GRZEGORZ SZKIBIEL, CZES LAW WOWK ZADANIA Z ARYTMETYKI SZKOLNEJ I TEORII LICZB

Wielkość: px
Rozpocząć pokaz od strony:

Download "GRZEGORZ SZKIBIEL, CZES LAW WOWK ZADANIA Z ARYTMETYKI SZKOLNEJ I TEORII LICZB"

Transkrypt

1 U N I W E R S Y T E T S Z C Z E C I Ń S K I GRZEGORZ SZKIBIEL, CZES LAW WOWK ZADANIA Z ARYTMETYKI SZKOLNEJ I TEORII LICZB SZCZECIN 1999

2

3 SPIS TREŚCI Przedmowa Cze ść I Zadania Cze ść II Rozwia zania Podstawowe w lasności liczb ca lkowitych Podzielność liczb ca lkowitych Zasada indukcji matematycznej Dzielenie z reszta Cze ść ca lkowita Dzielenie z reszta dalsze w lasności Najwie kszy wspólny dzielnik Najmniejsza wspólna wielokrotność Zasadnicze twierdzenie arytmetyki Liczby pierwsze Poje cie liczby pierwszej Ile jest liczb pierwszych? Wnioski z zasadniczego twierdzenia arytmetyki

4 Uwagi o funkcji π(x) Twierdzenie Dirichleta Liczba dzielników oraz funkcja Eulera Rozk lad na czynniki dużych liczb naturalnych Liczby w różnych systemach pozycyjnych Poje cie pozycyjnego systemu zapisu liczb Wykonywanie obliczeń w różnych systemach pozycyjnych U lamki w różnych systemach pozycyjnych Algorytm Euklidesa Szukanie NWD Równania liniowe Rozwia zywanie równań liniowych Kongruencje Podstawowe w lasności kongruencji Kongruencje a wielomiany Kongruencje a równania Ma le Twierdzenie Fermata Pewne zastosowania twierdzenia Eulera Rozwinie cie okresowe a kongruencje Zastosowania twierdzenia Wilsona Jeszcze jedno twierdzenie o kongruencjach Bibliografia

5 PRZEDMOWA Jeden z wybitnych matematyków naszego stulecia, G.H. Hardy powiedzia l: Elementarna teoria liczb powinna być uważana za jeden z najw laściwszych przedmiotów w pocza tkach wykszta lcenia matematycznego. Wymaga ona bardzo ma lo uprzedniej wiedzy, a przedmiot jej jest uchwytny i znajomy. Metody, które stosuje, sa proste, ogólne i nieliczne, i nie ma sobie równej wśród nauk matematycznych w odwo laniu sie do naturalnej ludzkiej ciekawości 1. Mamy nadzieje, że umieszczenie w programie zawodowych studiów matematycznych takich przedmiotów jak arytmetyka szkolna i arytmetyka be dzie okazja do zilustrowania s lów G.H. Hardy ego. Zadania z arytmetyki szkolnej i teorii liczb to skrypt adresowany w pierwszym rze dzie do studentów studiów zawodowych, którzy zetkna sie z teoria liczb w ramach przedmiotów arytmetyka szkolna i arytmetyka. Ponieważ w skrypcie umieściliśmy wiele zadań z olimpiad matematycznych, wie c może on być przydatny także uczniom o zainteresowaniach matematycznych. Polecamy nasz skrypt również studentom starszych lat studiów matematycznych, zainteresowanym wyk ladem z kryptografii, ponieważ nie da sie studiować tego przedmiotu bez znajomości elementarnej teorii liczb. Aby na wyk ladzie z kryptografii szybciej przejść do realizacji zasadniczych hase l, pewne zagadnienia z teorii liczb be dzie można po- 1 G.H. Hardy: A Mathematician s Apology, 1940

6 6 Przedmowa zostawić s luchaczom do samodzielnego przeczytania w niniejszym skrypcie. Skrypt sk lada sie z dwóch cze ści. W pierwszej cze ści znajduja sie najważniejsze twierdzenia przypadaja ce na dany rozdzia l oraz zadania do rozwia zania. Natomiast w drugiej cze ści umieściliśmy szczegó lowe rozwia zania. Ponieważ w nauce matematyki istotna rzecza jest umieje tność rozwia zywania różnych problemów, przeto rozwia zania zadań (ze skryptu) należy czytać dopiero po wielu samodzielnych próbach wykonania zadania. Cze ść zadań zamieszczonych w skrypcie jest pomys lu autorów, ale znaczna cze ść zosta la zaczerpnie ta z literatury, której spis znajduje sie na końcu skryptu. Zadania u lożone sa w kolejności od latwiejszych do trudniejszych, ale najtrudniejsze zadania niekoniecznie znajduja sie na końcu paragrafu. Pomine liśmy też stosowane cze sto w literaturze oznaczenie * dla zadań trudniejszych, ponieważ wydaje sie nam, że istnieje spora grupa Czytelników, którzy znieche caja sie do pracy nad problemem z,,gwiazdka. W skrypcie obowia zuje powszechnie stosowana symbolika. Jest ona wyjaśniana w pocza tkowych fragmentach odpowiednich paragrafów oraz w tekstach niektórych zadań.

7 CZE ŚĆ I ZADANIA 1. Podstawowe w lasności liczb ca lkowitych 1.1. Podzielność liczb ca lkowitych. Mówimy, że liczba ca lkowita m 0 dzieli liczbe ca lkowita a, jeżeli istnieje taka liczba ca lkowita n, że m n = a. Fakt ten zapisujemy m a. Na przyk lad 3 276, bo 276 = Jeśli liczba m nie dzieli a, co oznacza, że nie istnieje żadna liczba ca lkowita n, dla której mn = a, to piszemy m a. Jeżeli m a, to mówimy też, że m jest dzielnikiem liczby a, natomiast liczbe a nazywamy wielokrotnościa liczby m Rozstrzygnij, czy , czy Pokaż, że jeśli m a, to m ( a) Uzasadnij, że jeśli m a oraz b jest dowolna liczba ca lkowita, to m ab Wiadomo, że Rozstrzygnij, czy oraz czy Za lóżmy, że m ab dla pewnych liczb ca lkowitych m, a i b. Czy m musi wtedy dzielić a lub b? Pokaż, że jeżeli m a oraz m b, to m a + b i m a b Wiadomo, że Pokaż, że oraz że

8 8 Cze ść I Zadania Wiadomo, że Czy 7 784? A czy 7 817? Zgadnij, czy , a naste pnie sprawdź swoja odpowiedź biora c pod uwage poprzednie zadanie Wiadomo, że Jaka jest naste pna (po 2576) liczba podzielna przez 56? Wiemy, że Wypisz wszystkie liczby wie ksze od 290 i mniejsze od 340, które sa podzielne przez Za lóżmy, że m a + b. Czy oznacza to, że m a i m b? A może oznacza to, że m a lub m b? Za lóżmy, że m a + b oraz m a b. Czy wtedy m a i m b? Jeżeli nie, to czy potrafisz sformu lować dodatkowe za lożenia o m tak, by naste puja ce zdanie by lo prawdziwe. Jeśli m a + b i m a b, to m a i m b Pokaż, że jeśli m a oraz n m, to n a Pokaż, że jeżeli m a i a 0, to m a Pokaż, że jeżeli m a i a m, to m = a lub m = a Zasada indukcji matematycznej. Podczas nauki matematyki w szkole średniej cze sto korzystaliśmy z tak zwanej zasady indukcji matematycznej (ZIM). Przypomnijmy sformu lowanie tej zasady: Niech T (n) be dzie zdaniem dotycza cym liczby naturalnej n. Jeżeli 1 0 T (m 0 ) jest zdaniem prawdziwym, gdzie m 0 jest pewna liczba należa ca do N 0 ; 2 0 z prawdziwości zdania T (k) (gdzie k N 0, k m 0 ) wynika prawdziwość zdania T (k + 1) ; to zdanie T (n) jest prawdziwe dla każdego n m 0. Przez N 0 oznaczyliśmy tu zbiór liczb ca lkowitych nieujemnych, czyli zbiór {0,1,2,...}. Podobnie, przez N m oznaczymy zbiór wszystkich liczb ca lkowitych wie kszych lub równych m, tj. zbiór

