Badania powierzchni kryształów i struktur epitaksjalnych. Bogdan J. Kowalski IF PAN

Wielkość: px
Rozpocząć pokaz od strony:

Download "Badania powierzchni kryształów i struktur epitaksjalnych. Bogdan J. Kowalski IF PAN"

Transkrypt

1 Badania powierzchni kryształów i struktur epitaksjalnych Bogdan J. Kowalski IF PAN

2 Co to jest powierzchnia?

3 God made solids, but surfaces were the work of thedevil Wolfgang Pauli

4 A o Co to jest powierzchnia? GaN(0001) mm GaAs (110)

5 Przykład 1: powierzchnia Si (111) K.Oura et al. Surface Science. An Introduction dangling bonds Si(111)- (1x1) idealne przecięcie sieci Si(111)- (2x1) kryształ przełupany wzdłuż płaszczyzny (111) Si(111)- (7x7) powstaje z 2x1 po wygrzaniu do C dimer-adaton-stackingfault (DAS) model

6 Przykład 2: powierzchnia GaAs (110) idealna zrekonstruowana

7 Niezrelaksowany GaAs(110) Struktura elektronowa powierzchni POWIERZCHNIA NIEZRELAKSOWANE OBJĘTOŚĆ ZRELAKSOWANE E.J. Mele, Phys. Rev. B. 17, 1816 (1978)

8 Struktura elektronowa powierzchni (cd) Strefy Brillouna Przestrzeń rzeczywista Przestrzeń odwrotna (wektora k) - X - Γ (100) - M Powierzchniowa strefa Brillouina Objętościowa strefa Brillouina

9 Struktura elektronowa powierzchni (cd) RelaxedGaAs(110) Theory GaAs(110) Experiment A. Zunger, Phys. Rev. B 22, 959 (1980)

10 Co chcemy wiedzieć o powierzchni? Morfologię Skład chemiczny (czystość, obecność domieszek, rozkład powierzchniowy i głębokościowy ) Strukturę atomową Strukturę elektronową Własności elektryczne Własności optyczne

11 Uwaga! Powierzchnia łatwo się zmienia! Ciśnienie (hpa) Średnia droga swobodna Szybkość osiadania (cm -2 s -1 ) Czas powstania 1 ML Ǻ 3x ns cm 4x ms km 4x hour K.Oura et al. Surface Science. An Introduction 1 ML cm -2, współczynnik przylegania = 1 Próżnia rzędu hpa jest niezbędna przy badaniach właściwości czystej powierzchni!

12 Jak wyseparować sygnał pochodzący z powierzchni? Dobrać odpowiednią sondę nm fotony elektrony nm lub Znaleźć charakterystyczną własność powierzchni nm fotony fotony nm

13 Elektrony Co może służyć jako sonda w Mała głębokość penetracji/ucieczki Dostępne techniki: badaniach powierzchni? Mikroskopia Dyfrakcja (LEED, RHEED) W. Mönch Semiconductorsurfaces and interfaces 1993 Spektroskopia (fotoemisja, spektroskopia elektronów Auger a)

14 Co może służyć jako sonda w badaniach powierzchni (cd)? Jony Rozpraszanie (n.p. RBS) Wzmocniona czułość powierzchniowa przy dobranych kierunkach krystalograficznych (kanałowanie) Rozpylanie powierzchni (SIMS) Fotony Różnicowa spektroskopia powierzchniowa Dyfrakcja promieniowania X Wzmocniona czułość powierzchniowa przy ostrych kątach padania

15 Mikroskopie

16 Skaningowa mikroskopia elektronowa (SEM) Próbki nieprzezroczyste R 1 nm U acc 30 kv

17 CL P. przewodnictwa P. walencyjne Promieniowanie rtg Elektrony augerowskie RTG Elektrony pierwotne Katodoluminescencja (CL) Elektrony wstecznie rozproszone (BSE) BSE Elektrony wtórne (SE) SE

18 Detekcja elektronów w SEM SE (U) + BSE Obiektyw BSE SE (L) 50 ev SE Energia BSE Próbka STEM BF STEM DF

19 Wyspy Au na C ZnO Druty ZnTe

20 Skaningowa mikroskopia tunelowa (STM) Ostrze 90% prądu Próbka K.Oura et al. Surface Science. An Introduction

21 Skaningowa mikroskopia tunelowa (STM) (cd) A o GaN(0001) 8 4 Si(111)- (7x7) mm GaN(0001)- (1x1)

22 Mikroskopia sił atomowych (AFM) Kropki MnAsna GaN(0001) K.Oura et al. Surface Science. An Introduction

23 Spektroskopie

24 Spektroskopia elektronów Auger a (spektroskopia augerowska) Elektron pierwotny E 0 Energia elektronu augerowskiego: E A =(E K -E L1 )-E L2,3 e - Analizator energii V.L. E F V M hn e - Detektor elektronów L 2,3 L 1 Próbka K fluorescencja rentgenowska

25 elektroda zewnętrzna powielacz elektronowy U ω U ref woltomierz fazoczuły próbka U z +U 0 sin(ωt) kolektor elektronów U z komputer elektroda wewnętrzna źródło elektronów U pow Spektrometr augerowski z cylindrycznym analizatorem zwierciadlanym Energia elektronów pierwotnych: do 3kV Rozdzielczość: ΔE/E < 0.7%

26 Dwa mody rejestracji widm augerowskich całkowy różniczkowy

27 0.002 Widmo augerowskiewarstwy ZnO wyhodowanej metodą ALE dn(e)/de (arb.u.) LMM Zn MNN S Cl LMM { O KLL { Zn LMM C KLL Kinetic Energy (ev)

