Ogniwa litowe. materiały elektrolitowe, anodowe, katodowe. Wykład V

Wielkość: px
Rozpocząć pokaz od strony:

Download "Ogniwa litowe. materiały elektrolitowe, anodowe, katodowe. Wykład V"

Transkrypt

1 Ogniwa litowe materiały elektrolitowe, anodowe, katodowe Wykład V

2 Baterie litowe e - e - Stan naładowania Katoda Anoda = Li + = LiPF 6 LiC 6 (grafitowa anoda) Li 2 O/Co o (tlenek kobaltu anoda) FePO 4 katoda CoO 2 katoda

3 Okno elektrochemiczne elektrolitu Ważne kryterium dla zastosowań elektrochemicznych DEFINICJA : różnica pomiędzy potencjałami katody i anody, dla których następuje odpowiednio redukcja i utlenianie elektrolitu Stabilną pracę można uzyskać jedynie w przypadku odpowiedniego wzajemnego położenia poziomów energetycznych anody, katody oraz elektrolitu Wysokie napięcie pracy ogniwa zostaje osiągnięte, jeżeli poziomy LUMO i HOMO elektrolitu są rozdzielone dużą przerwą energetyczną Poziomy energetyczne związane z reakcjami elektrodowymi (poziomy redoks) powinny znajdować się odpowiednio blisko, ale poniżej LUMO w przypadku anody, oraz powyżej poziomu HOMO w przypadku katody.

4 E g of electrolyte

5 Praca wyjścia C Diagram energetyczny- okno elektrochemiczne SEI LUMO H + /H 2 Anoda A A Praca wyjścia C Potencjał Elektrochemiczny katody Katoda Utleniacz SEI solid/electrolite interface LUMO najniższy nieobsadzony orbital cząsteczkowy HOMO najwyższy obsadzony orbital cząsteczkowy O 2 /H 2 O HOMO SEI Elektrolit E g Reduktor V OC Potencjał Elektrochemiczny anody Warunek termodynamicznej trwałości ev OC = A - C E g

6 Kompatybilność elektroda/elektrolit Termodynamiczna stabilność elektrolitu względem elektrod jest możliwa jeżeli potencjały elektrochemiczne elektrod A, B leżą w oknie elektrochemicznym (jednak reakcje chemiczne pomiędzy elektrodą i elektrolitem mogą zachodzić). Jeżeli potencjały A, B znajdują się poza oknem elektrolitu stabilność można osiągnąć przez formowanie warstwy pasywacyjnej SEI na powierzchni elektrody Warstwa SEI powinna przewodzić tylko kationy Li + Ponadto w czasie szybkiego ładowania, na warstwie SEI może powstawać pęknięcie. Metaliczny lit tworzy dendryty poza SEI (zanim nastąpi naprawa pęknięć)

7 Elektrolit-wymagania Wysokie przewodnictwo jonów Li + Li >10-4 S/cm w zakresie temperatur pracy ogniwa Zaniedbywalnie niskie przewodnictwo elektronowe e <10-10 S/cm Liczba przenoszenia jonów Li / tot 1 Stabilność chemiczna Stabilność chemiczna w stosunku do materiału elektrody obejmująca możliwość szybkiego tworzenia warstwy posywacyjnej na interfejsie ciało stałe/elektrolit (SEI) (wymagana jest kinetyczna stabilność ponieważ potencjał elektrody leży poza oknem elektrolitu ).

8 Elektrolit-wymagania cd Materiały bezpieczne preferowane są materiały niepalne oraz niewybuchowe w przypadku zwarcia Nie toksyczne, tanie Zachowanie interfejsu elektroda/elektrolit podczas cyklów ładowania/rozładowania

9 Klasyfikacja rozpuszczalników Ze względu na własności fizyczne niepolarne (apolarne) posiadające zerowy albo bardzo mały moment dipolowy (mała przenikalność dielektryczna) polarne posiadające znaczny moment dipolowy (duża przenikalność dielektryczna) Ze względu na własności chemiczne protonowe (protyczne) posiadające w swojej strukturze protony mogące ulegać oderwaniu przez cząsteczkę zasady, a także mogą brać udział w tworzeniu wiązań wodorowych. Do grupy tej należą: woda, alkohole, aldehydy, kwasy aprotonowe (aprotyczne) nieposiadające w swojej strukturze protonów. Zasadniczo wszystkie rozpuszczalniki protonowe są też polarne, natomiast aprotonowe mogą być zarówno polarne jak i niepolarne. Daje to razem trzy główne grupy rozpuszczalników: protonowe, aprotonowe polarne i aprotonowe niepolarne.

10 Organiczne elektrolity ciekłe TETRAHYDROFURAN (THF) 7,4 2-METYLOTETRAHYDROFURAN 6,24 CH 3 CH 2 OCH 2 CH 2 OCH 2 CH 3 DIEETOKSYETAN 7,02 WĘGLAN ETYLENU (EC) 89,6 (40 o ) WĘGLAN PROPYLENU (PC) 65,4 DIMETYLOSULFOTLENEK (DMSO) 46,5 SOCl 2 SO 2 CL 2 CHLOREK TIONYLU CHLOREK SULFURYLU 9,15 9,05

11 Organiczne elektrolity ciekłe Organiczne ciecze które są dobrymi rozpuszczalnikami soli litu Potencjał utleniania (HOMO) 4.7V, potencjał redukcji (LUMO) 1.0 V ( w stosunku do potencjału Li + /Li 0 ) Relatywnie niska lepkość, która jest odpowiedzialna za niską energię aktywacji dyfuzji jonów Li + Zastosowanie grafitu jako materiału anody, który ma elektrochemiczny potencjał powyżej niż LUMO dla elektrolitu (węglanów) wymaga, aby rozpuszczalnik zawierał węglan etylenu (EC) (w większości przypadków) ponieważ EC dostarcza warstwę pasywacyjną na interfejsie ciało stałe/elektrolit na grafitowej anodzie, co przeciwdziała dalszemu rozkładowi elektrolitu Rozpuszczalniki te jednak są łatwo palne, temperatura zapłonu poniżej 30 o C

12 Organiczne elektrolity ciekłe Preferowane sole litu LiPF 6 mogą ulegać autokatalitycznej reakcji rozkładu na LiF i PF 5 Nieznaczna ilość wody powoduje nieodwracalną reakcję PF 5 + H 2 O=PF 3 O + 2HF (powyżej 60 o C reakcja EC) Reakcje te są odpowiedzialne za zniszczenie baterii oraz stwarzają niebezpieczeństwo Poprzez dobór dodatków można obniżyć temperaturę autokatalitycznej reakcji rozkładu LiPF 6

13 Elektrolit niewodny, aprotyczny, PC, THF, BL, ACN, z solami LiAsF 6, - LiPF 6, LiClO 4 Reakcje metalicznego litu z eterami cyklicznymi prowadzą do pasywacji elektrody produktami rozkładu rozpuszczalnika i anionów Przykładowe reakcje litu metalicznego z rozpuszczalnikiem + Li Li 2 CO 3 + CH 3 CH=CH 2 + Li (CH 2 =CH-CH 2 CH 2 O) - + Li + + ½ H 2

14 Powierzchnia litu pokryta jest warstwą pasywacyjną t e =0 t + =1 SEI Solid electrolyte interface t - =0 Li Li x O A SEI SEI B C Elektro lit

15 Rozkład anionów na powierzchni litu LiAsF 6 + (2e, 2Li + ) 3LiF + AsF 3 AsF 3 + (2xe, 2xLi + ) xlif + Li x AsF 3 x 2LiCF 3 SO 3 + (2e, 2Li + ) 2Li 2 SO 3 + C 2 F 6 C 2 F 6 +(2e, 2Li + ) CF 3 CF 2 Li + LiF Li 2 SO 3 +(6e, 6Li + ) Li 2 S +3Li 2 O Na powierzchni litu tworzy się warstwa pasywacyjna o charakterze elektrolitu stałego Sole nieorganiczne, typu LiF, LiCl stanowią pożądany składnik warstw pasywacyjnych.