9 Podstawowe w lasności liczb ca lkowitych 9 {m,m + 1,m + 2,...}. Stosuja c powyższe oznaczenia możemy nadać zasadzie indukcji matematycznej naste puja ca postać: Niech M N 0 be dzie zbiorem takim, że 1 0 m 0 M ; 2 0 dla dowolnego k N m0, jeśli k M, to k + 1 M. Wówczas N m0 M. Zasada indukcji matematycznej jest równoważna zasadzie minimum (ZM), która orzeka, że w każdym niepustym zbiorze A liczb ca lkowitych nieujemnnych istnieje liczba najmniejsza. Wykażemy teraz, że z ZIM wynika ZM 1. Przypuśćmy, że A jest niepustym zbiorem liczb ca lkowitych nieujemnych, w którym nie ma liczby najmniejszej. Niech B be dzie zbiorem liczb ca lkowitych nieujemnych zdefiniowanym w naste puja cy sposób: n B dla każdej liczby ca lkowitej nieujemnej m, jeżeli m n, to m / A. Zauważmy, że 0 / A, bo w przeciwnym wypadku w zbiorze A istnia laby liczba najmniejsza, która by loby 0. Zatem 0 B. Za lóżmy, że n B. Wtedy n + 1 / A, gdyż w przeciwnym razie n + 1 by loby najmniejsza liczba zbioru A. Wynika to sta d, że skoro n B, wie c z definicji zbioru B mamy n / A, n 1 / A,..., 0 / A. Zatem w konsekwencji n + 1 B. Wykazaliśmy, że zbiór B spe lnia za lożenia ZIM (w drugim sformu lowaniu), wie c B = N 0. Biora c pod uwage definicje zbioru B, wnioskujemy, że A jest zbiorem pustym, co przeczy naszemu za lożeniu Udowodnij, że z zasady minimum wynika zasada indukcji matematycznej Korzystaja c z zasady indukcji uzasadnij, że 3 n 3 + 5n dla dowolnego n N 0. 1 Przy pierwszym czytaniu Czytelnik może pomina ć to uzasadnienie.

10 10 Cze ść I Zadania Wykaż, że 7 jest ostatnia cyfra liczby 2 2n + 1, gdy n N 2 (liczby 2 2n + 1, gdzie n N 0 nazywamy liczbami Fermata) Uzasadnij, że n 6 dla n N Wykaż, że 1 jest ostatnia cyfra liczby 2 4n 5 dla n N ( = N 1 ) Dzielenie z reszta. Jak wiadomo, jeśli mamy ustalona liczbe ca lkowita m, to nie każda liczba ca lkowita dzieli sie przez m. Na przyk lad 34 nie dzieli sie przez 5, ponieważ nie ma takiej liczby ca lkowitej, która pomnożona przez 5 da iloczyn równy 34. Oznacza to, że gdybyśmy chcieli rozdzielić 34 zeszyty mie dzy pie ciu uczniów, tak aby każdy otrzyma l jednakowa ilość, to nie potrafilibyśmy tego dokonać. Możemy jednakże dać każdemu uczniowi po 6 zeszytów i pozostana nam jeszcze 4. Dziela c 34 przez 5 otrzymujemy zatem 6 oraz reszte 4. Fakt ten zapisujemy 34 = Przypuśćmy, że mamy dwie liczby ca lkowite n oraz d, przy czym d 0. Dzielenie (z reszta ) liczby n przez d polega na znalezieniu liczb ca lkowitych q oraz r takich, że n = qd + r oraz 0 r < d. Liczbe r nazywamy reszta z dzielenia n przez d, a liczbe q niepe lnym ilorazem lub ilorazem cze ściowym tego dzielenia. Oczywiste jest, że d n wtedy i tylko wtedy, gdy r = Znajdź niepe lny iloraz i reszte z dzielenia (a) 23 przez 3; (b) 43 przez 4; (c) 36 przez Niech n i d be da liczbami ca lkowitymi, przy czym d 1. Korzystaja c z zasady minimum wykaż, że istnieje dok ladnie jedna para liczb ca lkowitych q i r taka, że n = dq + r, gdzie 0 r < d Pokaż, że kwadrat liczby ca lkowitej nieparzystej przy dzieleniu przez 8 daje reszte Pokaż, że suma kwadratów dwóch kolejnych liczb naturalnych przy dzieleniu przez 4 daje reszte 1.

11 Podstawowe w lasności liczb ca lkowitych Udowodnij, że liczba naturalna postaci 3m + 2 ( m N ) nie jest kwadratem żadnej liczby ca lkowitej Uzasadnij, że suma kwadratów dwóch liczb nieparzystych nie jest kwadratem żadnej liczby ca lkowitej Cze ść ca lkowita. Jeżeli x jest dowolna liczba rzeczywista, to istnieje najwie ksza liczba ca lkowita n spe lniaja ca warunek n x. Liczbe n nazywamy cze ścia ca lkowita liczby x i oznaczamy symbolem [x] lub E(x). Z określenia liczby [x] wynika, że [x] x < [x] + 1. ( ) Istotnie, gdyby x [x]+1, to liczba [x]+1 by laby liczba ca lkowita wie ksza od [x] spe lniaja ca warunek [x] + 1 x. Jest to sprzeczne z definicja cze ści ca lkowitej liczby x. Z nierówności (*) wynika, że 0 x [x] < 1. Liczbe x [x] nazywamy cze ścia u lamkowa liczby x i oznaczamy symbolem {x}. Latwo zobaczyć, że x = [x] + {x}. Przyk lady: [ 1 2 ] = 1, [4,7] = 4, [ 7,3] = 8, { 2} 1 = 1 2, {4,7} = 0,7, { 7,3} = 0, Wykaż, że jeżeli x, y R, oraz x y, to [x] [y] Uzasadnij, że jeżeli α (0,1) oraz n N, to [ n + α] = n Uzasadnij, że jeżeli (a) x jest liczba ca lkowita, to [ x] = [x] ; (b) x nie jest liczba ca lkowita, to [ x] = [x] 1 ; (c) x R, n Z, to [x + n] = [x] + n Wykaż, że dla dowolnych liczb rzeczywistych x oraz y zachodzi nierówność [x + y] [x] + [y] Udowodnij, że jeżeli [x] = [y], to x y < 1.

12 12 Cze ść I Zadania Wykaż, że jeśli n jest liczba naturalna, a x liczba rzeczywista, to [ ] [x] [ x =. n n] Rozwia ż równanie 5x [ ] 2x + 3 = Uzasadnij, że dla dowolnej liczby rzeczywistej x i dowolnej liczby naturalnej n zachodzi równość [x] + [ x + 1 ] [ + x + 2 ] [ + + x + n 1 ] = [nx]. n n n Niech n i k be da liczbami naturalnymi. Wykaż, że [ n ] [ ] [ ] [ ] n + 1 n + 2 n + k = n. k k k k 1.5. Dzielenie z reszta dalsze w lasności. Dziela c 34 przez 5 otrzymujemy 6 i reszte. Zauważmy, że 6 = [ ] Wykorzystuja c w lasności cze ści ca lkowitej można podać algorytm dzielenia (z reszta ) liczby ca lkowitej m przez liczbe ca lkowita n > 0. K lada c [ m ] q = n oraz r = m nq mamy q m n < q + 1. Sta d qn m < qn + n. Zatem 0 r = m qn < n Podziel z reszta (pamie taja c, że reszta z dzielenia ma być liczba nieujemna ) (a) 83 przez 3 ; (b) 71 przez 4.

