = a x 3 + a x 2 + a 2 x + a 3 = p(x,) = a p(x,n) = a x n + a x n a n- x + a n p(x,n) = p(x, n-)x + a n = (a x 2 + a x + a 2 )x + a 3 = p(x,2)x + a 3 p(x,4) = a x 4 + a x 3 + a 2 x 2 + a 3 x + a 4 = = (a x 3 + a x 2 + a 2 x + a 3 )x + a 4 = p(x,3)x + a 4 p(x,n) = p(x, n-)x + a n Metody numeryczne (39) Metody numeryczne (4) Źle uwarunkowane zadania Uwarunkowanie zadania Metody numeryczne (4) Zadanie źle uwarunkowane: Niewielkie względne zmiany danych duże względne zmiany wyniku 2 p(x) = a 2 x a x + a = k= Π(x k) = x =, 2,, 2 a 9 = -2 a 9 = -( ) x = 5 x = 3,99 + 2,5i Metody numeryczne (42) Metody numeryczne 7

Jerzy Nawrocki, Wprowadzenie do informatyki

Jerzy Nawrocki, Wprowadzenie do informatyki Jerzy Nawrocki, Jerzy Nawrocki Wydział Informatyki Politechnika Poznańska jerzy.nawrocki@put.poznan.pl Cel wykładu Programowanie imperatywne i język C Zaprezentować paradygmat programowania imperatywnego

Bardziej szczegółowo

Jerzy Nawrocki, Wprowadzenie do informatyki

Jerzy Nawrocki, Wprowadzenie do informatyki Jerzy Nawrocki, Jerzy Nawrocki Wydział Informatyki Politechnika Poznańska jerzy.nawrocki@put.poznan.pl Kryzys oprogramowania Struktury danych i inżynieria oprogramowania Przekraczanie terminów Przekraczanie

Bardziej szczegółowo

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona Akademia Górniczo-Hutnicza im. Stanisªawa Staszica w Krakowie Wydziaª Fizyki i Informatyki Stosowanej Krzysztof Grz dziel kierunek studiów: informatyka stosowana Caªkowanie numeryczne - porównanie skuteczno±ci

Bardziej szczegółowo

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76 . p. 1 Algorytmem nazywa się poddający się interpretacji skończony zbiór instrukcji wykonania zadania mającego określony stan końcowy dla każdego zestawu danych wejściowych W algorytmach mogą występować

Bardziej szczegółowo

EGZAMIN MATURALNY 2011 INFORMATYKA

EGZAMIN MATURALNY 2011 INFORMATYKA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 2011 INFORMATYKA POZIOM PODSTAWOWY MAJ 2011 2 Zadanie 1. a) (0 1) Egzamin maturalny z informatyki poziom podstawowy CZĘŚĆ I Obszar standardów

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 2 Numeryczne rozwiązywanie równań nieliniowych

Wprowadzenie do metod numerycznych Wykład 2 Numeryczne rozwiązywanie równań nieliniowych Wprowadzenie do metod numerycznych Wykład 2 Numeryczne rozwiązywanie równań nieliniowych Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Numeryczne

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki. wykład 3 - sem.iii. Dr inż. M. Czyżak

Katedra Elektrotechniki Teoretycznej i Informatyki. wykład 3 - sem.iii. Dr inż. M. Czyżak Katedra Elektrotechniki Teoretycznej i Informatyki wykład 3 - sem.iii Dr inż. M. Czyżak Przykład. (do wykonania w trakcie wykładu) Napisać i wywołać w main() następujące funkcje: a) funkcję obliczającą

Bardziej szczegółowo

Obliczenia Naukowe i Metody Numeryczne. Laboratorium Komputerowe lista 4 5 października 2012

Obliczenia Naukowe i Metody Numeryczne. Laboratorium Komputerowe lista 4 5 października 2012 Obliczenia Naukowe i Metody Numeryczne Laboratorium Komputerowe lista 4 5 października 2012 Temat: interpolacja i iteracyjne metody obliczania zer funkcji Uwagi. Zalecane jest graficzne ilustrowanie przeprowadzonych

Bardziej szczegółowo

Rekurencja (rekursja)

Rekurencja (rekursja) Rekurencja (rekursja) Rekurencja wywołanie funkcji przez nią samą wewnątrz ciała funkcji. Rekurencja może być pośrednia funkcja jest wywoływana przez inną funkcję, wywołaną (pośrednio lub bezpośrednio)

Bardziej szczegółowo

Strona główna. Strona tytułowa. Programowanie. Spis treści. Sobera Jolanta 16.09.2006. Strona 1 z 26. Powrót. Full Screen. Zamknij.