28 Spektroskopia augerowska: 1. Analiza składu powierzchni próbki -detekcja wszystkich pierwiastków z wyjątkiem wodoru i helu 2. Prosta interpretacja widm duża baza widm wzorcowych 3. Możliwa analiza ilościowa szczególnie przez porównanie z wzorcami 4. Możliwość analizy rozkładu w dwóch lub trzech wymiarach 5. Zależność widm od wiązań chemicznych (w szczególnych przypadkach)

29 Spektroskopia fotoemisyjna Detektor elektronów Próbka Analizator energii N vs Energia, kąt...

30 Spektroskopia fotoemisyjna DOS Poziom rdzeniowy Pasmo walencyjne hn Poziom próżni Energia hn e - Analizator energii Detektor elektronów Natężenie El. wtórne En. kinetyczna E F Próbka En. wiązania

31 Fotoemisja wymaga ultra wysokiej próżni! atom.ik-pan.krakow.pl

32 Przygotowanie powierzchni q Łupanie q Epitaksja insitu q Czyszczenie insitu: -trawienie jonowe -wygrzewanie

33 Rentgenowska spektroskopia fotoemisyjna (XPS) lub Spektroskopia elektronowa do analizy chemicznej (ESCA) XPS: hν>1000 ev; hν= 1000 ev k = Å -1 Źródło laboratoryjne: Al K a1, ev 3x10 4 CdTe (110) hν= ev Intensity (Counts) 2x10 4 1x Cd MNN clean Te MNN Te 3p Cd 3p oxidized in air x2 Te 3d O 1s Cd 3d Binding Energy (ev) C 1s Te 4d Cd 4d B.J. Kowalski, B.A. Orlowski, J. Ghijsen, Appl. Surf. Sci. 166, 237 (2000)

34 CdTe(111)A -utlenianie [111] 12 CdTe(111)A; Θ=0 o Te 3d 1.2x10 5 CdTe(111)A; Θ=0 o Cd 3d Intensity (arb. units) x10 5 LO * B. E. (ev) B. E. (ev) Intensity (counts) 0.46 clean Binding Energy (ev) 8.0x x 10 5 * L O x 10 5 * L O 2 4.0x x 10 4 * L O 2 clean Binding Energy (ev) B.J. Kowalski, B.A. Orlowski, J. Ghijsen, Appl. Surf. Sci. 166, 237 (2000)

35 Emisja pod kątem -wzmocniona czułość powierzchniowa CdTe(111)A Emisja normalna Intensity (arb. units) Θ=0 o Te 3d Cd 3d Emisja normalna Emisja kątowa Binding Energy (ev) 8.0 Θ=45 o Te 3d Emisja kątowa Intensity (arb. units) 4.0 Cd 3d B.J. Kowalski, B.A. Orlowski, J. Ghijsen, Appl. Surf. Sci. 166, 237 (2000) Binding Energy (ev)

36 Kątoworozdzielczaspektroskopia fotoemisyjna Kryształ Próżnia Przykład: emisja normalna emisja kątowa Str. wurcytu Strefa Brillouina

37 Fotoemisja ze stanów powierzchniowych i objętościowych Analizator energii e - hn θ Detektor elektronów 2 a Próbka Energy (ev) G 1,6 G A H g A 5,6 A 1,3 10 B d E G Γ A k (A -1 )

38 GaN(0001)-(1x1) G-A 2 a Energy (ev) G 1,6 G A H g A 5,6 A 1,3 10 B d E G Γ A k (A -1 ) Eksp.: B.J. Kowalski et al. Surf. Sci. 548 (2004) Teoria: T. Strasser et al. PRB 60 (1999)

39 GaN(0001)-(1x1) G-K-MGaN(0001):Ga b c g H GaN(0001) d m Exp: B.J. Kowalski et al. Surf. Sci. 548, 220 (2004) Theory: T. Strasser et al. Phys. Rev. B (1999) F.H.Wang et al.phys. Rev. B 64, (2001)

40 Metody dyfrakcyjne

41 Dyfrakcja niskoenergetycznych elektronów (LEED) K.Oura et al. Surface Science. An Introduction

42 Dyfrakcja niskoenergetycznych elektronów (LEED) (cd) GaN(0001) (1x1)

43 Dyfrakcja odbiciowa wysokoenergetycznych elektronów (RHEED) Struktura 2D prążki w obrazie Struktura 3D punkty w obrazie K.Oura et al. Surface Science. An Introduction

44 Metody z wykorzystaniem jonów

45 Rutherfordowskiewsteczne rozpraszanie (RBS) n.p. 4 He 2 MeV detektor K.Oura et al. Surface Science. An Introduction

46 Spektroskopia masowa jonów wtórnych (SIMS) n.p. Cs + lub Ar kev

47 Metody optyczne

48 Różnicowa spektroskopia odbiciowa (SDR) I 0 I 0 R Clean I 0 H 2 O 2 I 0 R OX Stany powierzchniowe Powierzchnia utleniona ΔR/R ΔR/R = (R clean -R ox )/R ox ΔR/R 8πd(ε B -1)ε S/((1-ε B) 2 + (ε B) 2 )

49 UHV próbka SDR układ eksperymentalny kontroler przesłon I n.p. H 2 + przesłona próbka referencyjna I 0 płytka dzieląca soczewka lampa komputer R=I/I 0 Optyczny analizator wielokanałowy

50 CdTe(110) SDR x10 4 L O 2 * 0.01 E max =3.9 ev R/R x10 5 L O 2 * 6x10 5 L O 2 * Peak Area (arb. units) E max =3.5 ev E max =2.8 ev x10 5 L O 2 * E max =2.2 ev Photon Energy (ev) x x x10 5 O 2 Exposure (L) B.J. Kowalski, E. Guziewicz, B.A. Orlowski, A. Cricenti, Appl. Surf. Sci. 142, 33 (1999)