13 Podstawowe w lasności liczb ca lkowitych Rozwia zuja c zadanie 1.5.1, można zauważyć, że algorytmu podanego we wste pie nie można zastosować, jeśli n < 0. Zmodyfikuj ten algorytm tak, aby można by lo go zastosować przy dzieleniu liczby ca lkowitej m przez liczbe ca lkowita n < Uzasadnij, [ że ] jeżeli p, n N, to wśród wyrazów cia gu 1, 2, 3,..., n jest wielokrotności liczby p. n p Znajdź najmniejsza liczbe naturalna n spe lniaja ca wszystkie poniższe warunki: reszta z dzielenia n przez 2 jest równa 1, reszta z dzielenia n przez 3 jest równa 2, reszta z dzielenia n przez 4 jest równa 3, reszta z dzielenia n przez 5 jest równa Najwie kszy wspólny dzielnik. Niech m i n be da dwiema liczbami ca lkowitymi, przy czym m 0 lub n 0. Liczbe ca lkowita d 1 nazywamy najwie kszym wspólnym dzielnikiem liczb m i n (co oznaczamy NWD(m, n) ), jeśli (a) d dzieli m i d dzieli n; (b) jeżeli liczba ca lkowita c dzieli m oraz n, to c dzieli d. Bezpośrednio z powyższej definicji wynika, że jeżeli m 0, to wtedy NWD(m, 0) = m. Weźmy teraz dwie liczby ca lkowite m 0 oraz n 0. Uzasadnimy, że z zasady minimum wynika istnienie NWD(m, n). W tym celu rozważmy zbiór X = {xm + yn 1 : x,y Z}. Ponieważ m m+n n 1, wie c X. Z zasady minimum wynika, że w zbiorze X istnieje liczba najmniejsza. Niech d = am + bn be dzie ta liczba ( a, b Z ). Zauważmy, że d m oraz d n. Istotnie, jeśli zapiszemy m = dq + r, gdzie 0 r < d, wtedy mamy r = m dq = m (am + bn)q = m(1 aq) + n( bq). Gdyby r 1, to r X oraz r < d, co jest sprzeczne z wyborem d. Zatem r = 0, czyli d m. Analogicznie uzasadniamy, że d n. Tak wie c d spe lnia warunek (a) definicji NWD.

14 14 Cze ść I Zadania Aby pokazać, że warunek (b) także jest spe lniony, za lóżmy, że pewna liczba c dzieli zarówno m, jak i n. Sta d wynika, że istnieja takie liczby ca lkowite m 1 oraz n 1, że m = cm 1 i n = cn 1. Sta d d = am + bn = c(am 1 + bn 1 ), czyli c d. Wykazaliśmy, że d = NWD(m, n).

15 Podstawowe w lasności liczb ca lkowitych 15 Z powyższych rozważań otrzymujemy naste puja cy Wniosek. Jeżeli NWD(m, n) = d, to istnieja liczby ca lkowite x i y takie, że mx + ny = d. Uwaga. Zauważmy, że jeśli dla liczb m, n i d znajdziemy takie x i y, że mx + ny = d, to nie znaczy to jeszcze, że d = NWD(m, n). Na przyk lad, dla m = 1, n = 2 oraz d = 7 mamy 3m + 2n = d, ale 7 nie jest oczywiście najwie kszym wspólnym dzielnikiem liczb 1 i 2. Jeżeli NWD(m, n) = 1, to mówimy, że liczby m i n sa wzgle dnie pierwsze Pokaż, że jeżeli m n, to NWD(m, n) = m Pokaż, że jeżeli m = nq+r, to NWD(m, n) = NWD(n, r) Znajdź NWD(98, 56) Pokaż, że NWD(n, n + 1) = Pokaż, że dla dowolnego k N zachodzi NWD(2k + 1, 2k + 3) = Niech d = NWD(m, n) i niech m = dm 1 oraz n = dn 1. Pokaż, że NWD(m 1, n 1 ) = Za lóżmy, że u lamek a b jest nieskracalny. Sprawdź, czy u lamek jest nieskracalny. a a+b Pokaż, że jeżeli liczby m i n sa wzgle dnie pierwsze oraz m nk, to m k Za lóżmy, że dane sa trzy liczby ca lkowite m, n, p, z których przynajmniej jedna jest różna od zera. Określ NWD dla tych liczb przez analogie do NWD dla dwóch liczb, a naste pnie oblicz NWD(24,36,120) Uogólnij definicje najwie kszego wspólnego dzielnika na przypadek k liczb, tj. dla a 1, a 2,..., a k Z. Zdefiniuj NWD(a 1,a 2,...,a k ). Oblicz NWD(36,120,180,600).

16 16 Cze ść I Zadania Za lóżmy, że dane sa trzy liczby ca lkowite m, n i p. Zdefiniujmy PNWD(m,n,p) = df NWD(m, NWD(n, p)). Pokaż, że tak zdefiniowany PNWD jest równy najwie kszemu wspólnemu dzielnikowi liczb m, n i p (zdefiniowanemu w zadaniu 1.6.9) Najmniejsza wspólna wielokrotność. Za lóżmy, że n i m sa liczbami ca lkowitymi różnymi od zera. Liczbe ca lkowita s nazywamy najmniejsza wspólna wielokrotnościa liczb m i n (co zapisujemy NWW(m, n) = s ), jeśli 1) s 1, 2) m s oraz n s, 3) jeżeli liczba ca lkowita t spe lnia warunek n t i m t, to s t. Na przyk lad NWW(6, 9) = 18. Analogicznie określamy najmniejsza wspólna wielokrotność k różnych od zera liczb ca lkowitych a 1, a 2,..., a k i oznaczamy ja przez NWW(a 1, a 2,...,a k ) (a) Znajdź najmniejsza liczbe naturalna, która po podzieleniu przez każda z liczb 2, 3, 4, 5, 6, 7, 8, 9, 10 daje zawsze reszte 1. (b) Znajdź najmniejsza liczbe naturalna, która po podzieleniu przez 2, 3, 4, 5, 6, 7, 8, 9, 10 daje, odpowiednio, reszty 1, 2, 3, 4, 5, 6, 7, 8, Za lóżmy, że NWD(a, b) = d i niech a = da 1, b = db 1. Uzasadnij, że NWW(a, b) = a 1 db Pokaż, że dla dowolnych liczb naturalnych a, b zachodzi równość ab = NWD(a, b) NWW(a, b) Wykaż, że jeżeli liczby a i b sa wzgle dnie pierwsze, to NWW(a, b) = ab Pokaż, że dla dowolnych liczb naturalnych a, b zachodzi nierówność a + b NWD(a, b) + NWW(a, b).

17 Podstawowe w lasności liczb ca lkowitych W podre cznikach szkolnych można znaleźć naste puja ce definicje NWW i NWD.,,Najmniejsza wspólna wielokrotnościa liczb m i n nazywamy najmniejsza nieujemna liczbe w zbiorze wspólnych wielokrotności m oraz n.,,najwie kszym wspólnym dzielnikiem liczb m i n nazywamy najwie ksza liczbe w zbiorze wspólnych dzielników m oraz n. Pos luguja c sie tylko tymi,,szkolnymi definicjami pokaż, że (a) wspólna wielokrotność liczb m i n jest podzielna przez najmniejsza wspólna wielokrotność liczb m i n ; (b) wspólny dzielnik liczb m i n jest dzielnikiem najwie kszego wspólnego dzielnika liczb m i n Zasadnicze twierdzenie arytmetyki. W literaturze zasadnicze twierdzenie arytmetyki przyjmuje różne (równoważne) sformu lowania. Jedno z nich jest naste puja ce Twierdzenie. Liczba naturalna be da ca dzielnikiem iloczynu dwóch liczb naturalnych i pierwsza wzgle dem jednego z czynników jest dzielnikiem drugiego, tzn. jeżeli n ab i NWD(n, a) = 1, to n b. Dowód. Ponieważ n ab i a ab, wie c ab jest wspólna wielokrotnościa liczb n oraz a. Z definicji NWW wynika, że NWW(n, a) ab. Istnieje wie c liczba ca lkowita t taka, że NWW(n, a) t = ab. Ponieważ NWD(n, a) = 1, wie c NWW(n, a) = na. Sta d nat = ab, a sta d ostatecznie nt = b, czyli n b Pokaż, że jeżeli NWD(a, b) = 1 i c a, to NWD(c, b) = Pokaż, że jeżeli NWD(a, c) = 1 oraz NWD(b, c) = 1, to NWD(ab, c) = Uzasadnij, że jeżeli NWD(a 1, a) = NWD(a 2, a) =... = NWD(a n, a) = 1, to NWD(a 1 a 2... a n, a) = Wykaż, że każda liczba wymierna dodatnia daje sie przedstawić jednoznacznie w postaci ilorazu dwóch liczb naturalnych wzgle dnie pierwszych (czyli w postaci u lamka nieskracalnego).

