Spis treści STANDARD IEEE 754 PRZETWARZANIE LICZB ZMIENNOPRZECINKOWYCH PI05. Instrukcja do zajęć Podstawy informatyki pracownia specjalistyczna

Wielkość: px
Rozpocząć pokaz od strony:

Download "Spis treści STANDARD IEEE 754 PRZETWARZANIE LICZB ZMIENNOPRZECINKOWYCH PI05. Instrukcja do zajęć Podstawy informatyki pracownia specjalistyczna"

Transkrypt

1 Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć Podstawy informatyki pracownia specjalistyczna Tytuł ćwiczenia STANDARD IEEE 754 PRZETWARZANIE LICZB ZMIENNOPRZECINKOWCH Numer ćwiczenia PI5 Autor: Bogusław Butryło Spis treści. Wstęp...3. Ogólna postać zapisu liczb zmiennoprzecinkowych Dwójkowy zapis zmiennoprzecinkowy Dziesiętny zapis zmiennoprzecinkowy Dostępne formaty reprezentacji liczb Informacje o binarnym kodowaniu liczb Zakres reprezentowanych wartości Zakres i precyzja reprezentacji liczb Sygnalizowane błędy Błędy obliczeń zmiennoprzecinkowych Błąd obliczania sumy i róŝnicy Błąd obliczania iloczynu i ilorazu Zadania do wykonania Liczby rzeczywiste i liczby maszynowe Określenie sposobu kodowania danych Obliczenia przebiegu funkcji Operacje na liczbach małych i duŝych Obliczenia wielomianów Obliczenia iloczynu skalarnego Informacje o dostępnych programach Przykładowe zagadnienia na zaliczenie...8. Literatura...9. Wymagania BHP...3 Materiały dydaktyczne przeznaczone dla studentów Wydziału Elektrycznego PB. Wydział Elektryczny, Politechnika Białostocka, Białystok Wszelkie prawa zastrzeŝone. śadna część tej publikacji nie moŝe być kopiowana i odtwarzana w jakiejkolwiek formie i przy uŝyciu jakichkolwiek środków bez zgody posiadacza praw autorskich.

2 . Wstęp Zasady komputerowej reprezentacji i przetwarzania liczb zmiennoprzecinkowych zostały sprecyzowane w standardzie IEEE 754. Jego pierwsza wersja (IEEE ) została opublikowana w roku 985. Modyfikację i rozszerzenie standardu przedstawiono w roku 8. Standard IEEE 754.8, opracowany przez IEEE (ang. Institute of Electrical and Electronics Engineers) został potwierdzony w specyfikacji standardu ISO 6559: podanej przez International Standard Organization. W ramach standardu IEEE określone są m.in.: zasady zapisu liczb zmiennoprzecinkowych przy uwzględnieniu, Ŝe tworzony zapis bazuje na reprezentacji dwójkowej lub dziesiętnej; zasady zapisu liczb w postaci znormalizowanej oraz zdenormalizowanej; dostępne formaty reprezentacji danych zmiennoprzecinkowych; zasady reprezentacji binarnej (niskopoziomowej) liczb; sposoby zapisu / sygnalizacji podstawowych błędów związanych z obliczeniami zmiennoprzecinkowymi; zasady realizacji podstawowych operacji matematycznych na liczbach zmiennoprzecinkowych, w tym reguły zaokrąglania liczb maszynowych.. Ogólna postać zapisu liczb zmiennoprzecinkowych Liczby rzeczywiste, wprowadzane do komputera w zapisie dziesiętnym, podlegają automatycznemu przetworzeniu do jednej z postaci przewidzianych w standardzie IEEE Ogólna postać zapisu liczb zmiennoprzecinkowych to wpisana liczba S WB ( ) = ( ) M B fl IEEE 754 B B, () gdzie B to baza systemu (ang. radix), zaś fl(b) oznacza wartość liczby w zapisie zmiennoprzecinkowym, która wynika z ograniczeń zapisu komputerowego. W ramach standardu podano specyfikacje dwóch form zapisu: 3 dwójkowej reprezentacji zmiennoprzecinkowej (BFP, ang. binary floating-point), w której wpisana liczba jest przetwarzana na zapis dwójkowy (baza systemu B=) S W ( ) = ( ) M IEEE 754 wpisana liczba fl, () dziesiętnej reprezentacji zmiennoprzecinkowej (DFP, ang. decimal floating point) w której bazą B systemu jest liczba S W ( ) = ( ) M IEEE 754 wpisana liczba fl. (3) Obecnie podstawowym sposobem wewnętrznej reprezentacji liczb zmiennoprzecinkowych w komputerach jest zapis BFP, z bazą B=. Dominująca liczba programów wykorzystuje zmiennoprzecinkową arytmetykę binarną. Dziesiętny zapis zmiennoprzecinkowy (DFP) został wprowadzony do standardu w roku 8. Pozwala on rozszerzyć zakres reprezentowanych liczb. Precyzja reprezentacji, podobnie jak w zapisie dwójkowym, jest ograniczona. Wynika ona z dostępnej liczby cyfr znaczących mantysy, czyli z długości reprezentacji komputerowej liczb (liczby bajtów potrzebnych na zapis całej liczby). Zapis dziesiętny eliminuje błędy związane z transformacją liczb dziesiętnych na system dwójkowy. W dalszej kolejności moŝliwe jest w ten sposób ograniczenie błędów powstających przy późniejszych obliczeniach. Nie przekłada się to jednak na przyspieszenie obliczeń. Zgodnie z wzorami () i (3), niezaleŝnie od bazy systemu, liczby zmiennoprzecinkowe są pamiętane w postaci 3 liczb całkowitych: S - znak liczby (ang. sign bit); M - mantysa liczby (ang. significand), w zapisie dwójkowym M lub dziesiętnym M; W - wykładnik liczby (ang. exponent) określany przy uwzględnieniu dwójkowej (W) lub dziesiętnej (W) bazy systemu. 4

3 .. Dwójkowy zapis zmiennoprzecinkowy Zasadnicza część standardu, określona w wersji z roku 985, dotyczy dwójkowej reprezentacji liczb zmiennoprzecinkowych (BFP). W tej formie reprezentacji, zarówno mantysa jak teŝ wykładnik są najpierw przetwarzane na liczby w zapisie binarnym (B=) i następnie kodowane. WyróŜnia się przy tym: postać znormalizowaną, stosowaną dla zdecydowanej większości liczb, postać zdenormalizowaną, przewidzianą do zapisu bardzo małych liczb, dla których wykładnik W osiągnął najmniejszą dopuszczalną wartość. W dalszym opisie pominięto dyskusję tego przypadku. Normalizacji podlega binarna postać liczby. Polega to na przesunięciu przecinka tak, aby przed nim znalazła się jedna (wiodąca) jedynka. Efektem tej operacji jest równieŝ obliczenie wykładnika, który wskazuje rzeczywiste połoŝenie przecinka w dwójkowym zapisie liczby. Przykłady liczb przed i po normalizacji przedstawiono w tabeli. Wpisana liczba Tabela. Przykłady binarnego zapisu liczb zmiennoprzecinkowych. ZałoŜono, Ŝe mantysa M składa się z co najwyŝej 7 bitów. Zapis binarny Wartości kolejnych pól () przed normalizacją po normalizacji fl() S M W 9,, +, 3 3 5,5, +, 4 4-5,5 -, -, -3,5 -, -, 6 6,65, +, - - -,785 -, -, ,3 -, -, 3 3 () W celu uproszczenia zapisu wartości W podano w zapisie dziesiętnym. W rzeczywistości pola wykładnika W podlegają kodowaniu binarnemu, z uŝyciem kodu Excess o dobranym przesunięciu. Pola binarne mantysy ograniczono do 7 bitów. W dostępnych formatach zapis mantysy składa się z większej liczby bitów (tabela 6). Po wykonaniu normalizacji, na bitach mantysy jest pamiętana jedynie część, która znalazła się za przecinkiem (ułamek). Ewentualne wolne bity części ułamkowej po prawej stronie są uzupełniane zerami. Wiodąca jedynka (przed przecinkiem) i przecinek są pomijane (tzw. zapis z pominiętą / zapomnianą jedynką). W tabeli kolorem Ŝółtym zaznaczono usuwane elementy zapisu liczb. Zapomniana jedynka i przecinek są oczywiście odtwarzane w rejestrach jednostki zmiennoprzecinkowej, przed wykonaniem obliczeń... Dziesiętny zapis zmiennoprzecinkowy Przy stosowaniu DFP normalizacji podlega liczba w zapisie dziesiętnym. Jej postać jest modyfikowana tak, aby znaczące cyfry zajęły wszystkie dostępne pola mantysy M (bez wiodących zer z lewej strony). Rzeczywiste połoŝenie przecinka jest odzwierciedlone w wartości wykładnika W. W tabeli przedstawiono przykłady zapisu liczb z bazą B=. Tabela. Przykłady dziesiętnego zapisu liczb zmiennoprzecinkowych (B=), przy załoŝeniu Ŝe mantysa M składa się z siedmiu cyfr znaczących. Wpisana liczba Zapis DFP Wartości kolejnych pól () fl() S M W 9, , , , , , , , () W celu uproszczenia zapisu wartości M i W podano w zapisie dziesiętnym. W rzeczywistości pola mantysy M i wykładnika W podlegają kodowaniu binarnemu, z uŝyciem wybranych kodów. 5 6