51 Przejścia optyczne pomiędzy stanami powierzchniowymi na CdTe(110) U2 U3 U ev 3.9 ev 2.8 ev Energy (ev) S' S2 S3 S X S4 Γ S5 X' B.J. Kowalski, A. Cricenti, B.A. Orlowski, Surf. Sci. 338, 183 (1995)

52 CdTe(110) SDR ze światłem spolaryzowanym Liniowa odpowiedź optyczna kryształów kubicznych (przy padaniu normalnym) jest izotropowa Anizotropowy sygnał pochodzi z powierzchni [110] [001] 0.04 CdTe (110) E [001] 0.03 E [110] R/R x5 (E [001]-E [110]) Photon Energy (ev) B.J. Kowalski, A. Cricenti, B.A. Orlowski, Surf. Sci. 338, 183 (1995)

53 Spektroskopia anizotropii odbicia (RAS) optyczna sonda epitaksji P. Weightman et al., Rep. Prog. Phys. 68 (2005) Komora MBE z układem RAS Reaktor MOCVD z układem RAS Instituteof Semiconductorand Solid State Physics, University of Linz, Austria

54 Podsumowanie Różne własności powierzchni możemy badać przy pomocy: Mikroskopii elektronowej (SEM) Mikroskopii tunelowej (STM, AFM) Spektroskopii elektronowych (fotoemisyjnej, augerowskiej) Dyfrakcji elektronów (LEED, RHEED) Technik jonowych (RBS, SIMS) Powierzchniowoczułych technik optycznych (SDR, RAS) ale nie wyłącznie

55 Przykładowa literatura: K. Oura, V.G. Lifshits, A.A. Saranin, A.V. Zotov, M. Katayama SurfaceScience. An Introduction Springer 2003 D.P. Woodruff, T.A. Delchar Modern Techniques ofsurfacescience Cambridge University Press H. Luth Surfaces and Interfaces ofsolid Materials Springer 1995 A. Oleś Metody doświadczalne fizyki ciała stałego WN-T 1998

Badania powierzchni kryształów i struktur epitaksjalnych. Bogdan J. Kowalski IF PAN

Badania powierzchni kryształów i struktur epitaksjalnych. Bogdan J. Kowalski IF PAN Badania powierzchni kryształów i struktur epitaksjalnych Bogdan J. Kowalski IF PAN Co to jest powierzchnia? A o Co to jest powierzchnia? GaN(0001) 8 4 0 0 0.4 0.8 mm GaAs (110) Przykład: powierzchnia GaAs

Bardziej szczegółowo

Badania powierzchni kryształów i struktur epitaksjalnych. Bogdan J. Kowalski IF PAN

Badania powierzchni kryształów i struktur epitaksjalnych. Bogdan J. Kowalski IF PAN Badania powierzchni kryształów i struktur epitaksjalnych Bogdan J. Kowalski IF PAN Co to jest powierzchnia? o GaN (0001) A Co to jest powierzchnia? 8 4 0 0 0.4 0.8 mm GaAs (110) Jak opisać powierzchnie:

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 5 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Prezentacja aparatury zakupionej przez IKiFP. Mikroskopy LEEM i PEEM

Prezentacja aparatury zakupionej przez IKiFP. Mikroskopy LEEM i PEEM Prezentacja aparatury zakupionej przez IKiFP Mikroskopy LEEM i PEEM Cechy ogólne mikroskopów do badania powierzchni; czułość Å - nm szeroka gama kontrastów topograficzny strukturalny chemiczny magnetyczny

Bardziej szczegółowo

Spektroskopia elektronów Augera AES

Spektroskopia elektronów Augera AES Spektroskopia elektronów Augera AES (Auger Electron Spectroscopy) Emisja elektronu Augera (Pierre Auger, 1925) elektron Augera E kin E vac 3 poziom Fermiego e C B 2 Φ Α E C E B E A A 1 Energia kinetyczna

Bardziej szczegółowo

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy)

Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Spektroskopia charakterystycznych strat energii elektronów EELS (Electron Energy-Loss Spectroscopy) Oddziaływanie elektronów ze stałą, krystaliczną próbką wstecznie rozproszone elektrony elektrony pierwotne

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Wykład 12 V = 4 km/s E 0 =.08 e V e = = 1 Å

Wykład 12 V = 4 km/s E 0 =.08 e V e  = = 1 Å Wykład 12 Fale materii: elektrony, neutrony, lekkie atomy Neutrony generowane w reaktorze są spowalniane w wyniku zderzeń z moderatorem (grafitem) do V = 4 km/s, co odpowiada energii E=0.08 ev a energia

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 9 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Jak badać strukturę powierzchni?

Jak badać strukturę powierzchni? Jak badać strukturę powierzchni? Wykład - 12 15 Anim - ten kod oznacza, że na stronie znajdują się animacje niewidoczne w pliku pdf. Aby oglądnąć te animacje skopiuj zbiór z pokazem PowerPoint Z. Postawa,

Bardziej szczegółowo

Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane. Piotr Perlin Instytut Wysokich Ciśnień PAN

Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane. Piotr Perlin Instytut Wysokich Ciśnień PAN Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane Piotr Perlin Instytut Wysokich Ciśnień PAN Jak i czym scharakteryzować kryształ półprzewodnika Struktura dyfrakcja rentgenowska

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 1 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Spektroskopia elektronów Augera. AES Auger Electron Spectroscopy

Spektroskopia elektronów Augera. AES Auger Electron Spectroscopy Spektroskopia elektronów Augera AES Auger Electron Spectroscopy Podstawy E k Z E 4 E 3 E 2 E 1 E k =(E 2 -E 3 )-E 4 Proces Auger a Jonizacja głęboko leżącego poziomu elektronowego przez elektrony pierwotne