18 18 Cze ść I Zadania 2. Liczby pierwsze 2.1. Poje cie liczby pierwszej. Liczbe naturalna p > 1 nazywamy, jeśli ma ona dok ladnie dwa dzielniki naturalne, mianowicie 1 i p. Liczby, które nie sa pierwszymi, ale sa wie ksze od 1, nazywamy z lożonymi Wypisz wszystkie liczby pierwsze p < Wskaż jaka kolwiek liczbe wie ksza od (a) 26, (b) 56, (c) Uzasadnij, że reszta z dzielenia liczby pierwszej przez 30 jest równa 1 lub pewnej liczbie pierwszej Uzasadnij, że kwadrat dowolnej liczby pierwszej wie kszej niż 3 daje przy dzieleniu przez 12 reszte Wykaż, że dla każdej liczby naturalnej n > 2, liczby a n = 2 n + 1 oraz b n = 2 n 1 nie moga być jednocześnie liczbami pierwszymi Uzasadnij, że liczby naturalnej postaci 6k + 1 (k N) nie można przedstawić w postaci różnicy dwóch liczb pierwszych Pokaż, że jeżeli p jest liczba oraz 8p jest liczba, to 8p 2 + 2p + 1 też jest liczba Pokaż, że każda liczba naturalna wie ksza od 1 ma przynajmniej jeden dzielnik pierwszy (tj. taki, który jest liczba pierwsza ) Ile jest liczb pierwszych? Odpowiedź na pytanie o to, ile jest liczb pierwszych, zawiera naste puja ce Twierdzenie. Liczb pierwszych jest nieskończenie wiele. W literaturze można znaleźć wiele dowodów tego twierdzenia. Niżej umieszczamy jeden z nich, maja c nadzieje, że Czytelnik znajdzie co najmniej kilka innych. W dowodach tego twierdzenia cze sto korzysta sie z faktu zawartego w zadaniu

19 18 Cze ść I Zadania Dowód. Przypuśćmy, że istnieja tylko naste puja ce liczby pierwsze: p 1, p 2,..., p r. Niech M = p 1 p 2... p r i niech M = st, gdzie s = p 1 p 2, a t = p 3 p 4... p r. Zauważmy, że liczba naturalna s + t nie jest podzielna przez żadna z liczb p 1, p 2,..., p r. Otrzymujemy sprzeczność, ponieważ s + t jest różne od 1 (zobacz zadanie 2.1.8) Za lóżmy, że liczby p 1, p 2,..., p k sa liczbami pierwszymi. Pokaż, że liczba p 1 p 2... p k + 1 nie dzieli sie z liczb p 1, p 2,..., p k. przez żadna Wykaż, że dla dowolnej liczby naturalnej n, liczba n! + 1 nie dzieli sie przez żadna liczbe 1 < q n Pokaż, że dla dowolnej liczby naturalnej n, istnieje liczba pierwsza wie ksza od n Niech F n oznacza liczbe Fermata, tzn. F n = 2 2n + 1. Pokaż, że F m oraz F n sa wzgle dnie pierwsze dla n m Wykaż, że liczb pierwszych jest nieskończenie wiele, wykorzystuja c (a) zadanie 2.2.1; (b) zadanie 2.2.3; (c) zadanie Wnioski z zasadniczego twierdzenia arytmetyki. Z zasadniczego twierdzenia arytmetyki (zobacz 1.8) wynika naste - puja ce Twierdzenie. Każda liczbe naturalna przedstawić w postaci n > 1 można jednoznacznie n = p 1 p 2... p r, gdzie p 1, p 2,..., p r sa liczbami pierwszymi takimi, że p 1 p 2 p r. Dowód 1. Wykażemy najpierw, że każda liczba naturalna n > 1 da sie przedstawić w postaci iloczynu liczb pierwszych. Uczynimy

20 Liczby pierwsze 19 to stosuja c indukcje. Dla n = 2 fakt jest prawdziwy. Za lóżmy, że fakt jest prawdziwy dla wszystkich liczb naturalnych mniejszych od k. Jeżeli k jest liczba, to fakt jest prawdziwy. Jeśli k jest liczba z lożona, to k = bc, gdzie b oraz c sa liczbami mniejszymi od k. Z za lożenia indukcyjnego b = p 1 p 2... p s oraz c = p s+1 p s+2... p t. Sta d k = p 1 p 2... p s p s+1... p t. 2. Teraz wykażemy jednoznaczność przedstawienia. Uczynimy to znowu stosuja c indukcje. Dla n = 2 twierdzenie jest prawdziwe. Za lóżmy, że twierdzenie jest prawdziwe dla liczb naturalnych mniejszych od k. Przypuśćmy, że k = p 1 p 2... p r = q 1 q 2... q s, (1) gdzie p 1, p 2,..., p r, q 1, q 2,..., q s sa liczbami pierwszymi, takimi że p 1 p 2 p r, q 1 q 2 q s. Ponieważ p 1 q 1 q 2... q s, wie c p 1 q 1 lub p 1 q 2, lub..., lub p 1 q s (wynika to z zasadniczego twierdzenia arytmetyki). Niech na przyk lad p 1 q 1. Ponieważ p 1 oraz q 1 sa liczbami pierwszymi, wie c p 1 = q 1. Dziela c (1) przez p 1 mamy k p 1 = p 2 p 3... p r = q 2 q 3... q s. Ponieważ k p 1 < k, wie c z za lożenia indukcyjnego wynika, że r = s oraz p 2 = q 2, p 3 = q 3,..., p r = q r Pokaż, że każda liczbe naturalna n 2 można przedstawić w postaci n = p α 1 1 pα pα s s, (2) gdzie p 1, p 2,..., p s sa różnymi liczbami pierwszymi, takimi że p 1 < p 2 < < p s, natomiast α 1, α 2,..., α s sa liczbami ca lkowitymi dodatnimi. (Rozk lad (2) liczby naturalnej n nazywamy rozk ladem kanonicznym liczby n na czynniki pierwsze).

21 20 Cze ść I Zadania Znajdź NWD(a, b) oraz NWW(a, b) znaja c rozk lady kanoniczne liczb a oraz b Korzystaja c z rozk ladu kanonicznego liczb naturalnych a oraz b uzasadnij, że ab = NWD(a, b)nww(a, b) Pokaż, że jeżeli liczba n jest wymierna, gdzie n > 1 jest liczba naturalna, to rozk lad kanoniczny liczby n ma postać p 2α 1 1 p 2α p 2α s s Za lóżmy, że liczba pierwsza p jest dzielnikiem pewnej liczby naturalnej n. Mówimy, że p α dzieli dok ladnie n, jeśli p α n oraz p α+1 n. Fakt ten oznaczamy p α n. (a) Udowodnij, że jeżeli p α m oraz p β n, to p α+β mn. (b) Udowodnij, że jeżeli p α m oraz p β n oraz α β, to p min(α, β) m + n. (c) Sprawdź, czy w (b) można pomina ć za lożenie α β Pokaż, że każda liczbe wymierna można zapisać jednoznacznie jako iloczyn εp α 1 1 pα pα s s, gdzie ε jest równy 1 lub 1, natomiast p 1, p 2,..., p s sa różnymi liczbami pierwszymi, a α 1, α 2,..., α s sa liczbami ca lkowitymi różnymi od zera Pokaż, że wyk ladnik najwie kszej pote gi liczby pierwszej p, która dzieli n! wynosi α = [ n i= Podaj najwie ksza pote ge liczby (a) 2, (b) 5 oraz (c) 97, która dzieli 100! Podaj najwie ksza pote ge liczby (a) 6, (b) 28, która dzieli 100! Oblicz, ile kolejnych zer, licza c od końca, ma liczba 100!. p i ]

