Spis treści. I. Wiadomości wstępne... 3

Wielkość: px
Rozpocząć pokaz od strony:

Download "Spis treści. I. Wiadomości wstępne... 3"

Transkrypt

1 Spis treści I. Wiadomości wstępe... 3 II. Pojęcia ogóle wraz z twierdzeiami Jedostka urojoa Liczba zespoloa Iterpretacja geometrycza Moduł liczby zespoloej Liczba sprzęŝoa Rówość liczb zespoloych Postacie liczby zespoloej... 9 III. Działaia algebraicze a liczbach zespoloych Dodawaie i odejmowaie MoŜeie i dzieleie Potęgowaie i pierwiastkowaie IV. Zadaia a liczbach zespoloych V. Odpowiedzi Bibliografia... 16

2 I. WIADOMOŚCI WSTĘPNE Liczby zespoloe wprowadzoo w XVI w. Początkowo operowao imi - podobie jak liczbami rzeczywistymi - bez uzasadieia praw imi rządzących. Liczby zespoloe pojawiły się w związku z badaiami sposobów rozwiązań rówań algebraiczych trzeciego i czwartego stopia. Otrzymao miaowicie wzory wyraŝające pierwiastki rówań tych stopi za pomocą działań i 3 a współczyikach rówań. Okazało się, Ŝe moŝa rozwiązać tymi wzorami rówaie trzeciego stopia, mające trzy róŝe pierwiastki rzeczywiste, tylko wtedy, gdy umie się obliczyć 1. Oczywiście, w zakresie liczby do tego okresu zaych, pierwiastek kwadratowy z ( 1) ie istiał. Niemiej, iektórzy z matematyków załoŝyli jego istieie i azwali go,,liczbą urojoą, a poprzedio zae liczby azwali liczbami,,rzeczywistymi. Ozaczając 1 przez i, a zatem przyjmując, Ŝe i = 1, utworzoo owe,,liczby a+bi, które azywao liczbami zespoloymi i określao często formalie cztery działaia arytmetycze a,,liczbach. Arytmetyka liczb zespoloych ie doprowadziła do Ŝadych sprzeczości. L. Euler ( ) wprowadził je do aalizy matematyczej, powodując tym jej istoty postęp. Okazało się wówczas, Ŝe liczby zespoloe, mimo Ŝe brak im było uzasadieia logiczego, są waŝym arzędziem matematyczym dla badaia i opisu zjawisk fizyczych. Początek wieku XIX przyiósł ścisłe uzasadieia istieia liczb zespoloych. szczegółową teorię liczb zespoloych stworzyli C.F. Gauss ( ) i W.R. Hamilto ( ). Pierwszy ziterpretował liczby zespoloe jako pukt płaszczyzy, w której wprowadzoo pewe działaia, zwae dodawaiem i moŝeiem puktów,czyli liczb zespoloych. Drugi wprowadził liczby zespoloe jako pary liczb rzeczywistych i określił w pewie sposób moŝeie i dodawaie tych par. Oba uzasadieia są rówowaŝe, bowiem pukt płaszczyzy jest wyzaczoy przez parę liczb rzeczywistych (współrzędych). Obecie liczby zespoloe a rówi z liczbami rzeczywistymi, które moŝa traktować jako liczby zespoloe szczególego rodzaju, są iezbędym arzędziem matematyka, fizyka i iŝyiera w jego codzieej pracy.

3 II. POJĘCIA OGÓLNE WRAZ Z TWIERDZENIAMI 1.Jedostka urojoa Formalie określa się jedostką urojoą i( 1 ) jako liczbę, której kwadrat rówa się 1. Wprowadzeie jedostki urojoej prowadzi do uogólieia pojęcia liczby, miaowicie do liczby zespoloej..liczba zespoloa Postać ogóla liczby zespoloej: z= a+bi, gdzie a i b moŝe przybrać dowole wartości rzeczywiste. Liczbę a azywamy częścią rzeczywistą, a liczbę b - częścią urojoą liczby zespoloej a. Ozaczeia a= re z, b= im z ( ) Gdy b= 0, wtedy a= z (liczba rzeczywista jest szczególym przypadkiem liczby zespoloej): gdy a= 0, wtedy z= bi (liczba urojoa, szczególy przypadek liczby zespoloej). Defiicja 1. Ciałem liczb zespoloych azywamy kaŝde ciało K spełiające astępujące trzy waruki: 1. K zawiera ciało liczb rzeczywistych,. rówaie z = 1ma w ciele K rozwiązaie, 3. K jest ajmiejszym ciałem o własościach 1 i Liczbą zespoloą azywamy dowoly elemet ciała K Defiicja.Ciałem względem działań + i o, zwaych odpowiedio dodawaiem i moŝeiem, lub krótko -ciałem, azywamy kaŝdy zbiór K zawierają co ajmiej dwa elemety, w którym określoe są te działaia; działaia te mają astępujące właściwości wraz z dowodami: Dla dowolych dwóch elemetów z1, z K zachodzi 1. z + z = ( a + c, b + d) = ( c + a, b + d) = z + z, 1 1. z o z = ( ac bd, bc + ad) = ( ca db, cb + da) = z o z, 1 1 3