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach

S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach. Dyfrakcja na kryształach S. Baran - Podstawy fizyki materii skondensowanej Dyfrakcja na kryształach Dyfrakcja na kryształach Warunki dyfrakcji źródło: Ch. Kittel Wstęp do fizyki..., rozdz. 2, rys. 6, str. 49 Konstrukcja Ewalda

Bardziej szczegółowo

Badania wybranych nanostruktur SnO 2 w aspekcie zastosowań sensorowych

Badania wybranych nanostruktur SnO 2 w aspekcie zastosowań sensorowych Badania wybranych nanostruktur SnO 2 w aspekcie zastosowań sensorowych Monika KWOKA, Jacek SZUBER Instytut Elektroniki Politechnika Śląska Gliwice PLAN PREZENTACJI 1. Podsumowanie dotychczasowych prac:

Bardziej szczegółowo

h λ= mv h - stała Plancka (4.14x10-15 ev s)

h λ= mv h - stała Plancka (4.14x10-15 ev s) Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę

Bardziej szczegółowo

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski

półprzewodniki Plan na dzisiaj Optyka nanostruktur Struktura krystaliczna Dygresja Sebastian Maćkowski Plan na dzisiaj Optyka nanostruktur Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 półprzewodniki

Bardziej szczegółowo

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona

I.4 Promieniowanie rentgenowskie. Efekt Comptona. Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona r. akad. 004/005 I.4 Promieniowanie rentgenowskie. Efekt Comptona Otrzymywanie promieniowania X Pochłanianie X przez materię Efekt Comptona Jan Królikowski Fizyka IVBC 1 r. akad. 004/005 0.01 nm=0.1 A

Bardziej szczegółowo

Fizyka powierzchni 6-7/7. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Fizyka powierzchni 6-7/7. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Fizyka powierzchni 6-7/7 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni ciał stałych Termodynamika równowagowa i

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 7 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

Analiza składu chemicznego powierzchni

Analiza składu chemicznego powierzchni Analiza składu chemicznego powierzchni Techniki elektronowe Spektrometria elektronów Auger a (AES) zjawisko Auger a Spektrometria fotoelektronów rentgenowskich (XPS) efekt fotoelektryczny Próbka Soczewka

Bardziej szczegółowo

Spektroskopia fotoelektronów (PES)

Spektroskopia fotoelektronów (PES) Spektroskopia fotoelektronów (PES) Efekt fotoelektryczny hν ( UV lub X) E =hν kin W Proces fotojonizacji w PES: M + hν M + + e E kin (e) = hν E B Φ sp E B energia wiązania elektronu w atomie/cząsteczce

Bardziej szczegółowo

Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści

Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, Spis treści Elektronowa mikroskopia. T. 2, Mikroskopia skaningowa / Wiesław Dziadur, Janusz Mikuła. Kraków, 2016 Spis treści Wykaz ważniejszych skrótów i oznaczeń 11 Przedmowa 17 Wstęp 19 Literatura 26 Rozdział I.

Bardziej szczegółowo

SPEKTROSKOPIA FOTOELEKTRONÓW

SPEKTROSKOPIA FOTOELEKTRONÓW SPEKTROSKOPIA FOTOELEKTRONÓW Zjawisko fotoelektryczne światło elektrony = prąd Hertz (1887 r.) zauważył, że gdy światło padało na płytkę metalową umieszczoną w próżni następowała emisja elektronów a ponadto

Bardziej szczegółowo

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj

Repeta z wykładu nr 3. Detekcja światła. Struktura krystaliczna. Plan na dzisiaj Repeta z wykładu nr 3 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 Konsultacje:

Bardziej szczegółowo

Techniki próżniowe (ex situ)

Techniki próżniowe (ex situ) Techniki próżniowe (ex situ) Oddziaływanie promieniowania X z materią rearrangement X-ray photon X-ray emission b) rearrangement a) photoemission photoelectron Auger electron c) Auger/X-ray emission a)

Bardziej szczegółowo

Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych

Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591197, e-mail: izajen@wp.pl opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Źródło typu Thonnemena dostarcza jony: H, D, He, N, O, Ar, Xe, oraz J i Hg.

Źródło typu Thonnemena dostarcza jony: H, D, He, N, O, Ar, Xe, oraz J i Hg. ZFP dysponuje obecnie unowocześnioną aparaturą, której skompletowanie, uruchomienie i utrzymanie w sprawności wymagało wysiłku zarówno merytorycznego jak i organizacyjnego oraz finansowego. Unowocześnienia

Bardziej szczegółowo

SPEKTROSKOPIA FOTOELEKTRONÓW

SPEKTROSKOPIA FOTOELEKTRONÓW SPEKTROSKOPIA FOTOELEKTRONÓW Jak szybko cząsteczka obraca się? E J=1 (CO) = B 1 (1+1) = 2B = 2 1.9 cm -1 = 3.8 cm -1 = 7.6x10-23 J = ½ I 2 Stąd 1 x 10 12 rad s -1. To daje częstość rotacji ~10-11 s. Ile

Bardziej szczegółowo

Domieszki w półprzewodnikach

Domieszki w półprzewodnikach Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Nie można obecnie wyświetlić tego obrazu. Domieszkowanie m* O Neutralny donor w przybliżeniu masy efektywnej 2 2 0 2 * 2 * 13.6 *

Bardziej szczegółowo

Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk

Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Charakteryzacja właściwości elektronowych i optycznych struktur AlGaN GaN Dagmara Pundyk Promotor: dr hab. inż. Bogusława Adamowicz, prof. Pol. Śl. Zadania pracy Pomiary transmisji i odbicia optycznego

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 8 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni

Bardziej szczegółowo

FIZYKA POWIERZCHNI I NANOSTRUKTURY. Wykład odbędzie się w II semstrze 2005/2006

FIZYKA POWIERZCHNI I NANOSTRUKTURY. Wykład odbędzie się w II semstrze 2005/2006 FIZYKA POWIERZCHNI I NANOSTRUKTURY dr hab. Zbigniew Postawa Zakład Fizyki Doświadczalnej pok. 016 Tel. 5626 e-mail: zp@castor.if.uj.edu.pl H H C H H C H H Wykład odbędzie się w II semstrze 2005/2006 Bez

Bardziej szczegółowo

Powierzchnie cienkie warstwy nanostruktury. Józef Korecki, C1, II p., pok. 207

Powierzchnie cienkie warstwy nanostruktury. Józef Korecki, C1, II p., pok. 207 Powierzchnie cienkie warstwy nanostruktury Józef Korecki, C1, II p., pok. 207 korecki@uci.agh.edu.pl http://korek.uci.agh.edu.pl/priv/jk.htm Obiekty niskowymiarowe Powierzchnia Cienkie warstwy Wielowarstwy

Bardziej szczegółowo

KĄTOWO-ROZDZIELCZA SPEKTROSKOPIA FOTOEMISYJNA, CZYLI STRUKTURA PASMOWA OD A, PRZEZ Γ, DO K

KĄTOWO-ROZDZIELCZA SPEKTROSKOPIA FOTOEMISYJNA, CZYLI STRUKTURA PASMOWA OD A, PRZEZ Γ, DO K KĄTOWO-ROZDZIELCZA SPEKTROSKOPIA FOTOEMISYJNA, CZYLI STRUKTURA PASMOWA OD A, PRZEZ Γ, DO K Bogdan J. Kowalski Instytut Fizyki Polskiej Akademii Nauk, Aleja Lotników 32/46, PL-02 668 Warszawa Streszczenie:

Bardziej szczegółowo

Rozpraszanie nieelastyczne

Rozpraszanie nieelastyczne Rozpraszanie nieelastyczne Przekazywanie energii elektronów wiązki prowadzi do emisji szeregu sygnałów wykorzystywanych w mikroskopii elektronowej i mikroanalizie rentgenowskiej: 1. Niskoenergetyczne elektrony

Bardziej szczegółowo

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej

dr inż. Beata Brożek-Pluska SERS La boratorium La serowej dr inż. Beata Brożek-Pluska La boratorium La serowej Spektroskopii Molekularnej PŁ Powierzchniowo wzmocniona sp ektroskopia Ramana (Surface Enhanced Raman Spectroscopy) Cząsteczki zaadsorbowane na chropowatych

Bardziej szczegółowo

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force

SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force SPM Scanning Probe Microscopy Mikroskopia skanującej sondy STM Scanning Tunneling Microscopy Skaningowa mikroskopia tunelowa AFM Atomic Force Microscopy Mikroskopia siły atomowej MFM Magnetic Force Microscopy

Bardziej szczegółowo

Współczesne metody badań instrumentalnych

Współczesne metody badań instrumentalnych Współczesne metody badań instrumentalnych Wykład IX Mikroskopia optyczna i elektronowa Mikroskopia w konserwacji identyfikacja pigmentów, identyfikacja spoiw, badanie składu warstw malarskich, badanie

Bardziej szczegółowo

Aparatura do osadzania warstw metodami:

Aparatura do osadzania warstw metodami: Aparatura do osadzania warstw metodami: Rozpylania mgnetronowego Magnetron sputtering MS Rozpylania z wykorzystaniem działa jonowego Ion Beam Sputtering - IBS Odparowanie wywołane impulsami światła z lasera

Bardziej szczegółowo

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej Nanomateriałów Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej POLITECHNIKA GDAŃSKA Centrum Zawansowanych Technologii Pomorze ul. Al. Zwycięstwa 27 80-233

Bardziej szczegółowo

ostawa. Fizyka powierzchni i nanostruktury 4

ostawa. Fizyka powierzchni i nanostruktury 4 Obrazy dyfrakcyjne elektronów Jak badać strukturę powierzchni? Własności: Dyfrakcja elektronowa cd. Dyfrakcja zachowuje symetrię. Duże odległości w obrazie dyfrakcyjnym oznaczają małe odległości na powierzchni.

Bardziej szczegółowo

METODY BADAŃ BIOMATERIAŁÓW

METODY BADAŃ BIOMATERIAŁÓW METODY BADAŃ BIOMATERIAŁÓW 1 Cel badań: ograniczenie ryzyka związanego ze stosowaniem biomateriałów w medycynie Rodzaje badań: 1. Badania biofunkcyjności implantów, 2. Badania degradacji implantów w środowisku

Bardziej szczegółowo

Mody sprzężone plazmon-fonon w silnych polach magnetycznych

Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone plazmon-fonon w silnych polach magnetycznych Mody sprzężone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga,, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,

Bardziej szczegółowo

Topologiczny diagram fazowy półprzewodników IV-VI

Topologiczny diagram fazowy półprzewodników IV-VI Topologiczny diagram fazowy półprzewodników IV-VI Tomasz Story (IF PAN) Półprzewodniki IV-VI jako materiały topologiczne Koncepcje teoretyczne stanów topologicznch w materiałach IV-VI i ich weryfikacja

Bardziej szczegółowo

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych

Bardziej szczegółowo

Grafen materiał XXI wieku!?

Grafen materiał XXI wieku!? Grafen materiał XXI wieku!? Badania grafenu w aspekcie jego zastosowań w sensoryce i metrologii Tadeusz Pustelny Plan prezentacji: 1. Wybrane właściwości fizyczne grafenu 2. Grafen materiał 21-go wieku?