22 Liczby pierwsze Uwagi o funkcji π(x). Dla każdej liczby rzeczywistej x > 0, symbolem π(x) oznaczamy ilość liczb pierwszych p spe lniaja cych nierówność p x. pierwszym historycznie stwierdzeniem na temat funkcji π(x) by lo spostrzeżenie J. Bertranda (z 1845 roku), że mie dzy n i 2n, gdy n 2, znajduje sie liczba pierwsza. Spostrzeżenie J. Bertranda oznacza, że π(2n) π(n) 1 (dla n 2 ), czyli że p n+1 < 2p n, gdzie p n oznacza n-ta liczbe. Stwierdzenie to by lo znane jako,,postulat Bertranda i zosta lo udowodnione przez P.L. Czebyszewa w 1852 roku. Fakt ten be dziemy w dalszych rozważaniach nazywać twierdzeniem Czebyszewa (elementarny dowód tego twierdzenia Czytelnik może znaleźć w [9]). Czebyszew udowodni l znacznie wie cej, a mianowicie pokaza l, że istnieja sta le a oraz b, takie że a < π(x) : x lnx < b dla x > 2. Powyższa nierówność nazywamy nierównościa Czebyszewa Korzystaja c z nierówności Czebyszewa, pokaż, że π(x) lim x x = Korzystaja c z twierdzenia Czebyszewa, pokaż, że dla każdej liczby naturalnej n istnieja co najmniej trzy liczby pierwsze maja ce w uk ladzie dziesie tnym n cyfr Dowiedź, że dla k > 1 mamy p k+1 p 1 +p 2 + +p k, gdzie p n oznacza n-ta z kolei liczbe Pokaż, że 5 jest jedyna liczba, która jest równa sumie wszystkich liczb pierwszych mniejszych od niej Pokaż, że 5 jest jedyna liczba naturalna, która jest równa sumie wszystkich liczb pierwszych mniejszych od niej Pokaż, że w rozmieszczeniu liczb pierwszych sa,,dziury dowolnej d lugości, tj. pokaż, że dla dowolnego m istnieje n takie, że p n+1 > p n + m, gdzie p n oznacza n-ta z kolei liczbe. Wskazówka. Pokaż, że wszystkie liczby w cia gu m liczb (m+1)!+2, (m + 1)! + 3,..., (m + 1)! + (m + 1) sa z lożone.

23 22 Cze ść I Zadania (a) Pokaż, że jeżeli p jest liczba, to π(p 1) p 1 (b) Pokaż, że jeżeli m jest liczba z lożona, to π(m) m < π(p) p. < π(m 1) m Twierdzenie Dirichleta. Jak już wiadomo, w poste pie arytmetycznym 1, 2, 3, 4,... o różnicy 1 istnieje nieskończenie wiele liczb pierwszych. A jak jest w innych poste pach arytmetycznych? W 1837 roku P.G.L. Dirichlet udowodni l twierdzenie, które orzeka: Jeśli liczby m, n sa wzgle dnie pierwsze, to w cia gu (mk + n) k istnieje nieskończenie wiele liczb pierwszych. Dowód twierdzenia Dirichleta jest dosyć trudny i nie be dziemy go tu przytaczać. Jednakże pewne szczególne przypadki tego twierdzenia dowodzi sie latwo, o czym przekona sie Czytelnik, rozwia zuja c niżej umieszczone zadania Podaj przyk lad takich liczb m oraz n, że w cia gu (mk + n) k (a) jest tylko skończona ilość liczb pierwszych; (b) nie ma żadnej liczby pierwszej Uzasadnij, że istnieje nieskończenie wiele liczb pierwszych postaci 2k (a) Pokaż, że w każdym rozk ladzie na iloczyn liczby postaci 3k + 2 przynajmniej jeden czynnik jest postaci 3k + 2. (b) Udowodnij, że każda liczba naturalna postaci 3k + 2 ma przynajmniej jeden dzielnik pierwszy tej postaci Uzasadnij, że jeśli p 1, p 2..., p n sa nieparzystymi liczbami pierwszymi postaci 3k + 2, to liczba 3p 1 p 2... p n + 2 nie dzieli sie przez żadna z liczb 2, p 1, p 2,..., p n Wykaż, że w cia gu (3k + 2) istnieje nieskończenie wiele liczb pierwszych. Wskazówka. Skorzystaj z dwóch poprzednich zadań Uzasadnij, że istnieje nieskończenie wiele liczb pierwszych postaci 4k + 3.

24 Liczby pierwsze Pokaż, że w cia gu (6k + 5) istnieje nieskończenie wiele liczb pierwszych Liczba dzielników oraz funkcja Eulera. Oznaczmy przez θ(n) liczbe naturalnych dzielników liczby n, a przez ϕ(n) ilość liczb naturalnych wzgle dnie pierwszych z n, które sa nie wie ksze od n Wyznacz θ(n) dla n Pokaż, że jeżeli n = p α 1 1 pα pα s s, to każdy dzielnik naturalny liczby n jest postaci p β 1 1 pβ pβ s s, gdzie 0 β i α i dla i {1,2,...,s} Wykaż, że θ(p α 1 1 pα pα s s ) = (α 1 + 1)(α 2 + 1)... (α s + 1) Oblicz θ(100) oraz θ(1024) Znajdź wszystkie liczby naturalne n, takie że θ(n) = Wyznacz ϕ(n) dla n Pokaż, że liczba n jest pierwsza wtedy i tylko wtedy, gdy ϕ(n) = n Uzasadnij, że ϕ(pq) = (p 1)(q 1), gdzie p oraz q sa różnymi liczbami pierwszymi Pokaż, że dla dowolnej liczby pierwszej p i dowolnej liczby naturalnej n, mamy ϕ(p n ) = p n p n Niech m oraz n oznaczaja dwie liczby naturalne wzgle dnie pierwsze, a r liczbe ca lkowita. Pokaż, że wówczas reszty z dzielenia liczb r, n + r, 2n + r, 3n + r,..., (m 1)n + r przez m różnia sie od liczb 0, 1, 2, 3,..., m 1 co najwyżej porza dkiem.

25 24 Cze ść I Zadania Udowodnij, że jeśli NWD(m, n) = 1, to ϕ(m)ϕ(n) = ϕ(mn). Wskazówka. Zauważmy najpierw, że jeśli jedna z liczb m, n jest równa 1, to wzór jest prawdziwy. Możemy zatem za lożyć, że m 1 i n 1. Wypiszmy wszystkie liczby nie wie ksze od mn w naste puja cy sposób: 1, 2,..., r,..., n, n + 1, n + 2,..., n + r,..., 2n, 2n + 1, 2n + 2,..., 2n + r,..., 3n, , ,..., ,...,..., (m 1)n + 1, (m 1)n + 2,..., (m 1)n + r,..., mn. Dalej skorzystaj z zadania Udowodnij wzór ϕ (p α 1 1 pα pα s s gdzie p 1, p 2,..., p s ) = n ) ) ) (1 (1 1p1 1p2 (1 1ps, sa różnymi liczbami pierwszymi Wiadomo, że NWD(m, n) > 1. Ustal, która z liczb ϕ(mn) oraz ϕ(m)ϕ(n) jest wie ksza. Wskazówka. Skorzystaj z zadania Pokaż, że (a) ϕ(4n + 2) = ϕ(2n + 1) ; { 2ϕ(n) gdy NWD(n, 2) = 1 (b) ϕ(4n) = 2ϕ(2n) gdy NWD(n, 2) = Rozk lad na czynniki dużych liczb naturalnych. Mnożenie dwóch liczb naturalnych jest zdecydowanie latwiejsze niż rozk ladanie danej liczby na czynniki. Jeśli jednak pewna liczba z lożona ma dwa dzielniki pierwsze, które sa,,blisko siebie, możemy zastosować tak zwana metode faktoryzacji Fermata. Metode te opiszemy w poniższych zadaniach Niech n be dzie dowolna liczba naturalna. Udowodnij, że istnieje wzajemnie jednoznaczna odpowiedniość mie dzy dzielnikami liczby n nie mniejszymi od n i nie wie kszymi od n.

GRZEGORZ SZKIBIEL, CZES LAW WOWK ZADANIA Z ARYTMETYKI SZKOLNEJ I TEORII LICZB

GRZEGORZ SZKIBIEL, CZES LAW WOWK ZADANIA Z ARYTMETYKI SZKOLNEJ I TEORII LICZB U N I W E R S Y T E T S Z C Z E C I Ń S K I GRZEGORZ SZKIBIEL, CZES LAW WOWK ZADANIA Z ARYTMETYKI SZKOLNEJ I TEORII LICZB SZCZECIN 1999 SPIS TREŚCI Przedmowa...................................................5

Bardziej szczegółowo

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Pawe l Józiak 007-- Poje cia wste pne Wielomianem zmiennej rzeczywistej t nazywamy funkcje postaci:

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Wyk lad 7 Baza i wymiar przestrzeni liniowej

Wyk lad 7 Baza i wymiar przestrzeni liniowej Wyk lad 7 Baza i wymiar przestrzeni liniowej 1 Baza przestrzeni liniowej Niech V bedzie przestrzenia liniowa. Powiemy, że podzbiór X V jest maksymalnym zbiorem liniowo niezależnym, jeśli X jest zbiorem