16 Definicja Ciecz jonowa to związek chemiczny, organiczny składający się z kationu i anionu. Sól ta charakteryzuje się temperaturą topnienia poniżej temperatury wrzenia wody. Ciecz jonowa nie jest stopioną solą, nie jest wodnym roztworem Słowo kluczowe ciecz jonowa ionic liquid Chemical Abstracts

17 Ciecze jonowe RTILs: Room-temperature ionic liquids, alternatywne elektrolity dla jonowych baterii jonowych o następujących zaletach w stosunku do elektrolitów ciekłych: Wysoki potencjał utleniania (5.3 V vs Li + /Li 0 ) Niepalne, niska prężność parowania Lepsza stabilność termiczna Nietoksyczne Wysoka temperatura wrzenia Duża rozpuszczalność soli Li Duża lepkość obniża przewodnictwo jonów Li +

18 Ciecze jonowe (imidazole) Ciecze jonowe na bazie związków imidazoli wykazują niższą lepkość oraz wysoką rozpuszczalność soli jonów Li + w temperaturze pokojowej przy jednak niskiej stabilności dla potencjałów poniżej 1.1V Dodatek EC lub PC powoduje powstanie stabilnej warstwy SEI na grafitowej anodzie Dodatek ciekłych węglanów organicznych ( w ilości niepowodującej palność) powoduje wzrost Li

19 Nieorganiczne ciekłe elektrolity Elektrolity na bazie LiAlCl 4 i SO 2 są niepalne i wykazują w temperaturze pokojowej przewodnictwo jonowe Li = S/cm Za wąskie okno elektrolitu

20 Stałe elektrolity polimerowe Elektrolity stałe mogą nie tylko pełnić rolę membrany pomiędzy elektrodami ale również zachowywać interfejs elektroda/elektrolit w czasie niedużych zmian objętościowych elektrody w stanie ładowania ogniwa PEO - poli(tlenek etylenu-c 2 H 4 O) zawierający sole litu LiPF 6 lub LiAsF 6 : niskie przewodnictwo jonów Li + Li <10-5 S/cm nietoksyczne i tanie oraz wykazują dobrą chemiczną stabilność

21 Stałe elektrolity polimerowe W celu poprawy przewodnictwa jonów Li + wprowadza się cząstki tlenków (Al 2 O 3, TiO 2, SiO 2 lub ZrO 2 ), które tworzą amorficzną matrycę polimeru poprzez spowolnienie procesu tworzenia łańcuchów krystalizacji oraz przyciągają jony Li + z soli. Przewodnictwo jonów w polimerowym elektrolicie zazwyczaj odbywa się w fazie amorficznej z powodu segmentowego ruchu łańcuchów polimerowych

22 Nieorganiczne elektrolity stałe Nieorganiczne materiały przewodzące jonami litu ( Li >10-4 S/cm) znalazły zastosowanie w ogniwach litowych z powodu szerokiego okna elektrochemicznego oraz faktu spełnienia prawie wszystkich wymogów określonych dla elektrolitu Problem z interfejsem elektroda/elektrolit w czasie cyklów ładowania, gdzie następuje zmiana objętości cząstek elektrody Zastosowanie tylko w technologii cienkowarstwowej

23 System elektrolitów hybrydowych Elektrolity hybrydowe powstają w wyniku zmieszania organicznych elektrolitów ciekłych, cieczy jonowych, elektrolitów polimerowych lub/i nieorganicznych elektrolitów stałych Polimer + ciekły elektrolit organiczny (gel polimerowy) Ciecz jonowa + elektrolit polimerowy Ciecz jonowa + elektrolit polimerowy + ciekły elektrolit organiczny Ciecz jonowa + ciekły elektrolit organiczny Elektrolit polimerowy + nieorganiczne elektrolity stałe

24 System elektrolitów hybrydowych

25

26 Materiały anodowe Obecnie Węglowe Grafit Węgiel twardy Węgiel miękki Tlenek litowo-tytanowy (Li 4 Ti 5 O 12 -LTO) Materiały przyszłości Krzem nanomateriały

27 Anody węglowe a) Grafit HOPG (highly ordered pyrolytic graphite) rozmiar płatków 5 50 m b) grafit naturalny, włókna grafitowe (stechiometria do LiC 6 ) c) nieregularne węgle tzw. miękkie jak np.: węgle pirolityczne z rozkładu ropy d) nieregularne węgle twarde tzw. hard carbons Otrzymywanie piroliza m.in. żywności powyżej 1000 o C (ziarno kawowe, herbata, cukier, bawełna, żywice fenolowe i inne) Stechiometria LiC 3, LiC 2 lit jest zawarty pomiędzy płaszczyznami grafenowymi

28 Struktura grafitu pozwala na wprowadzenie do wnętrza materiału pomiędzy warstwy grafenowe kationów litu. WPROWADZENIE LITU ZMIENIA STRUKTURĘ GRAFITU: AAA -2

29 Stechiometria LiC 6 teoretyczna pojemność ładunku- 332 mah/g Obserwowana dla grafitu i HOPG Stechiometria LiC 2 odpowiada węglom szklistym (odległość Li-Li 2,46 A) teoretyczna pojemność ładunku- 864 mah/g, praktyczna mah/g

30 Li + + e - + C 6 = LiC 6

31 Tworzenie warstwy SEI

32 Materiały anodowe: Li 4 Ti 5 O 12 Li 4 Ti 5 O Li = Li 7 Ti 5 O 12 Teoretyczna pojemność 175mAh/g Napięcie vs Li wynosi 1.5V Nie powstają warstwy SEI, tak więc pojemność nieodwracalna jest niska Zmiany wolumetryczne mniejsze od 0.2% pomiędzy całkowitym rozładowaniem Li 4 Ti 5 O 12 do całkowitego naładowania Li 3 Ti 5 O 12 Bezpieczny, długi czas życia

33 Stopowe materiały anodowe Li y M ; M= Sn, Pb, Si, In, Al Li 4,4 Sn Ah g -1 Tlenkowe materiały anodowe SnO Li + + e - = Sn + 2 Li 2 O Sn + 4,4 Li = Li 4,4 Sn Pomimo ogromnej korzyści wynikającej ze zwiększenia pojemności właściwej ładunku, materiał ten ulega ekspansji, 300% zmienia się objętość stąd straty w kontakcie elektrycznym.

34 Materiał katody-kryteria Materiał musi zawierać jony chętnie biorące udział w reakcji utleniania/redukcji Materiał musi reagować z litem odwracalnie i bez znaczących zmian strukturalnych umożliwiających odwracalność pracy ogniwa Materiał musi reagować z litem, dając wysoką wartość G a więc i E Reakcja intekalacji (wprowadzania/wyprowadzania) litu powinna zachodzić z dużą szybkością Materiał powinien być przewodnikiem elektronowojonowym co zapewnia szybką kinetykę reakcji elektrodowych

35 Materiał katody-kryteria Szeroki zakres interkalacji, a więc duża dopuszczalna zmiana zawartości litu w materiale. Zakres ten zależy od ilości oraz dostępności pozycji strukturalnych dla jonów Li + oraz możliwości ilości przyjęcia elektronów Małe zmiany napięcia ogniwa w funkcji stopnia naładowania, co oznacza słabą zależność SEM ogniwa od zawartości litu. Podyktowane jest to specyfiką urządzeń zasilanych (laptopy, telefony komórkowe), które w większości przypadków wymagają zasilania o określonym napięciu Tani, nietoksyczny, w zgodzie ze środowiskiem

36 TiS 2 :pierwsza demonstracja interkalacji Li Struktura warstwowa: 2D 1972 rok- anoda Li, katoda TiS 2 5.7Å Siły van der Waalsa Li 6.2Å xli + TiS 2 =Li x TiS 2

37 TiS 2 :pierwsza demonstracja interkalacji Li Dla 0<x<1 Li x TiS 2 materiał jednofazowy Szybka dyfuzja jonów Li + Odwracalny proces, Duża efektywność

38 TiS 2 :pierwsza demonstracja interkalacji Li Dla 0<x<1 Li x TiS 2 materiał jednofazowy Dla x>1: Zmniejszenie ruchliwości jonów Li + Zmniejszenie odległości pomiędzy warstwami

39 Struktury warstwowe 2D, izostrukturalne z TiS 2 : LiCoO 2, LiNiO 2, LiMnO 2, LiCoO 2 Wyższy potencjał od TiS 2 Dobra odwracalność Brak możliwości zmiany zawartości Li - zmiany struktury

