LICZBY ZESPOLONE. j= -1, j = 1. Liczby zespolone będą oznaczane przez podkreślenie symbolu (litery), oznaczającej tę liczbę:

Wielkość: px
Rozpocząć pokaz od strony:

Download "LICZBY ZESPOLONE. j= -1, j = 1. Liczby zespolone będą oznaczane przez podkreślenie symbolu (litery), oznaczającej tę liczbę:"

Transkrypt

1 LICZBY ZESPOLONE 1. Historia licb espoloych Licby espoloe poawiły się w XVI w., w wiąku badaiami sposobów rowiąywaia rówań algebraicych treciego i cwartego stopia. Okaało się, że rowiąaia rówań treciego stopia moża uyskać a pomocą diałań algebraicych a współcyikach tych rówań, edak tylko wtedy, gdy umie się oblicać 1. Ocywiście, w akresie licb, aych w tamtym okresie, pierwiastek kwadratowy licby -1 ie istiał. Niektóry matematyków ałożyli ego istieie i awali go licbą urooą, a dotychcas ae licby awao licbami recywistymi. Oacaąc 1 pre i, pryęto, że i = -1. Tworoo owe licby a + ib, które awao licbami espoloymi i określoo cysto formalie ctery diałaia a takich licbach. Arytmetyka licb espoloych ie doprowadiła do żadych sprecości. E. Euler ( ) wprowadił licby espoloe do aaliy matematyce, powoduąc tym e istoty postęp. Pocątek wieku XIX pryiósł ścisłe uasadieie istieia licb espoloych. Scegółową teorię licb espoloych stworyli C.F. Gauss ( ) i W.R. Hamilto ( ). Gauss iterpretował licby espoloe ako pukty płascyy licb espoloych (stąd płascya Gaussa ), w które wprowadoo pewe diałaia, wae dodawaiem i możeiem puktów, cyli licb espoloych. Hamilto wprowadił licby espoloe ako pary licb recywistych i określił dodawaie i możeie takich par. Obydwa uasadieia są rówoważe, bowiem pukty płascyy są wyacoe pre pary licb recywistych, współrędych tego puktu a płascyźie. Obecie licby espoloe, a rówi licbami recywistymi, które moża traktować ako licby espoloe scególego rodau, są iebędymi arędiami matematyka, fiyka i iżyiera. Scególe aceie odgrywaą w teorii obwodów. Wprowadoo specalą metodę aaliy obwodów elektrycych, opieraącą się a licbach espoloych, aywaą metodą symbolicą. Ze wględu a astosowaia licb espoloych w teorii obwodów, edostka urooa będie oacaa pre, cyli = -1, = 1. Licby espoloe będą oacae pre podkreśleie symbolu (litery), oacaące tę licbę: = a+. b. Zapis licb espoloych.1. Postać kaoica licby espoloe Licbą espoloą aywamy parę uporądkowaą licb recywistych (a, b), acęście apisywaą w postaci sumy = a+ b, = -1. Taką postać licby espoloe aywamy postacią kaoicą (postacią algebraicą). Licbę recywistą a aywamy cęścią recywistą licby espoloe a = Re{ }, licbę recywistą b aywamy cęścią urooą licby b= Im{ }, tak że = Re{ } + Im{}. Licba espoloa a + est apisywaa ako a i est utożsamiaa licbą recywistą. Licba espoloa = b będie aywaa licbą urooą. 1

2 .. Iterpretaca geometryca licby espoloe wska Licby espoloe moża iterpretować ako pukty a płascyźie miee espoloe we współrędych prostokątych Re{ }, Im{ }. Licba = a+ b est puktem o współrędych (a, b) płascyy Gaussa. Im{} b ϕ Rys. 1. Iterpretaca geometryca licby espoloe. a Re{} Pukt te est oddaloy od pocątku układu współrędych o odciek o długości a + b. Ta wartość est aywaa modułem licby espoloe lub e wartością bewględą = a + b. Odciek skieroway od pocątku układu współrędych do puktu repreetuącego licbę espoloą est ayway wskaem te licby. Wska ma długość rówą modułowi licby espoloe i est odchyloy od osi licb recywistych o kąt ayway argumetem licby espoloe ϕ = arg( ). Łatwo auważyć, że ϕ arc tg b = a dla licb espoloych leżących w pierwse i cwarte ćwiartce płascyy Gaussa ora b ϕ = arc tg ± π a dla licb leżących w drugie i trecie ćwiartce. Moża atem apisać b ϕ = arc tg ± π[a<], a gdie [a < ] est wyrażeiem logicym, prymuącym wartości 1, gdy a <, [ a < ] =, gdy a, atomiast ak pry π[a<] wybiera się tak aby π< ϕ π. Kąt ϕ spełiaący waruek π< ϕ π aywa się argumetem główym licby espoloe. Argumet licby ie est określoy. Prykład 1 Oblicyć moduły i argumety adaych licb espoloych i predstawić e a płascyźie Gaussa: 1 = 5,45 + 3,5, = 4,5-3,45, 3 = -5 +3, 4 = , 5 1 = (5, 45) + (3, 5) = 6,345471, arg( 1) = arc tg =, rad = 3,81. 5, 45 3, 45 = (4,5) + ( 3, 45) = 5, 67317, arg( ) = arc tg =, 65481rad = 37, 48. 4,5 3 3 = ( 5) + (3) = 5,8395, arg( 3) = arc tg + π =, 61173rad = 149, 4. 5

3 4 = ( 4) + ( 5) = 6, 4314, 5 arg( 4) = arc tg + π = 4, π=-,45537 rad = 18, Diałaie (4,37648-π) wykoao, aby oblicyć argumet główy licby. Im{} 5 3 ϕ ϕ ϕ 1 5 Re{} 4 ϕ 4-5 Rys. P1.1. Argumety główe licb espoloych..3. Postać trygoometryca licby espoloe Zgodie rys.1 moża apisać a = cos( ϕ), b= si( ϕ), cyli = [cos( ϕ) + si( ϕ)]. Tę postać aywa się postacią trygoometrycą licby espoloe. Zgodie worem Eulera ϕ = e = [cos( ϕ) + si( ϕ)]. Postać e ϕ aywa się postacią wykładicą licby espoloe. Każda licba espoloa ma ieskońceie wiele argumetów arg( ) = ϕ + kπ, k =, ± 1, ±,..., których, w obliceiach, główie stosue się argumet główy. Prykład Licbę 1 = apisać w postaci wykładice, licbę postaci algebraice. = 8,5444, arg ( ) =, 788 rad = 159,44, 1 1 1, ,44 = 8,5444e = 8,5444e. = = [cos(5 ) si(5 )] 1, , = e apisać w 3