Bardziej szczegółowo

ANALIZA POWIERZCHNI BADANIA POWIERZCHNI

ANALIZA POWIERZCHNI BADANIA POWIERZCHNI Analiza ciała stałego ANALIZA POWIERZCHNI ANALIZA CAŁEJ OBJTOCI CIAŁO STAŁE ANALIZA POWIERZCHNI METODY NISZCZCE METODY NIENISZCZCE Metody niszczce: - przeprowadzenie do roztworu (rozpuszczanie, roztwarzanie

Bardziej szczegółowo

Rezonatory ze zwierciadłem Bragga

Rezonatory ze zwierciadłem Bragga Rezonatory ze zwierciadłem Bragga Siatki dyfrakcyjne stanowiące zwierciadła laserowe (zwierciadła Bragga) są powszechnie stosowane w laserach VCSEL, ale i w laserach z rezonatorem prostopadłym do płaszczyzny

Bardziej szczegółowo

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone w półprzewodnikach polarnych + E E pl η = st α = E E pl ξ = p B.B. Varga, Phys. Rev. 137,, A1896 (1965) A. Mooradian and B. Wright,

Bardziej szczegółowo

Metody badań spektroskopowych

Metody badań spektroskopowych Metody badań spektroskopowych Program wykładu Wstęp A. Spektroskopia optyczna 1. Podstawy spektroskopii optycznej 1.1 Promieniowanie elektromagnetyczne 1.2 Kwantowanie energii 1.3 Emisja i absorpcja promieniowania

Bardziej szczegółowo

Atom Mn: wielobit kwantowy. Jan Gaj Instytut Fizyki Doświadczalnej

Atom Mn: wielobit kwantowy. Jan Gaj Instytut Fizyki Doświadczalnej Atom Mn: wielobit kwantowy Jan Gaj Instytut Fizyki Doświadczalnej Tomasz Kazimierczuk Mateusz Goryca Piotr Wojnar (IF PAN) Artur Trajnerowicz Andrzej Golnik Piotr Kossacki Jan Gaj Michał Nawrocki Ostrzeżenia

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Zbadanie zależności intensywności linii Ka i Kb promieniowania charakterystycznego X emitowanego przez anodę

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności

Bardziej szczegółowo

Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska

Dyslokacje w kryształach. ach. Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska Dyslokacje w kryształach ach Keshra Sangwal Zakład Fizyki Stosowanej, Instytut Fizyki Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: Podstawowe pojęcie III. Własności mechaniczne kryształów

Bardziej szczegółowo

Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura

Dyslokacje w kryształach. ach. Keshra Sangwal, Politechnika Lubelska. Literatura Dyslokacje w kryształach ach Keshra Sangwal, Politechnika Lubelska I. Wprowadzenie do defektów II. Dyslokacje: podstawowe pojęcie III. Własności mechaniczne kryształów IV. Źródła i rozmnażanie się dyslokacji

Bardziej szczegółowo

Spektroskopia elektronów Augera (AES) Tekst

Spektroskopia elektronów Augera (AES) Tekst Spektroskopia elektronów Augera (AES) Tekst Slad 2 plan prezntacji 1. Podstawy fizyczne 2. Charakterystyka próbek i problemu badawczego 3. Opis przyrządów pomiarowych/ detekcyjnych 4. Wynik metody 5. Zalety

Bardziej szczegółowo

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu

Pomiar energii wiązania deuteronu. Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu J1 Pomiar energii wiązania deuteronu Celem ćwiczenia jest wyznaczenie energii wiązania deuteronu Przygotowanie: 1) Model deuteronu. Własności deuteronu jako źródło informacji o siłach jądrowych [4] ) Oddziaływanie

Bardziej szczegółowo

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych

Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Mody sprzęŝone plazmon-fonon w silnych polach magnetycznych Klasyczny przykład pośredniego oddziaływania pola magnetycznego na wzbudzenia fononowe Schemat: pole magnetyczne (siła Lorentza) nośniki (oddziaływanie

Bardziej szczegółowo

Laboratorium Badania Materiałów Inżynierskich i Biomedycznych

Laboratorium Badania Materiałów Inżynierskich i Biomedycznych Wydział Mechaniczny Technologiczny Politechnika Śląska Laboratorium Badania Materiałów Inżynierskich i Biomedycznych Instytut Materiałów Inżynierskich i Biomedycznych 1 Projekt MERFLENG... W 2012 roku

Bardziej szczegółowo

Synteza grafenu za pomocą grafityzacji węglika krzemu w strumieniu atomów krzemu

Synteza grafenu za pomocą grafityzacji węglika krzemu w strumieniu atomów krzemu FOTON 136, Wiosna 2017 15 1. Wstęp Synteza grafenu za pomocą grafityzacji węglika krzemu w strumieniu atomów krzemu Piotr Ciochoń Zakład Promieniowania Synchrotronowego, Instytut Fizyki UJ Grafen jest

Bardziej szczegółowo

Fizyka, technologia oraz modelowanie wzrostu kryształów. Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane

Fizyka, technologia oraz modelowanie wzrostu kryształów. Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane Fizyka, technologia oraz modelowanie wzrostu kryształów Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane Piotr Perlin Instytut Wysokich Ciśnień PAN piotr@unipress.waw.pl Wykład:

Bardziej szczegółowo

Podstawy fizyki wykład 2

Podstawy fizyki wykład 2 D. Halliday, R. Resnick, J.Walker: Podstawy Fizyki, tom 5, PWN, Warszawa 2003. H. D. Young, R. A. Freedman, Sear s & Zemansky s University Physics with Modern Physics, Addison-Wesley Publishing Company,

Bardziej szczegółowo

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2)

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007

Bardziej szczegółowo

Zaawansowane Metody Badań Strukturalnych. Badania strukturalne materiałów Badania właściwości materiałów

Zaawansowane Metody Badań Strukturalnych. Badania strukturalne materiałów Badania właściwości materiałów Zaawansowane Metody Badań Strukturalnych Badania strukturalne materiałów Badania właściwości materiałów Zaawansowane Metody Badań Strukturalnych 1. Struktura próbki a metoda badań strukturalnych 2. Podział

Bardziej szczegółowo

XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis)

XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis) XPS (ESCA) X-ray Photoelectron Spectroscopy (Electron Spectroscopy for Chemical Analysis) Wykorzystuje miękkie promieniowanie rentgenowskie o E > 100eV, pozwalające na wybicie elektronów z orbitali rdzenia

Bardziej szczegółowo

Światło fala, czy strumień cząstek?