40 Struktury warstwowe 2D, izostrukturalne z TiS 2 : LiCoO 2, 0.1 V vs. Li V vs. Li V vs. Li

41 Struktury warstwowe 2D, izostrukturalne z TiS 2 : LiNiO 2 ; LiCoO 2, LiNiO 2, LiMnO 2, Tańszy od LiCoO 2 Niebezpieczny dla małych wartości x Ciśnienie parcjalne tlenu bardzo wysokie dla NiO 2 Można kontrolować przez domieszkowanie (Co, Mn)

42 Struktury warstwowe 2D, izostrukturalne z TiS 2 : LiMnO 2 ; LiCoO 2, LiNiO 2, LiMnO 2, Niestabilny dla niskich zawartości Li Niestabilny dla wysokich zawartości Li w wysokich temperaturach Problem z otrzymaniem LiMnO 2

43 Struktury warstwowe 2D, izostrukturalne z TiS 2 : LiCoO 2, LiNiO 2, LiMnO 2, Katoda x Ah/kg U Wh/kg Li x CoO Li x MnO Li 2x Mn 2 O Li x FePO Warstwowa struktura MnO 2 jest niestabilna dla niskich koncentracji litu. Strukturę można stabilizować poprzez tworzenie struktury spinelu

44 Struktury MnO 2

45 Stabilne fazy Li x MnO 2 funkcją stechiometrii Li?

46 LiMnO 2 vs LiMn 2 O 4 Proces rozładowania zachodzi 2 stopniowo Zazwyczaj używany jest zakres plateau 4V Ładowanie: LiMn 2 O 4 Mn 2 O 4 + Li Efektywne ładowanie zależy od Średniego stopnia utlenienia jonów Mn 4+ /Mn 3+ (który związany jest bezpośrednio z parametrem struktury krystalograficznej (regularnej)) Preferuje się parametr sieci nie większy niż 8.23Å

47 LiMnO 2 vs LiMn 2 O 4 Dla parametru sieci 8.23Å średni stopień utleniania 3.58 co minimalizuje rozpuszczanie manganu

48 LiFePO 4 Tani, przyjazny środowisku, odpowiednia pojemność (110 mahg -1 vs 130 mahg -1 dla LiCoO 2 ) Problem: niskie przewodnictwo elektronowe, niska dyfuzja jonów Li + Rozwiązanie : nanocząstki węgla na graniach ziaren

49 Sample grubość (mm) Modyfikacja LiFePO 4 opór (kω) (S cm 1 ) LFP (0 wt.% HC) LFP (6.0 wt.% HC) LFP (8.0 wt.% HC) LFP (10 wt.% HC) LFP (12 wt.% HC)

50 Materiały katodowe LiFePO 4 Li 2 MnSiO 4 1. Ohzuku, T.; Brodd, R. J., J.Power Sources 2007, 174, (2), ; 2. Amatucci, G. G.; Pereira, N., J. Fluorine Chemistry 2007, 128, (4), ; 3. Howard, W. F.; Spotnitz, R. M., J. Power Sources 2007, 165, (2),

51 Magazynowanie energii Ilość energii zawartej w bateriach można zwiększyć poprzez: 1. Uzyskanie maksymalnej różnicy potencjałów pomiędzy elektrodami wybór katody, anody, elektrolitu 2. Jak najmniejszy stosunek masy (objętości) reagentów na liczbę elektronów dla elementarnej reakcji redox 3. Ograniczenie konsumowania elektrolitu Akumulator ołowiowy Akumulator niklowo-kadmowy Akumulatory Ni-MX Ogniwa litowe 5-krotny wzrost

52 Moore s law- nie dla ogniw litowych Image courtesy: Intel Corporation Li ion cell 53

53 Batteries timeline now years from now M. Armand & J.-M. Tarascon, Nature 451, (2008) 54

54 Lithium-air (lithium-oxygen batteries) 2Li + O 2 Li 2 O mah/g Pierwsza demonstracja 1996 Katoda; nanomateriał 10-20nm warstwy MnO 2 wprowadzone do gąbki weglowej

55 Lithium-air (lithium-oxygen batteries) Grawimetryczna gęstość energii Wh/kg teoretyczna-praktyczna Benzyna % Li-air % Zinc-air %

56 Rozwiązania konstrukcyjne Li-air batteries

57 Rozwiązania konstrukcyjne Li-air batteries Rozpusczalnik aprotyczny Reakcja rozładowania: 2Li + O 2 Li 2 O 2 2Li +1/2O 2 LiO 2 Elektrolit protonowy Odczyn kwaśny: 2Li +1/2 O 2 +H + 2Li + +H 2 O Odczyn zasadowy 2Li +1/2O 2 + H 2 O 2 LiOH Elektrolit-ciało stałe Brak jasnego opisu

58 Warstwa na interfejsie anoda/elektrolit SEI

59 Li-air aprotyczny Proces rozładowania: anoda Li Li + + e katoda 2Li + O 2 Li 2 O 2 Proces ładowania Li 2 O 2 2Li + O 2 Budowa: anoda-folia litowa, 250 m separator, katoda (porowata)- Super P (sadza)+ nanocząstki -MnO 2

Materiały katodowe dla ogniw Li-ion wybrane zagadnienia

Materiały katodowe dla ogniw Li-ion wybrane zagadnienia Materiały katodowe dla ogniw Li-ion wybrane zagadnienia Szeroki zakres interkalacji y, a więc duża dopuszczalna zmiana zawartości litu w materiale, która powinna zachodzić przy minimalnych zaburzeniach

Bardziej szczegółowo

Elektrolity polimerowe. 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych

Elektrolity polimerowe. 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych Elektrolity polimerowe 1. Modele transportu jonów 2. Rodzaje elektrolitów polimerowych 3. Zastosowania elektrolitów polimerowych Zalety - Giętkie, otrzymywane w postaci folii - Lekkie (wysoka gęstość energii/kg)

Bardziej szczegółowo

Przetwarzanie energii: kondensatory

Przetwarzanie energii: kondensatory Przetwarzanie energii: kondensatory Ładując kondensator wykonujemy pracę nad ładunkiem. Przetwarzanie energii: ogniwa paliwowe W ogniwach paliwowych następuje elektrochemiczne spalanie paliwa. Energia

Bardziej szczegółowo

Ogniwa litowe : part I. Wykład 3

Ogniwa litowe : part I. Wykład 3 Ogniwa litowe : part I Wykład 3 Nazwa polska Nazwa angielska Opis Jednostka Pojemność grawimetryczna Pojemność wolumetryczna Energia grawimetryczna Energia wolumetryczna Gravimetric capacity Volumetric

Bardziej szczegółowo

Przetwarzanie energii: kondensatory

Przetwarzanie energii: kondensatory Przetwarzanie energii: kondensatory Ładując kondensator wykonujemy pracę nad ładunkiem. Przetwarzanie energii: ogniwa paliwowe W ogniwach paliwowych następuje elektrochemiczne spalanie paliwa. Energia

Bardziej szczegółowo

Katody do ogniw Li-ion. Akumulatory Wydział SiMR, kierunek IPEiH III rok I stopnia studiów, semestr V. Katody do ogniw litowo-jonowych

Katody do ogniw Li-ion. Akumulatory Wydział SiMR, kierunek IPEiH III rok I stopnia studiów, semestr V. Katody do ogniw litowo-jonowych Akumulatory Wydział SiMR, kierunek IPEiH III rok I stopnia studiów, semestr V dr inż. Leszek Niedzicki Katody do ogniw litowo-jonowych Wymagane cechy katody w ogniwie: Wysoka pojemność (gęstość energii);

Bardziej szczegółowo

Wrocław dn. 22 listopada 2005 roku. Temat lekcji: Elektroliza roztworów wodnych.