4 W przypadku liczb ułamkowych i małych co do modułu, normalizacja wiąŝe się z przesuwaniem przecinka w prawo, tak aby zapis liczby przyjął postać liczby całkowitej. Oczywiście ulega przy tym zmianie wartość wykładnika. Liczby, w których jest mało cyfr znaczących nie podlegają normalizacji. Zgodnie ze standardem mogą one mieć róŝne formy zapisu (np. liczby 9 oraz 5,5 w tabeli ). Tabela 4. Dodatkowe, połówkowe formaty reprezentacji zmiennoprzecinkowej. Nazwa binary6 Typowa nazwa połówkowa precyzja ang. half precision Baza zapisu B Wielkość zapisu liczby NL B decimal3 4 B 3. Dostępne formaty reprezentacji liczb W ramach standardu określono podstawowe, dostępne formaty zapisu BFP (dwójkowego) i DFP (dziesiętnego) (tabela 3). Nazwa binary3 binary64 binary8 Tabela 3. Podstawowe formaty reprezentacji zmiennoprzecinkowej. Typowa nazwa pojedyncza precyzja ang. single precision podwójna precyzja ang. double precision poczwórna precyzja ang. quadruple precision Baza zapisu B Wielkość zapisu liczby NL 4 B 8 B 6 B decimal64 8 B decimal8 6 B Dopuszczono równieŝ dwa formaty skrócone, połówkowe (tabela 4). Nie są to formaty podstawowe, do powszechnego uŝycia. Mogą być stosowane do zapisu (przechowania) wartości liczbowych. Ich przyjęcie pozwala wprowadzić skróconą reprezentację w wybranych aplikacjach (np. ekonomicznych, bankowych), w których wystarcza zapamiętanie -4 cyfr po przecinku. Dwójkowy format połówkowy (tzw. binary6) jest stosowany przy przetwarzaniu w niektórych procesorach graficznych. Ze względów historycznych występuje jeszcze tzw. precyzja rozszerzona (tabela 5). W ramach standardu dopuszczono jej stosowanie. Rozszerzona reprezentacja liczb zmiennoprzecinkowych jest dostępna jedynie na wybranych platformach sprzętowych i przy stosowaniu wybranych kompilatorów. Tabela 5. Inne dopuszczone formaty reprezentacji zmiennoprzecinkowej. Nazwa extended Typowa nazwa rozszerzona precyzja ang. extended precision Baza zapisu B 4. Informacje o binarnym kodowaniu liczb Wielkość zapisu liczby NL B Specyfikacja standardu określa równieŝ techniczne szczegóły kodowania pól mantysy i wykładnika w zapisie BFP (M i W) oraz DFP (M, W). Wskazany opis jest istotny dla zrozumienia pojęcia liczba maszynowa, określenia precyzji i zakresu reprezentowanych liczb. Szczegóły binarnego zapisu liczb nie mają znaczenia przy programowaniu w językach wysokiego poziomu, czy teŝ korzystaniu ze standardowych bibliotek zawierających procedury do obliczeń zmiennoprzecinkowych (np. dla układów FPGA, procesorów sygnałowych). W tabeli 6 zestawiono główne parametry charakteryzujące omawiane formaty zapisu zmiennoprzecinkowego. Przyjęto następujące oznaczenia: NL NS liczba bajtów, na których jest zapisywana liczba w danej reprezentacji; liczba bitów na zapis znaku liczby (S); 7 8

5 NW NM max W P liczba bitów na zapis wykładnika (W); liczba bitów na zapis mantysy (M); maksymalny wykładnik w systemie dziesiętnym, który moŝna zapisać; precyzja zapisu, wyraŝona jako liczba cyfr w dziesiętnym zapisie liczby, które zostaną zachowane bez błędu. JeŜeli liczba dziesiętna złoŝona z P znaczących cyfr zostanie zamieniona z zapisu rzeczywistego na numeryczny zmiennoprzecinkowy i następnie z powrotem na rzeczywisty, to co najmniej P cyfr pozostanie niezmienionych. Tabela 6. Wybrane parametry zmiennoprzecinkowych reprezentacji liczb. Nazwa NL NS NW NM max W P binary6 B b 5 b b +5 3 binary3 4 B b 8 b 3 b binary64 8 B b b 5 b binary8 6 B b 5 b b extended B b 5 b 64 b decimal3 () 4 B b 6 b b decimal64 () 8 B b 8 b 5 b decimal8 () 6 B b b b () W zapisie wyróŝniono jeszcze 5 bitów kodujących róŝne formy reprezentacji wykładnika i mantysy. Ze względu na sposób kodowania liczb wyróŝnia się: format dla reprezentacji BFP, uwzględniający zapis liczb znormalizowanych i bez normalizacji (bardzo małych); formaty dla reprezentacji DFP, w tym: o zapis binarny mantysy M jako liczby całkowitej (ang. binary integer significand field), czyli zapis mantysy w typowym kodzie wagowym BCN; o zapis binarny, w którym poszczególne cyfry mantysy M są kodowane osobno. W kodowaniu cyfr mantysy wykorzystuje się kod DPD (ang. densely packed decimal significand field), który jest skompresowaną formą kodu BCD. 9 Wewnętrzna reprezentacja liczby w formatach DFP nie ma wpływu na zakres i precyzję zapisu. Oczywiście, w końcowej formie, zarówno przy dwójkowym jak teŝ dziesiętnym zapisie zmiennoprzecinkowym, wszystkie pola są kodowane binarnie. W ramach zmiennoprzecinkowego zapisu liczb nie ma Ŝadnych metod kontroli i weryfikacji poprawności zapisu / odczytu danych. Nie jest to powaŝny problem przy przetwarzaniu w ramach danego urządzenia. Ze względu na moŝliwe zakłócenia przy przesyłaniu tego typu danych na znaczne odległości, do kontroli poprawności moŝliwe, a czasami niezbędne, jest stosowanie róŝnych zewnętrznych metod kontroli, m.in. wprowadzenie słowa kontrolnego, sygnatury pakietu danych, itp. Techniczne zasady kodowania liczb w formacie BFP oraz zapisach dostępnych dla DFP przedstawiono na rys.. (a) (b) S NS= S NS= W NW W NW Dodatkowe bity kodujące postać W i M M bez wiodącej jedynki i przecinka NM M w formacie binary integer significand lub formacie densely packed decimal significand Rys.. Ogólna idea reprezentacji liczb w zmiennoprzecinkowym zapisie: (a) dwójkowym BFP (B=), (b) dziesiętnym DFP (B=). Jedynie kodowanie bitu znaku S jest jednakowe w BFP i DFP. Bit znaku liczby (S) znajduje się na początku i przyjmuje wartość dla liczb dodatnich oraz wartość dla liczb ujemnych (taką formę kodowania uwzględniono w tabelach i ). NM

6 Wykładnik W (w zapisie BFP) jest kodowany jako liczba całkowita, z wykorzystaniem kodu z przesunięciem (tzw. kod Excess). Podobnie jest w reprezentacji DFP, przy czym szczegóły kodowania i wartość przesunięcia są inne. Odpowiednia kombinacja bitów kodujących mantysę i wykładnik określa sposób ich interpretacji. 5. Zakres reprezentowanych wartości 5.. Zakres i precyzja reprezentacji liczb W porównaniu z kodami stałopozycyjnymi, stosowanymi do zapisu liczb całkowitych, format zmiennoprzecinkowy znacznie zwiększa zakres dostępnych liczb. Na osi liczbowej, niezaleŝnie od formy zapisu (BFP lub DFP) wyróŝnić moŝna trzy zakresy reprezentowalnych, dostępnych liczb: zakres liczb ujemnych, zero oraz zakres liczb dodatnich (rys. ). Krańce pasma reprezentowalnych liczb max są określone przez liczbę bitów NW przewidzianych na wykładnik. Wartości NW oraz maksymalne moŝliwe do zapisania wartości wykładnika zestawiono w tabeli 6. Dolne granice min równieŝ wynikają z liczby pól bitowych wykładnika. Zapis bardzo małych liczb, których rzeczywisty wykładnik nie mieści się na polach wykładnika, jest zaokrąglany do. Bit znaku S zachowuje przy tym znak przybliŝenia, z tego powodu w ramach standardu IEEE 754.8, rzeczywista wartość, ma dwie reprezentacje: + (zero plus) i - (zero minus). nadmiar - niedomiar - zapis + i - niedomiar + dostępne liczby - dostępne liczby + nadmiar + W zapisie zmiennoprzecinkowym nie jest moŝliwe przedstawienie kaŝdej liczby nawet w przedziale liczb teoretycznie moŝliwych do zapisu. Dotyczy to zarówno liczb bardzo małych, liczba duŝych, jak teŝ liczb zawierających duŝo cyfr znaczących (np. ułamków okresowych). NiemoŜliwe jest precyzyjne odwzorowanie liczb, których zapis binarny (BFP) lub zapis dziesiętny (DFP) wykracza poza dostępne pola mantysy. Główne przyczyny braku reprezentacji części liczb, które teoretycznie mieszczą się w zakresie -max, -min oraz min, max to: skończona długość mantysy (bitów przewidzianych na zapis mantysy); zapis ułamków okresowych, liczb niewymiernych; sposób reprezentacji liczb dziesiętnych po zmianie reprezentacji na system dwójkowy (w ramach formatu BFP). Ze względu na zmianę podstawy systemu liczbowego z na, niektóre liczby które w zapisie dziesiętnym mają skończoną, dokładną reprezentację, w systemie dwójkowym nie wykazują tej właściwości. Z tego względu wprowadza się pojęcie tzw. liczby maszynowej, oznaczonej juŝ wcześniej symbolem fl(). Jest to liczba reprezentowana w ramach danego formatu IEEE 754-8, która jest odwzorowaniem rzeczywistej wpisanej liczby. RóŜnica między i fl() jest podstawową przyczyną błędów obliczeń numerycznych (rozdz. 6). Długość zapisu mantysy przesądza zatem o precyzji arytmetyki ε (dokładności zapisu liczb). W zapisach dwójkowych precyzja arytmetyki wyraŝa się wzorem ε, (4) M = N BFP natomiast w zapisach dziesiętnych P ε =. (5) DFP -max -min min max Rys.. Poglądowe zestawienie zakresów dostępnych liczb oraz błędów sygnalizowanych w ramach standardu IEEE Błąd dx zapisu zmiennoprzecinkowego liczby ( ) relacją fl = + d jest określony d ε. (6)