4 3. Diałaia a licbach espoloych Licbą sprężoą do dae licby espoloe aywa się licbę e mieioym akiem cęści urooe licby. Dla licby = a+ b licbą sprężoą est licba Poieważ więc * = a b. a b * = +, = *. Rówość licb espoloych wymaga rówości cęści recywistych i cęści urooych licb: 1 = a1+ b1, = a + b, 1 = a1 = a b1 = b. Dwie licby espoloe są rówe sobie eżeli maą rówe moduły i argumety: ϕ1 ϕ 1 = 1 e, = e, 1 = 1 = ϕ1 = ϕ. Licba espoloa est rówa ero, eżeli obydwie cęści te licby są rówe ero: = a+ b, = a= b=. Licba espoloa est rówa ero, eżeli e moduł est rówy ero: ϕ = e, = =. Sumę algebraicą dwóch licb espoloych moża oblicyć sumuąc ich cęści recywiste i cęści urooe: + = ( a + b) ± ( a + b ) = ( a ± a ) + ( b ± b ) Ilocy dwóch licb espoloych oblica się ak ilocy dwóch dwumiaów: 1 = ( a1+ b1)( a+ b) = aa 1 bb 1 + ( ab 1 + ab 1). Ilocy dwóch licb moża oblicyć wykorystaiem postaci wykładice (Eulera) licby espoloe: ϕ1 ϕ ( ϕ1+ ϕ = e e = e ) = cos( ϕ + ϕ ) + si( ϕ + ϕ )] Ilora dwóch licb espoloych oblica się wykorystaiem poęcia licby sprężoe: 1 1* ( a1+ b 1)( a+ b ) aa 1 + bb 1 ab 1 ab1 = = =. * a + b a + b a + b Wykorystuąc postać wykładicą licb moża apisać: ϕ1 1 1 e 1 ( ϕ1 ϕ) 1 1 = = e = cos( ϕ 1 ϕ) + si( ϕ1 ϕ). ϕ e 4

5 Potęgę licby espoloe awygodie oblicać wykorystuąc postać wykładicą licby: ϕ ϕ = e = e, ( ) = [cos( ϕ) + si( ϕ)]. Ostatia ależość osi awę woru Moivre a. Pierwiastek licby espoloe ma tyle wartości ile wyosi stopień pierwiastka: ϕ +kπ ϕ e e,,1,,..., 1. = = k = Moduły wsystkich pierwiastków licby espoloe są takie same, a ich argumety różią się o π/. Wsystkie pierwiastki leżą więc a kole o promieiu a płascyźie Gaussa i dielą okrąg a cęści (Rys. ). Im{} 1 1 ϕ Re{} Rys.. Pierwiastki treciego stopia licby e ϕ. Logarytm aturaly licby espoloe alepie oblicać wykorystuąc postać wykładicą licby espoloe (argumet licby musi być wyrażoy w radiaach). l( ) l( e ϕ ϕ = ) = l( ) + l(e ) = l( ) + ϕ. Logarytm diesięty licby espoloe oblica się w podoby sposób. log( ) = log( e ϕ ) = log( ) + ϕ log(e)=log( ) +,43494 ϕ. Fukcę ekspoecalą licby espoloe awygodie oblica się dla licb w postaci algebraice. ( a+ b) a e = e = e [cos( b) + si( b)]. Fukce si i cos dla espoloych argumetów oblica się dla licb w postaci algebraice. si( a+ b) = si( a)cosh( b) + cos( a)sih( b), cos( a+ b) = cos( a)cosh( b) si( a)sih( b). Fukce sih i cosh dla espoloych argumetów oblica się dla licb w postaci algebraice sih( a+ b) = sih( a)cos( b) + cosh( a)si( b), cosh( a+ b) = cosh( a)cos( b) + si h( a)si( b). 5

6 Prykład 3 Zadae są dwie licby espoloe: 1 = , = Wartości sprężoe do tych licb: 1* = 15 1, * = Moduły licb: m = = * = ( )( 15 1) = = 18,7756, * (1 8)(1+8) 1 8 1,8648. m = = = = + = 3.3. Argumety licb: 1 ϕ1 = arg( 1) = arc tg + π=,55359, 15 8 ϕ = arg( ) = arc tg =, Licba 3 = ( x y) + ( x+ y) ma być rówa licbie 1. Oblicyć wartości x i y. x y = 15, x=,5, y = 1,5. x+ y = 1, 3.5. Różica licb 1 : = ( ) (1 8) = Ilocy licb 1 i : = ( )(1 8)= 15+8+(1 + 1) = 7 +, 1 = m 1, e ϕ me ϕ = 3,86793e = Ilora licb 1 i : 1 ( )(1+8) 3 = = = = 1, 4439,11951, (1 8)(1+8) 164 ϕ1 1 m1e 3,831 = = = 1, 47731e = 1, 4438, ϕ me 3.8. Licba 1 podiesioa do trecie potęgi: ,6677 1, = 1 = ( m1 e ϕ ) = 5859, 8e = 5859, 8e = , 3 e woru Moivre'a = m1[cos(3 ϕ1) + si(3 ϕ1)] = , = = ( )( )( )= Pierwiastek treciego stopia licby 1 : a ϕ , e, 6878e 1, ,971997, = = m = = + ϕ1 π ( + ) 3 3 3, b = m1 e =, 6878e =, ,516473, ϕ1 4π ( + ) , c = m1 e =, 6878e =, , Moża sprawdić, że ab c = Logarytm aturaly licby 1 : 1 l(, ) = l( m1e ϕ ) = l( m1) + ϕ1 =, ,55359=3, e Logarytm diesięty licby 1 : 1 log( ) = log( me ϕ ) = log( m ) + ϕ log(e)=1, ,1911=1, e,