Strona główna. Strona tytułowa. Programowanie. Spis treści. Sobera Jolanta 16.09.2006. Strona 1 z 26. Powrót. Full Screen. Zamknij. Programowanie Sobera Jolanta 16.09.2006 Strona 1 z 26 1 Wprowadzenie do programowania 4 2 Pierwsza aplikacja 5 3 Typy danych 6 4 Operatory 9 Strona 2 z 26 5 Instrukcje sterujące 12 6 Podprogramy 15 7 Tablice

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą

Bardziej szczegółowo

Programowanie funkcyjne wprowadzenie Specyfikacje formalne i programy funkcyjne

Programowanie funkcyjne wprowadzenie Specyfikacje formalne i programy funkcyjne Programowanie funkcyjne wprowadzenie Specyfikacje formalne i programy funkcyjne dr inż. Marcin Szlenk Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych m.szlenk@elka.pw.edu.pl Paradygmaty

Bardziej szczegółowo

Wykład IV Algorytmy metody prezentacji i zapisu Rzut oka na język PASCAL

Wykład IV Algorytmy metody prezentacji i zapisu Rzut oka na język PASCAL Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład IV Algorytmy metody prezentacji i zapisu Rzut oka na język PASCAL 1 Część 1 Pojęcie algorytmu 2 I. Pojęcie algorytmu Trochę historii Pierwsze

Bardziej szczegółowo

Wykład VII. Programowanie. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2014 Janusz Słupik

Wykład VII. Programowanie. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2014 Janusz Słupik Wykład VII Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Kompilacja Kompilator C program do tłumaczenia kodu źródłowego na język maszynowy. Preprocesor

Bardziej szczegółowo

Spis treści JĘZYK C - PRZEKAZYWANIE PARAMETRÓW DO FUNKCJI, REKURENCJA. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu

Spis treści JĘZYK C - PRZEKAZYWANIE PARAMETRÓW DO FUNKCJI, REKURENCJA. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Informatyka 1 Kod przedmiotu: EZ1C200 010 (studia niestacjonarne)

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Interpolacja PWSZ Gªogów, 2009 Interpolacja Okre±lenie zale»no±ci pomi dzy interesuj cymi nas wielko±ciami, Umo»liwia uproszczenie skomplikowanych funkcji (np. wykorzystywana

Bardziej szczegółowo

PODSTAWY INFORMATYKI 1 PRACOWNIA NR 6

PODSTAWY INFORMATYKI 1 PRACOWNIA NR 6 PODSTAWY INFORMATYKI 1 PRACOWNIA NR 6 TEMAT: Programowanie w języku C/C++: instrukcje iteracyjne for, while, do while Ogólna postać instrukcji for for (wyr1; wyr2; wyr3) Instrukcja for twory pętlę działającą

Bardziej szczegółowo

Algorytmy i język C++

Algorytmy i język C++ Wykład 6 Wskaźniki Wskaźnik nie przechowuje wartości zmiennej ale, podobnie jak tablica, wskazuje miejsce w pamięci, w którym znajduje się zmienna danego typu. W poniższym przykładzie symbol * pomiędzy

Bardziej szczegółowo

Funkcja (podprogram) void

Funkcja (podprogram) void Funkcje Co to jest funkcja? Budowa funkcji Deklaracja, definicja i wywołanie funkcji Przykłady funkcji definiowanych przez programistę Przekazywanie argumentów do funkcji Tablica jako argument funkcji

Bardziej szczegółowo

Rekurencja. Przygotowała: Agnieszka Reiter

Rekurencja. Przygotowała: Agnieszka Reiter Rekurencja Przygotowała: Agnieszka Reiter Definicja Charakterystyczną cechą funkcji (procedury) rekurencyjnej jest to, że wywołuje ona samą siebie. Drugą cechą rekursji jest jej dziedzina, którą mogą być

Bardziej szczegółowo

Język ludzki kod maszynowy

Język ludzki kod maszynowy Język ludzki kod maszynowy poziom wysoki Język ludzki (mowa) Język programowania wysokiego poziomu Jeśli liczba punktów jest większa niż 50, test zostaje zaliczony; w przeciwnym razie testu nie zalicza

Bardziej szczegółowo

Metody Metody, parametry, zwracanie wartości

Metody Metody, parametry, zwracanie wartości Materiał pomocniczy do kursu Podstawy programowania Autor: Grzegorz Góralski ggoralski.com Metody Metody, parametry, zwracanie wartości Metody - co to jest i po co? Metoda to wydzielona część klasy, mająca

Bardziej szczegółowo

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej.

