LICZBY ZESPOLONE. j= -1, j = 1. Liczby zespolone będą oznaczane przez podkreślenie symbolu (litery), oznaczającej tę liczbę:

Wielkość: px
Rozpocząć pokaz od strony:

Download "LICZBY ZESPOLONE. j= -1, j = 1. Liczby zespolone będą oznaczane przez podkreślenie symbolu (litery), oznaczającej tę liczbę:"

Transkrypt

1 LICZBY ZESPOLONE 1. Historia licb espoloych Licby espoloe poawiły się w XVI w., w wiąku badaiami sposobów rowiąywaia rówań algebraicych treciego i cwartego stopia. Okaało się, że rowiąaia rówań treciego stopia moża uyskać a pomocą diałań algebraicych a współcyikach tych rówań, edak tylko wtedy, gdy umie się oblicać 1. Ocywiście, w akresie licb, aych w tamtym okresie, pierwiastek kwadratowy licby -1 ie istiał. Niektóry matematyków ałożyli ego istieie i awali go licbą urooą, a dotychcas ae licby awao licbami recywistymi. Oacaąc 1 pre i, pryęto, że i = -1. Tworoo owe licby a + ib, które awao licbami espoloymi i określoo cysto formalie ctery diałaia a takich licbach. Arytmetyka licb espoloych ie doprowadiła do żadych sprecości. E. Euler ( ) wprowadił licby espoloe do aaliy matematyce, powoduąc tym e istoty postęp. Pocątek wieku XIX pryiósł ścisłe uasadieie istieia licb espoloych. Scegółową teorię licb espoloych stworyli C.F. Gauss ( ) i W.R. Hamilto ( ). Gauss iterpretował licby espoloe ako pukty płascyy licb espoloych (stąd płascya Gaussa ), w które wprowadoo pewe diałaia, wae dodawaiem i możeiem puktów, cyli licb espoloych. Hamilto wprowadił licby espoloe ako pary licb recywistych i określił dodawaie i możeie takich par. Obydwa uasadieia są rówoważe, bowiem pukty płascyy są wyacoe pre pary licb recywistych, współrędych tego puktu a płascyźie. Obecie licby espoloe, a rówi licbami recywistymi, które moża traktować ako licby espoloe scególego rodau, są iebędymi arędiami matematyka, fiyka i iżyiera. Scególe aceie odgrywaą w teorii obwodów. Wprowadoo specalą metodę aaliy obwodów elektrycych, opieraącą się a licbach espoloych, aywaą metodą symbolicą. Ze wględu a astosowaia licb espoloych w teorii obwodów, edostka urooa będie oacaa pre, cyli = -1, = 1. Licby espoloe będą oacae pre podkreśleie symbolu (litery), oacaące tę licbę: = a+. b. Zapis licb espoloych.1. Postać kaoica licby espoloe Licbą espoloą aywamy parę uporądkowaą licb recywistych (a, b), acęście apisywaą w postaci sumy = a+ b, = -1. Taką postać licby espoloe aywamy postacią kaoicą (postacią algebraicą). Licbę recywistą a aywamy cęścią recywistą licby espoloe a = Re{ }, licbę recywistą b aywamy cęścią urooą licby b= Im{ }, tak że = Re{ } + Im{}. Licba espoloa a + est apisywaa ako a i est utożsamiaa licbą recywistą. Licba espoloa = b będie aywaa licbą urooą. 1