Światło fala, czy strumień cząstek? 1 Światło fala, czy strumień cząstek? Teoria falowa wyjaśnia: Odbicie Załamanie Interferencję Dyfrakcję Polaryzację Efekt fotoelektryczny Efekt Comptona Teoria korpuskularna wyjaśnia: Odbicie Załamanie

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

Domieszki w półprzewodnikach

Domieszki w półprzewodnikach Domieszki w półprzewodnikach Niebieska optoelektronika Niebieski laser Elektryczne pobudzanie struktury laserowej Unipress 106 unipress 8 Moc op ptyczna ( mw ) 6 4 2 0 0.0 0.5 1.0 1.5 2.0 Natężenie prądu

Bardziej szczegółowo

Techniki Jądrowe w Diagnostyce i Terapii Medycznej

Techniki Jądrowe w Diagnostyce i Terapii Medycznej Techniki Jądrowe w Diagnostyce i Terapii Medycznej Wykład 2-5 marca 2019 Zygmunt Szefliński Środowiskowe Laboratorium Ciężkich Jonów szef@fuw.edu.pl http://www.fuw.edu.pl/~szef/ Rozpad Przemiana Widmo

Bardziej szczegółowo

Badanie strutury powierzchni z atomową zdolnością rozdzielczą. Powierzchnia jak ją zdefiniować?

Badanie strutury powierzchni z atomową zdolnością rozdzielczą. Powierzchnia jak ją zdefiniować? Badanie strutury powierzchni z atomową zdolnością rozdzielczą Powierzchnia jak ją zdefiniować? Obszar kryształu, dla którego nie da się zastosować trójwymiarowych równań opisujących własności wnętrza.

Bardziej szczegółowo

Fizyka Ciała Stałego

Fizyka Ciała Stałego Wykład III Struktura krystaliczna Fizyka Ciała Stałego Ciała stałe można podzielić na: Krystaliczne, o uporządkowanym ułożeniu atomów lub molekuł tworzącym sieć krystaliczną. Amorficzne, brak uporządkowania,

Bardziej szczegółowo

BADANIE FOTOPOWIELACZA

BADANIE FOTOPOWIELACZA Ćwiczenie 6 BADANIE FOTOPOWIELACZA 19.1. Wiadomości ogólne Fotopowielacz elektronowy jest urządzeniem, w którym wykorzystano zjawisko zewnętrznej fotoemisji elektronów oraz emisji wtórnej elektronów. Fotoemisję

Bardziej szczegółowo

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek

Lasery półprzewodnikowe. przewodnikowe. Bernard Ziętek Lasery półprzewodnikowe przewodnikowe Bernard Ziętek Plan 1. Rodzaje półprzewodników 2. Parametry półprzewodników 3. Złącze p-n 4. Rekombinacja dziura-elektron 5. Wzmocnienie 6. Rezonatory 7. Lasery niskowymiarowe

Bardziej szczegółowo

Absorpcja promieni rentgenowskich 2 godz.

Absorpcja promieni rentgenowskich 2 godz. Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. (032)3591627, e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion-Gazda Laboratorium

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Otrzymywanie promieni rentgenowskich. 2. Budowa lampy rentgenowskiej. 3. Własności

Bardziej szczegółowo

BADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU

BADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU BADANIA WARSTW FE NANOSZONYCH Z ELEKTROLITU NA BAZIE ACETONU W. OLSZEWSKI 1, K. SZYMAŃSKI 1, D. SATUŁA 1, M. BIERNACKA 1, E. K. TALIK 2 1 Wydział Fizyki, Uniwersytet w Białymstoku, Lipowa 41, 15-424 Białystok,

Bardziej szczegółowo

Marcin Sikora. Temat 1: Obserwacja procesów przemagnesowania w tlenkowych nanostrukturach spintronicznych przy użyciu metod synchrotronowych

Marcin Sikora. Temat 1: Obserwacja procesów przemagnesowania w tlenkowych nanostrukturach spintronicznych przy użyciu metod synchrotronowych Prezentacja tematów na prace doktorskie, 28/5/2015 1 Marcin Sikora KFCS WFiIS & ACMiN Temat 1: Obserwacja procesów przemagnesowania w tlenkowych nanostrukturach spintronicznych przy użyciu metod synchrotronowych

Bardziej szczegółowo

Jak TO działa? Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: *******

Jak TO działa?   Co to są półprzewodniki? TRENDY: Prawo Moore a. Google: Jacek Szczytko Login: student Hasło: ******* Co to są półprzewodniki? Jak TO działa? http://www.fuw.edu.pl/~szczytko/ Google: Jacek Szczytko Login: student Hasło: ******* Jacek.Szczytko@fuw.edu.pl Wydział Fizyki UW 2 TRENDY: Prawo Moore a TRENDY:

Bardziej szczegółowo

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego

Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Katedra Fizyki Ciała Stałego Uniwersytetu Łódzkiego Ćwiczenie 7 Elektronowy mikroskop skaningowy-analogowy w badaniach morfologii powierzchni ciała stałego. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