7 5.. Sygnalizowane błędy W ramach standardu przewidziano równieŝ kodowanie informacji o błędach. Informacje o błędzie są kodowane w ramach pola znaku S, pola wykładnika W oraz mantysy M. WyróŜnia się błędy krytyczne, które powinny powodować przerwanie obliczeń jak teŝ niekrytyczne. Ich wystąpienie jest sygnalizowane, jednak algorytm moŝe być dalej realizowany. Zgodnie z rys., błędem niekrytycznym jest wystąpienie niedomiaru + lub niedomiaru -. Brak moŝliwości zapisu liczb bardzo małych prowadzi do ich przybliŝenia do wartości + lub -. Pozostałe błędy to: nadmiar dodatni lub nadmiar ujemny, pojawiający się przy przekroczeniu zakresu reprezentowalnych liczb i sygnalizowany symbolem INF+ lub INF-; NaN (ang. not a number), który ma miejsce gdy odczytana kombinacja binarna nie moŝe być zidentyfikowana jako poprawny zapis zmiennoprzecinkowy lub wywoływana funkcja nie moŝe być policzona dla danych wartości zmiennych. W standardzie IEEE wyróŝniono błąd NaN sygnalizowany (ang. NaN signaling) oraz niesygnalizowany (ang. NaN quiet). 6. Błędy obliczeń zmiennoprzecinkowych Liczby wpisywane przez uŝytkownika, podlegają przetworzeniu do liczby maszynowej w ramach przyjętego w programie (na danej platformie sprzętowej) formatu zapisu binarnego BFP lub dziesiętnego DFP. Rzeczywiste wartości liczb są zatem w ogólnym przypadku odwzorowane z błędami. Błędy reprezentacji liczb przekładają się na błędy wyników wykonywanych operacji matematycznych. Liczba wykonywanych operacji ma zatem wpływ na wielkość błędów. PoniŜej przedstawiono wyprowadzenia zaleŝności określających wartość błędu przy obliczaniu sumy oraz iloczynu dwóch liczb zmiennoprzecinkowych. Wyprowadzone wzory mają charakter ogólny. W rzeczywistości błąd obliczeń jest z zasady mniejszy. Wynika to z konstrukcji jednostek do obliczeń zmiennoprzecinkowych. W celu poprawy dokładności obliczeń zawierają one 3 rozszerzone rejestry do przechowywania wyników obliczeń. Dopiero uzyskany rezultat, opisany na większej liczbie bitów, podlega ograniczeniu zgodnemu ze standardem IEEE IEEE 754 fl IEEE 754 fl 4 ( ) ( ) gdzie oznacza dowolną operację arytmetyczną. 6.. Błąd obliczania sumy i róŝnicy fl wynik IEEE 754 ( ) fl( y) S fl( S ), (7) ZałóŜmy, Ŝe dane są dwie liczby i, które zostały przetworzone na wartości maszynowe ( ) d ( ) d fl = +, (8) fl = +. (9) Błąd obliczeń sumy moŝna oszacować na podstawie zaleŝności ( ) fl( ) W S = fl +, () S ( + ) ds W = + d + + d +, () przy czym maksymalny błąd określenia wyniku wyraŝa się wzorem d = d + d. () S Względny błąd wyniku oblicza się jako iloraz błędu bezwzględnego i wartości dokładnej ds d + d δ S = =. (3) + + Po przekształceniach d d d d δ S = + = +, (4)

8 otrzymuje się zaleŝność δ = δ + δ. () I δ = δ w + δ w, (5) S przy czym d δ =, (6) d δ =, (7) to względne błędy zapisu liczb i, zaś w = /( + ), w ( + ) = / to współczynniki określające udział danej liczby w sumie. Interpretacja wzoru (5) prowadzi do wniosku, Ŝe przy dodawaniu (odejmowaniu) zmiennoprzecinkowym błędy zapisu liczb fl() i fl() podlegają propagacji. 6.. Błąd obliczania iloczynu i ilorazu Przetwarzane są dwie liczby opisane wzorami (8) i (9). Wynik iloczynu (ilorazu) tych liczb w zapisie zmiennoprzecinkowym wynosi W I W I fl( ) fl( ) ( + d ) ( + d ) =, (8) = + d + d + d d =. Przy pominięciu ostatniego czynnika, dd, maksymalny błąd obliczeń wynosi d = d d. () I + Względna wartość błędu wyraŝa się wzorem di d + d d d δ I = = = +. () (9) Obliczanie iloczynu (ilorazu) prowadzi do kumulacji względnych błędów czynników. 7. Zadania do wykonania 7.. Liczby rzeczywiste i liczby maszynowe W pierwszym punkcie moŝliwe jest ustalenie, jaka jest rzeczywista reprezentacja wpisywanych liczb zmiennoprzecinkowych i precyzja arytmetyki, przy stosowaniu formatów BFP dostępnych w programach komputerowych.. Uruchomić program ieee754_.exe (szczegóły w rozdz. 8). Liczba wpisana w systemie dziesiętnym w górnym oknie programu podlega dwukrotnemu przetworzeniu (rys. 3). Wpisana liczba IEEE-754 binary3() IEEE-754 [binary3()] IEEE-754 binary64() IEEE-754 [binary64()] IEEE-754 extended() IEEE-754 [extended()] Rys. 3. Sposób przetwarzania liczby w ramach programu ieee754_.exe. śółte pola wskazują wartości pokazywane w oknie programu. W programie moŝliwe jest równieŝ ustawienie sposobu reprezentacji liczby (rys. 4). W celu analizy wyników przetwarzania liczb naleŝy zwrócić szczególną uwagę na ustawienie pól Liczba znaków oraz Liczba cyfr po przecinku. Uwzględniając wzory (6)-(7) otrzymuje się zaleŝność 5 6

9 Rys. 4. Ogólny widok okna programu ieee754_.exe.. Wykonać próby zapisu i porównać otrzymane reprezentacje róŝnych liczb (tabela 7), m.in.: liczb bardzo małych; skończonych ułamków dziesiętnych, np.,;,;,5;,3;,4;,45;,5;,55;,7;,75; itp.; liczb będących kombinacją liczby całkowitej i ułamka, np. 3,; 3,4; 3,4; 4,; 4,5; 4,5; 4,55; 7,8; itp.; liczb całkowitych, np.,,, -6, 4, ; liczb niewymiernych; liczb całkowitych duŝych co do modułu, z małą liczbą cyfr znaczących, np. 34; 34; 34; liczb całkowitych duŝych co do modułu, z duŝą liczbą cyfr znaczących, np ; typowych wartości rezystancji i pojemności stosowanych w układach elektronicznych (występujących w typoszeregach dostępnych rezystorów oraz kondensatorów). 7 8 stała Plancka h Tabela 7. Wybrane stałe liczbowe przydatne do testów. Nazwa, opis masa spoczynkowa elektronu me jednostka masy atomowej u ładunek elektronu e przenikalność elektryczna powietrza ε przenikalność magnetyczna próŝni µ definicja ampera: siła działająca na przewody przy I=A Wartość 6,666957(9) -34 Js 9,9389(4) -9 g,665389(73) -4 g -,676565(35) -9 C 8, F/m, H/m -7 N, względna przenikalność elektryczna polietylenu εr,5 względna przenikalność elektryczna polistyrenu εr,7 e (podstawa logarytmu naturalnego) π, , przyspieszenie ziemskie normalne g 9,8665 ms - przyspieszenie ziemskie w Krakowie 9,85 ms - przyspieszenie ziemskie w Warszawie 9,83 ms - przelicznik cali na milimetry =5,3995 mm temperatura zera bezwzględnego -73,5 ºC rok gwiazdowy rezystancja falowa próŝni średni promień równika przelicznik kwh na Joule: 365,4 dnia 376, Ω 6378,45 km kwh = 36 5 J definicja metra, liczba okresów drgań kryptonu 86 Kr 65763,73 definicja sekundy, liczba okresów drgań atomu cezu 33 Cs terrabajt bajtów objętość Ziemi,83 km 3 petabajt 5 bajtów eksabajt 8 bajtów zettabajt bajtów liczba Avogadra 6,49(7) 3 mol - jottabajt 4 bajtów