Bardziej szczegółowo

Kongruencje oraz przykłady ich zastosowań

Kongruencje oraz przykłady ich zastosowań Strona 1 z 25 Kongruencje oraz przykłady ich zastosowań Andrzej Sładek, Instytut Matematyki UŚl sladek@ux2.math.us.edu.pl Spotkanie w LO im. Powstańców Śl w Bieruniu Starym 27 października 2005 Strona

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz

Bardziej szczegółowo

Wzory skróconego mnożenia w zadaniach olimpijskich

Wzory skróconego mnożenia w zadaniach olimpijskich Wzory skróconego mnożenia w zadaniach olimpijskich Jacek Dymel 17.10.008 Bardzo często uczniowie wyrażają taką opinię, że do rozwiązywania zadań olimpijskich niezbędna jest znajomość wielu skomplikowanych

Bardziej szczegółowo

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji Kongruencje Wykład 3 Kongruencje algebraiczne Kongruencje jak już podkreślaliśmy mają własności analogiczne do równań algebraicznych. Zajmijmy się więc problemem znajdowania pierwiastka równania algebraicznego

Bardziej szczegółowo

Grupy i cia la, liczby zespolone

Grupy i cia la, liczby zespolone Rozdzia l 1 Grupy i cia la, liczby zespolone Dla ustalenia uwagi, b edziemy używać nast epuj acych oznaczeń: N = { 1, 2, 3,... } - liczby naturalne, Z = { 0, ±1, ±2,... } - liczby ca lkowite, W = { m n

Bardziej szczegółowo

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia.

ARYTMETYKA BINARNA. Dziesiątkowy system pozycyjny nie jest jedynym sposobem kodowania liczb z jakim mamy na co dzień do czynienia. ARYTMETYKA BINARNA ROZWINIĘCIE DWÓJKOWE Jednym z najlepiej znanych sposobów kodowania informacji zawartej w liczbach jest kodowanie w dziesiątkowym systemie pozycyjnym, w którym dla przedstawienia liczb

Bardziej szczegółowo

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/

Paweł Gładki. Algebra. http://www.math.us.edu.pl/ pgladki/ Paweł Gładki Algebra http://www.math.us.edu.pl/ pgladki/ Konsultacje: Środa, 14:00-15:00 Jeżeli chcesz spotkać się z prowadzącym podczas konsultacji, postaraj się powiadomić go o tym przed lub po zajęciach,

Bardziej szczegółowo

VII Olimpiada Matematyczna Gimnazjalistów

VII Olimpiada Matematyczna Gimnazjalistów VII Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część testowa, test próbny www.omg.edu.pl (wrzesień 2011 r.) Rozwiązania zadań testowych 1. Liczba krawędzi pewnego ostrosłupa jest o

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1

Liczby rzeczywiste. Działania w zbiorze liczb rzeczywistych. Robert Malenkowski 1 Robert Malenkowski 1 Liczby rzeczywiste. 1 Liczby naturalne. N {0, 1,, 3, 4, 5, 6, 7, 8...} Liczby naturalne to liczby używane powszechnie do liczenia i ustalania kolejności. Liczby naturalne można ustawić

Bardziej szczegółowo

Szkoła Podstawowa. Uczymy się dowodzić. Opracowała: Ewa Ślubowska. ewa.slubowska@wp.pl

Szkoła Podstawowa. Uczymy się dowodzić. Opracowała: Ewa Ślubowska. ewa.slubowska@wp.pl Szkoła Podstawowa Uczymy się dowodzić Opracowała: Ewa Ślubowska ewa.slubowska@wp.pl PODSTAWA PROGRAMOWA PRZEDMIOTU MATEMATYKA II etap edukacyjny: klasy IV VI I. Sprawność rachunkowa. Uczeń wykonuje proste

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA UCZNIÓW KLAS IV-VI Klasa IV Stopień dopuszczający otrzymuje uczeń, który potrafi: odejmować liczby w zakresie 100 z przekroczeniem progu dziesiątkowego,

Bardziej szczegółowo

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm

Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm Wyk lad 5 Grupa ilorazowa, iloczyn prosty, homomorfizm 1 Grupa ilorazowa Niech H b edzie dzielnikiem normalnym grupy G. Oznaczmy przez G/H zbiór wszystkich warstw lewostronnych grupy G wzgl edem podgrupy

Bardziej szczegółowo

Rozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200.

Rozdział 1. Zadania. 1.1 Liczby pierwsze. 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. Rozdział 1 Zadania 1.1 Liczby pierwsze 1. Wykorzystując sito Eratostenesa wyznaczyć wszystkie liczby pierwsze mniejsze niż 200. 2. Wyliczyć największy wspólny dzielnik d liczb n i m oraz znaleźć liczby

Bardziej szczegółowo

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0,

2 Arytmetyka. d r 2 r + d r 1 2 r 1...d d 0 2 0, 2 Arytmetyka Niech b = d r d r 1 d 1 d 0 będzie zapisem liczby w systemie dwójkowym Zamiana zapisu liczby b na system dziesiętny odbywa się poprzez wykonanie dodawania d r 2 r + d r 1 2 r 1 d 1 2 1 + d

Bardziej szczegółowo

Rozdział 7. Elementy teorii liczb. 7.1 Podstawowe własności liczb

Rozdział 7. Elementy teorii liczb. 7.1 Podstawowe własności liczb Rozdział 7 Elementy teorii liczb 7.1 Podstawowe własności liczb Zakres teorii liczb to zbiór liczb całkowitych. Tak więc nie będziemy wychodzić poza ten zbiór, a jeśli się pojawi pojęcie,,liczba, oznaczać

Bardziej szczegółowo

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F.

LICZBY PIERWSZE. 14 marzec 2007. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Jeśli matematyka jest królową nauk, to królową matematyki jest teoria liczb. C.F. Gauss (1777-1855) 14 marzec 2007 Zasadnicze twierdzenie teorii liczb Zasadnicze twierdzenie teorii liczb Ile jest liczb

Bardziej szczegółowo

WIELOMIANY SUPER TRUDNE

WIELOMIANY SUPER TRUDNE IMIE I NAZWISKO WIELOMIANY SUPER TRUDNE 27 LUTEGO 2011 CZAS PRACY: 210 MIN. SUMA PUNKTÓW: 200 ZADANIE 1 (5 PKT) Dany jest wielomian W(x) = x 3 + 4x + p, gdzie p > 0 jest liczba pierwsza. Znajdź p wiedzac,

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Nauczyciel: Jacek Zoń WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY IV : 1. przeczyta i zapisze liczbę wielocyfrową (do tysięcy) 2. zna nazwy rzędów

Bardziej szczegółowo

13 Zastosowania Lematu Szemerédiego

13 Zastosowania Lematu Szemerédiego 13 Zastosowania Lematu Szemerédiego 13.1 Twierdzenie Erdősa-Stone a (Rozdzia ly 7.1 i 7.5 podre cznika) Jednym z g lównych zagadnień ekstremalnej teorii grafów jest wyznaczenie parametru ex(n, H) = max{

Bardziej szczegółowo

Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja

Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja Pierścienie grupowe wyk lad 2. Przypomnijmy, że K-algebra A jest pó lprosta, gdy jej lewe A-modu ly przypominaja przestrzenie liniowe nad A: każdy z nich ma rozk lad na sume modu lów prostych. W tych rozk

Bardziej szczegółowo

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d. 2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.) 10 października 2009 r. 20. Która liczba jest większa,

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a

Bardziej szczegółowo

C z y p a m i ę t a s z?

C z y p a m i ę t a s z? C z y p a m i ę t a s z? Liczby naturalne porządkowe, Przykłady: 0,1, 2, 6, 148, Liczby całkowite to liczby naturalne, przeciwne do nich i 0. Przykłady:, -3, -1, 0, 17, Liczby wymierne można przedstawid

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF

P. Urzyczyn: Materia ly do wyk ladu z semantyki. Uproszczony 1 j. ezyk PCF 29 kwietnia 2013, godzina 23: 56 strona 1 P. Urzyczyn: Materia ly do wyk ladu z semantyki Uproszczony 1 j ezyk PCF Sk ladnia: Poniżej Γ oznacza otoczenie typowe, czyli zbiór deklaracji postaci (x : τ).