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej. Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Konstrukcje i Technologie w Aparaturze Elektronicznej Ćwiczenie nr 5 Temat: Przetwarzanie A/C. Implementacja

Bardziej szczegółowo

Wykład 15. Literatura. Kompilatory. Elementarne różnice. Preprocesor. Słowa kluczowe

Wykład 15. Literatura. Kompilatory. Elementarne różnice. Preprocesor. Słowa kluczowe Wykład 15 Wprowadzenie do języka na bazie a Literatura Podobieństwa i różnice Literatura B.W.Kernighan, D.M.Ritchie Język ANSI Kompilatory Elementarne różnice Turbo Delphi FP Kylix GNU (gcc) GNU ++ (g++)

Bardziej szczegółowo

Ilość cyfr liczby naturalnej

Ilość cyfr liczby naturalnej Ilość cyfr liczby naturalnej Użytkownik wprowadza liczbę naturalną n. Podaj algorytm znajdowania ilości cyfr liczby n. (Np.: po wprowadzeniu liczby 2453, jako wynik powinna zostać podana liczba 4). Specyfikacja

Bardziej szczegółowo

2.3. Wyznaczanie wartości wielomianu, pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze

2.3. Wyznaczanie wartości wielomianu, pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze 23 Wyznaczanie wartości wielomianu pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze 231 Systemy liczbowe Definicja Systemem liczbowym nazywamy zbiór zasad określających sposób

Bardziej szczegółowo

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02 METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE Wykład 02 NAJPROSTSZY PROGRAM /* (Prawie) najprostszy przykład programu w C */ /*==================*/ /* Między tymi znaczkami można pisać, co się

Bardziej szczegółowo

Język ANSI C tablice wielowymiarowe

Język ANSI C tablice wielowymiarowe Język ANSI C tablice wielowymiarowe Gdy tablica wielowymiarowa jest parametrem funkcji, to w standardzie ANSI C konieczne jest podanie wszystkich wymiarów poza pierwszym. Przykład. Napisać program wczytujący

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 INFORMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) GRUDZIEŃ 2013 Zadanie 1. Test (0 5) Wymagania ogólne I. [

Bardziej szczegółowo

Ćwiczenie nr 3. Temat: Definicje i wykorzystanie funkcji, parametry funkcji

Ćwiczenie nr 3. Temat: Definicje i wykorzystanie funkcji, parametry funkcji Ćwiczenie nr 3 Temat: Definicje i wykorzystanie funkcji, parametry funkcji Zagadnienia: Definicja funkcji składnia podstawowa. Sposoby przekazania parametrów (argumentów) funkcji: przez wartość, przez

Bardziej szczegółowo

INFORMATYKA POZIOM ROZSZERZONY

INFORMATYKA POZIOM ROZSZERZONY EGZAMIN MATURALNY W ROKU SZKOLNYM 2013/2014 INFORMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA MAJ 2014 2 Egzamin maturalny z informatyki Część I Zadanie 1. a) (0-2) 2 p. za podanie

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Elementy języka C. ACprogramislikeafastdanceonanewlywaxeddancefloorbypeople carrying razors.

Elementy języka C. ACprogramislikeafastdanceonanewlywaxeddancefloorbypeople carrying razors. Wykład 3 ACprogramislikeafastdanceonanewlywaxeddancefloorbypeople carrying razors. Waldi Ravens J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 75 / 146 deklaracje zmiennych instrukcja podstawienia

Bardziej szczegółowo

Szablony funkcji i szablony klas

Szablony funkcji i szablony klas Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Kurs: Copyright c 2011 Bogdan Kreczmer Niniejszy dokument

Bardziej szczegółowo

Wstęp do Programowania, laboratorium 02

Wstęp do Programowania, laboratorium 02 Wstęp do Programowania, laboratorium 02 Zadanie 1. Napisać program pobierający dwie liczby całkowite i wypisujący na ekran największą z nich. Zadanie 2. Napisać program pobierający trzy liczby całkowite

Bardziej szczegółowo

Programowanie. programowania. Klasa 3 Lekcja 9 PASCAL & C++

Programowanie. programowania. Klasa 3 Lekcja 9 PASCAL & C++ Programowanie Wstęp p do programowania Klasa 3 Lekcja 9 PASCAL & C++ Język programowania Do przedstawiania algorytmów w postaci programów służą języki programowania. Tylko algorytm zapisany w postaci programu

Bardziej szczegółowo

Newton vs. Lagrange - kto lepszy?

Newton vs. Lagrange - kto lepszy? Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Katedra Analizy Matematycznej Agnieszka Rydzyńska nr albumu: 254231 Praca Zaliczeniowa z Seminarium Newton vs. Lagrange - kto lepszy? Opiekun

Bardziej szczegółowo

Podstawy Informatyki sem. I 2014/2015 studia zaoczne Elektronika i Telekomunikacja!