Wrocław dn. 22 listopada 2005 roku. Temat lekcji: Elektroliza roztworów wodnych. Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące Nr I we Wrocławiu Wrocław dn. 22 listopada 2005 roku Temat lekcji: Elektroliza roztworów wodnych. Cel ogólny lekcji: Wprowadzenie pojęcia

Bardziej szczegółowo

Nowe kierunki rozwoju technologii superkondensatorów

Nowe kierunki rozwoju technologii superkondensatorów Nowe kierunki rozwoju technologii superkondensatorów Radosław Kuliński Instytut Elektrotechniki, Oddział Technologii i Materiałoznawstwa Elektrotechnicznego we Wrocławiu Politechnika Wrocławska, Instytut

Bardziej szczegółowo

PL B1. Politechnika Warszawska,Warszawa,PL

PL B1. Politechnika Warszawska,Warszawa,PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 200758 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 359044 (22) Data zgłoszenia: 07.03.2003 (51) Int.Cl. H01M 6/22 (2006.01)

Bardziej szczegółowo

Ogniwa paliwowe FIZYKA 3 MICHAŁ MARZANTOWICZ. Wykorzystanie wodoru jako nośnika energii

Ogniwa paliwowe FIZYKA 3 MICHAŁ MARZANTOWICZ. Wykorzystanie wodoru jako nośnika energii Ogniwa paliwowe Wykorzystanie wodoru jako nośnika energii Ogniwa paliwowe Zasada działania ogniwa zasilanego wodorem Rodzaje ogniw ogniwo z membraną przewodzącą protonowo (ang. Proton-exchange membrane

Bardziej szczegółowo

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu)

Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu. (na prawach rękopisu) Ćwiczenie 2. Charakteryzacja niskotemperaturowego czujnika tlenu (na prawach rękopisu) W analityce procesowej istotne jest określenie stężeń rozpuszczonych w cieczach gazów. Gazy rozpuszczają się w cieczach

Bardziej szczegółowo

Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM

Laboratorium z Konwersji Energii. Ogniwo Paliwowe PEM Laboratorium z Konwersji Energii Ogniwo Paliwowe PEM 1.0 WSTĘP Ogniwo paliwowe typu PEM (ang. PEM FC) Ogniwa paliwowe są urządzeniami elektro chemicznymi, stanowiącymi przełom w dziedzinie źródeł energii,

Bardziej szczegółowo

Kondensatory = D C = Pojemność elektryczna. Kondensator płaski. Rozdzielając ładunki wykonujemy pracę gromadzimy energię elektryczną.

Kondensatory = D C = Pojemność elektryczna. Kondensator płaski. Rozdzielając ładunki wykonujemy pracę gromadzimy energię elektryczną. Kondensatory Pojemność elektryczna C = Q U U = D 0 E( x) dx Kondensator płaski Sεε C = 0 D Rozdzielając ładunki wykonujemy pracę gromadzimy energię elektryczną. 2 2 q Q CU W EL = Vdq = dq = = = C 2C 2

Bardziej szczegółowo

Elementy Elektrochemii

Elementy Elektrochemii Elementy Elektrochemii IV.: Ogniwa galwaniczne przykłady Ogniwa Pierwotne - nieodwracalne - ogniwo Volty (A.G.A.A. Volta 1800r.) - ogniwo Daniela (John Daniell 1836 r.) - Ogniwo cynkowo-manganowe (Leclanche,

Bardziej szczegółowo

CHP z ogniwem paliwowym Przegląd rynku

CHP z ogniwem paliwowym Przegląd rynku Piotr Stawski IASE CHP z ogniwem paliwowym Przegląd rynku ENERGYREGION - Efektywny rozwój rozproszonej energetyki odnawialnej w połączeniu z konwencjonalną w regionach. Zalety gospodarki skojarzonej K.Sroka,

Bardziej szczegółowo

Ogniwa galwaniczne. Elektrolizery. Rafinacja. Elektroosadzanie.

Ogniwa galwaniczne. Elektrolizery. Rafinacja. Elektroosadzanie. Elektrochemia Wydział SiMR, kierunek IPEiH II rok I stopnia studiów, semestr IV dr inż. Leszek Niedzicki. Elektrolizery. Rafinacja. Elektroosadzanie. Szereg elektrochemiczny (standardowe potencjały półogniw

Bardziej szczegółowo

Reakcje utleniania i redukcji

Reakcje utleniania i redukcji Reakcje utleniania i redukcji Reguły ustalania stopni utlenienia 1. Pierwiastki w stanie wolnym (nie związane z atomem (atomami) innego pierwiastka ma stopień utlenienia równy (zero) 0 ; 0 Cu; 0 H 2 ;

Bardziej szczegółowo

UZUPEŁNIENIE DO WYKŁADÓW

UZUPEŁNIENIE DO WYKŁADÓW UZUPEŁNIENIE DO WYKŁADÓW Idea ogniwa paliwowego 1839 r. (demonstracja). Praktyczne zastosowanie ogniwa paliwowego statki termiczne. Ogólne zastosowanie ogniw paliwowych: - napęd samochodu, by zastąpić

Bardziej szczegółowo

Zn + S ZnS Utleniacz:... Reduktor:...

Zn + S ZnS Utleniacz:... Reduktor:... Zadanie: 1 Spaliny wydostające się z rur wydechowych samochodów zawierają znaczne ilości tlenku węgla(ii) i tlenku azotu(ii). Gazy te są bardzo toksyczne i dlatego w aktualnie produkowanych samochodach

Bardziej szczegółowo

Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM,

Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM, Ćw.2 Elektroliza wody za pomocą ogniwa paliwowego typu PEM Celem ćwiczenia jest wyznaczenie charakterystyki prądowo- napięciowej elektrolizera typu PEM, A także określenie wydajności tego urządzenia, jeśli

Bardziej szczegółowo

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali

Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Ćwiczenie 1: Wyznaczanie warunków odporności, korozji i pasywności metali Wymagane wiadomości Podstawy korozji elektrochemicznej, wykresy E-pH. Wprowadzenie Główną przyczyną zniszczeń materiałów metalicznych

Bardziej szczegółowo

JEDNOKOMOROWE OGNIWA PALIWOWE

JEDNOKOMOROWE OGNIWA PALIWOWE JEDNOKOMOROWE OGNIWA PALIWOWE Jan Wyrwa Katedra Chemii Analitycznej, Wydział Inżynierii Materiałowej i Ceramiki, AGH Al. Mickiewicza 30, 30-059 Kraków Światowe zapotrzebowanie na energię-przewidywania

Bardziej szczegółowo

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej

Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej Nanomateriałów Leon Murawski, Katedra Fizyki Ciała Stałego Wydział Fizyki Technicznej i Matematyki Stosowanej POLITECHNIKA GDAŃSKA Centrum Zawansowanych Technologii Pomorze ul. Al. Zwycięstwa 27 80-233

Bardziej szczegółowo

ELEKTROCHEMIA CIAŁA STAŁEGO

ELEKTROCHEMIA CIAŁA STAŁEGO ELEKTROCHEMIA CIAŁA STAŁEGO Wykład Ogniwa galwaniczne 1 2015-04-25 HISTORIA Prawdopodobnie pierwsze ogniwa galwaniczne były znane już w III w p.n.e. Pierwszym odkrytym ogniwem było znalezisko z 1936 r.

Bardziej szczegółowo

WARSZTATY olimpijskie. Co już było: Atomy i elektrony Cząsteczki i wiązania Stechiometria Gazy, termochemia Równowaga chemiczna Kinetyka

WARSZTATY olimpijskie. Co już było: Atomy i elektrony Cząsteczki i wiązania Stechiometria Gazy, termochemia Równowaga chemiczna Kinetyka WARSZTATY olimpijskie Co już było: Atomy i elektrony Cząsteczki i wiązania Stechiometria Gazy, termochemia Równowaga chemiczna inetyka WARSZTATY olimpijskie Co będzie: Data Co robimy 1 XII 2016 wasy i

Bardziej szczegółowo

Część 3. Magazynowanie energii. Akumulatory Układy ładowania

Część 3. Magazynowanie energii. Akumulatory Układy ładowania Część 3 Magazynowanie energii Akumulatory Układy ładowania Technologie akumulatorów Najszersze zastosowanie w dużych systemach fotowoltaicznych znajdują akumulatory kwasowo-ołowiowe (lead-acid batteries)

Bardziej szczegółowo

Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej

Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej Zagadnienia z chemii na egzamin wstępny kierunek Technik Farmaceutyczny Szkoła Policealna im. J. Romanowskiej 1) Podstawowe prawa i pojęcia chemiczne 2) Roztwory (zadania rachunkowe zbiór zadań Pazdro