10 3. Sprawdzić, czy moŝliwe jest wykrycie występowania błędu niedomiaru lub nadmiaru. 4. Sprawdzić zakres reprezentacji liczb w kaŝdym z dostępnych formatów. Na podstawie wykonanych prób sformułować odpowiedzi na następujące pytania. Dlaczego liczby zmiennoprzecinkowe nie są pamiętane dokładnie? Na której pozycji pojawiają się przekłamania w zapisie liczb? Co to jest precyzja zapisu P? Jakimi kryteriami naleŝy się kierować przy wyborze sposobu reprezentacji liczb zmiennoprzecinkowych? Które reprezentacje liczb naleŝy wybierać? 7.. Określenie sposobu kodowania danych. Zaproponować testy, które umoŝliwią sprawdzenie wewnętrznej reprezentacji liczb zmiennoprzecinkowych w stosowanych programach, np.: arkuszach kalkulacyjnych Microsoft Excel, Open Office Calc, itp.; kalkulatorach dostępnych w systemie operacyjnym; pakietach matematycznych Matlab, Octave, MathCad, itp.; pakiecie PSpice; innych programach, w których są przetwarzane liczby.. Zaproponować test, który pozwoli sprawdzić czy testowane programy sygnalizują (jak działają) po wystąpieniu błędu nadmiaru oraz błędu NaN. Na podstawie wykonanych prób: wskazać, który format/formaty są stosowane w ramach programu; określić precyzję zapisu liczb (P) i zakres sygnalizacji błędów (niedomiar-, niedomiar+, nadmiar-, nadmiar+, NaN); podać zasady, które umoŝliwią poprawne korzystanie z testowanych programów Obliczenia przebiegu funkcji Dane są dwa wyraŝenia y = x +, (3) x y =. (4) x + + Kolejne wartości zmiennej x, dla której są liczone wartości y oraz y tworzą ciąg geometryczny x p = a, (5) przy czym w przygotowanym programie (rys. 5) moŝliwe jest ustawienie wartości stałej a oraz zakresu zmian wykładnika potęgi p p,p. (6). Uruchom program ieee754_.exe (szczegóły w rozdz. 8, rys. 5).. Wykonaj obliczenia dla wybranych wartości liczby a. Wyjaśnij przebieg charakterystyk i omów uzyskane wyniki. Porównaj wyniki obliczeń wykonywanych przy róŝnej reprezentacji przetwarzanych liczb (binary3, binary64). WskaŜ, które wyraŝenie, y czy y, jest liczone i prezentowane jako funkcja (a) oraz funkcja (b). 3. Wyjaśnij obserwowane rozbieŝności w obliczeniach. Oblicz liczbę wykonywanych operacji dodawania/odejmowania oraz mnoŝenia/dzielenia. 4. Określ przyczyny powstawania błędów obliczeń w obu wyraŝeniach. WskaŜ, które wyraŝenie jest liczone z większą precyzją. 5. Wyjaśnij techniki stosowane w celu ograniczenia powstawania tego typu błędów. 6. Sprawdź jak podane funkcje będą liczone przy stosowaniu arkusza kalkulacyjnego lub pakietu matematycznego. 7. Dla wybranych wartości sprawdź jak podane funkcje będą liczone w kalkulatorze (sprzętowym, nie programowym dostępnym w komputerze).

11 Rys. 5. Widok okna programu ieee754_.exe Operacje na liczbach małych i duŝych W proponowanym przykładzie jest liczona wartość funkcji sinus, przy zadanych wartościach amplitudy, składowej stałej, częstotliwości, fazy początkowej. Wartości funkcji trygonometrycznej są liczone dwoma sposobami: dla zadanego kąta φ, przy uwzględnieniu zmian funkcji w pierwszym okresie, ( π +ϕ) u = A + Asin ft, (7) korzystając z okresowości funkcji sinus, dla zadanego kąta fazowego φ w wybranym N-tym okresie sinusa, ustawianym za pomocą pokrętła ( π f ( t + ) +ϕ) u = A + Asin NT. (8) Rys. 6. Widok okna programu ieee754_3.exe.. Uruchom program ieee754_3.exe (szczegóły w rozdz. 8).. Za pomocą suwaków ustaw amplitudę, częstotliwość i fazę początkową sinusa (rys. 6). Składową stałą moŝna pozostawić bez zmian ().. Porównaj wyniki otrzymane przy obliczaniu funkcji sinus w pierwszym okresie i w kolejnych wybranych okresach. Zmiany wartości N wykonaj w zakresie sięgającym co najmniej. Zanotuj uzyskiwane wyniki (wystarczy ok. punktów). 3. Wykonaj charakterystykę wartości funkcji sinus w zaleŝności od liczby N. Oś wartości N wyskaluj uŝywając skali logarytmicznej. 4. Określ źródło powstawania błędów. Sformułuj zasady, które naleŝy uwzględnić przy obliczaniu wartości funkcji okresowych. 5. Zadania z punktów i 3 powtórz dla innego kąta fazowego. Czy otrzymana charakterystyka ma inny przebieg?

12 7.5. Obliczenia wielomianów Dane są trzy równowaŝne pod względem matematycznym formy zapisu wielomianu zmiennej rzeczywistej x: metoda A: zapis z uŝyciem wzorów skróconego mnoŝenia (dwumianu Newtona) ( x ) w y = +, (9) A x p metoda B: zapis z uwzględnieniem rozwinięcia dwumianu Newtona w = w = w = w = w = w = w = w = N M M M M M M M Rys. 7. Trójkąt Pascala (wartości symbolu Newtona). O y B = w w w i i x xp = i= i i= = a w w x w + a x w w a + a w i w x x w i w = + K+ ax + a x, (3) metoda C: zapis z rekurencyjnym wyłączeniem przed nawias kolejnych potęg argumentu x y ( (( awx + aw ) x + aw ) x + L+ a ) x a L. (3) C = + Współczynniki a w-i wyraŝają się wzorem w i aw i = xp. (3) i Wartość xp w równaniach (9)-(3) odpowiada miejscu zerowemu wielomianu. Na w w! rys. 7 podano wartości symbolu Newtona = dla kolejnych potęg w. i i!( w i)! Przykład. Dla wielomianu rzędu 7 wskazane formy zapisu przyjmują postać y = ( x ) 7 A, (33) y B = x 7x + x 35x + 35x x + 7x, (34) ((((( ( x 7) x + ) x 35) x + 35) x ) x + 7) y C = x. (35) 3 Rys. 8. Widok okna programu ieee754_4.exe.. Uruchom program ieee754_4.exe (szczegóły w rozdz. 8), w którym moŝna obserwować przebiegi wielomianów liczonych metodami A oraz B (rys. 8). 4

13 . Wykonaj obliczenia wielomianu wybranego rzędu (maksymalny rząd wynosi 8), przy xp=. Wpisz właściwe współczynniki. MoŜna zawęzić przedział obserwacji (np. x=,9, x=,) oraz ustawić krok zmiany wartości x (np. dx=e-5). 3. Wyjaśnij przyczyny obserwowanych rozbieŝności. Oblicz liczbę operacji dodawania/odejmowania oraz mnoŝenia/dzielenia. Określ szerokość przedziału nieufności przy obliczeniach wykonywanych na liczbach pojedynczej precyzji (binary3) oraz podwójnej precyzji (binary64). 4. Z uŝyciem programu ieee754_4.exe lub innego, wykonaj obliczenia zakładając, Ŝe xp (np.,). W tym celu oblicz właściwe współczynniki rozwinięcia zapisu. 5. Wykonaj testy przy zmianie rzędu wielomianu. W kaŝdym z przypadków określ przedział nieufności rozwiązania przy stosowaniu formatu binary3 oraz binary Scharakteryzuj techniki, które pozwalają ograniczyć wartości obserwowanych błędów. 7. Wykonaj obliczenia przyjętego wielomianu i wykonaj wykresy, korzystając z arkusza kalkulacyjnego (np. Excel) lub pakietu matematycznego (np. Matlab). W porównaniu wykresów uwzględnij równieŝ wariant C.. Zgodnie z opisem operacji w skoroszycie (rys. 9): w komórkach od E3 do E7 oblicz składowe wektora w[i] = a[i]b[i], wykonując przy tym klasyczne operacje na komórkach; w komórce H oblicz sumę wyrazów wektora w, dodając kolejno wyrazy od pierwszego do ostatniego; w komórce H oblicz sumę wyrazów wektora w, dodając kolejno wyrazy od ostatniego do pierwszego; w komórce H3 oblicz sumę wyrazów wektora w wykorzystując przy tym standardową funkcję obliczania sumy z wybranego zakresu komórek; w komórce H4 oblicz sumę pięciu wyrazów wektora w według samodzielnie przyjętej kolejności losowej Obliczenia iloczynu skalarnego Dane są dwa wektory a oraz b, złoŝone z pięciu liczb a=[,788e+ -3,459E+,44E+ 5,776E- 3,3E- ], (36) b=[,4865e+3 8,78367E+5 -,3749E+ 4,7737E+6,8549E-4 ]. (37) Reprezentacja liczb w systemie dziesiętnym jest skończona, z dokładnością do pięciu cyfr po przecinku. Przyjęte liczby mieszczą się w zakresie precyzji przewidzianej zarówno dla standardu binary3 jak teŝ decimal64.. Otwórz przygotowany skoroszyt arkusza kalkulacyjnego, zapisany w pliku ieee754_5.xls. Rys. 9. Widok okna arkusza kalkulacyjnego do obliczania sumy wyrazów z iloczynu skalarnego dwóch wektorów (plik ieee754_5.xls). 3. Podaj przyczyny obserwowanych efektów. Która wartość jest liczona dokładniej i dlaczego? Co naleŝy robić, aby uniknąć tego typu błędów? 5 6

14 8. Informacje o dostępnych programach Dostępne w trakcie ćwiczenia programy ieee754_.exe, ieee754_.exe, ieee754_3.exe oraz ieee754_4.exe zostały przygotowane z uŝyciem języka G, w ramach środowiska LabView TM, firmy National Instruments. Programy w wersji skompilowanej, wykonywalnej są dostępne m.in. na stronach internetowych Ich uruchomienie jest moŝliwe na dowolnym komputerze, równieŝ bez zainstalowanego pakietu NI LabView TM. Niezbędnym warunkiem działania programów jest zainstalowanie platformy uruchomieniowej NI LabView TM, tzw. LabVIEW Run-Time Engine. Oryginalny pakiet instalacyjny (LVRTEf3std.exe) jest dostępny legalnie, bezpłatnie na stronach producenta oprogramowania, m.in. Przed uzyskaniem dostępu do pakietu instalacyjnego wymagane jest podanie danych w celach marketingowych. 9. Przykładowe zagadnienia na zaliczenie. Scharakteryzuj formaty zapisu zmiennoprzecinkowego dostępne w ramach standardu IEEE Wyjaśnij sposób zapisu liczb w formacie BFP w standardzie IEEE Wyjaśnij sposób zapisu liczb w formacie DFP w standardzie IEEE Podaj jakie są standardowe formaty reprezentacji zmiennoprzecinkowej oraz inne, dopuszczone w ramach standardu IEEE Podaj główne cechy tych formatów, które mają znaczenie przy programowaniu i wykonywaniu obliczeń. 5. Wyjaśnij, od czego zaleŝy zakres reprezentowanych liczb a od czego ich precyzja reprezentacji. 6. Wyjaśnij jak rozumiesz termin liczba maszynowa. Jaka jest róŝnica między liczbą maszynową a liczbą rzeczywistą. 7. Co to jest precyzja zapisu P? 8. Jakie są krytyczne i niekrytyczne błędy w ramach standardu IEEE Czy kaŝdą liczbę z zakresu przewidzianego w standardzie IEEE moŝna przedstawić w zapisie zmiennoprzecinkowym. Odpowiedź uzasadnij.. Wyjaśnij na czym polega kumulacja lub propagacja błędów w obliczeniach zmiennoprzecinkowych.. W oparciu o wzory wyjaśnij, co się dzieje z błędem względnym wyniku przy obliczaniu sumy dwóch wyrazów.. W oparciu o wzory wyjaśnij, co się dzieje z błędem względnym wyniku przy obliczaniu iloczynu dwóch wyrazów. 3. Omów metody ograniczania błędów numerycznych. 4. Dlaczego binarny zapis zmiennoprzecinkowy (BFP) jest powszechnie wykorzystywany w programach, zaś dziesiętny zapis zmiennoprzecinkowy (DFP) w niewielkim (znikomym) stopniu? 5. Na czym polega zaokrąglanie liczby w zapisie zmiennoprzecinkowym a na czym obcięcie. 7 8

