Jerzy Nawrocki, Wprowadzenie do informatyki

Wielkość: px
Rozpocząć pokaz od strony:

Download "Jerzy Nawrocki, Wprowadzenie do informatyki"

Transkrypt

1 Jerzy Nawrocki, Jerzy Nawrocki Wydział Informatyki Politechnika Poznańka Obliczenia i metody numeryczne = a 2 + b 2 a + (b/a) 2 =b + (a/b) 2 Metody numeryczne begin a:= 3e-25; b:= 4e-25; m:= qrt(a*a + b*b); writeln(m) end. begin a:= 3e-25; b:= 4e-25; if a > b then m:= a*qrt(+ (b/a)*(b/a)) ele m:= b*qrt(+ (a/b)*(a/b)); writeln(m) end..e+ 5.E-25 Metody numeryczne (2) Cel wykładu Przedtawić: klayczną reprezentację liczb poób obliczania tzw. funkcji tandardowych (e x, co x, π) zybką metodę obliczania wartości wielomianu Metody numeryczne (3) Metody numeryczne (4) Reprezentacja tałopozycyjna Reprezentacja tałopozycyjna Część całkowita Część ułamkowa a 3 a 2 a a b b 2 b 3 b 4 (-) ( a a a 2 + a 2 + b b b b ) Metody numeryczne (5) Metody numeryczne (6) Metody numeryczne

2 Jerzy Nawrocki, Reprezentacja tałopozycyjna Wada Metody numeryczne (7) Metody numeryczne (8) 7 Metody numeryczne (9) Metody numeryczne () 4 Metody numeryczne () Metody numeryczne (2) Metody numeryczne 2

3 Jerzy Nawrocki, Metody numeryczne (3) Metody numeryczne (4) c m c m x : x = (-) 2 c m {, } c= cecha m= mantya [/2, ) Metody numeryczne (5) Metody numeryczne (6) c m Metody numeryczne (7) Metody numeryczne (8) Metody numeryczne 3

4 Jerzy Nawrocki, Obliczanie pierwiatków g(a) = a Metody numeryczne (9) Tranformacja do problemu znajdowania miejca zerowego f(x) f(x) = x 2 a Metoda tycznych (metoda Newtona): x k+ x k f(x k ) Geom. interpretacja pochodnej: f (x k ) = f(x k ) / (x k x k+ ) gdzie f (x) = 2x. Po przekztałceniu: x k+ = ½ (x k + a/x k ) Metody numeryczne (2) Iteracyjne algorytmy numeryczne Algorytm Herona obliczania pierwiatka kwadratowego a x = a jeśli a >= jeśli a < x k+ = ½ (x k + a/x k ) Heron z Alekandrii Rycina z niemieckiego tłumaczenia Pneumatyki z 688 r. Metody numeryczne (2) Metody numeryczne (22) Wzór Taylora Wzór Maclaurina ~ 73 79: Cambridge Univerity 72: Royal Society 75: Wzór Taylora (zereg Taylora) (bez dowodu) Dla x = dotajemy: Brook Taylor ~ Metody numeryczne (23) Colin Maclaurin ( ) Metody numeryczne (24) Metody numeryczne 4

5 Jerzy Nawrocki, (e x ) = e x e = Wzór Maclaurina f(x) = e x N e x Σ x k / k! k= e() = 2,7.. e() = e x = + x/! + x 2 /2! + x 3 /3! + x 4 /4! +... num x T= den! e x x 2 x 3 2! 3! Colin Maclaurin ( ) e x x /! + x /! + x 2 /2! + x 3 /3! +.. = + x /! + x 2 /2! + x 3 /3! +.. Metody numeryczne (25) Metody numeryczne (26) e x e x e x = + x/! + x 2 /2! + x 3 /3! + x 4 /4! +... e x = + x/! + x 2 /2! + x 3 /3! + x 4 /4! +... e() = 2,7.. e() = T= num den *x *x *x * x! *2 x 2 2! *3 x 3 3! e() = 2,7.. e() = void main(){ float x; // Argument e(x) canf("%g", &x); printf("e(%g)= %g\n", x, e(x)); return; } e()= Metody numeryczne (27) Metody numeryczne (28) Colin Maclaurin ( ) Wzór Maclaurina f(x) = co x (co x) () = co x (co x) = in x (co x) = co x - (co x) (3) = in x (co x) (4) = co x... co x + x 2 /2! + + x 4 /4! +.. Metody numeryczne (29) co() = co(,57..) = co x + x 2 /2! + + x 4 /4! +.. T = num den *(-x 2 ) **2 *(-x -x 2 ) 2 2! *3*4 co(x) x 4 4! Metody numeryczne (3) Metody numeryczne 5

6 Jerzy Nawrocki, π π = /3 + /5 /7 + π tg(π/4)=??? arctg() = π/4 (-) k arctg(x) = Σ 2k+ k= x 2k+ T = num den *(-) *(-) *(-) Colin Maclaurin ( ) π/4 = x 3 /3 + x 5 /5 x 7 /7 + = /3 + /5 /7 + Metody numeryczne (3) Metody numeryczne (32) Wielomiany p(x) = a k x Σk= k = a x + a x + a 2 x 2 + Metody numeryczne (33) Nagłówek p Wywołanie p float p(float x, int n, float a[ ])... #define MaxN 5 void main(){ float x; // Zmienna x int n; // Stopien wielomianu float a[maxn+]; // Wpolczynniki wielomianu... printf("%g\n", p(x, n, a)); return; } Metody numeryczne (34) Wielomiany Schemat p(x) = a k x Σk= k = a x + a x + a 2 x 2 + p(x,) = a p(x,n) = a x n + a x n a n- x + a n p(x,) = a x + a float p(float x, int n, float a[ ]){ float reult, PowerX; int k = ; p(x,2) = a x 2 + a x + a 2 PowerX = ; p(x,3) = a x 3 + a x 2 + a 2 x + a 3 reult = a[] * PowerX; while (k < n){ k = k+; PowerX = PowerX * x; p(x,4) = a x 4 + a x 3 + a 2 x 2 + a 3 x + a 4 reult = reult + a[k] * PowerX; } return reult; } Metody numeryczne (35) Metody numeryczne (36) Metody numeryczne 6