Bardziej szczegółowo

INDEKS ALFABETYCZNY 119 60050-482 CEI:2004

INDEKS ALFABETYCZNY 119 60050-482 CEI:2004 119 60050-482 CEI:2004 INDEKS ALFABETYCZNY A aktywacja aktywacja... 482-01-19 aktywacyjny polaryzacja aktywacyjna... 482-03-05 aktywny materiał aktywny... 482-02-33 mieszanina materiałów aktywnych... 482-02-34

Bardziej szczegółowo

III Podkarpacki Konkurs Chemiczny 2010/2011. ETAP I r. Godz Zadanie 1

III Podkarpacki Konkurs Chemiczny 2010/2011. ETAP I r. Godz Zadanie 1 III Podkarpacki Konkurs Chemiczny 2010/2011 KOPKCh ETAP I 22.10.2010 r. Godz. 10.00-12.00 Zadanie 1 1. Jon Al 3+ zbudowany jest z 14 neutronów oraz z: a) 16 protonów i 13 elektronów b) 10 protonów i 13

Bardziej szczegółowo

OBWODY PRĄDU STAŁEGO. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

OBWODY PRĄDU STAŁEGO. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego OBWODY PRĄDU STAŁEGO Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Elektrotechnika - dział techniki zajmujący się praktycznym zastosowaniem wiedzy

Bardziej szczegółowo

Elektrochemia Wydział SiMR, kierunek IPEiH II rok I stopnia studiów, semestr IV. Treść wykładu

Elektrochemia Wydział SiMR, kierunek IPEiH II rok I stopnia studiów, semestr IV. Treść wykładu Elektrochemia Wydział SiMR, kierunek IPEiH II rok I stopnia studiów, semestr IV dr inż. Leszek Niedzicki Sprawy organizacyjne 30 godzin wykładu Zaliczenie na ostatnim wykładzie Poprawa (jeśli będzie potrzebna)

Bardziej szczegółowo

Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek

Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek strona 1/11 Zadania powtórkowe do egzaminu maturalnego z chemii Wiązania chemiczne, budowa cząsteczek Monika Gałkiewicz Zad. 1 () Podaj wzory dwóch dowolnych kationów i dwóch dowolnych anionów posiadających

Bardziej szczegółowo

Superkondensatory. 1. Budowa, zasada działania, modele fizyczne 2. Materiały stosowane w superkondensatorach 3. Zastosowania

Superkondensatory. 1. Budowa, zasada działania, modele fizyczne 2. Materiały stosowane w superkondensatorach 3. Zastosowania Superkondensatory 1. Budowa, zasada działania, modele fizyczne 2. Materiały stosowane w superkondensatorach 3. Zastosowania Kondensatory Pojemność elektryczna C = Q U U = D 0 E( x) dx Kondensator płaski

Bardziej szczegółowo

HYDROLIZA SOLI. 1. Hydroliza soli mocnej zasady i słabego kwasu. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco:

HYDROLIZA SOLI. 1. Hydroliza soli mocnej zasady i słabego kwasu. Przykładem jest octan sodu, dla którego reakcja hydrolizy przebiega następująco: HYDROLIZA SOLI Hydroliza to reakcja chemiczna zachodząca między jonami słabo zdysocjowanej wody i jonami dobrze zdysocjowanej soli słabego kwasu lub słabej zasady. Reakcji hydrolizy mogą ulegać następujące

Bardziej szczegółowo

P r a c a d y p l o m o w a m a g i s t e r ska

P r a c a d y p l o m o w a m a g i s t e r ska AKADEMIA GÓRNICZO - HUTNICZA im. Stanisława Staszica w Krakowie WYDZIAŁ ENERGETYKI I PALIW P r a c a d y p l o m o w a m a g i s t e r ska Imię i nazwisko: Kierunek studiów: Łukasz Kondracki Energetyka

Bardziej szczegółowo

Czym się różni ciecz od ciała stałego?

Czym się różni ciecz od ciała stałego? Szkła Czym się różni ciecz od ciała stałego? gęstość Czy szkło to ciecz czy ciało stałe? Szkło powstaje w procesie chłodzenia cieczy. Czy szkło to ciecz przechłodzona? kryształ szkło ciecz przechłodzona

Bardziej szczegółowo

Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr.

Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr. Zadanie 1. (2 pkt) Określ, na podstawie różnicy elektroujemności pierwiastków, typ wiązania w związkach: KBr i HBr. Typ wiązania w KBr... Typ wiązania w HBr... Zadanie 2. (2 pkt) Oceń poprawność poniższych

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

Tlen. Występowanie i odmiany alotropowe Otrzymywanie tlenu Właściwości fizyczne i chemiczne Związki tlenu tlenki, nadtlenki i ponadtlenki

Tlen. Występowanie i odmiany alotropowe Otrzymywanie tlenu Właściwości fizyczne i chemiczne Związki tlenu tlenki, nadtlenki i ponadtlenki Tlen Występowanie i odmiany alotropowe Otrzymywanie tlenu Właściwości fizyczne i chemiczne Związki tlenu tlenki, nadtlenki i ponadtlenki Ogólna charakterystyka tlenowców Tlenowce: obejmują pierwiastki

Bardziej szczegółowo

Wewnętrzna budowa materii - zadania

Wewnętrzna budowa materii - zadania Poniższe zadania rozwiąż na podstawie układu okresowego. Zadanie 1 Oceń poprawność poniższych zdań, wpisując P, gdy zdanie jest prawdziwe oraz F kiedy ono jest fałszywe. Stwierdzenie Atom potasu posiada

Bardziej szczegółowo

Ogniwo paliwowe typu PEM (ang. PEM-FC)

Ogniwo paliwowe typu PEM (ang. PEM-FC) OPRACOWALI: MGR INŻ. JAKUB DŁUGOSZ MGR INŻ. MARCIN MICHALSKI OGNIWA PALIWOWE I PRODUKCJA WODORU LABORATORIUM I- ZASADA DZIAŁANIA SYSTEMU OGNIW PALIWOWYCH TYPU PEM NA PRZYKŁADZIE SYSTEMU NEXA 1,2 kw II-

Bardziej szczegółowo

Akademickie Centrum Czystej Energii. Ogniwo paliwowe

Akademickie Centrum Czystej Energii. Ogniwo paliwowe Ogniwo paliwowe 1. Zagadnienia elektroliza, prawo Faraday a, pierwiastki galwaniczne, ogniwo paliwowe 2. Opis Główną częścią ogniwa paliwowego PEM (Proton Exchange Membrane) jest membrana złożona z katody

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Zarządzanie i Inżynieria Produkcji Chemia procesów pozyskiwania energii Chemistry of energy receiving processes Kod przedmiotu: ZIP.PK.O.4.4. Rodzaj przedmiotu: przedmiot z

Bardziej szczegółowo

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2270900. (96) Data i numer zgłoszenia patentu europejskiego: 15.06.2010 10354030.

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2270900. (96) Data i numer zgłoszenia patentu europejskiego: 15.06.2010 10354030. RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2270900 Urząd Patentowy Rzeczypospolitej Polskiej (96) Data i numer zgłoszenia patentu europejskiego: 15.06.2010 10354030.8

Bardziej szczegółowo

SOFC. Historia. Elektrochemia. Elektroceramika. Elektroceramika WYKONANIE. Christian Friedrich Schönbein, Philosophical Magazine,1839

SOFC. Historia. Elektrochemia. Elektroceramika. Elektroceramika WYKONANIE. Christian Friedrich Schönbein, Philosophical Magazine,1839 Historia IDEA WYKONANIE Jeżeli przepływ prądu powoduje rozkład wody na tlen i wodór to synteza wody, w odpowiednich warunkach musi prowadzić do powstania różnicy potencjałów. Christian Friedrich Schönbein,

Bardziej szczegółowo

ELEKTROGRAWIMETRIA. Zalety: - nie trzeba strącać, płukać, sączyć i ważyć; - osad czystszy. Wady: mnożnik analityczny F = 1.