4 3. ( z1 + z ) + z3 = ( a + c, b + d) + ( e, f ) = ( a + c + e, b + d + f ) =, = ( a, b) + ( c + e, d + f ) = z + ( z + z ) ( z o z ) o z = ( ac bd, bc + da ) o ( e, f ) = 1 3 = ( ace bde bcf, bce + ade + acf bdf z o ( z o z ) = ( a, b) o ( ce df, de + cf ) = 1 3 = ( ace adf bde bcf, bce bdf + ade + acf ) wobec czego ( z o z ) o z z o ( z o z ) 5. ( z + z ) o z = a + c, b + d) o ( e, f ) = = = 1 3 = (( a + c) e ( b + d) f,( b + d) e + ( a + c) f ) = = ( ae + ce bf df, be + de + af + cf ) = = ( ae bf, be + af ) + ( ce df, de + cf ) = = ( z o z ) + ( z o z ) Niech (3) z1 + z = z gdzie z = (x, y). Zatem ( a + x, b + y) = ( c, d) więc a + x = c, b + y = d Stąd x = c a, y = d b Rówaie (3) ma więc co ajmiej jedo rozwiązaie (4) z = ( c a, d b) PoiewaŜ (4) jest-jak łatwo stwierdzić - rozwiązaiem rówaia (3), więc rówaie 3 ma dokładie jedo rozwiązaie. Ozaczamy je przez z z1 i azywamy róŝicą liczb zespoloych z i z 1. Z (4) otrzymujemy ( c, d) ( a, b) = ( c a, d b). 4

5 7.Liczba zespoloa θ = ( 0, 0) jest jedyym rozwiązaiem rówaia z + θ = z dla dowolej liczby zespoloej z. 8.Niech (5) z o z = z1 gdzie (6) z θ Waruek (6) ozacza, Ŝe obydwie liczby c, d ie są jedocześie zerami, więc c + d 0. Zatem c 0 lub d 0. Z (5) otrzymujemy cx dy = a, dx + cy = b moŝąc pierwsze z tych rówań przez c, a drugie przez d i dodając stroami otrzymujemy ( c + d ) x = ac + bd. skąd wobec (6) ac + bd x = c + d Aalogiczie otrzymujemy bc ad y = c + d Rówaie (5) ma zatem dokładie jedo rozwiązaie ac + bd bc ad (7) z =, c + d c + d Ozaczamy je przez z 1 i azywamy ilorazem liczby z z 1 i z. Udowodiliśmy zatem, Ŝe zbiór Z jest ciałem. Wiosek. Dla kaŝdej liczby zespoloej z z z = ( 1, 0 ) = ( a, b) róŝej od (0,0) 5

6 3.Iterpretacja geometrycza Niech day będzie a płaszczyźie prostokąty układ osi współrzędych. Między puktami tej płaszczyzy a liczbami zespoloymi zachodzi odpowiediość, a mocy której dowolemu puktowi M. o współrzędych a, b (M.(a, b )) odpowiada liczba zespoloa a + bi i liczbie a + bi, gdzie a i b są liczbami rzeczywistymi, odpowiada puktu o współrzędych a, b. Płaszczyzę, której puktom przyporządkowae zostały liczby zespoloe, azywamy płaszczyzą liczbową w zbiorze T puktów płaszczyzy liczbowej określamy dodawaie i moŝeie. JeŜeli M.=M.(a,b) i N=N(c, d) to M.+N=P., M.*N=Q, gdzie P.=P.(a+c, b+d), Q=Q (ac-bd, ad+bc) Puktom osi odciętych odpowiadają liczby rzeczywiste, a puktom osi rzędych -liczby urojoe; osie te azywamy odpowiedio osią rzeczywistą i osią urojoą....zauwaŝmy, Ŝe liczbie zespoloej z = a + bi odpowiada a płaszczyźie liczbowej pewie wektor, o początku w pukcie (0,0) i końcu w pukcie z i a odwrót, wektorowi o początku w pukcie (0,0) i końcu z odpowiada liczba zespoloa z. JeŜeli wektory u r u r 1, mają współrzęde odpowiedio rówe a 1, b 1 r r r i a, b to wektor u = u1 + u ma współrzęde a1 + a, b1 + b. Wektor odpowiadający puktowi z1 + z (tz. wektor o początku w pukcie (0,0) i końcu w pukcie z + z ) jest sumą wektorów odpowiadających puktom z 1, 1 6

7 z. Podobie wektor odpowiadający róŝicy puktów jest róŝicą wektorów odpowiadających tym puktom. 4.Moduł liczby zespoloej Defiicja 3.Modułem lub wartością bezwzględą liczby zespoloej a+bi azywamy liczbę rzeczywistą ie ujemą określoą wzorem z = a + b Wiosek Moduł liczby z rówa się odległości puktu z od początku układu współrzędych, tz. długości wektora Oz r. Przykład. Oblicz moduł z liczby 3 1 z = 3 + i = ( 3) + ( 1) = 4 = 7