7 Jerzy Nawrocki, Obliczanie wielomianu chemat p(x,n) = a x n + a x n a n- x + a n p(x,) = a p(x,) = a x + a = p(x, )x + a p(x,2) = a x 2 + a x + a 2 p(x,3) = a x 3 + a x 2 + a 2 x + a 3 Obliczanie wielomianu chemat p(x,n) = a x n + a x n a n- x + a n p(x,) = a p(x,) = a x + a = p(x, )x + a p(x,2) = a x 2 + a x + a 2 = (a x + a )x + a 2 = p(x,)x+a 2 p(x,3) = a x 3 + a x 2 + a 2 x + a 3 p(x,4) = a x 4 + a x 3 + a 2 x 2 + a 3 x + a 4 p(x,4) = a x 4 + a x 3 + a 2 x 2 + a 3 x + a 4 Metody numeryczne (37) Metody numeryczne (38) Obliczanie wielomianu chemat Schemat p(x,n) = a x n + a x n a n- x + a n p(x,) = a p(x,) = a x + a = p(x, )x + a p(x,2) = a x 2 + a x + a 2 = (a x + a )x + a 2 = p(x,)x+a 2 p(x,3) = a x 3 + a x 2 + a 2 x + a 3 = p(x,) = a p(x,n) = a x n + a x n a n- x + a n p(x,n) = p(x, n-)x + a n = (a x 2 + a x + a 2 )x + a 3 = p(x,2)x + a 3 p(x,4) = a x 4 + a x 3 + a 2 x 2 + a 3 x + a 4 = = (a x 3 + a x 2 + a 2 x + a 3 )x + a 4 = p(x,3)x + a 4 p(x,n) = p(x, n-)x + a n Metody numeryczne (39) Metody numeryczne (4) Źle uwarunkowane zadania Uwarunkowanie zadania Metody numeryczne (4) Zadanie źle uwarunkowane: Niewielkie względne zmiany danych duże względne zmiany wyniku 2 p(x) = a 2 x a x + a = k= Π(x k) = x =, 2,, 2 a 9 = -2 a 9 = -( ) x = 5 x = 3,99 + 2,5i Metody numeryczne (42) Metody numeryczne 7

Jerzy Nawrocki, Wprowadzenie do informatyki

Jerzy Nawrocki, Wprowadzenie do informatyki Jerzy Nawrocki, Jerzy Nawrocki Wydział Informatyki Politechnika Poznańska jerzy.nawrocki@put.poznan.pl Cel wykładu Programowanie imperatywne i język C Zaprezentować paradygmat programowania imperatywnego

Bardziej szczegółowo

Jerzy Nawrocki, Wprowadzenie do informatyki

Jerzy Nawrocki, Wprowadzenie do informatyki Jerzy Nawrocki, Jerzy Nawrocki Wydział Informatyki Politechnika Poznańska jerzy.nawrocki@put.poznan.pl Cel wykładu Programowanie imperatywne i język C Zaprezentować paradygmat programowania imperatywnego

Bardziej szczegółowo

Proste algorytmy w języku C

Proste algorytmy w języku C Proste algorytmy w języku C Michał Rad AGH Laboratorium Maszyn Elektrycznych 2014-10-17 Outline Język C i Matlab Zadanie pierwsze - obliczanie miejsc zerowych wielomianu Zadanie drugie - znajdywanie największego

Bardziej szczegółowo

Jerzy Nawrocki, Wprowadzenie do informatyki

Jerzy Nawrocki, Wprowadzenie do informatyki Jerzy Nawrocki, Jerzy Nawrocki Wydział Informatyki Politechnika Poznańska jerzy.nawrocki@put.poznan.pl Kryzys oprogramowania Struktury danych i inżynieria oprogramowania Przekraczanie terminów Przekraczanie

Bardziej szczegółowo

WYKŁAD 8. Funkcje i algorytmy rekurencyjne Proste przykłady. Programy: c3_1.c..., c3_6.c. Tomasz Zieliński

WYKŁAD 8. Funkcje i algorytmy rekurencyjne Proste przykłady. Programy: c3_1.c..., c3_6.c. Tomasz Zieliński WYKŁAD 8 Funkcje i algorytmy rekurencyjne Proste przykłady Programy: c3_1.c..., c3_6.c Tomasz Zieliński METODY REKURENCYJNE (1) - program c3_1 ======================================================================================================

Bardziej szczegółowo

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona

Caªkowanie numeryczne - porównanie skuteczno±ci metody prostokatów, metody trapezów oraz metody Simpsona Akademia Górniczo-Hutnicza im. Stanisªawa Staszica w Krakowie Wydziaª Fizyki i Informatyki Stosowanej Krzysztof Grz dziel kierunek studiów: informatyka stosowana Caªkowanie numeryczne - porównanie skuteczno±ci

Bardziej szczegółowo

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76

a[1] a[2] a[3] a[4] a[5] a[6] a[7] a[8] a[9] a[10] 3-2 5 8 12-4 -26 12 45-76 . p. 1 Algorytmem nazywa się poddający się interpretacji skończony zbiór instrukcji wykonania zadania mającego określony stan końcowy dla każdego zestawu danych wejściowych W algorytmach mogą występować

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

EGZAMIN MATURALNY 2011 INFORMATYKA

EGZAMIN MATURALNY 2011 INFORMATYKA Centralna Komisja Egzaminacyjna w Warszawie EGZAMIN MATURALNY 2011 INFORMATYKA POZIOM PODSTAWOWY MAJ 2011 2 Zadanie 1. a) (0 1) Egzamin maturalny z informatyki poziom podstawowy CZĘŚĆ I Obszar standardów

Bardziej szczegółowo

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0.