7 3.1. Fukca ekspoecala: 1 ( 15+1) e = e = e e = 3, e = (, , ) Fukce trygoometryce: s = si( 1) = si( 15)cosh(1) + cos( 15)sih(1 = 7161, ,6199, c= cos( 1) = cos( 15)cosh(1) si( 15)sih(1) = 8366, ,7714. Moża sprawdić, że s + c = Fukce hiperbolice: sh = sih( )=sih( 15)cos(1) + cosh( 15)si(1) = ,7 8897,3, ch = cosh( )=cosh(-15)cos(1)+sih(-15)si(1)= , ,3. Moża sprawdić, że ch sh = Rowiąywaie rówań w biore licb espoloych Zgodie podstawowym twierdeiem algebry, każdy wielomia stopia ma miesc erowych (licąc krotości) i rokłada się a ilocy wielomiaów stopia pierwsego W( x) = a ( x x ). k = 1 Jeżeli współcyiki wielomiau są recywiste, to każdemu espoloemu miescu erowemu towarysy miesce erowe espoloe sprężoe. Dla wielomiau drugiego stopia dla którego W( x) = a x + a x+ a, 1 a + a 4a a a a 4a a,, = x = a a * x = x1, a a 1 a < x eżeli 4. Prykład Dla licb 1 = + 3 i = 1 + skostruować wielomia cwartego stopia o współcyikach recywistych. 4 3 w( x) = ( x 1)( x 1*)( x )( x *) = x 6x + 6x 46x Dobrać wartość współcyika a tak, aby pierwiastki rówaia 4x + ax+ 5= były: a. recywiste, b. espoloe. Wyróżik rówaia Δ = a 4* 4*5 = a 8. a. Pierwiastki rówaia będą recywiste, eżeli a 8 >, t. a< 8,9447 a> 8,9447. b. Pierwiastki rówaia będą espoloe, eżeli a 8 <, t. 8,9447 < a < 8,9447. W tym prypadku pierwiastki będą espoloe, waemie sprężoe. k 7

8 5. Predstawieie symbolice prebiegów siusoidalych Niech f() t = Fm si( ω t+ ϕ). Dla takiego prebiegu moża utworyć prebieg espoloy ( ωt+ ϕ) Fm ϕ ωt f() t = Fme = e e. Jeżeli wprowadić espoloą wartość skutecą prebiegu siusoidalego F m ϕ e, F = to f() t = Fe ωt, i wtedy f( t) = Im{ f( t)} = F si( ω t+ ϕ). Widać więc, że aby edoacie repreetować symbolicie prebieg siusoidaly, wystarcy podać dwie licby: espoloą wartość skutecą F ora pulsacę prebiegu: Fm ϕ Fm si( ωt+ ϕ) F, ω, F = e. Jeżeli wiadomo, że licby F ora ω repreetuą symbolicie prebieg siusoidaly, to prebieg siusoidaly moża odtworyć drogą astępuące operaci ωt F, ω f( t) = Im{ Fe } = F si( ωt+ ϕ), Fm = F, ϕ = arg( F). Prebieg kosiusoidaly moża repreetować symbolicie po amiaie go a prebieg siusoidaly: ( + π π Fm ϕ ). Fmcos( ωt+ ϕ) = Fmsi( ωt+ ϕ + ) F = e Prykład Prebiegi f1( t) = 35,3si( ω t+ 4 ) i f( t) = 5cos(1 t+ ) apisać w postaci symbolice. 35,3 4 F1 = e = 176, ,84, ω =314 rad/s F = e = 1,9 + 33,3, ω =1 rad/s. 5.. Wiadomo, że licba F = 5+ 6 pry pulsaci ω = 1 4 rad/s repreetue prebieg siusoidaly. Zapisać te prebieg. 19,81 4 F = 7,81e, ω = 1 rad/s. m 4 19,81 1 t 4 f( t) = Im{ 7,81e e = 11, 5cos (1 t+ 39,81 ) Różicę prebiegów f1( t) = 1si( ωt+ ) i f( t) = cos( ωt ) apisać ako ede prebieg siusoidaly. 8,565 F = (66, ,1844) (48,369+13,896)=11,1e, f t f t f t ωt ( ) = 1( ) ( ) = 155,848si( 8,56 ). m Opracowaie: dr Cesław Michalik i dr Włodimier Wolski 8

1. ALGEBRA Liczby zespolone

1. ALGEBRA Liczby zespolone ALGEBRA Licby espoloe Opracowaie: Vladimir Marcheko WYKŁAD Postać algebraica i trygoometryca licby espoloe; dodawaie, możeie, potęgowaie i dieleie licb espoloych A+B+C (Wstęp: pochodeie licb espoloych)

Bardziej szczegółowo

III. LICZBY ZESPOLONE

III. LICZBY ZESPOLONE Pojęcie ciała 0 III LICZBY ZESPOLONE Defiicja 3 Niech K będie dowolm biorem Diałaiem wewętrm (krótko będiem mówić - diałaiem) w biore K awam każdą fukcję o : K K K Wartość fukcji o dla elemetów K oacam

Bardziej szczegółowo

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona.

Dodawanie i mnożenie liczb zespolonych są działaniami wewnętrznymi tzn., że ich wynikiem jest liczba zespolona. Wykład - LICZBY ZESPOLONE Algebra licb espolonych, repreentacja algebraicna i geometrycna, geometria licb espolonych. Moduł, argument, postać trygonometrycna, wór de Moivre a.' Zbiór Licb Zespolonych Niech

Bardziej szczegółowo

Ekoenergetyka Matematyka 1. Wykład 1.

Ekoenergetyka Matematyka 1. Wykład 1. Ekoenergetyka Matematyka 1. Wykład 1. Literatura do wykładu M. Gewert, Z. Skocylas, Analia matematycna 1; T. Jurlewic, Z. Skocylas, Algebra liniowa 1; Stankiewic, Zadania matematyki wyżsej dla wyżsych

Bardziej szczegółowo

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi,

7 Liczby zespolone. 7.1 Działania na liczbach zespolonych. Liczby zespolone to liczby postaci. z = a + bi, 7 Liczby zespoloe Liczby zespoloe to liczby postaci z a + bi, gdzie a, b R. Liczbę i azywamy jedostką urojoą, spełia oa waruek i 2 1. Zbiór liczb zespoloych ozaczamy przez C: C {a + bi; a, b R}. Liczba

Bardziej szczegółowo

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE

ZADANIA Z FUNKCJI ANALITYCZNYCH LICZBY ZESPOLONE . Oblicyć: ZADANIA Z FUNKCJI ANALITYCZNYCH a) ( 7i) ( 9i); b) (5 i)( + i); c) 4+3i ; LICZBY ZESPOLONE d) 3i 3i ; e) pierwiastki kwadratowe 8 + i.. Narysować biór tych licb espolonych, które spełniają warunek:

Bardziej szczegółowo

LICZBY ZESPOLONE. = 0, wie c np. i v 3 = q

LICZBY ZESPOLONE. = 0, wie c np. i v 3 = q LICZBY ZESPOLONE W tym rodiale ajmiemy sie omówieiem defiicji i iektórych w lasości licb espoloych. Zaciemy od uwagi o charaktere historycym. W XVI w. aucoo sie rowia ywać rówaia treciego stopia. Każde

Bardziej szczegółowo

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

MACIERZE I WYZNACZNIKI

MACIERZE I WYZNACZNIKI MCIERZE I WYZNCZNIKI Defiicj Mcierą o współcyikch recywistych (espoloych) i wymire m x ywmy pryporądkowie kżdej pre licb turlych (i,k), i,,, m, k,,,, dokłdie jedej licby recywistej ik [ ik ] mx (espoloej)

Bardziej szczegółowo

A B - zawieranie słabe

A B - zawieranie słabe NAZEWNICTWO: : rówoważość defcj : rówość defcj dla każdego steje! ZBIORY steje dokłade jede {,,,...} - całkowte * - całkowte be era - wmere - ujeme plus ero - recwste - espoloe A B - awerae słabe A :

Bardziej szczegółowo

, +, - przestrzeń afiniczna, gdzie w wprowadzono iloczyn

, +, - przestrzeń afiniczna, gdzie w wprowadzono iloczyn EUKLIDESOWA PRZESTRZEŃ AFINICZNA (WEKTOROWA) RZECZYWISTA Deiicja 1,, +, u = ( x x x ) v = ( y y y ),,..., 1 2,,..., 1 2 1 1 2 2 u/ v : = x y + x y +... + xy - aywamy ilocyem skalarym Możemy go rówież oacać

Bardziej szczegółowo

Zadania z algebry liniowej - sem. I Liczby zespolone

Zadania z algebry liniowej - sem. I Liczby zespolone Zadaia z algebry liiowej - sem. I Liczby zespoloe Defiicja 1. Parę uporządkowaą liczb rzeczywistych x, y azywamy liczbą zespoloą i ozaczamy z = x, y. Zbiór wszystkich liczb zespoloych ozaczamy przez C

Bardziej szczegółowo

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek

Znajdowanie pozostałych pierwiastków liczby zespolonej, gdy znany jest jeden pierwiastek Zajdowaie pozostałych pierwiastków liczby zespoloej, gdy zay jest jede pierwiastek 1 Wprowadzeie Okazuje się, że gdy zamy jede z pierwiastków stopia z liczby zespoloej z, to pozostałe pierwiastki możemy

Bardziej szczegółowo

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami Tadeus Wojnakowski Zastosowanie funkcji inżynierskich w arkusach kalkulacyjnych adania rowiąaniami Funkcje inżynierskie występują we wsystkich arkusach kalkulacyjnych jak Excel w MS Office Windows cy Gnumeric

Bardziej szczegółowo

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej

Funkcje zespolone. 2 Elementarne funkcje zespolone zmiennej zespolonej Wyiał Matematyki Stosowanej Zestaw adań nr 8 Akademia Górnico-Hutnica w Krakowie WFiIS, informatyka stosowana, II rok Elżbieta Adamus grudnia 206r. Funkcje espolone Ciągi i seregi licb espolonych Zadanie.

Bardziej szczegółowo

Programowanie dynamiczne i modele rekurencyjne w ekonomii Wykład 3

Programowanie dynamiczne i modele rekurencyjne w ekonomii Wykład 3 Programowaie dyamice i modele rekurecyje w ekoomii Wykład 3 Michał Ramsa sierpia 0 Stresceie Wykład treci bauje główie a [, ro 7] i dotycy wykorystaia fukcji tworacych do rowiaywaia rekurecji Materiał

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik

Pierwiastki z liczby zespolonej. Autorzy: Agnieszka Kowalik Pierwiastki z liczby zespoloej Autorzy: Agieszka Kowalik 09 Pierwiastki z liczby zespoloej Autor: Agieszka Kowalik DEFINICJA Defiicja : Pierwiastek z liczby zespoloej Niech będzie liczbą aturalą. Pierwiastkiem

Bardziej szczegółowo

c 2 + d2 c 2 + d i, 2

c 2 + d2 c 2 + d i, 2 3. Wykład 3: Ciało liczb zespoloych. Twierdzeie 3.1. Niech C R. W zbiorze C określamy dodawaie: oraz możeie: a, b) + c, d) a + c, b + d) a, b) c, d) ac bd, ad + bc). Wówczas C, +, ) jest ciałem, w którym

Bardziej szczegółowo

"Liczby rządzą światem." Pitagoras

Liczby rządzą światem. Pitagoras "Liczby rządzą światem." Pitagoras Def. Liczbą zespoloą azywamy liczbę postaci z= x +yi, gdzie x, y є oraz i = -1. Zbiór liczb zespoloych ozaczamy przez ={ x + yi: x, y є } Ozaczeia x= Re z częśd rzeczywista

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Algebra liniowa z geometrią analityczną

Algebra liniowa z geometrią analityczną WYKŁAD. Elmtar fucj mij spoloj: wilomiay, pirwiasti jdości, fucja: pirwiast stopia, fucja wyładica, fucja logarytmica. Podstawow własości wilomiaów: podilość, twirdi Bout, podstawow twirdi algbry, suai

Bardziej szczegółowo

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6

W takim modelu prawdopodobieństwo konfiguracji OR wynosi. 0, 21 lub , 79. 6 achunek prawdopodobieństwa MP6 Wydiał Elektroniki, rok akad. 8/9, sem. letni Wykładowca: dr hab.. Jurlewic Prykłady do listy : Prestreń probabilistycna. Prawdopodobieństwo klasycne. Prawdopodobieństwo

Bardziej szczegółowo

MATERIA LY DO ĆWICZEŃ Z ANALIZY ZESPOLONEJ Literatura: [Ch] J. Cha

MATERIA LY DO ĆWICZEŃ Z ANALIZY ZESPOLONEJ Literatura: [Ch] J. Cha MATERIA LY DO ĆWICZEŃ Z ANALIZY ZESPOLONEJ Literatura: [Ch] J Cha dyński Wste p do analiy espolonej wyd VII Wyd U L Lódź 993 [Kr]J Kryż Zbiór adań funkcji analitycnych PWN Warsawa 975 [Ku] K Kuratowski

Bardziej szczegółowo

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)! Wstęp do rachunku prawdopodobieństwa i statystyki matematycnej MAP037 wykład dr hab. A. Jurlewic WPPT Fiyka, Fiyka Technicna, I rok, II semestr Prykłady - Lista nr : Prestreń probabilistycna. Prawdopodobieństwo

Bardziej szczegółowo

CAŁKA NIEOZNACZONA. F (x) = f(x) dx.