2 .. Iterpretaca geometryca licby espoloe wska Licby espoloe moża iterpretować ako pukty a płascyźie miee espoloe we współrędych prostokątych Re{ }, Im{ }. Licba = a+ b est puktem o współrędych (a, b) płascyy Gaussa. Im{} b ϕ Rys. 1. Iterpretaca geometryca licby espoloe. a Re{} Pukt te est oddaloy od pocątku układu współrędych o odciek o długości a + b. Ta wartość est aywaa modułem licby espoloe lub e wartością bewględą = a + b. Odciek skieroway od pocątku układu współrędych do puktu repreetuącego licbę espoloą est ayway wskaem te licby. Wska ma długość rówą modułowi licby espoloe i est odchyloy od osi licb recywistych o kąt ayway argumetem licby espoloe ϕ = arg( ). Łatwo auważyć, że ϕ arc tg b = a dla licb espoloych leżących w pierwse i cwarte ćwiartce płascyy Gaussa ora b ϕ = arc tg ± π a dla licb leżących w drugie i trecie ćwiartce. Moża atem apisać b ϕ = arc tg ± π[a<], a gdie [a < ] est wyrażeiem logicym, prymuącym wartości 1, gdy a <, [ a < ] =, gdy a, atomiast ak pry π[a<] wybiera się tak aby π< ϕ π. Kąt ϕ spełiaący waruek π< ϕ π aywa się argumetem główym licby espoloe. Argumet licby ie est określoy. Prykład 1 Oblicyć moduły i argumety adaych licb espoloych i predstawić e a płascyźie Gaussa: 1 = 5,45 + 3,5, = 4,5-3,45, 3 = -5 +3, 4 = , 5 1 = (5, 45) + (3, 5) = 6,345471, arg( 1) = arc tg =, rad = 3,81. 5, 45 3, 45 = (4,5) + ( 3, 45) = 5, 67317, arg( ) = arc tg =, 65481rad = 37, 48. 4,5 3 3 = ( 5) + (3) = 5,8395, arg( 3) = arc tg + π =, 61173rad = 149, 4. 5

3 4 = ( 4) + ( 5) = 6, 4314, 5 arg( 4) = arc tg + π = 4, π=-,45537 rad = 18, Diałaie (4,37648-π) wykoao, aby oblicyć argumet główy licby. Im{} 5 3 ϕ ϕ ϕ 1 5 Re{} 4 ϕ 4-5 Rys. P1.1. Argumety główe licb espoloych..3. Postać trygoometryca licby espoloe Zgodie rys.1 moża apisać a = cos( ϕ), b= si( ϕ), cyli = [cos( ϕ) + si( ϕ)]. Tę postać aywa się postacią trygoometrycą licby espoloe. Zgodie worem Eulera ϕ = e = [cos( ϕ) + si( ϕ)]. Postać e ϕ aywa się postacią wykładicą licby espoloe. Każda licba espoloa ma ieskońceie wiele argumetów arg( ) = ϕ + kπ, k =, ± 1, ±,..., których, w obliceiach, główie stosue się argumet główy. Prykład Licbę 1 = apisać w postaci wykładice, licbę postaci algebraice. = 8,5444, arg ( ) =, 788 rad = 159,44, 1 1 1, ,44 = 8,5444e = 8,5444e. = = [cos(5 ) si(5 )] 1, , = e apisać w 3

4 3. Diałaia a licbach espoloych Licbą sprężoą do dae licby espoloe aywa się licbę e mieioym akiem cęści urooe licby. Dla licby = a+ b licbą sprężoą est licba Poieważ więc * = a b. a b * = +, = *. Rówość licb espoloych wymaga rówości cęści recywistych i cęści urooych licb: 1 = a1+ b1, = a + b, 1 = a1 = a b1 = b. Dwie licby espoloe są rówe sobie eżeli maą rówe moduły i argumety: ϕ1 ϕ 1 = 1 e, = e, 1 = 1 = ϕ1 = ϕ. Licba espoloa est rówa ero, eżeli obydwie cęści te licby są rówe ero: = a+ b, = a= b=. Licba espoloa est rówa ero, eżeli e moduł est rówy ero: ϕ = e, = =. Sumę algebraicą dwóch licb espoloych moża oblicyć sumuąc ich cęści recywiste i cęści urooe: + = ( a + b) ± ( a + b ) = ( a ± a ) + ( b ± b ) Ilocy dwóch licb espoloych oblica się ak ilocy dwóch dwumiaów: 1 = ( a1+ b1)( a+ b) = aa 1 bb 1 + ( ab 1 + ab 1). Ilocy dwóch licb moża oblicyć wykorystaiem postaci wykładice (Eulera) licby espoloe: ϕ1 ϕ ( ϕ1+ ϕ = e e = e ) = cos( ϕ + ϕ ) + si( ϕ + ϕ )] Ilora dwóch licb espoloych oblica się wykorystaiem poęcia licby sprężoe: 1 1* ( a1+ b 1)( a+ b ) aa 1 + bb 1 ab 1 ab1 = = =. * a + b a + b a + b Wykorystuąc postać wykładicą licb moża apisać: ϕ1 1 1 e 1 ( ϕ1 ϕ) 1 1 = = e = cos( ϕ 1 ϕ) + si( ϕ1 ϕ). ϕ e 4