Repeta z wykładu nr 11. Detekcja światła. Fluorescencja. Eksperyment optyczny. Sebastian Maćkowski

Repeta z wykładu nr 11. Detekcja światła. Fluorescencja. Eksperyment optyczny. Sebastian Maćkowski Repeta z wykładu nr 11 Detekcja światła Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Adres poczty elektronicznej: mackowski@fizyka.umk.pl Biuro: 365, telefon: 611-3250 CCD (urządzenie

Bardziej szczegółowo

PROMIENIOWANIE RENTGENOWSKIE

PROMIENIOWANIE RENTGENOWSKIE PROMIENIOWANIE RENTGENOWSKIE 1. Zagadnienia teoretyczne Promieniowanie rentgenowskie, poziomy energetyczne w atomie, stała Planck a i metody wyznaczania jej wartości, struktura krystalograficzna, dyfrakcyjne

Bardziej szczegółowo

Fluorescencyjna detekcja śladów cząstek jądrowych przy użyciu kryształów fluorku litu

Fluorescencyjna detekcja śladów cząstek jądrowych przy użyciu kryształów fluorku litu Fluorescencyjna detekcja śladów cząstek jądrowych przy użyciu kryształów fluorku litu Paweł Bilski Zakład Fizyki Radiacyjnej i Dozymetrii (NZ63) IFJ PAN Fluorescenscent Nuclear Track Detectors (FNTD) pierwsza

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 2 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2015/16

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

I Konferencja. InTechFun

I Konferencja. InTechFun I Konferencja Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych InTechFun 9 kwietnia 2010 r., Warszawa POIG.01.03.01-00-159/08

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska

Fizyka powierzchni. Dr Piotr Sitarek. Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Fizyka powierzchni 10 Dr Piotr Sitarek Katedra Fizyki Doświadczalnej, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Defekty - Mając na myśli rzeczywistą powierzchnię nie można w rozważaniach

Bardziej szczegółowo

InTechFun. Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych

InTechFun. Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych Innowacyjne technologie wielofunkcyjnych materiałów i struktur dla nanoelektroniki, fotoniki, spintroniki i technik sensorowych InTechFun Instytut Fizyki Polskiej Akademii Nauk Zbigniew R. Żytkiewicz IF

Bardziej szczegółowo

Układy cienkowarstwowe o prostopadłej anizotropii magnetycznej sterowalnej polem elektrycznym

Układy cienkowarstwowe o prostopadłej anizotropii magnetycznej sterowalnej polem elektrycznym Układy cienkowarstwowe o prostopadłej anizotropii magnetycznej sterowalnej polem elektrycznym A. Kozioł-Rachwał Wydział Fizyki i Informatyki Stosowanej AGH National Institute of Advanced Industrial Science

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Ekscyton w morzu dziur

Ekscyton w morzu dziur Ekscyton w morzu dziur P. Kossacki, P. Płochocka, W. Maślana, A. Golnik, C. Radzewicz and J.A. Gaj Institute of Experimental Physics, Warsaw University S. Tatarenko, J. Cibert Laboratoire de Spectrométrie

Bardziej szczegółowo

Nanostruktury i nanotechnologie

Nanostruktury i nanotechnologie Nanostruktury i nanotechnologie Heterozłącza Efekty kwantowe Nanotechnologie Z. Postawa, "Fizyka powierzchni i nanostruktury" 1 Termin oddania referatów do 19 I 004 Zaliczenie: 1 I 004 Z. Postawa, "Fizyka

Bardziej szczegółowo

Skaningowy Mikroanalizator Elektronów Augera MICROLAB 350 firmy Thermo Electron (VG Scientific) Mazowieckie Centrum Analizy Powierzchni

Skaningowy Mikroanalizator Elektronów Augera MICROLAB 350 firmy Thermo Electron (VG Scientific) Mazowieckie Centrum Analizy Powierzchni Skaningowy Mikroanalizator Elektronów Augera MICROLAB 350 firmy Thermo Electron (VG Scientific) Mazowieckie Centrum Analizy Powierzchni Mikroanalizator Microlab 350 firmy Thermo Electron (VG Scientific)

Bardziej szczegółowo

FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH

FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH FLUORESCENCJA RENTGENOWSKA (XRF) MARTA KASPRZYK PROMOTOR: DR HAB. INŻ. MARCIN ŚRODA KATEDRA TECHNOLOGII SZKŁA I POWŁOK AMORFICZNYCH 13.01.2015 SPIS TREŚCI WSTĘP ZJAWISKO FLUORESCENCJI FLUORESCENCJA RENTGENOWSKA

Bardziej szczegółowo

Fizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru

Fizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru Fizyka silnie skorelowanych elektronów na przykładzie międzymetalicznych związków ceru Rafał Kurleto 4.3.216 ZFCS IF UJ Rafał Kurleto Sympozjum doktoranckie 4.3.216 1 / 15 Współpraca dr hab. P. Starowicz

Bardziej szczegółowo

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski

Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie. Co to jest ekscyton? Co to jest ekscyton? e πε. E = n. Sebastian Maćkowski Co to jest kropka kwantowa? Kropki kwantowe - część I otrzymywanie Sebastian Maćkowski Instytut Fizyki Uniwersytet Mikołaja Kopernika Co to jest ekscyton? Co to jest ekscyton? h 2 2 2 e πε m* 4 0ε s Φ

Bardziej szczegółowo

III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski

III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski III. METODY OTRZYMYWANIA MATERIAŁÓW PÓŁPRZEWODNIKOWYCH Janusz Adamowski 1 1 Wstęp Materiały półprzewodnikowe, otrzymywane obecnie w warunkach laboratoryjnych, charakteryzują się niezwykle wysoką czystością.

Bardziej szczegółowo