8 5.Liczba sprzęŝoa Defiicja 4. Liczbę sprzęŝoą do liczby zespoloej z=a+bi azywamy liczbę z = a bi. Defiicja 5. Dwie liczby zespoloe azywamy sprzęŝoymi, jeŝeli mają części rzeczywiste rówe a części urojoe róŝią się zakiem. Wiosek. Pukty z i z są symetrycze względem osi OX (rzeczywistej) 6.Rówość liczb zespoloych Defiicja 6. Dwie pary (a, b) i (c, d) azywamy rówymi i piszemy (a, b)=(c, d) wtedy i tylko wtedy, gdy a= c i b= d Defiicja 7.Rówość z 1 z = 0 zachodzi wtedy i tylko wtedy, gdy z 1 = 0 lub z = 0. Dowód. JeŜeli z 1 0wówczas z rówości z 1 z = 0 otrzymujemy z wzoru (7) otrzymamy wówczas z = 0. 7.Postacie liczby zespoloej 1) Postać trygoometrycza. 0 =. Ze z Twierdzeie 1.KaŜda liczba zespoloa z moŝa przedstawić w postaci trygoometryczej i zapisać: z = z (cosϕ + i si ϕ ). Defiicja 8. Argumetem liczby zespoloej z=a+bi, z 0 azywamy kaŝdą liczbę rzeczywistą ϕ określoą rówaiami siϕ = b z 1 cosϕ = a z 8

9 Argumet liczby z ozaczamy przez arg z Jest o miarą kąta, jaki tworzy wektor r Oz z osią rzeczywistą arg z = ϕ + kπ Spośród argumetów tej samej liczby dokładie jede spełia waruek azywamy go argumetem główym tej liczby i ozaczamy przez Gra z Przykład. Zajdź argumet liczby 1 3i siϕ = = 3, cosϕ = = 1 π arg( 1 3i ) = + kπ 3 Przykład. Zapisz liczbę z=i+1 w postaci trygoometryczej. z = a + b = = 1 cosϕ = = ϕ = π 1 = = 4 siϕ π π z = (cos + si i) 4 4 ) Postać wykładicza. Często stosuje się astępującą postać zapisu liczby zespoloej z o module q i argumecie ϕ :a = qe ϕi jest to tzw. postać wykładicza liczby zespoloej Przykład. Przedstaw w postaci wykładiczej 1 + i 3. e 1 ( )πi 3 9

10 III. DZIAŁANIA ALGEBRAICZNE NA LICZBACH ZESPOLONYCH 1.Dodawaie i odejmowaie. Dodawaie i odejmowaie dwóch liczb określa się wzorami ( a + b i) + ( a + b i) = ( a + a ) + ( b + b ) i ( a1 + b1i ) ( a + bi) = ( a1 a ) + ( b1 b ) i.moŝeie i dzieleie. MoŜeie dwóch liczb określa się wzorem ( a1 + b1i ) ( a + bi) = ( a1a b1b ) + ( a1b + b1a ) i W postaci trygoometryczej: [ q1(cosϕ 1 isi 1) ][ q (cosϕ isi ϕ )] = q q cos( ϕ + ϕ ) + i si( ϕ + ϕ ) + + = [ ] Dzieleie dwóch liczb zespoloych określa się jako działaie odwrote do moŝeia. W postaci algebraiczej a1 + b1i a + bi Postać trygoometrycza = a a + b b 1 1 a + b + a b a b 1 1 a + b i q q (cosϕ + i si ϕ ) (cosϕ + i si ϕ ) q1 = + q [ cos( ϕ1 ϕ ) i si( ϕ1 ϕ )] 3.Potęgowaie i pierwiastkowaie. Potęgowaie liczby zespoloej do potęgi wykouje się według wzoru de Moivre a [ ] q(cosϕ + i si ϕ) = q (cosϕ + i si ϕ) tzw. podosi się moduł do potęgi, a argumet moŝy się przez. Wzór de Moivre a stosować moŝa przy całkowitym lub ułamkowym, dodatim lub ujemym. Przy ułamkowym aleŝy uwzględić wielozaczość wyiku. 10

11 k W szczególości mamy i = 1, i = i, i = 1i ogólie: i = i. Pierwiastkowaie to wyciągai pierwiastka stopia, jako działaie odwrote do potęgowaia, wykouje się według wzoru Moivre a dla ułamkowego wykładika potęgi, tz. jeŝeli a = q(cosϕ + i si ϕ ) oraz jest liczbą aturalą to ϕ + kπ ϕ + kπ (*) a = q(cos + i si ) UWAGA! Dodawaie, odejmowaie, moŝeie, dzieleie liczb zespoloych oraz podoszeie liczb zespoloych do potęgi o wykładiku całkowitym są działaiami jedozaczymi, atomiast wyciągaie pierwiastka stopia, gdzie jest liczbą aturalą, daje zawsze róŝych wartości. JeŜeli bowiem we wzorze (*) podstawiać będziemy k = 0, 1,,... 1, to arg a przybierać będzie wartości ϕ ϕ + π ϕ + 4π ϕ + ( 1) π,,,..., róŝiące się o π ; przy dalszych wartościach k wartość arg a będą się okresowo powtarzały. W iterpretacji geometryczej pukty przedstawiające a są wierzchołkami 6 - kąta foremego środek w bieguie (a rys. pokazao sześć wartości a ). Pierwiastek - tego stopia z jedyki. PoiewaŜ liczba jede moŝe być przedstawioa w formie trygoometryczej o o jako: 1 = cos0 + i si0, pierwiastek - tego stopia moŝe być otrzymay a podstawie wzoru z przez przyjęcie r = 1, ϑ = 0. 1 = cos π k + si π k gdzie k=0,1,, k 11