y f x 0 f x 0 x x 0 x 0 lim 0 h f x 0 lim x x0 - o ile ta granica właściwa istnieje. f x x2 Definicja pochodnych jednostronnych 1.5 0. Matematyka ZLic - 3 Pochodne i różniczki funkcji jednej zmiennej Definicja Pochodną funkcji f w punkcie x, nazwiemy liczbę oznaczaną symbolem f x lub df x dx, równą granicy właściwej f x lim h - o ile

Bardziej szczegółowo

if (warunek) instrukcja1; if (warunek) instrukcja1; else instrukcja2; a > b - a większe od b if (warunek) instrukcja1; a <= b - a mniejsze lub równe b

if (warunek) instrukcja1; if (warunek) instrukcja1; else instrukcja2; a > b - a większe od b if (warunek) instrukcja1; a <= b - a mniejsze lub równe b Rok akademicki 2012/2013, Pracownia nr 4 2/17 Informatyka 1 Instrukcja warunkowa if prawda instrukcja1 warunek fałsz Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia stacjonarne

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 2 Numeryczne rozwiązywanie równań nieliniowych

Wprowadzenie do metod numerycznych Wykład 2 Numeryczne rozwiązywanie równań nieliniowych Wprowadzenie do metod numerycznych Wykład 2 Numeryczne rozwiązywanie równań nieliniowych Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści Spis treści 1 Numeryczne

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku

ELEMENTY ANALIZY NUMERYCZNEJ ELEMENTY ANALIZY NUMERYCZNEJ. Egzamin pisemny zestaw 1 26 czerwca 2017 roku Egzamin pisemny zestaw czerwca 0 roku Imię i nazwisko:.... ( pkt.) Udowodnić, że jeśli funkcja g interpoluje funkcję f w węzłach x 0, x, K, x n, a funk- cja h interpoluje funkcję f w węzłach x, x, K, x

Bardziej szczegółowo

Matematyka licea ogólnokształcące, technika

Matematyka licea ogólnokształcące, technika Matematyka licea ogólnokształcące, technika Opracowano m.in. na podstawie podręcznika MATEMATYKA w otaczającym nas świecie zakres podstawowy i rozszerzony Funkcja liniowa Funkcję f: R R określoną wzorem

Bardziej szczegółowo

Tablice i struktury. czyli złożone typy danych. Programowanie Proceduralne 1

Tablice i struktury. czyli złożone typy danych. Programowanie Proceduralne 1 Tablice i struktury czyli złożone typy danych. Programowanie Proceduralne 1 Tablica przechowuje elementy tego samego typu struktura jednorodna, homogeniczna Elementy identyfikowane liczbami (indeksem).

Bardziej szczegółowo

W języku C dostępne są trzy instrukcje, umożliwiające tworzenie pętli: for, while oraz do. for (w1;w2;w3) instrukcja

W języku C dostępne są trzy instrukcje, umożliwiające tworzenie pętli: for, while oraz do. for (w1;w2;w3) instrukcja Pętle W języku C dostępne są trzy instrukcje, umożliwiające tworzenie pętli: for, while oraz do. Instrukcja for ma następującą postać: for (w1;w2;w3) instrukcja w1, w2, w3 są wyrażeniami Schemat blokowy

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki. wykład 3 - sem.iii. Dr inż. M. Czyżak

Katedra Elektrotechniki Teoretycznej i Informatyki. wykład 3 - sem.iii. Dr inż. M. Czyżak Katedra Elektrotechniki Teoretycznej i Informatyki wykład 3 - sem.iii Dr inż. M. Czyżak Przykład. (do wykonania w trakcie wykładu) Napisać i wywołać w main() następujące funkcje: a) funkcję obliczającą

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. prof. dr hab.inż. Katarzyna Zakrzewska

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. prof. dr hab.inż. Katarzyna Zakrzewska METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą prof. dr hab.inż. Katarzyna Zakrzewska Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą

Bardziej szczegółowo

Obliczenia Naukowe i Metody Numeryczne. Laboratorium Komputerowe lista 4 5 października 2012

Obliczenia Naukowe i Metody Numeryczne. Laboratorium Komputerowe lista 4 5 października 2012 Obliczenia Naukowe i Metody Numeryczne Laboratorium Komputerowe lista 4 5 października 2012 Temat: interpolacja i iteracyjne metody obliczania zer funkcji Uwagi. Zalecane jest graficzne ilustrowanie przeprowadzonych

Bardziej szczegółowo

Rekurencja (rekursja)

Rekurencja (rekursja) Rekurencja (rekursja) Rekurencja wywołanie funkcji przez nią samą wewnątrz ciała funkcji. Rekurencja może być pośrednia funkcja jest wywoływana przez inną funkcję, wywołaną (pośrednio lub bezpośrednio)

Bardziej szczegółowo

Strona główna. Strona tytułowa. Programowanie. Spis treści. Sobera Jolanta 16.09.2006. Strona 1 z 26. Powrót. Full Screen. Zamknij.

Strona główna. Strona tytułowa. Programowanie. Spis treści. Sobera Jolanta 16.09.2006. Strona 1 z 26. Powrót. Full Screen. Zamknij. Programowanie Sobera Jolanta 16.09.2006 Strona 1 z 26 1 Wprowadzenie do programowania 4 2 Pierwsza aplikacja 5 3 Typy danych 6 4 Operatory 9 Strona 2 z 26 5 Instrukcje sterujące 12 6 Podprogramy 15 7 Tablice

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą

METODY NUMERYCZNE. Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą. Rozwiązywanie równań nieliniowych z jedną niewiadomą METODY NUMERYCZNE Wykład 4. Numeryczne rozwiązywanie równań nieliniowych z jedną niewiadomą dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. Wykład 4 1 Rozwiązywanie równań nieliniowych z jedną niewiadomą

Bardziej szczegółowo

Programowanie funkcyjne wprowadzenie Specyfikacje formalne i programy funkcyjne

Programowanie funkcyjne wprowadzenie Specyfikacje formalne i programy funkcyjne Programowanie funkcyjne wprowadzenie Specyfikacje formalne i programy funkcyjne dr inż. Marcin Szlenk Politechnika Warszawska Wydział Elektroniki i Technik Informacyjnych m.szlenk@elka.pw.edu.pl Paradygmaty