Podstawy Informatyki sem. I 2014/2015 studia zaoczne Elektronika i Telekomunikacja! Podstawy Informatyki sem. I 2014/2015 studia zaoczne Elektronika i Telekomunikacja! Krzysztof Grudzień kgrudzi@kis.p.lodz.pl! Zbigniew Chaniecki zch@kis.p.lodz.pl 1 program zajęć - wykład Podstawowe pojęcia

Bardziej szczegółowo

SCENARIUSZ TEMATYCZNY

SCENARIUSZ TEMATYCZNY Autorzy scenariusza: SCENARIUSZ TEMATYCZNY OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

Bardziej szczegółowo

Podstawy programowania C. dr. Krystyna Łapin http://www.mif.vu.lt/~moroz/c/

Podstawy programowania C. dr. Krystyna Łapin http://www.mif.vu.lt/~moroz/c/ Podstawy programowania C dr. Krystyna Łapin http://www.mif.vu.lt/~moroz/c/ Tematy Struktura programu w C Typy danych Operacje Instrukcja grupująca Instrukcja przypisania Instrukcja warunkowa Struktura

Bardziej szczegółowo

Język JAVA podstawy. Wykład 3, część 3. Jacek Rumiński. Politechnika Gdańska, Inżynieria Biomedyczna

Język JAVA podstawy. Wykład 3, część 3. Jacek Rumiński. Politechnika Gdańska, Inżynieria Biomedyczna Język JAVA podstawy Wykład 3, część 3 1 Język JAVA podstawy Plan wykładu: 1. Konstrukcja kodu programów w Javie 2. Identyfikatory, zmienne 3. Typy danych 4. Operatory, instrukcje sterujące instrukcja warunkowe,

Bardziej szczegółowo

Część XVII C++ Funkcje. Funkcja bezargumentowa Najprostszym przypadkiem funkcji jest jej wersja bezargumentowa. Spójrzmy na przykład.

Część XVII C++ Funkcje. Funkcja bezargumentowa Najprostszym przypadkiem funkcji jest jej wersja bezargumentowa. Spójrzmy na przykład. Część XVII C++ Funkcje Funkcja bezargumentowa Najprostszym przypadkiem funkcji jest jej wersja bezargumentowa. Spójrzmy na przykład. 2 3 Tworzymy deklarację i definicję funkcji o nazwie pobierzln() Funkcja

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania Podstawowe konstrukcje programistyczne Paweł Daniluk Wydział Fizyki Jesień 2013 P. Daniluk (Wydział Fizyki) WP w. II Jesień 2013 1 / 34 Przypomnienie Programowanie imperatywne Program

Bardziej szczegółowo

Rekurencja. Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów.

Rekurencja. Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów. Rekurencja Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów. Zgodnie ze znaczeniem informatycznym algorytm rekurencyjny to taki który korzysta z samego

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 11 1 / 52 Pętla for # i n c l u d e

Bardziej szczegółowo

// Funkcja glowna int main() { // zmienne int kont='t'; double x1, y1, x2, y2, x3, y3, a, b, c, p1, p2, p3, pole, ha, hb, hc;

// Funkcja glowna int main() { // zmienne int kont='t'; double x1, y1, x2, y2, x3, y3, a, b, c, p1, p2, p3, pole, ha, hb, hc; // PTxy1.cpp // Obliczenie pola trojkąta ze wspolrzednych punktow // Dolaczenie bibliotek jezyka C #include #include #include #include #include #define clrscr()

Bardziej szczegółowo

Języki programowania zasady ich tworzenia

Języki programowania zasady ich tworzenia Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie

Bardziej szczegółowo

Wartości domyślne, przeciażenia funkcji

Wartości domyślne, przeciażenia funkcji Wartości domyślne, przeciażenia funkcji Bogdan Kreczmer ZPCiR IIAiR PWr pokój 307 budynek C3 bogdan.kreczmer@pwr.wroc.pl Niniejszy dokument zawiera materiały do wykładu na temat programowania obiektowego.