12 1

13 IV. ZADANIA Z LICZB ZESPOLONYCH 1)Oblicz a. b. ( 1 + i ) c. ( i ). 3 d. i e. 4 )WykaŜ prawdziwość toŝsamości: 1 + i tgϕ 1 ( ) = + i tgϕ 1 i tgϕ 1 i tgϕ 3)RozwiąŜ rówaie a. x + ix + 3 = 0 b. x 4x + 13 =

14 1) 1 3 a. ( + i ) 0 Liczbę zespoloą z 1 = + i 3 ODPOWIEDZI przedstawiamy w postaci trygoometryczej π π z = cos + i si 3 3. A więc 0 π π z = (cos + i si ) = cos π + i si π = π π = cos( 6π + π) + i si( 6π + π) = cos + i si = = + i. b. 10 π π 10 5 π π ( 1 + i) = [ (cos + i si )] = (cos + i si ) = 3i. 4 4 c ( i ) = [cos( π ) + i si( π )] = cosπ + i siπ = d. Moduł liczby i rówa się 1, a jedym z jej argumetów jest liczba ϕ = π. W myśl wzoru ϕ + π ϕ + π wk = z (cos + i si ), k = 0, 1,,..., 1,gdzie z ozacza pierwiastek arytmetyczy, mamy zatem π π 3 1 w0 = cos + i si = + i, w1 = cos π + i si π = + i, w = cos π + i si π = i

15 e. PoiewaŜ 4 = 4 jedyym argumetem -4 jest π, więc π π w0 = (cos + i si ) = i, 3 3 w1 = (cos π + i si π) = i. ) 1 + i tgϕ 1 ( ) = + i tgϕ 1 i tgϕ 1 i tgϕ PoiewaŜ 1 + itgϕ cosϕ + i siϕ = 1 itgϕ cosϕ i siϕ więc a mocy wzoru de Moivre a 1 + itgϕ cosϕ + i siϕ 1 ( ) = = + itgϕ 1 itgϕ cosϕ i siϕ 1 itgϕ 3) a. x + ix + 3 = 0 b. x = 16 = 4i x = 3i, x = i 1 + 4x + 13 = 0 = 36 = 6i x = 3i, x = + 3i, 1 15

16 Bibliografia 1. R. Leiter, W. śakowski Matematyka - kurs przygotowawczy a wyŝsze uczelie techicze. Wydawictwo Naukowo - Techicze Warszawa W. Jaowski, J. Kaczmarski Liczby i zmiee zespoloe. Wydawictwo Szkole i Pedagogicze Warszawa J.N.Brosztej, K.A. Siemiediajew Matematyka - Podręczik Ecyklopedyczy Państwowe Wydawictwo Naukowe Warszawa

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Wykłady z matematyki Liczby zespolone

Wykłady z matematyki Liczby zespolone Wykłady z matematyki Liczby zespolone Rok akademicki 015/16 UTP Bydgoszcz Liczby zespolone Wstęp Formalnie rzecz biorąc liczby zespolone to punkty na płaszczyźnie z działaniami zdefiniowanymi następująco:

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Przekształcenia całkowe. Wykład 1

Przekształcenia całkowe. Wykład 1 Przekształcenia całkowe Wykład 1 Przekształcenia całkowe Tematyka wykładów: 1. Liczby zespolone -wprowadzenie, - funkcja zespolona zmiennej rzeczywistej, - funkcja zespolona zmiennej zespolonej. 2. Przekształcenie

Bardziej szczegółowo

Moduł 4. Granica funkcji, asymptoty

Moduł 4. Granica funkcji, asymptoty Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae

Bardziej szczegółowo

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta

Funkcje trygonometryczne Moduł - dział -temat Funkcje trygonometry czne dowolnego kąta Fukcje trygoometrycze Moduł - dział -temat Fukcje trygoometry cze dowolego kąta 1 kąt w układzie współrzędych fukcje trygoometrycze dowolego kąta zaki trygoometryczych wartości trygoometryczych iektórych

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce!