Bardziej szczegółowo

Wykład IV Algorytmy metody prezentacji i zapisu Rzut oka na język PASCAL

Wykład IV Algorytmy metody prezentacji i zapisu Rzut oka na język PASCAL Studia Podyplomowe INFORMATYKA Podstawy Informatyki Wykład IV Algorytmy metody prezentacji i zapisu Rzut oka na język PASCAL 1 Część 1 Pojęcie algorytmu 2 I. Pojęcie algorytmu Trochę historii Pierwsze

Bardziej szczegółowo

Spis treści JĘZYK C - PRZEKAZYWANIE PARAMETRÓW DO FUNKCJI, REKURENCJA. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu

Spis treści JĘZYK C - PRZEKAZYWANIE PARAMETRÓW DO FUNKCJI, REKURENCJA. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Informatyka 1 Kod przedmiotu: EZ1C200 010 (studia niestacjonarne)

Bardziej szczegółowo

Wykład VII. Programowanie. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2014 Janusz Słupik

Wykład VII. Programowanie. dr inż. Janusz Słupik. Gliwice, 2014. Wydział Matematyki Stosowanej Politechniki Śląskiej. c Copyright 2014 Janusz Słupik Wykład VII Wydział Matematyki Stosowanej Politechniki Śląskiej Gliwice, 2014 c Copyright 2014 Janusz Słupik Kompilacja Kompilator C program do tłumaczenia kodu źródłowego na język maszynowy. Preprocesor

Bardziej szczegółowo

PODSTAWY INFORMATYKI 1 PRACOWNIA NR 6

PODSTAWY INFORMATYKI 1 PRACOWNIA NR 6 PODSTAWY INFORMATYKI 1 PRACOWNIA NR 6 TEMAT: Programowanie w języku C/C++: instrukcje iteracyjne for, while, do while Ogólna postać instrukcji for for (wyr1; wyr2; wyr3) Instrukcja for twory pętlę działającą

Bardziej szczegółowo

Metody numeryczne i statystyka dla in»ynierów

Metody numeryczne i statystyka dla in»ynierów Kierunek: Automatyka i Robotyka, II rok Interpolacja PWSZ Gªogów, 2009 Interpolacja Okre±lenie zale»no±ci pomi dzy interesuj cymi nas wielko±ciami, Umo»liwia uproszczenie skomplikowanych funkcji (np. wykorzystywana

Bardziej szczegółowo

Algorytmy i język C++

Algorytmy i język C++ Wykład 6 Wskaźniki Wskaźnik nie przechowuje wartości zmiennej ale, podobnie jak tablica, wskazuje miejsce w pamięci, w którym znajduje się zmienna danego typu. W poniższym przykładzie symbol * pomiędzy

Bardziej szczegółowo

Funkcja (podprogram) void

Funkcja (podprogram) void Funkcje Co to jest funkcja? Budowa funkcji Deklaracja, definicja i wywołanie funkcji Przykłady funkcji definiowanych przez programistę Przekazywanie argumentów do funkcji Tablica jako argument funkcji

Bardziej szczegółowo

Rekurencja. Przygotowała: Agnieszka Reiter

Rekurencja. Przygotowała: Agnieszka Reiter Rekurencja Przygotowała: Agnieszka Reiter Definicja Charakterystyczną cechą funkcji (procedury) rekurencyjnej jest to, że wywołuje ona samą siebie. Drugą cechą rekursji jest jej dziedzina, którą mogą być

Bardziej szczegółowo

Metody Metody, parametry, zwracanie wartości

Metody Metody, parametry, zwracanie wartości Materiał pomocniczy do kursu Podstawy programowania Autor: Grzegorz Góralski ggoralski.com Metody Metody, parametry, zwracanie wartości Metody - co to jest i po co? Metoda to wydzielona część klasy, mająca

Bardziej szczegółowo

Metody numeryczne I. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61

Metody numeryczne I. Janusz Szwabiński. Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61 Metody numeryczne I Dokładność obliczeń numerycznych. Złożoność obliczeniowa algorytmów Janusz Szwabiński szwabin@ift.uni.wroc.pl Metody numeryczne I (C) 2004 Janusz Szwabiński p.1/61 ... the purpose of

Bardziej szczegółowo

Język ludzki kod maszynowy

Język ludzki kod maszynowy Język ludzki kod maszynowy poziom wysoki Język ludzki (mowa) Język programowania wysokiego poziomu Jeśli liczba punktów jest większa niż 50, test zostaje zaliczony; w przeciwnym razie testu nie zalicza

Bardziej szczegółowo

wykład II uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C - funkcje, tablice i wskaźniki wykład II dr Jarosław Mederski Spis

wykład II uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C - funkcje, tablice i wskaźniki wykład II dr Jarosław Mederski Spis i cz. 2 Programowanie uzupełnienie notatek: dr Jerzy Białkowski 1 i cz. 2 2 i cz. 2 3 Funkcje i cz. 2 typ nazwa ( lista-parametrów ) { deklaracje instrukcje } i cz. 2 typ nazwa ( lista-parametrów ) { deklaracje

Bardziej szczegółowo

Wykład 15. Literatura. Kompilatory. Elementarne różnice. Preprocesor. Słowa kluczowe

Wykład 15. Literatura. Kompilatory. Elementarne różnice. Preprocesor. Słowa kluczowe Wykład 15 Wprowadzenie do języka na bazie a Literatura Podobieństwa i różnice Literatura B.W.Kernighan, D.M.Ritchie Język ANSI Kompilatory Elementarne różnice Turbo Delphi FP Kylix GNU (gcc) GNU ++ (g++)

Bardziej szczegółowo

Programowanie strukturalne i obiektowe. Funkcje

Programowanie strukturalne i obiektowe. Funkcje Funkcje Często w programach spotykamy się z sytuacją, kiedy chcemy wykonać określoną czynność kilka razy np. dodać dwie liczby w trzech miejscach w programie. Oczywiście moglibyśmy to zrobić pisząc trzy

Bardziej szczegółowo

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej.