ELEKTROGRAWIMETRIA. Zalety: - nie trzeba strącać, płukać, sączyć i ważyć; - osad czystszy. Wady: mnożnik analityczny F = 1. Zasada oznaczania polega na wydzieleniu analitu w procesie elektrolizy w postaci osadu na elektrodzie roboczej (katodzie lub anodzie) i wagowe oznaczenie masy osadu z przyrostu masy elektrody Zalety: -

Bardziej szczegółowo

SUPERKONDENSATORY JAKO MATERIAŁY DO MAGAZYNOWANIA ENERGII

SUPERKONDENSATORY JAKO MATERIAŁY DO MAGAZYNOWANIA ENERGII 71 SUPERKONDENSATORY JAKO MATERIAŁY DO MAGAZYNOWANIA ENERGII prof. dr hab. Anna Lisowska-Oleksiak / Politechnika Gdańska dr inż. Andrzej P. Nowak / Politechnika Gdańska mgr inż. Monika Wilamowska / Politechnika

Bardziej szczegółowo

TYPY REAKCJI CHEMICZNYCH

TYPY REAKCJI CHEMICZNYCH 1 REAKCJA CHEMICZNA: TYPY REAKCJI CHEMICZNYCH REAKCJĄ CHEMICZNĄ NAZYWAMY PROCES, W WYNIKU KTÓREGO Z JEDNYCH SUBSTANCJI POWSTAJĄ NOWE (PRODUKTY) O INNYCH WŁAŚCIWOŚCIACH NIŻ SUBSTANCJE WYJŚCIOWE (SUBSTRATY)

Bardziej szczegółowo

Badania elektrochemiczne. Analiza krzywych potencjodynamicznych.

Badania elektrochemiczne. Analiza krzywych potencjodynamicznych. Katedra Mechaniki i Inżynierii Materiałowej Badania elektrochemiczne. Analiza krzywych potencjodynamicznych. mgr inż. Anna Zięty promotor: dr hab. inż. Jerzy Detyna, prof. nadzw. Pwr Wrocław, dn. 25.11.2015r.

Bardziej szczegółowo

Laboratorium ogniw paliwowych i produkcji wodoru

Laboratorium ogniw paliwowych i produkcji wodoru Instrukcja System ogniw paliwowych typu PEM, opr. M. Michalski, J. Długosz; Wrocław 2014-12-03, str. 1 Laboratorium ogniw paliwowych i produkcji wodoru System ogniw paliwowych typu PEM Instrukcja System

Bardziej szczegółowo

HAZE BATTERY Company Ltd. Akumulatory ołowiowo kwasowe szczelne żelowe 15 letnie monobloki 2V. seria HZY-ŻELOWE

HAZE BATTERY Company Ltd. Akumulatory ołowiowo kwasowe szczelne żelowe 15 letnie monobloki 2V. seria HZY-ŻELOWE HAZE BATTERY Company Ltd Akumulatory ołowiowo kwasowe szczelne żelowe 15 letnie monobloki 2V seria HZY-ŻELOWE KONSTRUKCJA - Siatki płyt dodatnich i ujemnych odlewane są z ołowiuwapniowo-cynowego, aby zredukować

Bardziej szczegółowo

Zielone rozpuszczalniki ciecze jonowe

Zielone rozpuszczalniki ciecze jonowe Zielone rozpuszczalniki ciecze jonowe VIII Studenckie Spotkania Analityczne 03.2007 Wykonała: a: Agnieszka Tomasik Zielona chemia W ostatnich latach wzrosło o zainteresowanie zieloną chemią, czyli chemią

Bardziej szczegółowo

Nanokompozytowe polikrzemianowe materiały katodowe dla nowej generacji akumulatorów litowych. Michał Świętosławski

Nanokompozytowe polikrzemianowe materiały katodowe dla nowej generacji akumulatorów litowych. Michał Świętosławski Uniwersytet Jagielloński Wydział Chemii Zakład Technologii Chemicznej Autoreferat rozprawy doktorskiej Nanokompozytowe polikrzemianowe materiały katodowe dla nowej generacji akumulatorów litowych Michał

Bardziej szczegółowo

Repetytorium z wybranych zagadnień z chemii

Repetytorium z wybranych zagadnień z chemii Repetytorium z wybranych zagadnień z chemii Mol jest to liczebność materii występująca, gdy liczba cząstek (elementów) układu jest równa liczbie atomów zawartych w masie 12 g węgla 12 C (równa liczbie

Bardziej szczegółowo

Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph

Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph Temat 7. Równowagi jonowe w roztworach słabych elektrolitów, stała dysocjacji, ph Dysocjacja elektrolitów W drugiej połowie XIX wieku szwedzki chemik S.A. Arrhenius doświadczalnie udowodnił, że substancje

Bardziej szczegółowo

OGNIWA GALWANICZNE I SZREG NAPIĘCIOWY METALI ELEKTROCHEMIA

OGNIWA GALWANICZNE I SZREG NAPIĘCIOWY METALI ELEKTROCHEMIA 1 OGNIWA GALWANICZNE I SZREG NAPIĘCIOWY METALI ELEKTROCHEMIA PRZEMIANY CHEMICZNE POWODUJĄCE PRZEPŁYW PRĄDU ELEKTRYCZNEGO. PRZEMIANY CHEMICZNE WYWOŁANE PRZEPŁYWEM PRĄDU. 2 ELEKTROCHEMIA ELEKTROCHEMIA dział

Bardziej szczegółowo

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie Podstawy chemii dr hab. Wacław Makowski Wykład 1: Wprowadzenie Wspomnienia ze szkoły Elementarz (powtórka z gimnazjum) Układ okresowy Dalsze wtajemniczenia (liceum) Program zajęć Podręczniki Wydział Chemii

Bardziej szczegółowo

Opracowała: mgr inż. Ewelina Nowak

Opracowała: mgr inż. Ewelina Nowak Materiały dydaktyczne na zajęcia wyrównawcze z chemii dla studentów pierwszego roku kierunku zamawianego Inżynieria Środowiska w ramach projektu Era inżyniera pewna lokata na przyszłość Opracowała: mgr

Bardziej szczegółowo

EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ

EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ Studia Podyplomowe EFEKTYWNE UŻYTKOWANIE ENERGII ELEKTRYCZNEJ w ramach projektu Śląsko-Małopolskie Centrum Kompetencji Zarządzania Energią Elektrochemiczne zasobniki energii dr hab. inż. Piotr Tomczyk,

Bardziej szczegółowo

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os.

Chemia nieorganiczna. Pierwiastki. niemetale Be. 27 Co. 28 Ni. 26 Fe. 29 Cu. 45 Rh. 44 Ru. 47 Ag. 46 Pd. 78 Pt. 76 Os. Chemia nieorganiczna 1. Układ okresowy metale i niemetale 2. Oddziaływania inter- i intramolekularne 3. Ciała stałe rodzaje sieci krystalicznych 4. Przewodnictwo ciał stałych Copyright 2000 by Harcourt,

Bardziej szczegółowo

Podstawy elektrochemii i korozji

Podstawy elektrochemii i korozji Podstawy elektrochemii i korozji wykład dla III roku kierunków chemicznych Wykład I Zakład lektroanalizy i lektrochemii Uniwersytet Łódzki Dr Paweł Krzyczmonik luty 216 1 Plan dzisiejszego wykładu 1. Wstęp

Bardziej szczegółowo

ĆWICZENIE 3. Zjawisko interkalacji i efekt elektrochromowy

ĆWICZENIE 3. Zjawisko interkalacji i efekt elektrochromowy ĆWICZENIE 3 Zjawisko interkalacji i efekt elektrochromowy Instrukcja zawiera: 1. Cel ćwiczenia 2. Wprowadzenie teoretyczne; definicje i wzory 3. Opis wykonania ćwiczenia 4. Sposób przygotowania sprawozdania

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.

Bardziej szczegółowo

Wodorotlenki. n to liczba grup wodorotlenowych w cząsteczce wodorotlenku (równa wartościowości M)

Wodorotlenki. n to liczba grup wodorotlenowych w cząsteczce wodorotlenku (równa wartościowości M) Wodorotlenki Definicja - Wodorotlenkami nazywamy związki chemiczne, zbudowane z kationu metalu (zazwyczaj) (M) i anionu wodorotlenowego (OH - ) Ogólny wzór wodorotlenków: M(OH) n M oznacza symbol metalu.