CAŁKA NIEOZNACZONA. F (x) = f(x) dx. CAŁKA NIEOZNACZONA Mówimy, że fukcja F () jest fukcją pierwotą dla fukcji f() w pewym ustaloym przedziale - gdy w kadym pukcie zachodzi F () = f(). Fukcję pierwotą często azywamy całką ieozaczoą i zapisujemy

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Liczby zespolone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Liczby zespolone Maciej Grzesiak Istytut Matematyki Politechiki Pozańskiej Liczby zespoloe 1. Określeie liczb zespoloych Rówaie kwadratowe ie ma pierwiastków rzeczywistych gdy < 0, bo wzory ogóle wymagają wtedy obliczeia

Bardziej szczegółowo

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ.

ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ. ZADANIA PRZYGOTOWUJĄCE DO SPRAWDZIANÓW W KLASIE DRUGIEJ I Fukcja kwadratowa ) PODAJ POSTAĆ KANONICZNĄ I ILOCZYNOWĄ (O ILE ISTNIEJE) FUNKCJI: a) f ( ) + b) f ( ) 6+ 9 c) f ( ) ) Narysuj wykresy fukcji f

Bardziej szczegółowo

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa Metody dokładne w astosowaniu do rowiąywania łańcuchów Markowa Beata Bylina, Paweł Górny Zakład Informatyki, Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej Plac Marii Curie-Skłodowskiej 5, 2-31

Bardziej szczegółowo

PRZESTRZEŃ WEKTOROWA (LINIOWA)

PRZESTRZEŃ WEKTOROWA (LINIOWA) PRZESTRZEŃ WEKTOROWA (LINIOWA) Def. 1 (X, K,, ) X, K - ciało : X X X ( to diałanie wewnętrne w biore X) : K X X ( to diałanie ewnętrne w biore X) Strukturę (X, K,, ) naywamy prestrenią wektorową : 1) Struktura

Bardziej szczegółowo

( ) WŁASNOŚCI MACIERZY

( ) WŁASNOŚCI MACIERZY .Kowalski własości macierzy WŁSNOŚC MCERZY Własości iloczyu i traspozycji a) możeie macierzy jest łącze, tz. (C) ()C, dlatego zapis C jest jedozaczy, b) możeie macierzy jest rozdziele względem dodawaia,

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Rok skolny 2015/16 POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopscająca (2); (3) - ocena dostatecna (3); (4) - ocena dobra (4);

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

Internetowe Kółko Matematyczne 2004/2005

Internetowe Kółko Matematyczne 2004/2005 Iteretowe Kółko Matematycze 2004/2005 http://www.mat.ui.toru.pl/~kolka/ Zadaia dla szkoły średiej Zestaw I (20 IX) Zadaie 1. Daa jest liczba całkowita dodatia. Co jest większe:! czy 2 2? Zadaie 2. Udowodij,

Bardziej szczegółowo

UKŁADY RÓWNAŃ LINOWYCH

UKŁADY RÓWNAŃ LINOWYCH Ekoeergetyka Matematyka. Wykład 4. UKŁADY RÓWNAŃ LINOWYCH Defiicja (Układ rówań liiowych, rozwiązaie układu rówań) Układem m rówań liiowych z iewiadomymi,,,, gdzie m, azywamy układ rówań postaci: a a a

Bardziej szczegółowo

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu

Przykład Obliczenie wskaźnika plastyczności przy skręcaniu Przykład 10.5. Obliczeie wskaźika plastyczości przy skręcaiu Obliczyć wskaźiki plastyczości przy skręcaiu dla astępujących przekrojów: a) -kąta foremego b) przekroju złożoego 6a 16a 9a c) przekroju ciekościeego

Bardziej szczegółowo

MATURA 2014 z WSiP. Zasady oceniania zadań

MATURA 2014 z WSiP. Zasady oceniania zadań MATURA 0 z WSiP Matematyka Poziom rozszerzoy Zasady oceiaia zadań Copyright by Wydawictwa Szkole i Pedagogicze sp z oo, Warszawa 0 Matematyka Poziom rozszerzoy Kartoteka testu Numer zadaia Sprawdzaa umiejętość

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16

Jarosław Wróblewski Analiza Matematyczna 2B, lato 2015/16 Egzami,.9.6, godz. :-5: Zadaie. ( puktów) Wyzaczyć wszystkie rozwiązaia rówaia z 4 = 4 w liczbach zespoloych. Zapisać wszystkie rozwiązaia w postaci kartezjańskiej (bez używaia fukcji trygoometryczych)

Bardziej szczegółowo

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Schemat oceiaia Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B

Bardziej szczegółowo

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim.

Damian Doroba. Ciągi. 1. Pierwsza z granic powinna wydawać się oczywista. Jako przykład może służyć: lim n = lim n 1 2 = lim. Damia Doroba Ciągi. Graice, z których korzystamy. k. q.. 5. dla k > 0 dla k 0 0 dla k < 0 dla q > 0 dla q, ) dla q Nie istieje dla q ) e a, a > 0. Opis. Pierwsza z graic powia wydawać się oczywista. Jako

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

VIII Skalmierzycki Konkurs Interdyscyplinarny Z matematyka w XXI wieku

VIII Skalmierzycki Konkurs Interdyscyplinarny Z matematyka w XXI wieku Zadanie 3 Zad. 1 Skreśli licby, które są jednoceśnie podielne pre 2 i 3. Odcytaj litery, które najdją się pod skreślonymi licbami, tworą one bardo ważne słowa, o których wsyscy powinni pamiętać na co dień.