Wydział Elektryczny. Katedra Telekomunikacji i Aparatury Elektronicznej. Konstrukcje i Technologie w Aparaturze Elektronicznej. Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Konstrukcje i Technologie w Aparaturze Elektronicznej Ćwiczenie nr 5 Temat: Przetwarzanie A/C. Implementacja

Bardziej szczegółowo

Ilość cyfr liczby naturalnej

Ilość cyfr liczby naturalnej Ilość cyfr liczby naturalnej Użytkownik wprowadza liczbę naturalną n. Podaj algorytm znajdowania ilości cyfr liczby n. (Np.: po wprowadzeniu liczby 2453, jako wynik powinna zostać podana liczba 4). Specyfikacja

Bardziej szczegółowo

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02

METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE. Wykład 02 METODY I JĘZYKI PROGRAMOWANIA PROGRAMOWANIE STRUKTURALNE Wykład 02 NAJPROSTSZY PROGRAM /* (Prawie) najprostszy przykład programu w C */ /*==================*/ /* Między tymi znaczkami można pisać, co się

Bardziej szczegółowo

2.3. Wyznaczanie wartości wielomianu, pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze

2.3. Wyznaczanie wartości wielomianu, pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze 23 Wyznaczanie wartości wielomianu pozycyjne systemy liczbowe i reprezentacja danych liczbowych w komputerze 231 Systemy liczbowe Definicja Systemem liczbowym nazywamy zbiór zasad określających sposób

Bardziej szczegółowo

Język ANSI C tablice wielowymiarowe

Język ANSI C tablice wielowymiarowe Język ANSI C tablice wielowymiarowe Gdy tablica wielowymiarowa jest parametrem funkcji, to w standardzie ANSI C konieczne jest podanie wszystkich wymiarów poza pierwszym. Przykład. Napisać program wczytujący

Bardziej szczegółowo

EGZAMIN MATURALNY OD ROKU SZKOLNEGO

EGZAMIN MATURALNY OD ROKU SZKOLNEGO EGZAMIN MATURALNY OD ROKU SZKOLNEGO 2014/2015 INFORMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃŃ I SCHEMATY PUNKTOWANIA (A1, A2, A3, A4, A6, A7) GRUDZIEŃ 2013 Zadanie 1. Test (0 5) Wymagania ogólne I. [

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Ćwiczenie nr 3. Temat: Definicje i wykorzystanie funkcji, parametry funkcji

Ćwiczenie nr 3. Temat: Definicje i wykorzystanie funkcji, parametry funkcji Ćwiczenie nr 3 Temat: Definicje i wykorzystanie funkcji, parametry funkcji Zagadnienia: Definicja funkcji składnia podstawowa. Sposoby przekazania parametrów (argumentów) funkcji: przez wartość, przez

Bardziej szczegółowo

INFORMATYKA POZIOM ROZSZERZONY

INFORMATYKA POZIOM ROZSZERZONY EGZAMIN MATURALNY W ROKU SZKOLNYM 2013/2014 INFORMATYKA POZIOM ROZSZERZONY ROZWIĄZANIA ZADAŃ I SCHEMAT PUNKTOWANIA MAJ 2014 2 Egzamin maturalny z informatyki Część I Zadanie 1. a) (0-2) 2 p. za podanie

Bardziej szczegółowo

Programowanie Równoległe i Rozproszone. Algorytm Kung a. Algorytm Kung a. Programowanie Równoległe i Rozproszone Wykład 8. Przygotował: Lucjan Stapp

Programowanie Równoległe i Rozproszone. Algorytm Kung a. Algorytm Kung a. Programowanie Równoległe i Rozproszone Wykład 8. Przygotował: Lucjan Stapp Programowanie Równoległe i Rozproszone Lucjan Stapp Wydział Matematyki i Nauk Informacyjnych Politechnika Warszawska (l.stapp@mini.pw.edu.pl) 1/34 PRiR Algorytm Kunga Dany jest odcinek [a,b] i ciągła funkcja

Bardziej szczegółowo

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH

ROZWIĄZYWANIE RÓWNAŃ NIELINIOWYCH Transport, studia I stopnia Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Ewa Pabisek Adam Wosatko Postać ogólna równania nieliniowego Często występującym, ważnym problemem obliczeniowym

Bardziej szczegółowo

Projektowanie algorytmów rekurencyjnych

Projektowanie algorytmów rekurencyjnych C9 Projektowanie algorytmów rekurencyjnych wiczenie 1. Przeanalizowa działanie poniszego algorytmu dla parametru wejciowego n = 4 (rysunek 9.1): n i i

Bardziej szczegółowo

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Elektrotechnika stacjonarne-dzienne pierwszego stopnia

Bardziej szczegółowo

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009.

1 Szeregi potęgowe. 1.1 Promień zbieżności szeregu potęgowego. Wydział Informatyki, KONWERSATORIUM Z MATEMATYKI, 2008/2009. Szeregi potęgowe Definicja.. Szeregiem potęgowym o środku w punkcie R nazywamy szereg postaci: gdzie x R oraz c n R dla n = 0,, 2,... c n (x ) n, Przyjmujemy, że 0 0 def =. Liczby c n nazywamy współczynnikami

Bardziej szczegółowo

Wstęp do programowania

Wstęp do programowania Wstęp do programowania wykład 2 Piotr Cybula Wydział Matematyki i Informatyki UŁ 2012/2013 http://www.math.uni.lodz.pl/~cybula Język programowania Każdy język ma swoją składnię: słowa kluczowe instrukcje

Bardziej szczegółowo

Matematyczne Podstawy Informatyki

Matematyczne Podstawy Informatyki Matematyczne Podstawy Informatyki dr inż. Andrzej Grosser Instytut Informatyki Teoretycznej i Stosowanej Politechnika Częstochowska Rok akademicki 2013/2014 Algorytm 1. Termin algorytm jest używany w informatyce

Bardziej szczegółowo

Podstawy programowania w Pythonie

Podstawy programowania w Pythonie Podstawy programowania w Pythonie Wykład 5 dr Andrzej Zbrzezny Instytut Matematyki i Informatyki Akademia Jana Długosza w Częstochowie 7 listopada 2012 dr Andrzej Zbrzezny (IMI AJD) Podstawy programowania

Bardziej szczegółowo

Elementy języka C. ACprogramislikeafastdanceonanewlywaxeddancefloorbypeople carrying razors.