Informatyka Stosowana-egzamin z Analizy Matematycznej Każde zadanie należy rozwiązać na oddzielnej, podpisanej kartce! Iformatyka Stosowaa-egzami z Aalizy Matematyczej Każde zadaie ależy rozwiązać a oddzielej, podpisaej kartce! y, Daa jest fukcja f (, + y, a) zbadać ciągłość tej fukcji f b) obliczyć (,) (, (, (,) c) zbadać,

Bardziej szczegółowo

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1 LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Zadania o liczbach zespolonych

Zadania o liczbach zespolonych Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i

Bardziej szczegółowo

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej

PŁASKA GEOMETRIA MAS. Środek ciężkości figury płaskiej PŁAKA GEOMETRIA MA Środek cężkośc fgury płaskej Mometam statyczym M x M y fgury płaskej względem os x lub y (rys. 7.1) azywamy gracę algebraczej sumy loczyów elemetarych pól d przez ch odległośc od os,

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac

Kongruencje Wykład 4. Kongruencje kwadratowe symbole Legendre a i Jac Kogruecje kwadratowe symbole Legedre a i Jacobiego Kogruecje Wykład 4 Defiicja 1 Kogruecję w ostaci x a (mod m), gdzie a m, azywamy kogruecją kwadratową; jej bardziej ogóla ostać ax + bx + c może zostać

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała

ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ. 1. Ciała ALGEBRA LINIOWA Z ELEMENTAMI GEOMETRII ANALITYCZNEJ WSHE, O/K-CE 1. Ciała Definicja 1. Układ { ; 0, 1; +, } złożony ze zbioru, dwóch wyróżnionych elementów 0, 1 oraz dwóch działań +:, : nazywamy ciałem

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

Metody numeryczne Laboratorium 5 Info

Metody numeryczne Laboratorium 5 Info Metody umerycze Laboratorium 5 Ifo Aproksymacja - proces określaia rozwiązań przybliżoych a podstawie rozwiązań zaych, które są bliskie rozwiązaiom dokładym w ściśle sprecyzowaym sesie. Metoda ajmiejszych

Bardziej szczegółowo

lim a n Cigi liczbowe i ich granice

lim a n Cigi liczbowe i ich granice Cigi liczbowe i ich graice Cigiem ieskoczoym azywamy dowol fukcj rzeczywist okrelo a zbiorze liczb aturalych. Dla wygody zapisu, zamiast a() bdziemy pisa a. Elemet a azywamy -tym wyrazem cigu. Cig (a )

Bardziej szczegółowo

1. Powtórzenie: określenie i przykłady grup

1. Powtórzenie: określenie i przykłady grup 1. Powtórzeie: określeie i przykłady grup Defiicja 1. Zbiór G z określoym a im działaiem dwuargumetowym azywamy grupą, gdy: G1. x,y,z G (x y) z = x (y z); G2. e G x G e x = x e = x; G3. x G x 1 G x x 1

Bardziej szczegółowo

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh -

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh - TEKST TRUDNY Postulat kwatowaia Bohra, czyli założoy ad hoc związek pomiędzy falą de Broglie a a geometryczymi własościami rozważaego problemu, pozwolił bez większych trudości teoretyczie przewidzieć rozmiary

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d.

3. Wzory skróconego mnożenia, działania na wielomianach. Procenty. Elementy kombinatoryki: dwumian Newtona i trójkąt Pascala. (c.d. Jarosław Wróblewski Matematyka dla Myślących 009/10 3 Wzory skrócoego możeia działaia a wielomiaach Procety Elemety kombiatoryki: dwumia Newtoa i trójkąt Pascala (cd) paździerika 009 r 0 Skometować frgmet

Bardziej szczegółowo

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań

Analiza Matematyczna I dla Inżynierii Biomedycznej Lista zadań Aaliza Matematycza I dla Iżyierii Biomedyczej Lista zadań Jacek Cichoń, WPPT PWr, 205/6 Logika, zbiory i otacja matematycza Zadaie Niech p, q, r będą zmieymi zdaiowymi. Pokaż, że:. = ( (p p)), 2. = (p

Bardziej szczegółowo

Poziom rozszerzony. 5. Ciągi. Uczeń:

Poziom rozszerzony. 5. Ciągi. Uczeń: PIOTR LUDWIKOWSKI Materiał z wykładu z aalizy dla uczestików koerecji Podstawa programowa z kometarzami Tom 6 Edukacja matematycza i techicza w szkole podstawowej, gimazjum i liceum matematyka, zajęcia

Bardziej szczegółowo

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N

Elementy nieliniowe w modelach obwodowych oznaczamy przy pomocy symboli graficznych i opisu parametru nieliniowego. C N OBWODY SYGNAŁY 1 5. OBWODY NELNOWE 5.1. WOWADZENE Defiicja 1. Obwodem elektryczym ieliiowym azywamy taki obwód, w którym występuje co ajmiej jede elemet ieliiowy bądź więcej elemetów ieliiowych wzajemie

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

Katalog wymagań programowych z matematyki od absolwenta II klasy (poziom rozszerzony).