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki. sem. II - wykład 6. Dr hab. inż. M. Czyżak

Katedra Elektrotechniki Teoretycznej i Informatyki. sem. II - wykład 6. Dr hab. inż. M. Czyżak Katedra Elektrotechniki Teoretycznej i Informatyki sem. II - wykład 6 Dr hab. inż. M. Czyżak Ogólna budowa programu w języku C W języku C program składa się z jednego lub większej liczby segmentów kodu

Bardziej szczegółowo

Algorytm 2.1. Rys. 2.1.1. Czy zupa jest słona? Przygotuj. Gotowe danie START. Przepis... STOP NIE TAK

Algorytm 2.1. Rys. 2.1.1. Czy zupa jest słona? Przygotuj. Gotowe danie START. Przepis... STOP NIE TAK 2 Algorytmy decyzyjne Algorytmy decyzyjne charakteryzują się tym, że w pewnym momencie w sytuacji problemowej następuje ich zatrzymanie i wybór właściwej drogi. Algorytmy rozgałęziające się dają ogromne

Bardziej szczegółowo

Jerzy Nawrocki, Wprowadzenie do informatyki

Jerzy Nawrocki, Wprowadzenie do informatyki Jerzy Nawrocki, Jerzy Nawrocki Wydział Informatyki Politechnika Poznańska jerzy.nawrocki@put.poznan.pl Przetwarzanie tekstów i AWK Problem konwersji plików FName:Jurek SName:Busz Salary 585 FName:Alek

Bardziej szczegółowo

WYKŁAD 1 - KONSPEKT. Program wykładu:

WYKŁAD 1 - KONSPEKT. Program wykładu: mgr inż. Jarosław Forenc e-mail: jarekf@pb.bialystok.pl tel. (0-85) 746-93-97 WWW: http://we.pb.bialystok.pl/~jforenc konsultacje: zaliczenie: Program wykładu: WYKŁAD 1 - KONSPEKT 1. Ogólna struktura programu

Bardziej szczegółowo

Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne

Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne Obliczenia z wykorzystaniem tzw. funkcji anonimowej Składnia funkcji anonimowej: nazwa_funkcji=@(lista_argumentów)(wyrażenie) gdzie: -

Bardziej szczegółowo

Spis treści JĘZYK C - PRZEKAZYWANIE PARAMETRÓW DO FUNKCJI, REKURENCJA. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu

Spis treści JĘZYK C - PRZEKAZYWANIE PARAMETRÓW DO FUNKCJI, REKURENCJA. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Informatyka 1 Kod przedmiotu: EZ1C200 010 (studia niestacjonarne)

Bardziej szczegółowo

Programowanie, algorytmy i struktury danych

Programowanie, algorytmy i struktury danych 1/44 Programowanie, algorytmy i struktury danych materiały do wykładu: http://cez.wipb.pl/moodle/ email: m.tabedzki@pb.edu.pl strona: http://aragorn.pb.bialystok.pl/~tabedzki/ Marek Tabędzki Wymagania

Bardziej szczegółowo

I - Microsoft Visual Studio C++

I - Microsoft Visual Studio C++ I - Microsoft Visual Studio C++ 1. Nowy projekt z Menu wybieramy File -> New -> Projekt -> Win32 Console Application w okienku Name: podajemy nazwę projektu w polu Location: wybieramy miejsce zapisu i

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

Wykład 3. Instrukcje powtarzające

Wykład 3. Instrukcje powtarzające Wykład 3. Instrukcje powtarzające 3_. Instrukcja while Graf działania instrukcji while POCZĄTEK 0 wyrażenie relacyjne.... KONIEC Składnia (zapis) instrukcji while: while (wyrażenie_relacyjne) // ------

Bardziej szczegółowo

Wprowadzenie do programowania w języku C

Wprowadzenie do programowania w języku C Wprowadzenie do programowania w języku C Część trzecia Autor Roman Simiński Kontakt siminski@us.edu.pl www.us.edu.pl/~siminski Niniejsze opracowanie zawiera skrót treści wykładu, lektura tych materiałów

Bardziej szczegółowo

Algorytmy. Programowanie Proceduralne 1

Algorytmy. Programowanie Proceduralne 1 Algorytmy Programowanie Proceduralne 1 Przepis Warzenie piwa Brunświckiego Programowanie Proceduralne 2 Przepis Warzenie piwa Brunświckiego składniki (dane wejściowe): woda, słód, itd. wynik: beczka piwa

Bardziej szczegółowo

Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika

Wykład z Podstaw Informatyki dla I roku BO. Piotr Mika Wykład z Podstaw Informatyki dla I roku BO Piotr Mika Napisanie programu komputerowego: Zasada rozwiązania zadania Stworzenie sekwencji kroków algorytmu Przykłady algorytmów z życia codziennego (2/1 6)

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 9 Różniczkowanie numeryczne

Wprowadzenie do metod numerycznych Wykład 9 Różniczkowanie numeryczne Wprowadzenie do metod numerycznych Wykład 9 Różniczkowanie numeryczne Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści 1 Na czym polega różniczkowanie numeryczne

Bardziej szczegółowo

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych.

Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. Temat: Dynamiczne przydzielanie i zwalnianie pamięci. Struktura listy operacje wstawiania, wyszukiwania oraz usuwania danych. 1. Rodzaje pamięci używanej w programach Pamięć komputera, dostępna dla programu,

Bardziej szczegółowo

Informatyka Europejczyka. Informatyka. Podrêcznik dla szkó³ ponadgimnazjalnych. Czêœæ I

Informatyka Europejczyka. Informatyka. Podrêcznik dla szkó³ ponadgimnazjalnych. Czêœæ I Informatyka Europejczyka Informatyka Podrêcznik dla szkó³ ponadgimnazjalnych Czêœæ I Autor: Gra yna Zawadzka ISBN: 978-83-246-0925-3 Format: 170 240 stron: 288 Z komputerami stykamy siê dziœ niemal ka

Bardziej szczegółowo

Fizyka laboratorium 1

Fizyka laboratorium 1 Rozdzia l Fizyka laboratorium.. Elementy analizy matematycznej Funkcje Zmienna y nazywa sie zmienna zależna albo funkcja zmiennej x, jeżeli przyjmuje ona określone wartości dla każdej wartości zmiennej

Bardziej szczegółowo

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1.

Kurs Start plus poziom zaawansowany, materiały dla prowadzących, Marcin Kościelecki. Zajęcia 1. Projekt Fizyka Plus nr POKL.04.0.0-00-034/ współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki Kurs Start plus poziom zaawansowany,

Bardziej szczegółowo

Funkcja liniowa i prosta podsumowanie

Funkcja liniowa i prosta podsumowanie Funkcja liniowa i prosta podsumowanie Definicja funkcji liniowej Funkcja liniowa określona jest wzorem postaci: y = ax + b, x R, a R, b R a, b współczynniki funkcji dowolne liczby rzeczywiste a- współczynnik

Bardziej szczegółowo

JAVA. Platforma JSE: Środowiska programistyczne dla języka Java. Wstęp do programowania w języku obiektowym. Opracował: Andrzej Nowak

JAVA. Platforma JSE: Środowiska programistyczne dla języka Java. Wstęp do programowania w języku obiektowym. Opracował: Andrzej Nowak JAVA Wstęp do programowania w języku obiektowym Bibliografia: JAVA Szkoła programowania, D. Trajkowska Ćwiczenia praktyczne JAVA. Wydanie III,M. Lis Platforma JSE: Opracował: Andrzej Nowak JSE (Java Standard

Bardziej szczegółowo

Wprowadzenie do szablonów klas

Wprowadzenie do szablonów klas Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Kurs: Copyright c 2008-2010 Bogdan Kreczmer Niniejszy

Bardziej szczegółowo

KURS C/C++ WYKŁAD 8. Deklaracja funkcji informuje komplilator jaką wartość funkcja będzie zwracała i jakiego typu są jej argumenty.

KURS C/C++ WYKŁAD 8. Deklaracja funkcji informuje komplilator jaką wartość funkcja będzie zwracała i jakiego typu są jej argumenty. Funkcje. Deklaracja funkcji: KURS C/C++ WYKŁAD 8 #include //deklaracje funkcji: printf(...), scanf(...) #include //double sqrt (double ) #include //void clrscr (void) void main

Bardziej szczegółowo

Informatyka II Laboratorium 3 : Programowania obiektowe C++ - dziedziczenie

Informatyka II Laboratorium 3 : Programowania obiektowe C++ - dziedziczenie Materiały: Informatyka II Laboratorium : Programowania obiektowe C++ - dziedziczenie Książka: Symfonia C++, Jerzy Grębosz. Wykład: www.materialy.prz-rzeszow.pl, Informatyka II, dr Wojciech Rząsa. Zasoby

Bardziej szczegółowo

PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy.

PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy. PoniŜej znajdują się pytania z egzaminów zawodowych teoretycznych. Jest to materiał poglądowy. 1. Instrukcję case t of... w przedstawionym fragmencie programu moŝna zastąpić: var t : integer; write( Podaj

Bardziej szczegółowo

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos)

Algorytmy i. Wykład 3: Stosy, kolejki i listy. Dr inż. Paweł Kasprowski. FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Algorytmy i struktury danych Wykład 3: Stosy, kolejki i listy Dr inż. Paweł Kasprowski pawel@kasprowski.pl Kolejki FIFO First In First Out (kolejka) LIFO Last In First Out (stos) Stos (stack) Dostęp jedynie