Bardziej szczegółowo

I kolokwium z Analizy Matematycznej

I kolokwium z Analizy Matematycznej I kolokwium z Aalizy Matematyczej 4 XI 0 Grupa A. Korzystając z zasady idukcji matematyczej udowodić ierówość dla wszystkich N. Rozwiązaie:... 4 < + Nierówość zachodzi dla, bo 4

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17

Jarosław Wróblewski Analiza Matematyczna 1, zima 2016/17 Egzami, 18.02.2017, godz. 9:00-11:30 Zadaie 1. (22 pukty) W każdym z zadań 1.1-1.10 podaj w postaci uproszczoej kresy zbioru oraz apisz, czy kresy ależą do zbioru (apisz TAK albo NIE, ewetualie T albo

Bardziej szczegółowo

Z-TRANSFORMACJA Spis treści

Z-TRANSFORMACJA Spis treści Z-TRANSFORMACJA Spi treści. Deiicja. Pryłady traormat 3. Właości -traormacji 4. Zwiąe -traormacji traormacją Fouriera 5. Z-traormacja ygału dwuwymiarowego Deiicja -traormacji Z-traormata jet eregiem Laureta

Bardziej szczegółowo

METODY NUMERYCZNE dr inż. Mirosław Dziewoński

METODY NUMERYCZNE dr inż. Mirosław Dziewoński Metody Numerycze METODY NUMERYCZNE dr iż. Mirosław Dziewoński e-mail: miroslaw.dziewoski@polsl.pl Pok. 151 Wykład /1 Metody Numerycze Aproksymacja fukcji jedej zmieej Wykład / Aproksymacja fukcji jedej

Bardziej szczegółowo

Liczby zespolone. x + 2 = 0.

Liczby zespolone. x + 2 = 0. Liczby zespolone 1 Wiadomości wstępne Rozważmy równanie wielomianowe postaci x + 2 = 0. Współczynniki wielomianu stojącego po lewej stronie są liczbami całkowitymi i jedyny pierwiastek x = 2 jest liczbą

Bardziej szczegółowo

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,,

PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA. Ruch cząstki nieograniczony z klasycznego punktu widzenia. mamy do rozwiązania równanie 0,, PRZYKŁADY ROZWIAZAŃ STACJONARNEGO RÓWNANIA SCHRӦDINGERA Ruch cząstki ieograiczoy z klasyczego puktu widzeia W tym przypadku V = cost, przejmiemy V ( x ) = 0, cząstka porusza się wzdłuż osi x. Rozwiązujemy

Bardziej szczegółowo

Analiza matematyczna dla informatyków 4 Zajęcia 5

Analiza matematyczna dla informatyków 4 Zajęcia 5 Aaliza matematycza dla iformatyków Zajęcia 5 Twiereie (auchy ego) Niech Ω bęie otwartym pobiorem oraz f : Ω fukcją holomorficzą Wtedy dla dowolego koturu całkowicie zawartego w Ω zachoi f(z) = 0 Zadaie

Bardziej szczegółowo

I. Podzielność liczb całkowitych

I. Podzielność liczb całkowitych I Podzielość liczb całkowitych Liczba a = 57 przy dzieleiu przez pewą liczbę dodatią całkowitą b daje iloraz k = 3 i resztę r Zaleźć dzieik b oraz resztę r a = 57 = 3 b + r, 0 r b Stąd 5 r b 8, 3 więc

Bardziej szczegółowo

Matematyka. Opracował: dr hab. Mieczysław Kula, prof. WSBiF dr Michał Baczyński

Matematyka. Opracował: dr hab. Mieczysław Kula, prof. WSBiF dr Michał Baczyński Matematka Opracował: dr hab. Miecsław Kula, prof. WSBiF dr Michał Bacński I. Ogóle iformacje o predmiocie: Cel predmiotu: Celem główm kursu jest apoaie studetów wbrami diałami matematki stosowami w aukach

Bardziej szczegółowo

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie 3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy

Bardziej szczegółowo

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Liczby zespolone

Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej. Liczby zespolone Maciej Grzesiak Istytut Matematyki Politechiki Pozańskiej Liczby zespoloe 1. Określeie liczb zespoloych W starożytości okazało się, że zbiór liczb wymierych jest iewystarczający, bo ie ma takiej liczby

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE

ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE ZBIÓR LICZB RZECZYWISTYCH - DZIAŁANIA ALGEBRAICZNE WARTOŚĆ BEZWZGLĘDNA LICZBY Wartość bezwzględą liczby rzeczywistej x defiiujemy wzorem: { x dla x 0 x = x dla x < 0 Liczba x jest to odległość a osi liczbowej

Bardziej szczegółowo

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n

I. Ciągi liczbowe. , gdzie a n oznacza n-ty wyraz ciągu (a n ) n N. spełniający warunek. a n+1 a n = r, spełniający warunek a n+1 a n I. Ciągi liczbowe Defiicja 1. Fukcję określoą a zbiorze liczb aturalych o wartościach rzeczywistych azywamy ciągiem liczbowym. Ciągi będziemy ozaczać symbolem a ), gdzie a ozacza -ty wyraz ciągu a ). Defiicja.

Bardziej szczegółowo

Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01

Dowolną niezerową macierz A o wymiarach m na n za pomocą ciągu przekształceń elementarnych można sprowadzić do postaci C 01 WYKŁD / RZĄD MCIERZY POSTĆ BZOW MCIERZY Dowolą ieerową mcier o wymirch m pomocą ciągu prekłceń elemerych moż prowdić do poci I r C m wej bową (koicą) W cególości mcier bow może mieć poć: r I dl r m I r

Bardziej szczegółowo

I N S T Y T U T A N A L I Z R E G I O N A L N Y C H

I N S T Y T U T A N A L I Z R E G I O N A L N Y C H I N S T Y T U T A N A L I Z R E G I O N A L N Y C H OCHÓ BUŻETU GMINY A KWOTA POSTAWOWA SUBWENCJI WYRÓWNAWCZEJ Autory: r Boa Stęień r Mear Makreek Coyriht Boa Stęień Wselkie rawa astreżoe LUTY 005 autory:

Bardziej szczegółowo

Zbiór wszystkich punktów brzegowych D nazywamy brzegiem D (ozn. D). Mówimy, że zbiór D jest domknięty D D. Domknięciem zbioru D nazywamy D D (ozn. D).

Zbiór wszystkich punktów brzegowych D nazywamy brzegiem D (ozn. D). Mówimy, że zbiór D jest domknięty D D. Domknięciem zbioru D nazywamy D D (ozn. D). Defiicja: Metryką w biore licb espoloych aywamy fukcję d: C, w w R :. Kołem w C o środku w i promieiu r aywamy biór K, r = * C: < r + (otoceie puktu ). Mówimy, że biór D jest otwarty D r > : K(, r) D.