Katalog wymagań programowych z matematyki od absolwenta II klasy (poziom rozszerzony). Katalog wymagań programowych z matematyki od absolweta II klasy (poziom rozszerzoy). LICZBY RZECZYWISTE Na poziomie wymagań koieczych lub podstawowych a oceę dopuszczającą () lub dostateczą (3) uczeń wykorzystać

Bardziej szczegółowo

Krzysztof Rykaczewski. Analiza matematyczna I Zbiór zadań

Krzysztof Rykaczewski. Analiza matematyczna I Zbiór zadań Krzysztof Rykaczewski Aaliza matematycza I Zbiór zadań Motto: Powiedz mi a zapomę Pokaż mi a zapamiętam Pozwól mi zrobić a zrozumiem. Cofucius : Zbiór zadań z aalizy matematyczej Uiwersytet Mikołaja Koperika

Bardziej szczegółowo

5. Zasada indukcji matematycznej. Dowody indukcyjne.

5. Zasada indukcji matematycznej. Dowody indukcyjne. Notatki do lekcji, klasa matematycza Mariusz Kawecki, II LO w Chełmie 5. Zasada idukcji matematyczej. Dowody idukcyje. W rozdziale sformułowaliśmy dla liczb aturalych zasadę miimum. Bezpośredią kosekwecją

Bardziej szczegółowo

Klasa II technikum Egzamin poprawkowy z matematyki sierpień 2013

Klasa II technikum Egzamin poprawkowy z matematyki sierpień 2013 /7 I. FUNKCJA KWADRATOWA. Fukcja kwadratowa w postaci kaoiczej i ogólej. Napisz wzór fukcji kwadratowej wiedząc, że wierzchołkiem paraboli będącej jej wykresem jest początek układu współrzędych oraz, że

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ.

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ. ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ I Fukcja kwadratowa ) PODAJ POSTAĆ KANONICZNĄ I ILOCZYNOWĄ (O ILE ISTNIEJE) FUNKCJI: a) f ( ) + b) f ( ) 6+ 9 c) f ( ) ) Narysuj wykresy fukcji f

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Ćwiczenie 10/11. Holografia syntetyczna - płytki strefowe.

Ćwiczenie 10/11. Holografia syntetyczna - płytki strefowe. Ćwiczeie 10/11 Holografia sytetycza - płytki strefowe. Wprowadzeie teoretycze W klasyczej holografii optyczej, gdzie hologram powstaje w wyiku rejestracji pola iterferecyjego, rekostruuje się jedyie takie

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne.

Szeregi liczbowe. Szeregi potęgowe i trygonometryczne. Szeregi iczbowe. Szeregi potęgowe i trygoometrycze. wykład z MATEMATYKI Automatyka i Robotyka sem. I, rok ak. 2008/2009 Katedra Matematyki Wydział Iformatyki Poitechika Białostocka Szeregi iczbowe Defiicja..

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

Entropia w układach dynamicznych

Entropia w układach dynamicznych Etropia w układach dyamiczych Wstęp Środowiskowe studia doktorackie Uiwersytet Jagielloński Kraków, marzec-kwiecień 203 Tomasz Dowarowicz Część II Etropia topologicza i zasada wariacyja Zaczijmy od początku.

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Analiza drgań wybranych dźwigarów powierzchniowych metodą elementów brzegowych

Analiza drgań wybranych dźwigarów powierzchniowych metodą elementów brzegowych a prawach rękopisu Istytut Iżyierii Lądowej Politechiki Wrocławskiej Aaliza drgań wybraych dźwigarów powierzchiowych metodą elemetów brzegowych Raport serii PRE r 5/ Praca doktorska autor mgr iż. Jacek

Bardziej szczegółowo

Joanna JASZUŃSKA, Warszawa. Centrum Studiów Zaawansowanych, Politechnika Warszawska

Joanna JASZUŃSKA, Warszawa. Centrum Studiów Zaawansowanych, Politechnika Warszawska Artykuł związay jest z odczytem Nie)zależie od liczby wymiarów, wygłoszoym podczas L Szkoły Matematyki Poglądowej Nie)zależość w stycziu 2013 r w Nadarzyie Podziały Joaa JASZUŃSKA, Warszawa Cetrum Studiów

Bardziej szczegółowo

sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin,

sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin, Wykład XI Elemety optycze II pryzmat kąt ajmiejszego odchyleia powierzchia serycza tworzeie obrazów rówaie soczewka rodzaje rówaia szliierzy i Gaussa kostrukcja obrazów moc optycza korekcja wad wzroku

Bardziej szczegółowo

EGZAMIN MATURALNY MATEMATYKA

EGZAMIN MATURALNY MATEMATYKA EGZAMIN MATURALNY MATEMATYKA Poziom rozszerzoy ZBIÓR ZADAŃ Materiały pomocicze dla ucziów i auczycieli Cetrala Komisja Egzamiacyja 05 Zadaia 5 Zadaia Liczby rzeczywiste i wyrażeia algebraicze Rówaia i

Bardziej szczegółowo

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 9 (09.05.2007) Plan wykładu nr 9. Politechnika Białostocka. - Wydział Elektryczny

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 9 (09.05.2007) Plan wykładu nr 9. Politechnika Białostocka. - Wydział Elektryczny odstawy iforatyki Wykład r 9 /44 odstawy iforatyki olitechika Białostocka - Wydział Elektryczy Elektrotechika, seestr II, studia stacjoare Rok akadeicki 006/007 la wykładu r 9 Obliczaie liczby π etodą

Bardziej szczegółowo

8. Optymalizacja decyzji inwestycyjnych

8. Optymalizacja decyzji inwestycyjnych 8. Optymalizacja decyzji iwestycyjych 8. Wprowadzeie W wielu różych sytuacjach, w tym rówież w czasie wyboru iwestycji do realizacji, podejmujemy decyzje. Sytuacje takie azywae są sytuacjami decyzyjymi.