15 . Literatura [] J. M. Jankowscy: Przegląd metod i algorytmów numerycznych. WNT, Warszawa, 9. [] D. Kincaid, W. Cheney: Analiza numeryczna. PWN, Warszawa, 8. [3] Z. Fortuna, B. Macukow, J. Wasowski: Metody numeryczne. WNT, Warszawa, 6. [4] S. Gryś: Arytmetyka komputerów. Wydawnictwa Naukowe PWN, Warszawa, 7. [5] J. Ogrodzki: Wstęp do systemów komputerowych. Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 5. [6] B. Pochopień: Arytmetyka w systemach cyfrowych. Akademicka Oficyna Wydawnicza Exit, Warszawa, 4. [7] IEEE Standard for Floating-Point Arithmetic. DOI.9/IEEESTD , 8. [8] IEEE Standard for Binary Floating-Point Arithmetic. DOI.9/IEEESTD , Wymagania BHP Warunkiem przystąpienia do praktycznej realizacji ćwiczenia jest zapoznanie się z instrukcją BHP i instrukcją przeciw poŝarową oraz przestrzeganie zasad w nich zawartych. W trakcie zajęć laboratoryjnych naleŝy przestrzegać następujących zasad. Sprawdzić, czy urządzenia dostępne na stanowisku laboratoryjnym są w stanie kompletnym, nie wskazującym na fizyczne uszkodzenie. JeŜeli istnieje taka moŝliwość, naleŝy dostosować warunki stanowiska do własnych potrzeb, ze względu na ergonomię. Monitor komputera ustawić w sposób zapewniający stałą i wygodną obserwację dla wszystkich członków zespołu. Sprawdzić prawidłowość połączeń urządzeń. Załączenie komputera moŝe nastąpić po wyraŝeniu zgody przez prowadzącego. W trakcie pracy z komputerem zabronione jest spoŝywanie posiłków i picie napojów. W przypadku zakończenia pracy naleŝy zakończyć sesję przez wydanie polecenia wylogowania. Zamknięcie systemu operacyjnego moŝe się odbywać tylko na wyraźne polecenie prowadzącego. Zabronione jest dokonywanie jakichkolwiek przełączeń oraz wymiana elementów składowych stanowiska. Zabroniona jest zmiana konfiguracji komputera, w tym systemu operacyjnego i programów uŝytkowych, która nie wynika z programu zajęć i nie jest wykonywana w porozumieniu z prowadzącym zajęcia. W przypadku zaniku napięcia zasilającego naleŝy niezwłocznie wyłączyć wszystkie urządzenia. Stwierdzone wszelkie braki w wyposaŝeniu stanowiska oraz nieprawidłowości w funkcjonowaniu sprzętu naleŝy przekazywać prowadzącemu zajęcia. Zabrania się samodzielnego włączania, manipulowania i korzystania z urządzeń nie naleŝących do danego ćwiczenia. W przypadku wystąpienia poraŝenia prądem elektrycznym naleŝy niezwłocznie wyłączyć zasilanie stanowiska. Przed odłączeniem napięcia nie dotykać poraŝonego. 3

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 5 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 5 1 / 23 LICZBY RZECZYWISTE - Algorytm Hornera

Bardziej szczegółowo

Spis treści JĘZYK C - ZAGNIEŻDŻANIE IF-ELSE, OPERATOR WARUNKOWY. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu

Spis treści JĘZYK C - ZAGNIEŻDŻANIE IF-ELSE, OPERATOR WARUNKOWY. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Informatyka Kod przedmiotu: ESC00 009 (studia stacjonarne)

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci

Kod IEEE754. IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci Kod IEEE754 IEEE Institute of Electrical and Electronics Engineers IEEE754 (1985) - norma dotycząca zapisu binarnego liczb zmiennopozycyjnych (pojedynczej precyzji) Liczbę binarną o postaci (-1) s 1.f

Bardziej szczegółowo

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika

Wielkości liczbowe. Wykład z Podstaw Informatyki. Piotr Mika Wielkości liczbowe Wykład z Podstaw Informatyki Piotr Mika Wprowadzenie, liczby naturalne Komputer to podstawowe narzędzie do wykonywania obliczeń Jeden bajt reprezentuje oraz liczby naturalne od do 255

Bardziej szczegółowo

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne

Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne Wprowadzenie do architektury komputerów systemy liczbowe, operacje arytmetyczne i logiczne 1. Bit Pozycja rejestru lub komórki pamięci służąca do przedstawiania (pamiętania) cyfry w systemie (liczbowym)

Bardziej szczegółowo

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015

Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 Metody numeryczne Technika obliczeniowa i symulacyjna Sem. 2, EiT, 2014/2015 1 Metody numeryczne Dział matematyki Metody rozwiązywania problemów matematycznych za pomocą operacji na liczbach. Otrzymywane

Bardziej szczegółowo

Stan wysoki (H) i stan niski (L)

Stan wysoki (H) i stan niski (L) PODSTAWY Przez układy cyfrowe rozumiemy układy, w których w każdej chwili występują tylko dwa (zwykle) możliwe stany, np. tranzystor, jako element układu cyfrowego, może być albo w stanie nasycenia, albo

Bardziej szczegółowo

Spis treści JĘZYK C - PRZEKAZYWANIE PARAMETRÓW DO FUNKCJI, REKURENCJA. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu

Spis treści JĘZYK C - PRZEKAZYWANIE PARAMETRÓW DO FUNKCJI, REKURENCJA. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Informatyka 1 Kod przedmiotu: EZ1C200 010 (studia niestacjonarne)

Bardziej szczegółowo

Spis treści KODOWANIE DANYCH I METODY WERYFIKACJI POPRAWNOŚCI KODOWANIA PI04. Instrukcja do zajęć Podstawy informatyki pracownia specjalistyczna

Spis treści KODOWANIE DANYCH I METODY WERYFIKACJI POPRAWNOŚCI KODOWANIA PI04. Instrukcja do zajęć Podstawy informatyki pracownia specjalistyczna Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć Podstawy informatyki pracownia specjalistyczna Tytuł ćwiczenia KODOWANIE DANYCH I METODY

Bardziej szczegółowo

Kodowanie informacji. Kody liczbowe

Kodowanie informacji. Kody liczbowe Wykład 2 2-1 Kodowanie informacji PoniewaŜ komputer jest urządzeniem zbudowanym z układów cyfrowych, informacja przetwarzana przez niego musi być reprezentowana przy pomocy dwóch stanów - wysokiego i niskiego,

Bardziej szczegółowo

Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc

Informatyka 1. Wykład nr 5 (13.04.2008) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc Informatyka Politechnika Białostocka - Wydział Elektryczny Elektrotechnika, semestr II, studia niestacjonarne I stopnia (zaoczne) Rok akademicki 2007/2008 Wykład nr 5 (3.04.2008) Rok akademicki 2007/2008,

Bardziej szczegółowo

Arytmetyka binarna - wykład 6

Arytmetyka binarna - wykład 6 SWB - Arytmetyka binarna - wykład 6 asz 1 Arytmetyka binarna - wykład 6 Adam Szmigielski aszmigie@pjwstk.edu.pl SWB - Arytmetyka binarna - wykład 6 asz 2 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2

Bardziej szczegółowo

Naturalny kod binarny (NKB)

Naturalny kod binarny (NKB) SWB - Arytmetyka binarna - wykład 6 asz 1 Naturalny kod binarny (NKB) pozycja 7 6 5 4 3 2 1 0 wartość 2 7 2 6 2 5 2 4 2 3 2 2 2 1 2 0 wartość 128 64 32 16 8 4 2 1 bity b 7 b 6 b 5 b 4 b 3 b 2 b 1 b 0 System

Bardziej szczegółowo

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński

Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Przedmiot: Urządzenia techniki komputerowej Nauczyciel: Mirosław Ruciński Temat: Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy.