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy

Klucz odpowiedzi do zadań zamkniętych oraz schematy oceniania zadań otwartych. Matematyka. Poziom podstawowy Klucz odpowiedzi do zadań zamkiętych oraz schematy oceiaia zadań otwartych Matematyka CZERWIEC 0 Klucz puktowaia zadań zamkiętych Nr zad Odp 5 6 8 9 0 5 6 8 9 0 5 6 B C C B C C A A B B C A B A A A B D

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3:

Szereg geometryczny. 5. b) b n = 4n 2 (b 1 = 2, r = 4) lub b n = 10 (b 1 = 10, r = 0). 2. jest równa 1 x dla x = 1+ Zad. 3: Szereg geometryczy Zad : Suma wszystkich wyrazów ieskończoego ciągu geometryczego jest rówa 4, a suma trzech początkowych wyrazów wyosi a) Zbadaj mootoiczość ciągu sum częściowych tego ciągu geometryczego

Bardziej szczegółowo

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski

Liczby zespolone. Magdalena Nowak. 23 marca Uniwersytet Śląski Uniwersytet Śląski 23 marca 2012 Ciało liczb zespolonych Rozważmy zbiór C = R R, czyli C = {(x, y) : x, y R}. W zbiorze C definiujemy następujące działania: dodawanie: mnożenie: (a, b) + (c, d) = (a +

Bardziej szczegółowo

Spis treści. I. Wiadomości wstępne... 3

Spis treści. I. Wiadomości wstępne... 3 Spis treści I. Wiadomości wstępe... 3 II. Pojęcia ogóle wraz z twierdzeiami... 4 1. Jedostka urojoa... 4. Liczba zespoloa... 4 3. Iterpretacja geometrycza... 7 4. Moduł liczby zespoloej... 8 5. Liczba

Bardziej szczegółowo

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie

3. Zapas stabilności układów regulacji 3.1. Wprowadzenie 3. Zapas stabilności układów regulacji 3.. Wprowadenie Dla scharakteryowania apasu stabilności roważymy stabilny układ regulacji o nanym schemacie blokowym: Ws () Gs () Ys () Hs () Rys. 3.. Schemat blokowy

Bardziej szczegółowo

SUBWENCJA WYRÓWNAWCZA DLA GMIN

SUBWENCJA WYRÓWNAWCZA DLA GMIN I N S T Y T U T A N A L I Z R E G I O N A L N Y C H SUBWENCJA WYRÓWNAWCZA DLA GMIN ANALIZA SZCZEGÓŁOWA Autory: dr Boda Stęień dr Medard Makreek Coyriht Boda Stęień Wselkie rawa astreżoe GRUDZIEŃ 004 autory:

Bardziej szczegółowo

Metody numeryczne Laboratorium 5 Info

Metody numeryczne Laboratorium 5 Info Metody umerycze Laboratorium 5 Ifo Aproksymacja - proces określaia rozwiązań przybliżoych a podstawie rozwiązań zaych, które są bliskie rozwiązaiom dokładym w ściśle sprecyzowaym sesie. Metoda ajmiejszych

Bardziej szczegółowo

Piotr Łukowski, Wykład dla studentów prawa WYKŁAD 4. nazwa c.d. funktor operator

Piotr Łukowski, Wykład dla studentów prawa WYKŁAD 4. nazwa c.d. funktor operator Piotr Łukowski, Wykład dla studetów prawa WYKŁAD 4 awa c.d. fuktor operator 1 Piotr Łukowski, Wykład dla studetów prawa Stosuki międy akresami aw 0. Podstawowe pojęcia algebry biorów (dystrybutywych) (prypomieie)

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice laboratorium

Metody Obliczeniowe w Nauce i Technice laboratorium Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia

Bardziej szczegółowo

AM1.1 zadania 8 Przypomn. e kilka dosyć ważnych granic, które już pojawiły się na zajeciach. 1. lim. = 0, lim. = 0 dla każdego a R, lim (

AM1.1 zadania 8 Przypomn. e kilka dosyć ważnych granic, które już pojawiły się na zajeciach. 1. lim. = 0, lim. = 0 dla każdego a R, lim ( AM11 zadaia 8 Przypom e kilka dosyć ważyh grai, które już pojawiły się a zajeiah e 1 lim 1 l(1+) (1+) 1, lim 1, lim a 1 si a, lim 1 0 0 0 0 l 2 lim 0, lim a 0 dla każdego a R, lim (1 + 1 e ) e, lim 1/

Bardziej szczegółowo

Definicja interpolacji

Definicja interpolacji INTERPOLACJA Defiicja iterpolacji Defiicja iterpolacji 3 Daa jest fukcja y = f (x), x[x 0, x ]. Zamy tablice wartości tej fukcji, czyli: f ( x ) y 0 0 f ( x ) y 1 1 Defiicja iterpolacji Wyzaczamy fukcję

Bardziej szczegółowo

ZEWNĘTRZNA MODULACJA ŚWIATŁA

ZEWNĘTRZNA MODULACJA ŚWIATŁA ZWNĘTRZNA MOACJA ŚWATŁA . Wsęp Modulacją świała aywamy miay w casie paramerów fali świelej. Modulaorem jes urądeie, kóre wymusa miay paramerów fali w casie. Płaską falę moochromaycą rochodącą się w ośrodku

Bardziej szczegółowo

Ćwiczenie 10. Wyznaczanie współczynnika rozpraszania zwrotnego promieniowania beta.

Ćwiczenie 10. Wyznaczanie współczynnika rozpraszania zwrotnego promieniowania beta. Ćwicenie 1 Wynacanie współcynnika roprasania wrotnego promieniowania beta. Płytki roprasające Ustawienie licnika Geigera-Műllera w ołowianym domku Student winien wykaać się najomością następujących agadnień:

Bardziej szczegółowo

Klasa II technikum Egzamin poprawkowy z matematyki sierpień 2013

Klasa II technikum Egzamin poprawkowy z matematyki sierpień 2013 /7 I. FUNKCJA KWADRATOWA. Fukcja kwadratowa w postaci kaoiczej i ogólej. Napisz wzór fukcji kwadratowej wiedząc, że wierzchołkiem paraboli będącej jej wykresem jest początek układu współrzędych oraz, że

Bardziej szczegółowo

WYKŁAD 10. Rozdział 5: Drgania liniowych układów ciągłych. Część 2: Drgania swobodne belek Równanie drgań poprzecznych belki

WYKŁAD 10. Rozdział 5: Drgania liniowych układów ciągłych. Część 2: Drgania swobodne belek Równanie drgań poprzecznych belki WYKŁAD Rodiał 5: Drgaia iiowych układów ciągłych Cęść : Drgaia swobode beek 5.5. Rówaie drgań poprecych beki Prymiemy astępuące ałożeia, dięki którym otrymamy iiowe rówaie drgań poprecych beki, iesprężoe