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z INFORMATYKI MAJ 2011 POZIOM ROZSZERZONY WYBRANE: CZĘŚĆ I. Czas pracy: 90 minut. Liczba punktów do uzyskania: 20 WPISUJE ZDAJĄCY Cetrala Komisja Egzamiacyja Arkusz zawiera iformacje prawie chroioe do mometu rozpoczęcia egzamiu. Układ graficzy CKE 2010 KOD WISUJE ZDAJĄCY ESEL Miejsce a aklejkę z kodem EGZAMIN MATURALNY Z INORMATYKI

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

MATEMATYKA wykład 1. Ciągi. Pierwsze 2 ciągi są rosnące (do nieskończoności), zaś 3-i ciąg jest zbieŝny do zera. co oznaczamy przez

MATEMATYKA wykład 1. Ciągi. Pierwsze 2 ciągi są rosnące (do nieskończoności), zaś 3-i ciąg jest zbieŝny do zera. co oznaczamy przez MATEMATYKA wkład Ciągi,, 2, 3, 4,,, 3, 5, 7, 9,,,,,,,,, są przkładami ciągów 2 4 6 8 Pierwsze 2 ciągi są rosące (do ieskończoości), zaś 3-i ciąg jes zbieŝ do zera co ozaczam przez lim a ch 2-óch ciągów,

Bardziej szczegółowo

Temat: Liczby definicje, oznaczenia, własności. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Liczby definicje, oznaczenia, własności. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Liczby definicje, oznaczenia, własności A n n a R a j f u r a, M a t e m a t y k a s e m e s t r, W S Z i M w S o c h a c z e w i e Kody kolorów: pojęcie zwraca uwagę A n n a R a j f u r a, M a

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12 Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu

Bardziej szczegółowo

Wymagania kl. 2. Zakres podstawowy i rozszerzony. Uczeń:

Wymagania kl. 2. Zakres podstawowy i rozszerzony. Uczeń: Wymagaia kl. 2 Zakres podstawowy i rozszerzoy Temat lekcji Zakres treści Osiągięcia uczia 1. WIELOMIANY 1. Stopień i defiicja jedomiau, dwumiau, wielomiau współczyiki pojęcie stopia jedomiau i stopia wielomiau

Bardziej szczegółowo

Ku chwale nierówności. XXVII Ogólnopolski Sejmik Matematyków

Ku chwale nierówności. XXVII Ogólnopolski Sejmik Matematyków Ku chwale ierówości Sebastia Lisiewski 25 lutego 200 XXVII Ogólopolski Sejmik Matematyków VIII Liceum Ogólokształcące im. Marii Skłodowskiej- Curie w Katowicach ul. 3-go Maja 42 40-097 Katowice Opiekuowie

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

Przykładowy arkusz z rozwiązaniami. Arkusz II poziom rozszerzony

Przykładowy arkusz z rozwiązaniami. Arkusz II poziom rozszerzony Przykładowy arkusz z rozwiązaiai Arkusz II pozio rozszerzoy ( pkt) Pukt A( -, -) jest wierzchołkie robu, którego jede z boków zawiera się w prostej k o rówaiu x - y - 0 Środkie syetrii tego robu jest pukt

Bardziej szczegółowo

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P Wiadomości wstępe Odsetki powstają w wyiku odjęcia od kwoty teraźiejszej K kwoty początkowej K, zatem Z = K K. Z ekoomiczego puktu widzeia właściciel kapitału K otrzymuje odsetki jako zapłatę od baku za

Bardziej szczegółowo

Blok I: Wyrażenia algebraiczne. dla xy = 1. (( 7) x ) 2 ( 7) 11 7 x c) x ( x 2) 4 (x 3 ) 3 dla x 0 d)

Blok I: Wyrażenia algebraiczne. dla xy = 1. (( 7) x ) 2 ( 7) 11 7 x c) x ( x 2) 4 (x 3 ) 3 dla x 0 d) Blok I: Wyrażenia algebraiczne I. Obliczyć a) 9 9 9 9 ) 7 y y dla y = z, jeśli = 0 4, y = 0 0.7 i z = y 64 7) ) 7) 7 7 I. Uprościć wyrażenia a) 48 6 4 dla 0 5) 4 dla 0 ) 4 ) dla 0 45 4 y ) dla yz 0 I.