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI DLA KL. 5 Na ocenę niedostateczną (1) uczeń nie spełnia wymagań koniecznych. Na ocenę dopuszczającą (2) uczeń spełnia wymagania konieczne tzn.: 1. posiada i

Bardziej szczegółowo

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24

2. LICZBY RZECZYWISTE Własności liczb całkowitych Liczby rzeczywiste Procenty... 24 SPIS TREŚCI WYRAŻENIA ALGEBRAICZNE RÓWNANIA I NIERÓWNOŚCI ALGEBRAICZNE 7 Wyrażenia algebraiczne 0 Równania i nierówności algebraiczne LICZBY RZECZYWISTE 4 Własności liczb całkowitych 8 Liczby rzeczywiste

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

LXV Olimpiada Matematyczna

LXV Olimpiada Matematyczna LXV Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia trzeciego 8 kwietnia 2014 r. (pierwszy dzień zawodów) Zadanie 1. Dane są względnie pierwsze liczby całkowite k,n 1. Na tablicy

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci:

1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: 1. Napisz program, który wyświetli Twoje dane jako napis Witaj, Imię Nazwisko. 2. Napisz program, który wyświetli wizytówkę postaci: * Jan Kowalski * * ul. Zana 31 * 3. Zadeklaruj zmienne przechowujące

Bardziej szczegółowo

do instrukcja while (wyrażenie);

do instrukcja while (wyrażenie); Instrukcje pętli -ćwiczenia Instrukcja while Pętla while (póki) powoduje powtarzanie zawartej w niej sekwencji instrukcji tak długo, jak długo zaczynające pętlę wyrażenie pozostaje prawdziwe. while ( wyrażenie

Bardziej szczegółowo

Podzielność liczb. Podzielność liczb

Podzielność liczb. Podzielność liczb Euclides i kwestie podzielności liczb Definicja Niech a, b Z. Mówimy, że liczba a > 0 dzieli liczbę b, albo a b, jeżeli istnieje taka całkowita liczba c, że b = ac. Definicja a b a > 0 i b = ac, c całkowite.

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność.

Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. Podzielność, cechy podzielności, liczby pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. W dniu 3 października 2013 r. omawiamy test kwalifikacyjny. Uwaga: Przyjmujemy, że 0 nie

Bardziej szczegółowo

Teoria liczb. x 3 + 3y 3 + 9z 3 9xyz = 0. x 2 + 3y 2 = 1998x.

Teoria liczb. x 3 + 3y 3 + 9z 3 9xyz = 0. x 2 + 3y 2 = 1998x. Teoria liczb grupa starsza poniedziałek, 27 września 2004 Równania teorioliczbowe.. Rozwiazać w liczbach całkowitych x, y, z. x 3 + 3y 3 + 9z 3 9xyz = 0. 2. Rozwiazać w liczbach całkowitych dodatnich x,

Bardziej szczegółowo

Zadania na dowodzenie Opracowała: Ewa Ślubowska

Zadania na dowodzenie Opracowała: Ewa Ślubowska Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie

Bardziej szczegółowo

1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004

1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004 ANALIZA MATEMATYCZNA A dla I roku, 2004/2005 1. Powtórka ze szkoły. Wykład: 4.10.2004 (4 godziny), ćwiczenia: 7.10.2004, kolokwium nr 1: 11.10.2004 Obliczyć sumy (postępów arytmetycznych i goemetrycznych):

Bardziej szczegółowo

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro

Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA. Na dobry start do liceum. Zadania. Oficyna Edukacyjna * Krzysztof Pazdro 6 Na dobry start do liceum 8Piotr Drozdowski 6 Do gimnazjum by dobrze zakończyć! Do liceum by dobrze zacząć! MATEMATYKA Zadania Oficyna Edukacyjna * Krzysztof Pazdro Piotr Drozdowski MATEMATYKA. Na dobry

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ REALIZOWANY PRZY POMOCY PODRĘCZNIKA MATEMATYKA 2001 DLA KLASY VI I.

Bardziej szczegółowo

Matematyka. Klasa IV

Matematyka. Klasa IV Matematyka Klasa IV Ocenę niedostateczną otrzymuje uczeń, który nie opanował umiejętności przewidzianych w wymaganiach na ocenę dopuszczającą Uczeń musi umieć: na ocenę dopuszczającą: odejmować liczby

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013

WYMAGANIA EDUKACYJNE Z MATEMATYKI dla klasy I ba Rok szk. 2012/2013 Dział LICZBY RZECZYWISTE Uczeń otrzymuje ocenę dopuszczającą lub dostateczną, jeśli: podaje przykłady liczb: naturalnych, całkowitych, wymiernych, niewymiernych, pierwszych i złożonych oraz przyporządkowuje

Bardziej szczegółowo

Dzień pierwszy- grupa młodsza

Dzień pierwszy- grupa młodsza Dzień pierwszy- grupa młodsza 1.TomekmaTlat.Tylesamolatliczysobiewsumietrójkajegodzieci.NlattemuwiekTomkarówny był dwukrotności sumy lat swoich dzieci. Wyznacz T/N. 2.Niechk=2012 2 +2 2012.Ilewynosicyfrajednościliczbyk

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASIE IV Zna zależności wartości cyfry od jej położenia w liczbie Zna kolejność działań bez użycia nawiasów Zna algorytmy czterech działań pisemnych

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie IV

Wymagania edukacyjne z matematyki w klasie IV Wymagania edukacyjne z matematyki w klasie IV Na ocenę dopuszczającą uczeń potrafi: Dodawać i odejmować w pamięci liczby dwucyfrowe. Obliczyć wartości wyrażeń arytmetycznych z zachowaniem kolejności wykonywania

Bardziej szczegółowo

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI

Arytmetyka komputera. Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka. Opracował: Kamil Kowalski klasa III TI Arytmetyka komputera Na podstawie podręcznika Urządzenia techniki komputerowej Tomasza Marciniuka Opracował: Kamil Kowalski klasa III TI Spis treści 1. Jednostki informacyjne 2. Systemy liczbowe 2.1. System

Bardziej szczegółowo

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie:

Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, , tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Rozwiązanie: Zadanie 3 Oblicz jeżeli wiadomo, że liczby 8 2,, 1, 6 11 6 11, tworzą ciąg arytmetyczny. Wyznacz różnicę ciągu. Uprośćmy najpierw liczby dane w treści zadania: 8 2, 2 2 2 2 2 2 6 11 6 11 6 11 26 11 6 11

Bardziej szczegółowo

Arytmetyka liczb binarnych

Arytmetyka liczb binarnych Wartość dwójkowej liczby stałoprzecinkowej Wartość dziesiętna stałoprzecinkowej liczby binarnej Arytmetyka liczb binarnych b n-1...b 1 b 0,b -1 b -2...b -m = b n-1 2 n-1 +... + b 1 2 1 + b 0 2 0 + b -1

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

Kryteria oceniania z matematyki zakres podstawowy Klasa I

Kryteria oceniania z matematyki zakres podstawowy Klasa I Kryteria oceniania z matematyki zakres podstawowy Klasa I zakres Dopuszczający Dostateczny Dobry bardzo dobry Zdanie logiczne ( proste i złożone i forma zdaniowa oraz prawa logiczne dotyczące alternatywy,

Bardziej szczegółowo

Równania diofantyczne

Równania diofantyczne Równania diofantyczne Beata Łojan b.lojan@knm.katowice.pl Koło Naukowe Matematyków Uniwersytetu Śląskiego w Katowicach www.knm.katowice.pl III Liceum Ogólnokształcące im. Lucjana Szenwalda w Dąbrowie Górniczej

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny

Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Wymagania edukacyjne z matematyki dla zasadniczej szkoły zawodowej na poszczególne oceny Podstawa programowa z 23 grudnia 2008r. do nauczania matematyki w zasadniczych szkołach zawodowych Podręcznik: wyd.

Bardziej szczegółowo

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10.

Podstawą w systemie dwójkowym jest liczba 2 a w systemie dziesiętnym liczba 10. ZAMIANA LICZB MIĘDZY SYSTEMAMI DWÓJKOWYM I DZIESIĘTNYM Aby zamienić liczbę z systemu dwójkowego (binarnego) na dziesiętny (decymalny) należy najpierw przypomnieć sobie jak są tworzone liczby w ww systemach

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 10: Algorytmy teorii liczb Gniewomir Sarbicki Literatura A. Chrzęszczyk Algorytmy teorii liczb i kryptografii w przykładach Wydawnictwo BTC 2010 N. Koblitz Wykład z teorii liczb

Bardziej szczegółowo

1. Rozwiązać układ równań { x 2 = 2y 1

1. Rozwiązać układ równań { x 2 = 2y 1 Dzień Dziecka z Matematyką Tomasz Szymczyk Piotrków Trybunalski, 4 czerwca 013 r. Układy równań szkice rozwiązań 1. Rozwiązać układ równań { x = y 1 y = x 1. Wyznaczając z pierwszego równania zmienną y,

Bardziej szczegółowo

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI.

WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. WIOLETTA NAWROCKA nauczyciel matematyki w Zespole Szkół w Choczewie IDĘ DO GIMNAZJUM ZADANIA TESTOWE Z MATEMATYKI DLA UCZNIÓW KL. VI. Przeczytaj uważnie pytanie. Chwilę zastanów się. Masz do wyboru cztery

Bardziej szczegółowo

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0 Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto

Bardziej szczegółowo

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb

Wybrane poj cia i twierdzenia z wykªadu z teorii liczb Wybrane poj cia i twierdzenia z wykªadu z teorii liczb 1. Podzielno± Przedmiotem bada«teorii liczb s wªasno±ci liczb caªkowitych. Zbiór liczb caªkowitych oznacza b dziemy symbolem Z. Zbiór liczb naturalnych

Bardziej szczegółowo

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1

MATEMATYKA WYDZIAŁ MATEMATYKI - TEST 1 Wszelkie prawa zastrzeżone. Rozpowszechnianie, wypożyczanie i powielanie niniejszych testów w jakiejkolwiek formie surowo zabronione. W przypadku złamania zakazu mają zastosowanie przepisy dotyczące naruszenia

Bardziej szczegółowo

Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE

Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE Wymagania na poszczególne oceny w klasie I gimnazjum do programu nauczania MATEMATYKA NA CZASIE I.LICZBY - zaznacza na osi liczbowej punkty odpowiadające liczbom całkowitym, wymiernym(np. 1 2, 2 1 1 ),

Bardziej szczegółowo

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000

Znaki w tym systemie odpowiadają następującym liczbom: I=1, V=5, X=10, L=50, C=100, D=500, M=1000 SYSTEMY LICZBOWE I. PODZIAŁ SYSTEMÓW LICZBOWYCH: systemy liczbowe: pozycyjne (wartośd cyfry zależy od tego jaką pozycję zajmuje ona w liczbie): niepozycyjne (addytywne) (wartośd liczby jest sumą wartości

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie 5

Wymagania edukacyjne z matematyki w klasie 5 Wymagania edukacyjne z matematyki w klasie 5 PODSTAWOWE PONADPODSTAWOWE LICZBY I DZAŁANIA porównywać liczby porządkować liczby w kolejności od najmniejszej do największej lub odwrotnie przedstawiać liczby

Bardziej szczegółowo

Liczby zespolone Definicja liczb zespolonych Liczbami zespolonymi nazywamy liczby postaci a + bi, gdzie i oznacza jednostke urojona, przyjmujemy,

Liczby zespolone Definicja liczb zespolonych Liczbami zespolonymi nazywamy liczby postaci a + bi, gdzie i oznacza jednostke urojona, przyjmujemy, Liczby zespolone Definicja liczb zespolonych Liczbami zespolonymi nazywamy liczby postaci a + bi, gdzie i oznacza jednostke urojona, przyjmujemy, że i = 1 zaś a i b sa liczbami rzeczywistymi. Suma liczb

Bardziej szczegółowo

----------------------------------------------------------------------------------------------------------------------------

---------------------------------------------------------------------------------------------------------------------------- Strona1 Napisz program, który czyta zdanie, a następnie wypisuje po kolei długości kolejnych jego wyrazów. Zakładamy, że zdanie zawiera litery alfabetu łacińskiego i spacje (po jednej pomiędzy dwoma dowolnymi

Bardziej szczegółowo

12. Wykazać, że liczba podzbiorów zbioru {1, 2,..., n}, które nie zawieraja, dwu kolejnych liczb naturalnych

12. Wykazać, że liczba podzbiorów zbioru {1, 2,..., n}, które nie zawieraja, dwu kolejnych liczb naturalnych !"$# % # &(' )**"+ 1 Numer telefoniczny może zaczynać sie, od dowolnej z dziesie, ciu cyfr Ile jest siedmiocyfrowych numerów telefonicznych, których wszystkie cyfry sa, : a różne; b nieparzyste 9 osób

Bardziej szczegółowo

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga

Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Algebra i jej zastosowania konspekt wyk ladu, czȩść druga Anna Romanowska January 29, 2016 4 Kraty i algebry Boole a 41 Kraty zupe lne Definicja 411 Zbiór uporza dkowany (P, ) nazywamy krata zupe lna,

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA II TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Publikacja jest dystrybuowana bezpłatnie Program Operacyjny Kapitał Ludzki Priorytet 9 Działanie 9.1 Poddziałanie

Bardziej szczegółowo

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż.

Plan wyk ladu. Kodowanie informacji. Systemy addytywne. Definicja i klasyfikacja. Systemy liczbowe. prof. dr hab. inż. Plan wyk ladu Systemy liczbowe Poznań, rok akademicki 2008/2009 1 Plan wyk ladu 2 Systemy liczbowe Systemy liczbowe Systemy pozycyjno-wagowe y 3 Przeliczanie liczb Algorytm Hornera Rozwini ecie liczby

Bardziej szczegółowo

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia

Matematyka A, kolokwium, 15 maja 2013 rozwia. ciem rozwia Maemayka A kolokwium maja rozwia zania Należy przeczyać CA LE zadanie PRZED rozpocze ciem rozwia zywania go!. Niech M. p. Dowieść że dla każdej pary liczb ca lkowiych a b isnieje aka para liczb wymiernych

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1

Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Matematyka na czasie Przedmiotowe zasady oceniania wraz z określeniem wymagań edukacyjnych dla klasy 1 Wyróżniono następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające

Bardziej szczegółowo

Wstęp do Informatyki

Wstęp do Informatyki Wstęp do Informatyki Bożena Woźna-Szcześniak bwozna@gmail.com Jan Długosz University, Poland Wykład 4 Bożena Woźna-Szcześniak (AJD) Wstęp do Informatyki Wykład 4 1 / 1 DZIELENIE LICZB BINARNYCH Dzielenie

Bardziej szczegółowo

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.)

PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY. I. Proste na płaszczyźnie (15 godz.) PLAN WYNIKOWY DLA KLASY DRUGIEJ POZIOM PODSTAWOWY I ROZSZERZONY I. Proste na płaszczyźnie (15 godz.) Równanie prostej w postaci ogólnej Wzajemne połoŝenie dwóch prostych Nierówność liniowa z dwiema niewiadomymi

Bardziej szczegółowo

LICZBY PIERWSZE. Jan Ciurej Radosław Żak

LICZBY PIERWSZE. Jan Ciurej Radosław Żak LICZBY PIERWSZE Jan Ciurej Radosław Żak klasa IV a Katolicka Szkoła Podstawowa im. Świętej Rodziny z Nazaretu w Krakowie ul. Pędzichów 13, 31-152 Kraków opiekun - mgr Urszula Zacharska konsultacja informatyczna

Bardziej szczegółowo

Algebra liniowa z geometrią

Algebra liniowa z geometrią Algebra liniowa z geometrią Maciej Czarnecki 15 stycznia 2013 Spis treści 1 Geometria płaszczyzny 2 1.1 Wektory i skalary........................... 2 1.2 Macierze, wyznaczniki, układy równań liniowych.........

Bardziej szczegółowo

1.1. Pozycyjne systemy liczbowe

1.1. Pozycyjne systemy liczbowe 1.1. Pozycyjne systemy liczbowe Systemami liczenia nazywa się sposób tworzenia liczb ze znaków cyfrowych oraz zbiór reguł umożliwiających wykonywanie operacji arytmetycznych na liczbach. Dla dowolnego

Bardziej szczegółowo

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego.

Treść wykładu. Układy równań i ich macierze. Rząd macierzy. Twierdzenie Kroneckera-Capellego. . Metoda eliminacji. Treść wykładu i ich macierze... . Metoda eliminacji. Ogólna postać układu Układ m równań liniowych o n niewiadomych x 1, x 2,..., x n : a 11 x 1 + a 12 x 2 + + a 1n x n = b 1 a 21

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem

Bardziej szczegółowo