Bardziej szczegółowo

Rozdział 2. Liczby zespolone

Rozdział 2. Liczby zespolone Rozdział Liczby zespolone Zbiór C = R z działaniami + oraz określonymi poniżej: x 1, y 1 ) + x, y ) := x 1 + x, y 1 + y ), 1) x 1, y 1 ) x, y ) := x 1 x y 1 y, x 1 y + x y 1 ) ) jest ciałem zob rozdział

Bardziej szczegółowo

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11

RÓWNANIA RÓŻNICZKOWE WYKŁAD 11 RÓWNANIA RÓŻNICZKOWE WYKŁAD Szeregi potęgowe Defiicja Fukcja y = f () jest klasy C jeżeli jest -krotie różiczkowala i jej -ta pochoda jest fukcją ciągłą. Defiicja Fukcja y = f () jest klasy C, jeżeli jest

Bardziej szczegółowo

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Przedmowa 5. Rozdział 1 Przekształcenie Laplace a 7

Przedmowa 5. Rozdział 1 Przekształcenie Laplace a 7 Spis treści Predmowa 5 Rodiał 1 Prekstałcenie Laplace a 7 Rodiał 2 Wyprowadenie prekstałcenia Z 9 1. Prykładowe adania......................... 10 2. Zadania do samodielnego rowiąania............... 16

Bardziej szczegółowo

Twierdzenie Cayleya-Hamiltona

Twierdzenie Cayleya-Hamiltona Twierdzeie Cayleya-Hamiltoa Twierdzeie (Cayleya-Hamiltoa): Każda macierz kwadratowa spełia swoje włase rówaie charakterystycze. D: Chcemy pokazać, że jeśli wielomiaem charakterystyczym macierzy A jest

Bardziej szczegółowo

Dr Maciej Grzesiak, Instytut Matematyki

Dr Maciej Grzesiak, Instytut Matematyki liczbowe Dr Maciej Grzesiak, Instytut Matematyki liczbowe Dr Maciej Grzesiak, pok.724 E e-mail: maciej.grzesiak@put.poznan.pl http://www.maciej.grzesiak.pracownik.put.poznan.pl podręcznik: i algebra liniowa

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

PRZEKSZTAŁCENIE ZET. definicja. nst. Stąd po dokonaniu podstawienia zgodnie z definicją otrzymamy wyrażenie jak dla ciągu.

PRZEKSZTAŁCENIE ZET. definicja. nst. Stąd po dokonaniu podstawienia zgodnie z definicją otrzymamy wyrażenie jak dla ciągu. CPS 6/7 PREKSTAŁCENIE ET Defiicja rekstałceia Prekstałceie ET jest w diediie casu dyskretego odowiedikiem ciągłego rekstałceia Lalace a w diediie casu ciągłego. Podamy dwie rówoważe defiicje rekstałceia

Bardziej szczegółowo

Rozmieszczenie liczb pierwszych

Rozmieszczenie liczb pierwszych Rozmieszczeie liczb pierwszych Euler Pierwszy owoczesy wyik pochodzi od Eulera: TWIERDZENIE: Szereg p primes p est rozbieży. Szkic dowodu: Dla s > zachodzi rówość ( ) = s = i= ( + p s i ) + p 2s i +....

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI KIERUNEK: Automatyka i Robotyka (AiR) SPECJALNOŚĆ: Robotyka (ARR) PRACA DYPLOMOWA MAGISTERSKA Wyposażenie robota dwukołowego w cujniki ewnętrne Equipping a two

Bardziej szczegółowo

XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl grudniowy Poziom: szkoły ponadgimnazjalne

XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl grudniowy Poziom: szkoły ponadgimnazjalne XVI Warmińsko-Mazurskie Zawody Matematyczne Eliminacje cykl grudniowy Poziom: szkoły ponadgimnazjalne Zadanie. 4 Rozwiąż równanie 07 sin( ). Wiadomo, że: wyrażenie 4 przyjmuje wartości nieujemne dla każdego

Bardziej szczegółowo

Wyk lad 2 W lasności cia la liczb zespolonych

Wyk lad 2 W lasności cia la liczb zespolonych Wyk lad W lasości cia la liczb zespoloych 1 Modu l, sprz eżeie, cz eść rzeczywista i cz eść urojoa Niech a, b bed a liczbami rzeczywistymi i iech z = a bi. (1) Przypomijmy, że liczba sprzeżo a do z jest

Bardziej szczegółowo

Transformata Z Matlab

Transformata Z Matlab Aademia Morsa w Gdyi Katedra Automatyi Orętowej Teoria sterowaia Trasformata Z Matlab Mirosław Tomera. WPROWADZENIE W uładach sterowaia cora cęściej stosowae są regulatory cyfrowe i stąd oiecość oreślaia

Bardziej szczegółowo

Zadania domowe z Analizy Matematycznej III - czȩść 2 (funkcje wielu zmiennych)

Zadania domowe z Analizy Matematycznej III - czȩść 2 (funkcje wielu zmiennych) Zadaia domowe z AM III dla grup E7 (semestr zimow 07/08) Czȩść Zadaia domowe z Aaliz Matematczej III - czȩść (fukcje wielu zmiech) Zadaie. Obliczć graice lub wkazać że ie istiej a: (a) () (00) (b) + ()

Bardziej szczegółowo

Fraktale - wprowadzenie

Fraktale - wprowadzenie Fraktale - wprowadenie Próba definici fraktala Jak określamy biory naywane fraktalami? Prykłady procedur konstrukci fraktali W aki sposób b diała aą algorytmy generaci nabardie nanych fraktali? Jakie własnow

Bardziej szczegółowo

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH

MES W ANALIZIE SPRĘŻYSTEJ UKŁADÓW PRĘTOWYCH MES W ANALIZIE SPRĘŻYS UKŁADÓW PRĘOWYCH Prykłady obliceń Belki Lidia FEDOROWICZ Jan FEDOROWICZ Magdalena MROZEK Dawid MROZEK Gliwice 7r. 6-4 Lidia Fedorowic, Jan Fedorowic, Magdalena Mroek, Dawid Mroek

Bardziej szczegółowo

Mechanika kwantowa III

Mechanika kwantowa III Mecaika kwatowa III Opracowaie: Barbara Pac, Piotr Petele Powtóreie Moet pędu jest wielkością pojęciowo bardo istotą, gdż dla wsstkic pól o setrii sfercej operator jego kwadratu ( ˆM koutuje ailtoiae (

Bardziej szczegółowo