Bardziej szczegółowo

Programowanie Delphi obliczenia, schematy blokowe

Programowanie Delphi obliczenia, schematy blokowe Informatyka II MPZI2 ćw.2 Programowanie Delphi obliczenia, schematy blokowe Zastosowania obliczeń numerycznych Wyrażenia arytmetyczne służą do zapisu wykonywania operacji obliczeniowych w trakcie przebiegu

Bardziej szczegółowo

Wykład II. Programowanie II - semestr II Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład II. Programowanie II - semestr II Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład II - semestr II Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2015 c Copyright 2015 Janusz Słupik Operacje dyskowe - zapis do pliku #include #include

Bardziej szczegółowo

1 Wskaźniki i zmienne dynamiczne, instrukcja przed zajęciami

1 Wskaźniki i zmienne dynamiczne, instrukcja przed zajęciami 1 Wskaźniki i zmienne dynamiczne, instrukcja przed zajęciami Celem tych zajęć jest zrozumienie i oswojenie z technikami programowania przy pomocy wskaźników w języku C++. Proszę przeczytać rozdział 8.

Bardziej szczegółowo

Podprogramy. Procedury

Podprogramy. Procedury Podprogramy Turbo Pascal oferuje metody ułatwiające tworzenie struktury programu, szczególnie dotyczy to większych programów. Przy tworzeniu większego programu stosuje się jego podział na kilka mniejszych

Bardziej szczegółowo

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania

Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Politechnika Gdańska Wydział Elektrotechniki i Automatyki Katedra Inżynierii Systemów Sterowania Metody optymalizacji Metody poszukiwania ekstremum funkcji jednej zmiennej Materiały pomocnicze do ćwiczeń

Bardziej szczegółowo

Rachunek całkowy funkcji wielu zmiennych

Rachunek całkowy funkcji wielu zmiennych Rachunek całkowy funkcji wielu zmiennych Całki potrójne wykład z MATEMATYKI Budownictwo studia niestacjonarne sem. II, rok ak. 2008/2009 Katedra Matematyki Wydział Informatyki olitechnika Białostocka 1

Bardziej szczegółowo

Wykład I. Programowanie II - semestr II Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej

Wykład I. Programowanie II - semestr II Kierunek Informatyka. dr inż. Janusz Słupik. Wydział Matematyki Stosowanej Politechniki Śląskiej Wykład I - semestr II Kierunek Informatyka Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2015 c Copyright 2015 Janusz Słupik Zaliczenie przedmiotu Do zaliczenia przedmiotu niezbędne jest

Bardziej szczegółowo

Pliki. Operacje na plikach w Pascalu

Pliki. Operacje na plikach w Pascalu Pliki. Operacje na plikach w Pascalu ścieżka zapisu, pliki elementowe, tekstowe, operacja plikowa, etapy, assign, zmienna plikowa, skojarzenie, tryby otwarcia, reset, rewrite, append, read, write, buforowanie

Bardziej szczegółowo

PHP w-3. Sterowanie w PHP

PHP w-3. Sterowanie w PHP PHP w-3 Sterowanie w PHP 1 INSTRUKCE STERUJĄCE W PHP podobnie jak w innych językach programowania wykorzystuje się instrukcje sterujące: 1. Instrukcja warunkowa If-else 2. Instrukcja wyboru Switch 3. Pętla

Bardziej szczegółowo

Warszawa dnia 2 stycznia 2011 r. Zbiór zadań z programowania w języku C do samodzielnego wykonania

Warszawa dnia 2 stycznia 2011 r. Zbiór zadań z programowania w języku C do samodzielnego wykonania Warszawa dnia 2 stycznia 2011 r. Przedmioty: Wstęp do programowania Wstęp do informatyki Zbiór zadań z programowania w języku C do samodzielnego wykonania Prowadzący; dr inż. Stanisław Wszelak Ćwiczenie

Bardziej szczegółowo

Wykład nr 3. Temat: Wskaźniki i referencje. Edward Morgan Forster

Wykład nr 3. Temat: Wskaźniki i referencje. Edward Morgan Forster Wykład nr 3 Temat: Wskaźniki i referencje. Cytaty: Mylić się jest rzeczą ludzką, ale żeby coś naprawdę spaprać potrzeba komputera. Edward Morgan Forster Gdyby murarze budowali domy tak, jak programiści

Bardziej szczegółowo

Wyszukiwanie największej spośród czterech liczb. Przykładowe rozwiązanie

Wyszukiwanie największej spośród czterech liczb. Przykładowe rozwiązanie Wyszukiwanie największej spośród czterech liczb Użytkownik podaje cztery liczby rzeczywiste. Podaj algorytm znajdowania największej spośród nich. (Np.: po wprowadzeniu liczb: 12 7 18.5 9 program powinien

Bardziej szczegółowo

Python wstęp do programowania dla użytkowników WCSS

Python wstęp do programowania dla użytkowników WCSS Python wstęp do programowania dla użytkowników WCSS Dr inż. Krzysztof Berezowski Instytut Informatyki, Automatyki i Robotyki Politechniki Wrocławskiej Wprowadzenie CHARAKTERYSTYKA JĘZYKA Filozofia języka

Bardziej szczegółowo

Co to jest sterta? Sterta (ang. heap) to obszar pamięci udostępniany przez system operacyjny wszystkim działającym programom (procesom).