Bardziej szczegółowo

Część I: Podstawowe prawa chemiczne i budowa materii... 11 Urszula Lelek-Borkowska

Część I: Podstawowe prawa chemiczne i budowa materii... 11 Urszula Lelek-Borkowska Spis treści Część I: Podstawowe prawa chemiczne i budowa materii... 11 Urszula Lelek-Borkowska 1. Podstawowe prawa i pojęcia chemiczne... 13 1.1. Historia... 13 1.2. Pierwiastek, związek chemiczny, mieszanina...

Bardziej szczegółowo

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE

CHEMIA I GIMNAZJUM WYMAGANIA PODSTAWOWE WYMAGANIA PODSTAWOWE wskazuje w środowisku substancje chemiczne nazywa sprzęt i szkło laboratoryjne opisuje podstawowe właściwości substancji będących głównymi składnikami stosowanych na co dzień produktów

Bardziej szczegółowo

Fragmenty Działu 7 z Tomu 1 REAKCJE UTLENIANIA I REDUKCJI

Fragmenty Działu 7 z Tomu 1 REAKCJE UTLENIANIA I REDUKCJI Fragmenty Działu 7 z Tomu 1 REAKCJE UTLENIANIA I REDUKCJI Zadanie 726 (1 pkt.) V/2006/A1 Konfigurację elektronową atomu glinu w stanie podstawowym można przedstawić następująco: 1s 2 2s 2 2p 6 3s 2 3p

Bardziej szczegółowo

WYKŁAD 13 Przewodnictwo roztworów elektrolitów. Konduktometria nanotechnologia II rok 1

WYKŁAD 13 Przewodnictwo roztworów elektrolitów. Konduktometria nanotechnologia II rok 1 WYKŁAD 13 Przewodnictwo roztworów elektrolitów. Konduktometria 2013-06-03 nanotechnologia II rok 1 Przewodnictwo elektrolitów Skąd wiadomo, że w roztworach wodnych elektrolitów istnieją jony? Eksperymenty

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE. Ćwiczenie nr 2 Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya. LABOATOIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr Temat: Wyznaczenie współczynnika elektrochemicznego i stałej Faradaya.. Wprowadzenie Proces rozpadu drobin związków chemicznych

Bardziej szczegółowo

Wewnętrzna budowa materii

Wewnętrzna budowa materii Atom i układ okresowy Wewnętrzna budowa materii Atom jest zbudowany z jądra atomowego oraz krążących wokół niego elektronów. Na jądro atomowe składają się protony oraz neutrony, zwane wspólnie nukleonami.

Bardziej szczegółowo

Moduł: Chemia. Fundamenty. Liczba godzin. Nr rozdziału Tytuł. Temat lekcji. Rozdział 1. Przewodnik po chemii (12 godzin)

Moduł: Chemia. Fundamenty. Liczba godzin. Nr rozdziału Tytuł. Temat lekcji. Rozdział 1. Przewodnik po chemii (12 godzin) Rozkład materiału z chemii w klasie II LO zakres rozszerzony Chemia. Fundamenty. Krzysztof Pazdro, wyd. Oficyna Edukacyjna Krzysztof Pazdro Sp. z o.o.. nr dopuszczenia 565//0 Chemia. i związki nieorganiczne.

Bardziej szczegółowo

Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII

Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII Fragmenty Działu 8 z Tomu 1 PODSTAWY ELEKTROCHEMII O G N I W A Zadanie 867 (2 pkt.) Wskaż procesy, jakie zachodzą podczas pracy ogniwa niklowo-srebrowego. Katoda Anoda Zadanie 868* (4 pkt.) W wodnym roztworze

Bardziej szczegółowo

POWTÓRKA Z ELEKTROCHEMII

POWTÓRKA Z ELEKTROCHEMII POWTÓRKA Z ELEKTROCHEMII Podstawowe pojęcia Zanim sprawdzisz swoje umiejętności i wiadomości z elektrochemii, przypomnij sobie podstawowe pojęcia: Stopień utlenienia pierwiastka to liczba elektronów, jaką

Bardziej szczegółowo

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach 1 STECHIOMETRIA INTERPRETACJA ILOŚCIOWA ZJAWISK CHEMICZNYCH relacje ilościowe ( masowe,objętościowe i molowe ) dotyczące połączeń 1. pierwiastków w związkach chemicznych 2. związków chemicznych w reakcjach

Bardziej szczegółowo

metody nanoszenia katalizatorów na struktury Metalowe

metody nanoszenia katalizatorów na struktury Metalowe metody nanoszenia katalizatorów na struktury Metalowe mgr inż. Ewelina Piwowarczyk Uniwersytet Jagielloński Wydział Chemii 1 Metody nanoszenia katalizatorów na struktury Metalowe Katalizatory na nośniku

Bardziej szczegółowo

Test diagnostyczny. Dorota Lewandowska, Lidia Wasyłyszyn, Anna Warchoł. Część A (0 5) Standard I

Test diagnostyczny. Dorota Lewandowska, Lidia Wasyłyszyn, Anna Warchoł. Część A (0 5) Standard I strona 1/9 Test diagnostyczny Dorota Lewandowska, Lidia Wasyłyszyn, Anna Warchoł Część A (0 5) Standard I 1. Przemianą chemiczną nie jest: A. mętnienie wody wapiennej B. odbarwianie wody bromowej C. dekantacja

Bardziej szczegółowo

IX Podkarpacki Konkurs Chemiczny 2016/2017. ETAP I r. Godz Zadanie 1 (11 pkt)

IX Podkarpacki Konkurs Chemiczny 2016/2017. ETAP I r. Godz Zadanie 1 (11 pkt) IX Podkarpacki Konkurs Chemiczny 016/017 ETAP I 10.11.016 r. Godz. 10.00-1.00 Uwaga! Masy molowe pierwiastków podano na końcu zestawu. KOPKCh Zadanie 1 (1) 1. Liczba elektronów walencyjnych w atomach bromu

Bardziej szczegółowo

1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru

1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru 1. Określ liczbę wiązań σ i π w cząsteczkach: wody, amoniaku i chloru 2. Na podstawie struktury cząsteczek wyjaśnij dlaczego N 2 jest bierny a Cl 2 aktywny chemicznie? 3. Które substancje posiadają budowę

Bardziej szczegółowo

Wykład 5 Fotodetektory, ogniwa słoneczne

Wykład 5 Fotodetektory, ogniwa słoneczne Wykład 5 Fotodetektory, ogniwa słoneczne 1 Generacja optyczna swobodnych nośników Fotoprzewodnictwo σ=e(µ e n+µ h p) Fotodioda optyczna generacja par elektron-dziura pole elektryczne złącza rozdziela parę

Bardziej szczegółowo

Budowę ogniwa galwanicznego opiszemy na przykładzie ogniwa glinowo- -srebrowego, które przedstawiono na Rysunku 1.

Budowę ogniwa galwanicznego opiszemy na przykładzie ogniwa glinowo- -srebrowego, które przedstawiono na Rysunku 1. 2.1.1. Budowa ogniwa galwanicznego Budowę ogniwa galwanicznego opiszemy na przykładzie ogniwa glinowo- -srebrowego, które przedstawiono na Rysunku 1. Rysunek 1. Budowa ogniwa galwanicznego na przykładzie

Bardziej szczegółowo

11) Stan energetyczny elektronu w atomie kwantowanym jest zespołem : a dwóch liczb kwantowych b + czterech liczb kwantowych c nie jest kwantowany

11) Stan energetyczny elektronu w atomie kwantowanym jest zespołem : a dwóch liczb kwantowych b + czterech liczb kwantowych c nie jest kwantowany PYTANIA EGZAMINACYJNE Z CHEMII OGÓLNEJ I Podstawowe pojęcia chemiczne 1) Pierwiastkiem nazywamy : a zbiór atomów o tej samej liczbie masowej b + zbiór atomów o tej samej liczbie atomowej c zbiór atomów

Bardziej szczegółowo

Zadanie 2. (1 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne tlenków w odpowiednie kolumny. CrO CO 2 Fe 2 O 3 BaO SO 3 NO Cu 2 O

Zadanie 2. (1 pkt) Uzupełnij tabelę, wpisując wzory sumaryczne tlenków w odpowiednie kolumny. CrO CO 2 Fe 2 O 3 BaO SO 3 NO Cu 2 O Test maturalny Chemia ogólna i nieorganiczna Zadanie 1. (1 pkt) Uzupełnij zdania. Pierwiastek chemiczny o liczbie atomowej 16 znajduje się w.... grupie i. okresie układu okresowego pierwiastków chemicznych,

Bardziej szczegółowo

Podstawy elektrochemii i korozji Ćwiczenie 5. Korozja. Diagramy Pourbaix. Krzywe polaryzacyjne. Wyznaczanie parametrów procesów korozji.