Bardziej szczegółowo

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym

Wstęp do programowania. Reprezentacje liczb. Liczby naturalne, całkowite i rzeczywiste w układzie binarnym Wstęp do programowania Reprezentacje liczb Liczby naturalne, całkowite i rzeczywiste w układzie binarnym System dwójkowy W komputerach stosuje się dwójkowy system pozycyjny do reprezentowania zarówno liczb

Bardziej szczegółowo

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna

Dane, informacja, programy. Kodowanie danych, kompresja stratna i bezstratna Dane, informacja, programy Kodowanie danych, kompresja stratna i bezstratna DANE Uporządkowane, zorganizowane fakty. Główne grupy danych: tekstowe (znaki alfanumeryczne, znaki specjalne) graficzne (ilustracje,

Bardziej szczegółowo

Teoretyczne Podstawy Informatyki

Teoretyczne Podstawy Informatyki Teoretyczne Podstawy Informatyki cel zajęć Celem kształcenia jest uzyskanie umiejętności i kompetencji w zakresie budowy schematów blokowych algor ytmów oraz ocenę ich złożoności obliczeniowej w celu optymizacji

Bardziej szczegółowo

Spis treści JĘZYK C - ZAGNIEŻDŻANIE IF-ELSE, OPERATOR WARUNKOWY. Metodyki i techniki programowania

Spis treści JĘZYK C - ZAGNIEŻDŻANIE IF-ELSE, OPERATOR WARUNKOWY. Metodyki i techniki programowania Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Metodyki i techniki programowania Kod przedmiotu: TSC00

Bardziej szczegółowo

3.3.1. Metoda znak-moduł (ZM)

3.3.1. Metoda znak-moduł (ZM) 3.3. Zapis liczb binarnych ze znakiem 1 0-1 0 1 : 1 0 0 1 1 0 1 1 0 1 0 0 0 0 1 0 0 0 1 reszta 0 0 0 0 0 0 0 1 3.3. Zapis liczb binarnych ze znakiem W systemie dziesiętnym liczby ujemne opatrzone są specjalnym

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

BADANIE ROZKŁADU TEMPERATURY W PIECU PLANITERM

BADANIE ROZKŁADU TEMPERATURY W PIECU PLANITERM POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY KATEDRA ELEKTROTECHNIKI TEORETYCZNEJ I METROLOGII Instrukcja do zajęć laboratoryjnych z przedmiotu: Pomiary elektryczne wielkości nieelektrycznych 2 Kod przedmiotu:

Bardziej szczegółowo

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów.

Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Architektura komputerów Reprezentacja liczb. Kodowanie rozkazów. Prezentacja jest współfinansowana przez Unię Europejską w ramach Europejskiego Funduszu Społecznego w projekcie pt. Innowacyjna dydaktyka

Bardziej szczegółowo

Informatyka 1. Wykład nr 4 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc

Informatyka 1. Wykład nr 4 ( ) Politechnika Białostocka. - Wydział Elektryczny. dr inŝ. Jarosław Forenc Informatyka Politechnika Białostocka - Wydział lektryczny lektrotechnika, semestr II, studia stacjonarne I stopnia Rok akademicki 008/009 Wykład nr 4 (8.04.009) Informatyka, studia stacjonarne I stopnia

Bardziej szczegółowo

Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze

Podstawy Informatyki. Metalurgia, I rok. Wykład 3 Liczby w komputerze Podstawy Informatyki Metalurgia, I rok Wykład 3 Liczby w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 1948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych

Bardziej szczegółowo

Spis treści JĘZYK C - INSTRUKCJA WARUNKOWA IF, OPERATORY RELACYJNE I LOGICZNE, WYRAŻENIA LOGICZNE. Informatyka 1

Spis treści JĘZYK C - INSTRUKCJA WARUNKOWA IF, OPERATORY RELACYJNE I LOGICZNE, WYRAŻENIA LOGICZNE. Informatyka 1 Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Informatyka 1 Kod przedmiotu: ES1C200 009 (studia stacjonarne)

Bardziej szczegółowo

LICZBY ZMIENNOPRZECINKOWE

LICZBY ZMIENNOPRZECINKOWE LICZBY ZMIENNOPRZECINKOWE Liczby zmiennoprzecinkowe są komputerową reprezentacją liczb rzeczywistych zapisanych w formie wykładniczej (naukowej). Aby uprościć arytmetykę na nich, przyjęto ograniczenia

Bardziej szczegółowo

Systemy zapisu liczb.

Systemy zapisu liczb. Systemy zapisu liczb. Cele kształcenia: Zapoznanie z systemami zapisu liczb: dziesiętny, dwójkowy, ósemkowy, szesnastkowy. Zdobycie umiejętności wykonywania działań na liczbach w różnych systemach. Zagadnienia:

Bardziej szczegółowo

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek

Wstęp do informatyki. Pojęcie liczebności. Liczenie bez liczebników. Podstawy arytmetyki komputerowej. Cezary Bolek Wstęp do informatyki Podstawy arytmetyki komputerowej Cezary Bolek cbolek@ki.uni.lodz.pl Uniwersytet Łódzki Wydział Zarządzania Katedra Informatyki Pojęcie liczebności Naturalna zdolność człowieka do postrzegania

Bardziej szczegółowo

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M

SYSTEMY LICZBOWE. SYSTEMY POZYCYJNE: dziesiętny (arabski): 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M SYSTEMY LICZBOWE SYSTEMY POZYCYJNE: dziesiętny (arabski):,, 2, 3, 4, 5, 6, 7, 8, 9 rzymski: I, II, III, V, C, M System pozycyjno wagowy: na przykład liczba 444 4 4 4 4 4 4 Wagi systemu dziesiętnego:,,,,...

Bardziej szczegółowo

METROLOGIA EZ1C

METROLOGIA EZ1C Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych z przedmiotu METOLOGI Kod przedmiotu: EZ1C 300 016 POMI EZYSTNCJI METODĄ

Bardziej szczegółowo

Pracownia Komputerowa wyk ad VI

Pracownia Komputerowa wyk ad VI Pracownia Komputerowa wyk ad VI dr Magdalena Posiada a-zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Przypomnienie 125 (10) =? (2) Liczby ca kowite

Bardziej szczegółowo

Podstawy Informatyki

Podstawy Informatyki Podstawy Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 3 Bożena Woźna-Szcześniak (AJD) Podstawy Informatyki Wykład 3 1 / 42 Reprezentacja liczb całkowitych

Bardziej szczegółowo

Zestaw 3. - Zapis liczb binarnych ze znakiem 1

Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zestaw 3. - Zapis liczb binarnych ze znakiem 1 Zapis znak - moduł (ZM) Zapis liczb w systemie Znak - moduł Znak liczby o n bitach zależy od najstarszego bitu b n 1 (tzn. cyfry o najwyższej pozycji): b

Bardziej szczegółowo

Adam Korzeniewski p Katedra Systemów Multimedialnych

Adam Korzeniewski p Katedra Systemów Multimedialnych Adam Korzeniewski adamkorz@sound.eti.pg.gda.pl p. 732 - Katedra Systemów Multimedialnych Sygnały dyskretne są z reguły przetwarzane w komputerach (zwykłych lub wyspecjalizowanych, takich jak procesory

Bardziej szczegółowo

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych

Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1 Podstawowe operacje arytmetyczne i logiczne dla liczb binarnych 1. Podstawowe operacje logiczne dla cyfr binarnych Jeśli cyfry 0 i 1 potraktujemy tak, jak wartości logiczne fałsz i prawda, to działanie

Bardziej szczegółowo

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH

ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 c Dr inż. Ignacy Pardyka (Inf.UJK) ASK.RD.01 Rok

Bardziej szczegółowo

LINIA PRZESYŁOWA PRĄDU PRZEMIENNEGO

LINIA PRZESYŁOWA PRĄDU PRZEMIENNEGO Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do zajęć laboratoryjnych LINIA PRZESYŁOWA PRĄDU PRZEMIENNEGO Numer ćwiczenia E1 Opracowanie: mgr

Bardziej szczegółowo

Podstawy Informatyki. Wykład 2. Reprezentacja liczb w komputerze

Podstawy Informatyki. Wykład 2. Reprezentacja liczb w komputerze Podstawy Informatyki Wykład 2 Reprezentacja liczb w komputerze Jednostki informacji Bit (ang. bit) (Shannon, 948) Najmniejsza ilość informacji potrzebna do określenia, który z dwóch równie prawdopodobnych

Bardziej szczegółowo

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010

ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 ARCHITEKRURA KOMPUTERÓW Kodowanie liczb ze znakiem 27.10.2010 Do zapisu liczby ze znakiem mamy tylko 8 bitów, pierwszy od lewej bit to bit znakowy, a pozostałem 7 to bity na liczbę. bit znakowy 1 0 1 1

Bardziej szczegółowo

Systemy liczenia. 333= 3*100+3*10+3*1

Systemy liczenia. 333= 3*100+3*10+3*1 Systemy liczenia. System dziesiętny jest systemem pozycyjnym, co oznacza, Ŝe wartość liczby zaleŝy od pozycji na której się ona znajduje np. w liczbie 333 kaŝda cyfra oznacza inną wartość bowiem: 333=

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Wykład jest przygotowany dla IV semestru kierunku Elektronika i Telekomunikacja. Studia I stopnia Dr inż. Małgorzata Langer Architektura komputerów Prezentacja multimedialna współfinansowana przez Unię

Bardziej szczegółowo

Temat: Liczby definicje, oznaczenia, własności. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Liczby definicje, oznaczenia, własności. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Liczby definicje, oznaczenia, własności A n n a R a j f u r a, M a t e m a t y k a s e m e s t r, W S Z i M w S o c h a c z e w i e Kody kolorów: pojęcie zwraca uwagę A n n a R a j f u r a, M a

Bardziej szczegółowo

Mikroinformatyka. Koprocesory arytmetyczne 8087, 80187, 80287, i387

Mikroinformatyka. Koprocesory arytmetyczne 8087, 80187, 80287, i387 Mikroinformatyka Koprocesory arytmetyczne 8087, 80187, 80287, i387 Koprocesor arytmetyczny 100 razy szybsze obliczenia numeryczne na liczbach zmiennoprzecinkowych. Obliczenia prowadzone równolegle z procesorem

Bardziej szczegółowo

Architektura komputerów

Architektura komputerów Architektura komputerów Wykład 4 Jan Kazimirski 1 Reprezentacja danych 2 Plan wykładu Systemy liczbowe Zapis dwójkowy liczb całkowitych Działania arytmetyczne Liczby rzeczywiste Znaki i łańcuchy znaków

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH

REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH REPREZENTACJA LICZBY, BŁĘDY, ALGORYTMY W OBLICZENIACH Transport, studia I stopnia rok akademicki 2012/2013 Instytut L-5, Wydział Inżynierii Lądowej, Politechnika Krakowska Adam Wosatko Ewa Pabisek Pojęcie

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

Spis treści JĘZYK C - INSTRUKCJA SWITCH, OPERATORY BITOWE. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu. Numer ćwiczenia INF05

Spis treści JĘZYK C - INSTRUKCJA SWITCH, OPERATORY BITOWE. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu. Numer ćwiczenia INF05 Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Informatyka 1 Kod przedmiotu: ES1C200 009 (studia stacjonarne)

Bardziej szczegółowo

Dodatek do Wykładu 01: Kodowanie liczb w komputerze

Dodatek do Wykładu 01: Kodowanie liczb w komputerze Dodatek do Wykładu 01: Kodowanie liczb w komputerze [materiał ze strony: http://sigma.wsb-nlu.edu.pl/~szyszkin/] Wszelkie dane zapamiętywane przetwarzane przez komputery muszą być odpowiednio zakodowane.