Co to jest sterta? Sterta (ang. heap) to obszar pamięci udostępniany przez system operacyjny wszystkim działającym programom (procesom). Zarządzanie pamięcią Pamięć: stos i sterta Statyczny i dynamiczny przydział pamięci Funkcje ANSI C do zarządzania pamięcią Przykłady: Dynamiczna tablica jednowymiarowa Dynamiczna tablica dwuwymiarowa 154

Bardziej szczegółowo

Część XV C++ Ćwiczenie 1

Część XV C++ Ćwiczenie 1 Część XV C++ Instrukcja break przerywa działanie tylko tej pętli, w ciele której została wywołana. Jeśli więc wywołamy break w pętli zagnieżdżonej w innej pętli, zostanie przerwane działanie tylko tej

Bardziej szczegółowo

Algorytmy ewolucyjne (2)

Algorytmy ewolucyjne (2) Algorytmy ewolucyjne (2) zajecia.jakubw.pl/nai/ ALGORYTM GEETYCZY Cel: znaleźć makimum unkcji. Założenie: unkcja ta jet dodatnia. 1. Tworzymy oobników loowych. 2. Stoujemy operacje mutacji i krzyżowania

Bardziej szczegółowo

Podstawy programowania w języku C++

Podstawy programowania w języku C++ Podstawy programowania w języku C++ Część dziesiąta Rekordy w C/C++ struktury Autor Roman Simiński Kontakt roman.siminski@us.edu.pl www.programowanie.siminskionline.pl Niniejsze opracowanie zawiera skrót

Bardziej szczegółowo

Programowanie w C/C++ Instrukcje - konstrukcje powtórka. LABORKA Piotr Ciskowski

Programowanie w C/C++ Instrukcje - konstrukcje powtórka. LABORKA Piotr Ciskowski Programowanie w C/C++ Instrukcje - konstrukcje powtórka LABORKA Piotr Ciskowski zadanie 1. Licz się ze sobą Napisz funkcję bez argumentów i bez wyniku, która za każdym wywołaniem będzie podawała, ile razy

Bardziej szczegółowo

KLUCZ PUNKTOWANIA ODPOWIEDZI

KLUCZ PUNKTOWANIA ODPOWIEDZI Egzamin maturalny maj 009 MATEMATYKA POZIOM PODSTAWOWY KLUCZ PUNKTOWANIA ODPOWIEDZI Zadanie 1. Matematyka poziom podstawowy Wyznaczanie wartości funkcji dla danych argumentów i jej miejsca zerowego. Zdający

Bardziej szczegółowo

Powtórka algorytmów. Wprowadzenie do języka Java.

Powtórka algorytmów. Wprowadzenie do języka Java. Powtórka algorytmów. Wprowadzenie do języka Java. Przypomnienie schematów blokowych BEGIN Readln(a); Readln(b); Suma := 0; IF Suma < 10 THEN Writeln( Suma wynosi:, Suma); ELSE Writeln( Suma większa niż

Bardziej szczegółowo

1. Wartość, jaką odczytuje się z obszaru przydzielonego obiektowi to: a) I - wartość b) definicja obiektu c) typ oboektu d) p - wartość

1. Wartość, jaką odczytuje się z obszaru przydzielonego obiektowi to: a) I - wartość b) definicja obiektu c) typ oboektu d) p - wartość 1. Wartość, jaką odczytuje się z obszaru przydzielonego obiektowi to: a) I - wartość b) definicja obiektu c) typ oboektu d) p - wartość 2. Poprawna definicja wskażnika b to: a) float *a, **b = &a; b) float

Bardziej szczegółowo

Platforma.NET. Laboratorium nr 1 Podstawy języka C#

Platforma.NET. Laboratorium nr 1 Podstawy języka C# Platforma.NET Laboratorium nr 1 Podstawy języka C# Ćwiczenie 1 1. Utwórz nowy projekt a. Z menu File wybierz New/Project b. W oknie dialogowym New Project określ następujące właściwości: typu projektu:

Bardziej szczegółowo