Elementy języka C. ACprogramislikeafastdanceonanewlywaxeddancefloorbypeople carrying razors. Wykład 3 ACprogramislikeafastdanceonanewlywaxeddancefloorbypeople carrying razors. Waldi Ravens J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 75 / 146 deklaracje zmiennych instrukcja podstawienia

Bardziej szczegółowo

Część 4 życie programu

Część 4 życie programu 1. Struktura programu c++ Ogólna struktura programu w C++ składa się z kilku części: część 1 część 2 część 3 część 4 #include int main(int argc, char *argv[]) /* instrukcje funkcji main */ Część

Bardziej szczegółowo

Szablony funkcji i szablony klas

Szablony funkcji i szablony klas Bogdan Kreczmer bogdan.kreczmer@pwr.wroc.pl Zakład Podstaw Cybernetyki i Robotyki Instytut Informatyki, Automatyki i Robotyki Politechnika Wrocławska Kurs: Copyright c 2011 Bogdan Kreczmer Niniejszy dokument

Bardziej szczegółowo

wykład III uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C - zarządzanie pamięcią, struktury,

wykład III uzupełnienie notatek: dr Jerzy Białkowski Programowanie C/C++ Język C - zarządzanie pamięcią, struktury, , Programowanie, uzupełnienie notatek: dr Jerzy Białkowski , 1 2 3 4 , Wczytywanie liczb , Wczytywanie liczb 1 #include 2 #include < s t d l i b. h> 3 4 int main ( ) { 5 int rozmiar, numer

Bardziej szczegółowo

Programowanie. programowania. Klasa 3 Lekcja 9 PASCAL & C++

Programowanie. programowania. Klasa 3 Lekcja 9 PASCAL & C++ Programowanie Wstęp p do programowania Klasa 3 Lekcja 9 PASCAL & C++ Język programowania Do przedstawiania algorytmów w postaci programów służą języki programowania. Tylko algorytm zapisany w postaci programu

Bardziej szczegółowo

Wstęp do Programowania, laboratorium 02

Wstęp do Programowania, laboratorium 02 Wstęp do Programowania, laboratorium 02 Zadanie 1. Napisać program pobierający dwie liczby całkowite i wypisujący na ekran największą z nich. Zadanie 2. Napisać program pobierający trzy liczby całkowite

Bardziej szczegółowo

Reprezentacja symboli w komputerze. Liczby całkowite i zmiennoprzecinkowe. Programowanie Proceduralne 1

Reprezentacja symboli w komputerze. Liczby całkowite i zmiennoprzecinkowe. Programowanie Proceduralne 1 Reprezentacja symboli w komputerze. Liczby całkowite i zmiennoprzecinkowe. Programowanie Proceduralne 1 Bity i kody binarne Bit (binary digit) najmniejsza ilość informacji {0, 1}, wysokie/niskie napięcie

Bardziej szczegółowo

Newton vs. Lagrange - kto lepszy?

Newton vs. Lagrange - kto lepszy? Uniwersytet Mikołaja Kopernika Wydział Matematyki i Informatyki Katedra Analizy Matematycznej Agnieszka Rydzyńska nr albumu: 254231 Praca Zaliczeniowa z Seminarium Newton vs. Lagrange - kto lepszy? Opiekun

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer. METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne

Bardziej szczegółowo

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie.

Zadanie 1 Przygotuj algorytm programu - sortowanie przez wstawianie. Sortowanie Dane wejściowe: ciąg n-liczb (kluczy) (a 1, a 2, a 3,..., a n 1, a n ) Dane wyjściowe: permutacja ciągu wejściowego (a 1, a 2, a 3,..., a n 1, a n) taka, że a 1 a 2 a 3... a n 1 a n. Będziemy

Bardziej szczegółowo

Funkcje. czyli jak programować proceduralne. Programowanie Proceduralne 1

Funkcje. czyli jak programować proceduralne. Programowanie Proceduralne 1 Funkcje czyli jak programować proceduralne. Programowanie Proceduralne 1 Struktura programu w C # include / Dyrektywy p r e p r o c e s o r a / #define PI 3.1415 float g =. 5 ; / Zmienne

Bardziej szczegółowo

Pole trójkąta ze współrzędnych punktów : P1(x1,y1), P2(x2,y2), P3(x3,y3)

Pole trójkąta ze współrzędnych punktów : P1(x1,y1), P2(x2,y2), P3(x3,y3) Pole trójkąta ze współrzędnych punktów : P1(x1,y1), P2(x2,y2), P3(x3,y3) Dane są współrzędne wierzchołków trójkąta. Obliczyd pole tego trójkąta. Algorytm Wzór rozwiązujący: 2P = Dx 1,2 Dy 1,2 Dx 1,3 Dy

Bardziej szczegółowo

Podstawy Informatyki sem. I 2014/2015 studia zaoczne Elektronika i Telekomunikacja!

Podstawy Informatyki sem. I 2014/2015 studia zaoczne Elektronika i Telekomunikacja! Podstawy Informatyki sem. I 2014/2015 studia zaoczne Elektronika i Telekomunikacja! Krzysztof Grudzień kgrudzi@kis.p.lodz.pl! Zbigniew Chaniecki zch@kis.p.lodz.pl 1 program zajęć - wykład Podstawowe pojęcia

Bardziej szczegółowo

Języki i techniki programowania Ćwiczenia 2

Języki i techniki programowania Ćwiczenia 2 Języki i techniki programowania Ćwiczenia 2 Autor: Marcin Orchel Spis treści: Język C++... 5 Przekazywanie parametrów do funkcji... 5 Przekazywanie parametrów w Javie.... 5 Przekazywanie parametrów w c++...