Bardziej szczegółowo

MATeMAtyka zakres rozszerzony

MATeMAtyka zakres rozszerzony MATeMAtyka zakres rozszerzony Proponowany rozkład materiału kl. I (160 h) (Na czerwono zaznaczono treści z zakresu rozszerzonego) Temat lekcji Liczba godzin 1. Liczby rzeczywiste 15 1. Liczby naturalne

Bardziej szczegółowo

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego

Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego Arytmetyka cyfrowa Dla człowieka naturalnym sposobem liczenia jest korzystanie z systemu dziesiętnego, dla komputera natomiast korzystanie z zapisu dwójkowego (binarnego). Zapis binarny - to system liczenia

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie

Bardziej szczegółowo

Arytmetyka stałopozycyjna

Arytmetyka stałopozycyjna Wprowadzenie do inżynierii przetwarzania informacji. Ćwiczenie 3. Arytmetyka stałopozycyjna Cel dydaktyczny: Nabycie umiejętności wykonywania podstawowych operacji arytmetycznych na liczbach stałopozycyjnych.

Bardziej szczegółowo

Spis treści PLIKI BINARNE W JĘZYKU C. Informatyka 2. Instrukcja do pracowni specjalistycznej z przedmiotu. Numer ćwiczenia INF23

Spis treści PLIKI BINARNE W JĘZYKU C. Informatyka 2. Instrukcja do pracowni specjalistycznej z przedmiotu. Numer ćwiczenia INF23 Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Informatyka 2 Kod przedmiotu: ES1C300 016 (studia stacjonarne)

Bardziej szczegółowo

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy

Informatyka kodowanie liczb. dr hab. inż. Mikołaj Morzy Informatyka kodowanie liczb dr hab. inż. Mikołaj Morzy plan wykładu definicja informacji sposoby kodowania reprezentacja liczb naturalnych i całkowitych arytmetyka binarna arytmetyka oktalna arytmetyka

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Wstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery

Wstęp do Informatyki. Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Wstęp do Informatyki Reprezentacja liczb w komputerze Arytmetyka stało- i zmiennoprzecinkowa Przechowywanie danych pliki i foldery Pozycyjne systemy liczbowe Dziesiętny system liczbowy (o podstawie 10):

Bardziej szczegółowo

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb.

System liczbowy jest zbiorem reguł określających jednolity sposób zapisu i nazewnictwa liczb. 2. Arytmetyka komputera. Systemy zapisu liczb: dziesietny, dwójkowy (binarny), ósemkowy, szesnatskowy. Podstawowe operacje arytmetyczne na liczbach binarnych. Zapis liczby binarnej ze znakiem. Reprezentacja

Bardziej szczegółowo

KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO

KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO Aleksandra Nogała nauczycielka matematyki w Gimnazjum im. Macieja Rataja w Żmigrodzie olanog@poczta.onet.pl KONSPEKT ZAJĘĆ ( 2 godziny) KOŁO MATEMATYCZNE LUB INFORMATYCZNE - klasa III gimnazjum, I LO TEMAT

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Zmiennoprzecinkowy zapis liczb wymiernych dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb wymiernych Stałoprzecinkowa bez znaku ze znakiem Zmiennoprzecinkowa

Bardziej szczegółowo

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011

Uniwersytet w Białymstoku Wydział Ekonomiczno-Informatyczny w Wilnie SYLLABUS na rok akademicki 2010/2011 SYLLABUS na rok akademicki 010/011 Tryb studiów Studia stacjonarne Kierunek studiów Informatyka Poziom studiów Pierwszego stopnia Rok studiów/ semestr 1(rok)/1(sem) Specjalność Bez specjalności Kod katedry/zakładu

Bardziej szczegółowo

Kodowanie liczb całkowitych w systemach komputerowych

Kodowanie liczb całkowitych w systemach komputerowych Kodowanie liczb całkowitych w systemach komputerowych System pozycyjny Systemy addytywne znaczenie historyczne Systemy pozycyjne r podstawa systemu liczbowego (radix) A wartość liczby a - cyfra i pozycja

Bardziej szczegółowo

Zapis liczb binarnych ze znakiem

Zapis liczb binarnych ze znakiem Zapis liczb binarnych ze znakiem W tej prezentacji: Zapis Znak-Moduł (ZM) Zapis uzupełnień do 1 (U1) Zapis uzupełnień do 2 (U2) Zapis Znak-Moduł (ZM) Koncepcyjnie zapis znak - moduł (w skrócie ZM - ang.

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

Operacje arytmetyczne

Operacje arytmetyczne PODSTAWY TEORII UKŁADÓW CYFROWYCH Operacje arytmetyczne Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ Dodawanie dwójkowe Opracował: Andrzej Nowak Ostatni wynik

Bardziej szczegółowo

ARYTMETYKA KOMPUTERA

ARYTMETYKA KOMPUTERA 006 URZĄDZENIA TECHNIKI KOMPUTEROWEJ ARYTMETYKA KOMPUTERA Systemy liczbowe o róŝnych podstawach 1 UTK System dziesiętny Cyfry: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Liczba 764.5 oznacza 7 * 10 2 + 6 * 10 1 + 4

Bardziej szczegółowo

Pracownia Komputerowa wyk ad IV

Pracownia Komputerowa wyk ad IV Pracownia Komputerowa wykad IV dr Magdalena Posiadaa-Zezula Magdalena.Posiadala@fuw.edu.pl http://www.fuw.edu.pl/~mposiada Magdalena.Posiadala@fuw.edu.pl 1 Reprezentacje liczb i znaków Liczby: Reprezentacja

Bardziej szczegółowo

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax.

RODZAJE INFORMACJI. Informacje analogowe. Informacje cyfrowe. U(t) U(t) Umax. Umax. R=(0,Umax) nieskończony zbiór możliwych wartości. Umax. RODZAJE INFORMACJI Informacje analogowe U(t) Umax Umax 0 0 R=(0,Umax) nieskończony zbiór możliwych wartości WE MASZYNA ANALOGOWA WY Informacje cyfrowe U(t) Umaxq Umax R=(U, 2U, 3U, 4U) # # MASZYNA # CYFROWA

Bardziej szczegółowo

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE

DYDAKTYKA ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE ZAGADNIENIA CYFROWE @KEMOR SPIS TREŚCI. SYSTEMY LICZBOWE...3.. SYSTEM DZIESIĘTNY...3.2. SYSTEM DWÓJKOWY...3.3. SYSTEM SZESNASTKOWY...4 2. PODSTAWOWE OPERACJE NA LICZBACH BINARNYCH...5

Bardziej szczegółowo

Dział programowy: Liczby i działania ( 1 )

Dział programowy: Liczby i działania ( 1 ) 1 S t r o n a Dział programowy: Liczby i działania ( 1 ) 14-20 Liczby. Rozwinięcia liczb dziesiętne liczb wymiernych. Zaokrąglanie liczb. Szacowanie wyników. Dodawanie i odejmowanie liczb dodatnich. MnoŜenie

Bardziej szczegółowo

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do zajęć laboratoryjnych z przedmiotu:

Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej. Instrukcja do zajęć laboratoryjnych z przedmiotu: Politechnika Białostocka Wydział Elektryczny Katedra Telekomunikacji i Aparatury Elektronicznej Instrukcja do zajęć laboratoryjnych z przedmiotu: Architektura i Programowanie Procesorów Sygnałowych Numer

Bardziej szczegółowo

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych

Języki i metodyka programowania. Reprezentacja danych w systemach komputerowych Reprezentacja danych w systemach komputerowych Kod (łac. codex - spis), ciąg składników sygnału (kombinacji sygnałów elementarnych, np. kropek i kresek, impulsów prądu, symboli) oraz reguła ich przyporządkowania

Bardziej szczegółowo

BŁĘDY PRZETWARZANIA NUMERYCZNEGO

BŁĘDY PRZETWARZANIA NUMERYCZNEGO BŁĘDY PRZETWARZANIA NUMERYCZNEGO Maciej Patan Uniwersytet Zielonogórski Dlaczego modelujemy... systematyczne rozwiązywanie problemów, eksperymentalna eksploracja wielu rozwiązań, dostarczanie abstrakcyjnych

Bardziej szczegółowo

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY

ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY ROZKŁAD MATERIAŁU NAUCZANIA KLASA 1, ZAKRES PODSTAWOWY Numer lekcji 1 2 Nazwa działu Lekcja organizacyjna. Zapoznanie z programem nauczania i kryteriami wymagań Zbiór liczb rzeczywistych i jego 3 Zbiór