Podstawy elektrochemii i korozji Ćwiczenie 5. Korozja. Diagramy Pourbaix. Krzywe polaryzacyjne. Wyznaczanie parametrów procesów korozji. Podstawy elektrochemii i korozji Ćwiczenie 5 Korozja Diagramy Pourbaix. Krzywe polaryzacyjne. Wyznaczanie parametrów procesów korozji. O zachowaniu metalu w środowisku korozyjnym (jego odporności, korozji

Bardziej szczegółowo

Potas. Sód

Potas. Sód Sód Potas Konfiguracja elektronowa i elektroujemność Wszystkie litowce posiadają jeden elektron walencyjny i dlatego tworzą jony typu M +, na przykład: Na +, K +. Jeden elektron walencyjny litowców znajduje

Bardziej szczegółowo

Chemia Wydział SiMR, kierunek IPEiH I rok I stopnia studiów, semestr I. Chemia nieorganiczna. Stopień utlenienia. Stopień utlenienia.

Chemia Wydział SiMR, kierunek IPEiH I rok I stopnia studiów, semestr I. Chemia nieorganiczna. Stopień utlenienia. Stopień utlenienia. -- Chemia Wydział SiMR, kierunek IPEiH I rok I stopnia studiów, semestr I dr inż. Leszek Niedzicki Chemia nieorganiczna Drobina Drobiną nazywamy proste układy atomów tj.: atom (zwykle metalu np. Cu, Na,

Bardziej szczegółowo

Badanie utleniania kwasu mrówkowego na stopach trójskładnikowych Pt-Rh-Pd

Badanie utleniania kwasu mrówkowego na stopach trójskładnikowych Pt-Rh-Pd Badanie utleniania kwasu mrówkowego na stopach trójskładnikowych Pt-Rh-Pd Kamil Wróbel Pracownia Elektrochemicznych Źródeł Energii Kierownik pracy: prof. dr hab. A. Czerwiński Opiekun pracy: dr M. Chotkowski

Bardziej szczegółowo

Synteza Nanoproszków Metody Chemiczne II

Synteza Nanoproszków Metody Chemiczne II Synteza Nanoproszków Metody Chemiczne II Bottom Up Metody chemiczne Wytrącanie, współstrącanie, Mikroemulsja, Metoda hydrotermalna, Metoda solwotermalna, Zol-żel, Synteza fotochemiczna, Synteza sonochemiczna,

Bardziej szczegółowo

Laboratorium inżynierii materiałowej LIM

Laboratorium inżynierii materiałowej LIM Laboratorium inżynierii materiałowej LIM wybrane zagadnienia fizyki ciała stałego czyli skrót skróconego skrótu dr hab. inż.. Ryszard Pawlak, P prof. PŁP Fizyka Ciała Stałego I. Wstęp Związki Fizyki Ciała

Bardziej szczegółowo

XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego. II Etap - 18 stycznia 2016

XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego. II Etap - 18 stycznia 2016 XIV Konkurs Chemiczny dla uczniów gimnazjum województwa świętokrzyskiego II Etap - 18 stycznia 2016 Nazwisko i imię ucznia: Liczba uzyskanych punktów: Drogi Uczniu, przeczytaj uważnie instrukcję i postaraj

Bardziej szczegółowo

Wybrane Działy Fizyki

Wybrane Działy Fizyki Wybrane Działy Fizyki energia elektryczna i jadrowa W. D ebski 25.11.2009 Rodzaje energii energia mechaniczna energia cieplna (chemiczna) energia elektryczna energia jadrowa debski@igf.edu.pl: W5-1 WNZ

Bardziej szczegółowo

Szkło kuloodporne: składa się z wielu warstw różnych materiałów, połączonych ze sobą w wysokiej temperaturze. Wzmacnianie szkła

Szkło kuloodporne: składa się z wielu warstw różnych materiałów, połączonych ze sobą w wysokiej temperaturze. Wzmacnianie szkła Wzmacnianie szkła Laminowanie szkła. Są dwa sposoby wytwarzania szkła laminowanego: 1. Jak na zdjęciach, czyli umieszczenie polimeru pomiędzy warstwy szkła i sprasowanie całego układu; polimer (PVB ma

Bardziej szczegółowo

Ważne pojęcia. Stopień utlenienia. Utleniacz. Reduktor. Utlenianie (dezelektronacja)

Ważne pojęcia. Stopień utlenienia. Utleniacz. Reduktor. Utlenianie (dezelektronacja) Ważne pojęcia Stopień utlenienia Utleniacz Reduktor Utlenianie (dezelektronacja) Stopień utlenienia pierwiastka w dowolnym połączeniu chemicznym jest pojęciem umownym i określa ładunek, który istniałby

Bardziej szczegółowo

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela

Bardziej szczegółowo

CATA ASPEKTY TECHNICZNE WYKORZYSTANIA TECHNOLOGII MAGAZYNOWANIA ENERGII. Centrum Zastosowań Zaawansowanych Technologii MIECZYSŁAW KWIATKOWSKI

CATA ASPEKTY TECHNICZNE WYKORZYSTANIA TECHNOLOGII MAGAZYNOWANIA ENERGII. Centrum Zastosowań Zaawansowanych Technologii MIECZYSŁAW KWIATKOWSKI CATA Centrum Zastosowań Zaawansowanych Technologii ASPEKTY TECHNICZNE WYKORZYSTANIA TECHNOLOGII MAGAZYNOWANIA ENERGII MIECZYSŁAW KWIATKOWSKI CELE WYKORZYSTYWANIA TECHNOLOGII MAGAZYNOWANIA ENERGII 1. Technologie

Bardziej szczegółowo

Katedra Inżynierii Materiałowej

Katedra Inżynierii Materiałowej Katedra Inżynierii Materiałowej Instrukcja do ćwiczenia z Biomateriałów Polaryzacyjne badania korozyjne mgr inż. Magdalena Jażdżewska Gdańsk 2010 Korozyjne charakterystyki stałoprądowe (zależności potencjał

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA

SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA SZYBKOŚĆ REAKCJI CHEMICZNYCH. RÓWNOWAGA CHEMICZNA Zadania dla studentów ze skryptu,,obliczenia z chemii ogólnej Wydawnictwa Uniwersytetu Gdańskiego 1. Reakcja między substancjami A i B zachodzi według

Bardziej szczegółowo

litowce -Występowanie i otrzymywanie potasu -Właściwości fizyczne i chemiczne potasu -Ważniejsze związki potasu

litowce -Występowanie i otrzymywanie potasu -Właściwości fizyczne i chemiczne potasu -Ważniejsze związki potasu Litowce potas i pozostałe litowce -Występowanie i otrzymywanie potasu -Właściwości fizyczne i chemiczne potasu -Ważniejsze związki potasu Występowanie potasu i otrzymywanie Występowanie: występuje wyłącznie

Bardziej szczegółowo

Wrocław dn. 18 listopada 2005 roku

Wrocław dn. 18 listopada 2005 roku Piotr Chojnacki IV rok, informatyka chemiczna Liceum Ogólnokształcące Nr I we Wrocławiu Wrocław dn. 18 listopada 2005 roku Temat lekcji: Zjawisko korozji elektrochemicznej. Cel ogólny lekcji: Wprowadzenie

Bardziej szczegółowo

Wymagania programowe na poszczególne oceny. Chemia Kl.1. I. Substancje chemiczne i ich przemiany

Wymagania programowe na poszczególne oceny. Chemia Kl.1. I. Substancje chemiczne i ich przemiany Wymagania programowe na poszczególne oceny Chemia Kl.1 I. Substancje chemiczne i ich przemiany Ocena dopuszczająca [1] zna zasady bhp obowiązujące w pracowni chemicznej nazywa sprzęt i szkło laboratoryjne

Bardziej szczegółowo