Bardziej szczegółowo

Modelowanie komputerowe

Modelowanie komputerowe Modelowanie komputerowe wykład 1- Generatory liczb losowych i ich wykorzystanie dr Marcin Ziółkowski Instytut Matematyki i Informatyki Akademia im. Jana Długosza w Częstochowie 5,12 października 2016 r.

Bardziej szczegółowo

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji.

VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. VIII. Zastosowanie rachunku różniczkowego do badania funkcji. 1. Twierdzenia o wartości średniej. Monotoniczność funkcji. Twierdzenie 1.1. (Rolle a) Jeżeli funkcja f jest ciągła w przedziale domkniętym

Bardziej szczegółowo

SCENARIUSZ TEMATYCZNY

SCENARIUSZ TEMATYCZNY Autorzy scenariusza: SCENARIUSZ TEMATYCZNY OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

Bardziej szczegółowo

Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu

Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu Rzut oka na współczesną matematykę spotkanie 3: jak liczy kalkulator i o źródłach chaosu P. Strzelecki pawelst@mimuw.edu.pl Instytut Matematyki, Uniwersytet Warszawski MISH UW, semestr zimowy 2011-12 P.

Bardziej szczegółowo

Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych

Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Sieci Mobilne i Bezprzewodowe laboratorium 2 Modelowanie zdarzeń dyskretnych Plan laboratorium Generatory liczb pseudolosowych dla rozkładów dyskretnych: Generator liczb o rozkładzie równomiernym Generator

Bardziej szczegółowo

Język C, tablice i funkcje (laboratorium)

Język C, tablice i funkcje (laboratorium) Język C, tablice i funkcje (laboratorium) Opracował: Tomasz Mączka (tmaczka@kia.prz.edu.pl) Wstęp (tablice) Tablica to uporządkowany ciąg elementów tego samego typu, zajmujących ciągły obszar pamięci.

Bardziej szczegółowo

Podstawy programowania C. dr. Krystyna Łapin http://www.mif.vu.lt/~moroz/c/

Podstawy programowania C. dr. Krystyna Łapin http://www.mif.vu.lt/~moroz/c/ Podstawy programowania C dr. Krystyna Łapin http://www.mif.vu.lt/~moroz/c/ Tematy Struktura programu w C Typy danych Operacje Instrukcja grupująca Instrukcja przypisania Instrukcja warunkowa Struktura

Bardziej szczegółowo

Język JAVA podstawy. Wykład 3, część 3. Jacek Rumiński. Politechnika Gdańska, Inżynieria Biomedyczna

Język JAVA podstawy. Wykład 3, część 3. Jacek Rumiński. Politechnika Gdańska, Inżynieria Biomedyczna Język JAVA podstawy Wykład 3, część 3 1 Język JAVA podstawy Plan wykładu: 1. Konstrukcja kodu programów w Javie 2. Identyfikatory, zmienne 3. Typy danych 4. Operatory, instrukcje sterujące instrukcja warunkowe,

Bardziej szczegółowo

Algorytm. a programowanie -

Algorytm. a programowanie - Algorytm a programowanie - Program komputerowy: Program komputerowy można rozumieć jako: kod źródłowy - program komputerowy zapisany w pewnym języku programowania, zestaw poszczególnych instrukcji, plik

Bardziej szczegółowo

Część XVII C++ Funkcje. Funkcja bezargumentowa Najprostszym przypadkiem funkcji jest jej wersja bezargumentowa. Spójrzmy na przykład.

Część XVII C++ Funkcje. Funkcja bezargumentowa Najprostszym przypadkiem funkcji jest jej wersja bezargumentowa. Spójrzmy na przykład. Część XVII C++ Funkcje Funkcja bezargumentowa Najprostszym przypadkiem funkcji jest jej wersja bezargumentowa. Spójrzmy na przykład. 2 3 Tworzymy deklarację i definicję funkcji o nazwie pobierzln() Funkcja

Bardziej szczegółowo

Rekurencja. Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów.

Rekurencja. Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów. Rekurencja Rekurencja zwana także rekursją jest jedną z najważniejszych metod konstruowania rozwiązań i algorytmów. Zgodnie ze znaczeniem informatycznym algorytm rekurencyjny to taki który korzysta z samego

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

// Funkcja glowna int main() { // zmienne int kont='t'; double x1, y1, x2, y2, x3, y3, a, b, c, p1, p2, p3, pole, ha, hb, hc;

// Funkcja glowna int main() { // zmienne int kont='t'; double x1, y1, x2, y2, x3, y3, a, b, c, p1, p2, p3, pole, ha, hb, hc; // PTxy1.cpp // Obliczenie pola trojkąta ze wspolrzednych punktow // Dolaczenie bibliotek jezyka C #include #include #include #include #include #define clrscr()

Bardziej szczegółowo

Rachunek Prawdopodobieństwa i Statystyka

Rachunek Prawdopodobieństwa i Statystyka Rachunek Prawdopodobieństwa i Statystyka W 2. Probabilistyczne modele danych Zmienne losowe. Rozkład prawdopodobieństwa i dystrybuanta. Wartość oczekiwana i wariancja zmiennej losowej Dr Anna ADRIAN Zmienne

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 11 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 11 1 / 52 Pętla for # i n c l u d e

Bardziej szczegółowo

Wartości domyślne, przeciażenia funkcji

Wartości domyślne, przeciażenia funkcji Wartości domyślne, przeciażenia funkcji Bogdan Kreczmer ZPCiR IIAiR PWr pokój 307 budynek C3 bogdan.kreczmer@pwr.wroc.pl Niniejszy dokument zawiera materiały do wykładu na temat programowania obiektowego.