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie = Rozwiąż układ równań: (( + 1 ( + 2 = = 1

Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie  = Rozwiąż układ równań: (( + 1 ( + 2 = = 1 Równania poziom podstawowy (opracowanie: Mirosława Gałdyś na bazie http://www.zadania.info/). Rozwiąż układ równań: (( + ( + 2 = 3 = 4. http://www.zadania.info/d38/2287 2. Rozwiąż układ równań: ( + 2 (

Bardziej szczegółowo

Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015

Lista zadań nr 15 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 2015 Lista zadań nr 5 TERMIN ODDANIA ROZWIĄZANYCH ZADAŃ 9 marca 05 Liczby rzeczywiste a) planuję i wykonuję obliczenia na liczbach rzeczywistych; w szczególności obliczam pierwiastki, w tym pierwiastki nieparzystego

Bardziej szczegółowo

SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO

SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO Wrocław, 2 lutego 205 SKRYPT Z ANALIZY MATEMATYCZNEJ DLA UCZNIÓW XIV LO MARCIN PREISNER [ PREISNER@MATH.UNI.WROC.PL ] SPIS TREŚCI Wstęp 2 Ozaczeia 2. INDUKCJA MATEMATYCZNA 2.. Wprowadzeie 2.2. Lista zadań

Bardziej szczegółowo

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości)

Konspekt lekcji (Kółko matematyczne, kółko przedsiębiorczości) Kospekt lekcji (Kółko matematycze, kółko przedsiębiorczości) Łukasz Godzia Temat: Paradoks skąpej wdowy. O procecie składaym ogólie. Czas lekcji 45 miut Cele ogóle: Uczeń: Umie obliczyć procet składay

Bardziej szczegółowo

Marek Zakrzewski Wydział Matematyki Politechnika Wrocławska. Lekarstwo na kłopoty z Cardanem: Róbta co Vieta.

Marek Zakrzewski Wydział Matematyki Politechnika Wrocławska. Lekarstwo na kłopoty z Cardanem: Róbta co Vieta. Marek Zakrzewski Wydział Matematyki Politechnika Wrocławska Lekarstwo na kłopoty z Cardanem: Róbta co Vieta. Rozwiązywanie równań sześciennych - wzory Cardana Każde równanie sześcienne można sprowadzić

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

Repetytorium z Matematyki Elementarnej Wersja Olimpijska

Repetytorium z Matematyki Elementarnej Wersja Olimpijska Repetytorium z Matematyi Elemetarej Wersja Olimpijsa Podae tutaj zadaia rozwiązywae były w jedej z grup ćwiczeiowych Są w więszości ieco trudiejsze od pozostałych zadań przygotowaych w ramach przedmiotu

Bardziej szczegółowo

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1,

I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczby całkowite C : C..., 3, 2, 1, I. DZIAŁANIA W ZBIORZE LICZB RZECZYWISTYCH ZBIORY LICZBOWE: liczy turle N : N 0,,,,,,..., N,,,,,... liczy cłkowite C : C...,,,, 0,,,,... Kżdą liczę wymierą moż przedstwić z pomocą ułmk dziesiętego skończoego

Bardziej szczegółowo

FUNKCJA LINIOWA, OKRĘGI

FUNKCJA LINIOWA, OKRĘGI FUNKCJA LINIOWA, OKRĘGI. Napisz równanie prostej przechodzącej przez początek układu i prostopadłej do prostej 3x-y+=0.. Oblicz pole trójkąta ograniczonego osiami układy i prostą x+y-6=0. 3. Odcinek o

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15

Testowanie hipotez. H 1 : µ 15 lub H 1 : µ < 15 lub H 1 : µ > 15 Testowaie hipotez ZałoŜeia będące przedmiotem weryfikacji azywamy hipotezami statystyczymi. KaŜde przypuszczeie ma swoją alteratywę. Jeśli postawimy hipotezę, Ŝe średica pia jedoroczych drzew owej odmiay

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

Elżbieta Świda, Marcin Kurczab. Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym

Elżbieta Świda, Marcin Kurczab. Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym Elżbieta Świda, Marcin Kurczab Nowy typ zadań maturalnych z matematyki na poziomie rozszerzonym Zadanie (matura maj 009) Ciąg ( 3, + 3, 6 +, ) jest nieskończonym ciągiem geometrycznym o wyrazach dodatnich.

Bardziej szczegółowo

Poradnik maturzysty matematyka

Poradnik maturzysty matematyka Barbara Kaim-Gwier, Zdzisława Hojacka Poradik maturzysty matematyka stara matura Umiejętości wymagae a pisemym egzamiie dojrzałości z matematyki dla wszystkich profili poza matematyczo-fizyczym (zestawy

Bardziej szczegółowo

ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY

ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY ZESTAW PRZYKŁADOWYCH ZADAŃ Z MATEMATYKI ZAKRES ROZSZERZONY Zadanie Wskaż w zbiorze A = Zadanie Usuń niewymierność z wyrażenia,(0); 0,9; ; 0; 8; 0; 0 liczby wymierne 6 Zadanie Rozwiąż nierówność x + > Rozwiązanie

Bardziej szczegółowo

Ciało liczb zespolonych

Ciało liczb zespolonych Ciało liczb zespolonych Twierdzenie: Niech C = R 2.Wzbiorze Cokreślamydodawanie: oraz mnożenie: (a,b) + (c,d) = (a +c,b +d) (a,b) (c,d) = (ac bd,ad +bc). Wówczas (C, +, ) jest ciałem, w którym elementem

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz

Bardziej szczegółowo