Bardziej szczegółowo

Kod U2 Opracował: Andrzej Nowak

Kod U2 Opracował: Andrzej Nowak PODSTAWY TEORII UKŁADÓW CYFROWYCH Kod U2 Opracował: Andrzej Nowak Bibliografia: Urządzenia techniki komputerowej, K. Wojtuszkiewicz http://pl.wikipedia.org/ System zapisu liczb ze znakiem opisany w poprzednim

Bardziej szczegółowo

Spis treści JĘZYK C - INSTRUKCJE ITERACYJNE WHILE I DO...WHILE. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu

Spis treści JĘZYK C - INSTRUKCJE ITERACYJNE WHILE I DO...WHILE. Informatyka 1. Instrukcja do pracowni specjalistycznej z przedmiotu Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Informatyka 1 Kod przedmiotu: ES1C200 009 (studia stacjonarne)

Bardziej szczegółowo

Metodyki i Techniki Programowania 1 1 1. MECHANIZM POWSTAWANIA PROGRAMU W JĘZYKU C PODSTAWOWE POJĘCIA

Metodyki i Techniki Programowania 1 1 1. MECHANIZM POWSTAWANIA PROGRAMU W JĘZYKU C PODSTAWOWE POJĘCIA Metodyki i Techniki Programowania 1 1 ZAJ CIA 3. 1. MECHANIZM POWSTAWANIA PROGRAMU W JĘZYKU C PODSTAWOWE POJĘCIA IDE zintegrowane środowisko programistyczne, zawierające kompilator, edytor tekstu i linker,

Bardziej szczegółowo

Kodowanie informacji. Przygotował: Ryszard Kijanka

Kodowanie informacji. Przygotował: Ryszard Kijanka Kodowanie informacji Przygotował: Ryszard Kijanka Komputer jest urządzeniem służącym do przetwarzania informacji. Informacją są liczby, ale także inne obiekty, takie jak litery, wartości logiczne, obrazy

Bardziej szczegółowo

Spis treści JĘZYK C - INSTRUKCJA WARUNKOWA IF, OPERATORY RELACYJNE I LOGICZNE, WYRAŻENIA LOGICZNE. Metodyki i techniki programowania

Spis treści JĘZYK C - INSTRUKCJA WARUNKOWA IF, OPERATORY RELACYJNE I LOGICZNE, WYRAŻENIA LOGICZNE. Metodyki i techniki programowania Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Metodyki i techniki programowania Kod przedmiotu: TS1C200

Bardziej szczegółowo

Jednostki informacji - bit. Kodowanie znaków: ASCII, ISO 8859, Unicode liczb: NKB (BCN), U2, BCD. Liczby zmiennoprzecinkowe standard IEEE 754

Jednostki informacji - bit. Kodowanie znaków: ASCII, ISO 8859, Unicode liczb: NKB (BCN), U2, BCD. Liczby zmiennoprzecinkowe standard IEEE 754 Rok akademicki 06/07, Pracownia nr /33 Pracownia nr Technologie informacyjne Politechnika Białostocka - Wydział Elektryczny semestr I, studia stacjonarne I stopnia Rok akademicki 06/07 Jednostki informacji

Bardziej szczegółowo

ARKUSZ KALKULACYJNY komórka

ARKUSZ KALKULACYJNY komórka ARKUSZ KALKULACYJNY Arkusz kalkulacyjny program służący do obliczeń, kalkulacji i ich interpretacji graficznej w postaci wykresów. Przykłady programów typu Arkusz Kalkulacyjny: - Ms Excel (*.xls; *.xlsx)

Bardziej szczegółowo

EKSPLOATACJA SYSTEMÓW TECHNICZNYCH - LAB. Wprowadzenie do zajęć

EKSPLOATACJA SYSTEMÓW TECHNICZNYCH - LAB. Wprowadzenie do zajęć Politechnika Śląska Wydział Organizacji i Zarządzania Katedra Podstaw Systemów Technicznych EKSPLOATACJA SYSTEMÓW TECHNICZNYCH - LAB. Ćwiczenie 1 Wprowadzenie do zajęć Plan ćwiczenia 1. Zapoznanie się

Bardziej szczegółowo

PREZENTACJE MULTIMEDIALNE cz.2

PREZENTACJE MULTIMEDIALNE cz.2 Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni z przedmiotu Podstawy Informatyki Kod przedmiotu: TS1C 100 003 Ćwiczenie pt. PREZENTACJE MULTIMEDIALNE cz.2

Bardziej szczegółowo

BHP JĘZYK C - INSTRUKCJE ITERACYJNE

BHP JĘZYK C - INSTRUKCJE ITERACYJNE Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii Instrukcja do pracowni specjalistycznej z przedmiotu Metodyki i techniki programowania Kod przedmiotu: TS1C200

Bardziej szczegółowo

Temat 4. Kodowanie liczb

Temat 4. Kodowanie liczb Temat 4. Kodowanie liczb Spis treści do tematu 4 4.1. Kodowanie liczb stałopozycyjnych 4.1.1. Naturalny kod binarny NKB 4.1.2. Kod dwójkowo-dziesiętny BCD 4.1.3. Kod Graya 4.1.4. Kod znak-moduł 4.1.5.

Bardziej szczegółowo

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony

Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Zagadnienia do małej matury z matematyki klasa II Poziom podstawowy i rozszerzony Uczeń realizujący zakres rozszerzony powinien również spełniać wszystkie wymagania w zakresie poziomu podstawowego. Zakres

Bardziej szczegółowo

Wprowadzenie do informatyki - ć wiczenia

Wprowadzenie do informatyki - ć wiczenia Kod znak-moduł (ZM) dr inż. Izabela Szczęch WSNHiD Ćwiczenia z wprowadzenia do informatyki Reprezentacja liczb całkowitych Jak kodowany jest znak liczby? Omó wimy dwa sposoby kodowania liczb ze znakiem:

Bardziej szczegółowo

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych

Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych ZESPÓŁ SZKÓŁ HANDLOWO-EKONOMICZNYCH IM. MIKOŁAJA KOPERNIKA W BIAŁYMSTOKU Pakiet edukacyjny do nauki przedmiotów ścisłych i kształtowania postaw przedsiębiorczych Mój przedmiot matematyka spis scenariuszy

Bardziej szczegółowo

Kolumna Zeszyt Komórka Wiersz Tabela arkusza Zakładki arkuszy

Kolumna Zeszyt Komórka Wiersz Tabela arkusza Zakładki arkuszy 1 Podstawowym przeznaczeniem arkusza kalkulacyjnego jest najczęściej opracowanie danych liczbowych i prezentowanie ich formie graficznej. Ale formuła arkusza kalkulacyjnego jest na tyle elastyczna, że

Bardziej szczegółowo

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura

4 Standardy reprezentacji znaków. 5 Przechowywanie danych w pamięci. 6 Literatura ARCHITEKTURA SYSTEMÓW KOMPUTEROWYCH reprezentacja danych ASK.RD.01 c Dr inż. Ignacy Pardyka UNIWERSYTET JANA KOCHANOWSKIEGO w Kielcach Rok akad. 2011/2012 1 2 Standardy reprezentacji wartości całkowitoliczbowych

Bardziej szczegółowo

Jak napisać program obliczający pola powierzchni różnych figur płaskich?

Jak napisać program obliczający pola powierzchni różnych figur płaskich? Część IX C++ Jak napisać program obliczający pola powierzchni różnych figur płaskich? Na początku, przed stworzeniem właściwego kodu programu zaprojektujemy naszą aplikację i stworzymy schemat blokowy

Bardziej szczegółowo

Przetworniki analogowo-cyfrowe - budowa i działanie" anie"

Przetworniki analogowo-cyfrowe - budowa i działanie anie Przetworniki analogowo-cyfrowe - budowa i działanie" anie" Wprowadzenie Wiele urządzeń pomiarowych wyposaŝonych jest obecnie w przetworniki A/C. Końcówki takich urządzeń to najczęściej typowe interfejsy

Bardziej szczegółowo

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność

Kup książkę Poleć książkę Oceń książkę. Księgarnia internetowa Lubię to!» Nasza społeczność Kup książkę Poleć książkę Oceń książkę Księgarnia internetowa Lubię to!» Nasza społeczność Spis treści WSTĘP 5 ROZDZIAŁ 1. Matematyka Europejczyka. Program nauczania matematyki w szkołach ponadgimnazjalnych

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej

Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej Wymagania edukacyjne z matematyki dla klasy pierwszej zasadniczej szkoły zawodowej ocena dopuszczająca ocena dostateczna ocena dobra ocena bardzo dobra ocena celująca Dział I. LICZBY RZECZYWISTE I DZIALANIA

Bardziej szczegółowo

POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia

POMIAR NAPIĘCIA STAŁEGO PRZYRZĄDAMI ANALOGOWYMI I CYFROWYMI. Cel ćwiczenia. Program ćwiczenia Pomiar napięć stałych 1 POMIA NAPIĘCIA STAŁEGO PZYZĄDAMI ANALOGOWYMI I CYFOWYMI Cel ćwiczenia Celem ćwiczenia jest poznanie: - parametrów typowych woltomierzy prądu stałego oraz z warunków poprawnej ich

Bardziej szczegółowo

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2

Cyfrowy zapis informacji. 5 grudnia 2013 Wojciech Kucewicz 2 Cyfrowy zapis informacji 5 grudnia 2013 Wojciech Kucewicz 2 Bit, Bajt, Słowo 5 grudnia 2013 Wojciech Kucewicz 3 Cyfrowy zapis informacji Bit [ang. binary digit] jest elementem zbioru dwuelementowego używanym

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO

ELEMENTY RLC W OBWODACH PRĄDU SINUSOIDALNIE ZMIENNEGO Politechnika Białostocka Wydział Elektryczny Katedra Elektrotechniki Teoretycznej i Metrologii nstrukcja do zajęć laboratoryjnych ELEMENTY RLC W OBWODACH PRĄD SNSODALNE ZMENNEGO Numer ćwiczenia E0 Opracowanie:

Bardziej szczegółowo