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki. sem. II - wykład 6. Dr hab. inż. M. Czyżak

Katedra Elektrotechniki Teoretycznej i Informatyki. sem. II - wykład 6. Dr hab. inż. M. Czyżak Katedra Elektrotechniki Teoretycznej i Informatyki sem. II - wykład 6 Dr hab. inż. M. Czyżak Ogólna budowa programu w języku C W języku C program składa się z jednego lub większej liczby segmentów kodu

Bardziej szczegółowo

Języki programowania zasady ich tworzenia

Języki programowania zasady ich tworzenia Strona 1 z 18 Języki programowania zasady ich tworzenia Definicja 5 Językami formalnymi nazywamy każdy system, w którym stosując dobrze określone reguły należące do ustalonego zbioru, możemy uzyskać wszystkie

Bardziej szczegółowo

Algorytm 2.1. Rys. 2.1.1. Czy zupa jest słona? Przygotuj. Gotowe danie START. Przepis... STOP NIE TAK

Algorytm 2.1. Rys. 2.1.1. Czy zupa jest słona? Przygotuj. Gotowe danie START. Przepis... STOP NIE TAK 2 Algorytmy decyzyjne Algorytmy decyzyjne charakteryzują się tym, że w pewnym momencie w sytuacji problemowej następuje ich zatrzymanie i wybór właściwej drogi. Algorytmy rozgałęziające się dają ogromne

Bardziej szczegółowo

Jerzy Nawrocki, Wprowadzenie do informatyki

Jerzy Nawrocki, Wprowadzenie do informatyki Jerzy Nawrocki, Jerzy Nawrocki Wydział Informatyki Politechnika Poznańska jerzy.nawrocki@put.poznan.pl Przetwarzanie tekstów i AWK Problem konwersji plików FName:Jurek SName:Busz Salary 585 FName:Alek

Bardziej szczegółowo

WYKŁAD 1 - KONSPEKT. Program wykładu:

WYKŁAD 1 - KONSPEKT. Program wykładu: mgr inż. Jarosław Forenc e-mail: jarekf@pb.bialystok.pl tel. (0-85) 746-93-97 WWW: http://we.pb.bialystok.pl/~jforenc konsultacje: zaliczenie: Program wykładu: WYKŁAD 1 - KONSPEKT 1. Ogólna struktura programu

Bardziej szczegółowo

Zaawansowane programowanie w języku C++ Funkcje uogólnione - wzorce

Zaawansowane programowanie w języku C++ Funkcje uogólnione - wzorce Zaawansowane programowanie w języku C++ Funkcje uogólnione - wzorce Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne

Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne Ćwiczenie 4. Matlab - funkcje, wielomiany, obliczenia symboliczne Obliczenia z wykorzystaniem tzw. funkcji anonimowej Składnia funkcji anonimowej: nazwa_funkcji=@(lista_argumentów)(wyrażenie) gdzie: -

Bardziej szczegółowo

Pochodne wyższych rzędów. Wzór Taylora

Pochodne wyższych rzędów. Wzór Taylora Analiza Matematyczna Pochodne wyższych rzędów. Wzór Taylora Aleksander Denisiuk denisjuk@pjwstk.edu.pl Polsko-Japońska Wyższa Szkoła Technik Komputerowych Wydział Informatyki w Gdańsku ul. Brzegi 55 80-045

Bardziej szczegółowo

Spis treści JĘZYK C - PRZEKAZYWANIE PARAMETRÓW DO FUNKCJI, REKURENCJA. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu

Spis treści JĘZYK C - PRZEKAZYWANIE PARAMETRÓW DO FUNKCJI, REKURENCJA. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Informatyka 1 Kod przedmiotu: EZ1C200 010 (studia niestacjonarne)

Bardziej szczegółowo

TABLICE W JĘZYKU C/C++ typ_elementu nazwa_tablicy [wymiar_1][wymiar_2]... [wymiar_n] ;

TABLICE W JĘZYKU C/C++ typ_elementu nazwa_tablicy [wymiar_1][wymiar_2]... [wymiar_n] ; Ogólna postać definicji tablicy: TABLICE W JĘZYKU C/C++ typ_elementu nazwa_tablicy [wymiar_1][wymiar_2]... [wymiar_n] ; np. int tablica [ 10 ]; // 10-cio elementowa tablica liczb całkowitych char tekst

Bardziej szczegółowo

1 abbbaabaaabaa -wzorzec: aaba

1 abbbaabaaabaa -wzorzec: aaba Algorytmy i złożoność obliczeniowa Laboratorium 14. Algorytmy tekstowe. 1. Algorytmy tekstowe Algorytmy tekstowe mają decydujące znaczenie przy wyszukiwaniu informacji typu tekstowego, ten typ informacji

Bardziej szczegółowo

Programowanie, algorytmy i struktury danych

Programowanie, algorytmy i struktury danych 1/44 Programowanie, algorytmy i struktury danych materiały do wykładu: http://cez.wipb.pl/moodle/ email: m.tabedzki@pb.edu.pl strona: http://aragorn.pb.bialystok.pl/~tabedzki/ Marek Tabędzki Wymagania

Bardziej szczegółowo

I - Microsoft Visual Studio C++

I - Microsoft Visual Studio C++ I - Microsoft Visual Studio C++ 1. Nowy projekt z Menu wybieramy File -> New -> Projekt -> Win32 Console Application w okienku Name: podajemy nazwę projektu w polu Location: wybieramy miejsce zapisu i

Bardziej szczegółowo

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303

Obliczenia na stosie. Wykład 9. Obliczenia na stosie. J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 Wykład 9 J. Cichoń, P. Kobylański Wstęp do Informatyki i Programowania 266 / 303 stos i operacje na stosie odwrotna notacja polska języki oparte na ONP przykłady programów J. Cichoń, P. Kobylański Wstęp

Bardziej szczegółowo

Podstawy Programowania Algorytmy i programowanie

Podstawy Programowania Algorytmy i programowanie Podstawy Programowania Algorytmy i programowanie Katedra Analizy Nieliniowej, WMiI UŁ Łódź, 3 października 2013 r. Algorytm Algorytm w matematyce, informatyce, fizyce, itp. lub innej dziedzinie życia,

Bardziej szczegółowo