5 Potęgę licby espoloe awygodie oblicać wykorystuąc postać wykładicą licby: ϕ ϕ = e = e, ( ) = [cos( ϕ) + si( ϕ)]. Ostatia ależość osi awę woru Moivre a. Pierwiastek licby espoloe ma tyle wartości ile wyosi stopień pierwiastka: ϕ +kπ ϕ e e,,1,,..., 1. = = k = Moduły wsystkich pierwiastków licby espoloe są takie same, a ich argumety różią się o π/. Wsystkie pierwiastki leżą więc a kole o promieiu a płascyźie Gaussa i dielą okrąg a cęści (Rys. ). Im{} 1 1 ϕ Re{} Rys.. Pierwiastki treciego stopia licby e ϕ. Logarytm aturaly licby espoloe alepie oblicać wykorystuąc postać wykładicą licby espoloe (argumet licby musi być wyrażoy w radiaach). l( ) l( e ϕ ϕ = ) = l( ) + l(e ) = l( ) + ϕ. Logarytm diesięty licby espoloe oblica się w podoby sposób. log( ) = log( e ϕ ) = log( ) + ϕ log(e)=log( ) +,43494 ϕ. Fukcę ekspoecalą licby espoloe awygodie oblica się dla licb w postaci algebraice. ( a+ b) a e = e = e [cos( b) + si( b)]. Fukce si i cos dla espoloych argumetów oblica się dla licb w postaci algebraice. si( a+ b) = si( a)cosh( b) + cos( a)sih( b), cos( a+ b) = cos( a)cosh( b) si( a)sih( b). Fukce sih i cosh dla espoloych argumetów oblica się dla licb w postaci algebraice sih( a+ b) = sih( a)cos( b) + cosh( a)si( b), cosh( a+ b) = cosh( a)cos( b) + si h( a)si( b). 5

6 Prykład 3 Zadae są dwie licby espoloe: 1 = , = Wartości sprężoe do tych licb: 1* = 15 1, * = Moduły licb: m = = * = ( )( 15 1) = = 18,7756, * (1 8)(1+8) 1 8 1,8648. m = = = = + = 3.3. Argumety licb: 1 ϕ1 = arg( 1) = arc tg + π=,55359, 15 8 ϕ = arg( ) = arc tg =, Licba 3 = ( x y) + ( x+ y) ma być rówa licbie 1. Oblicyć wartości x i y. x y = 15, x=,5, y = 1,5. x+ y = 1, 3.5. Różica licb 1 : = ( ) (1 8) = Ilocy licb 1 i : = ( )(1 8)= 15+8+(1 + 1) = 7 +, 1 = m 1, e ϕ me ϕ = 3,86793e = Ilora licb 1 i : 1 ( )(1+8) 3 = = = = 1, 4439,11951, (1 8)(1+8) 164 ϕ1 1 m1e 3,831 = = = 1, 47731e = 1, 4438, ϕ me 3.8. Licba 1 podiesioa do trecie potęgi: ,6677 1, = 1 = ( m1 e ϕ ) = 5859, 8e = 5859, 8e = , 3 e woru Moivre'a = m1[cos(3 ϕ1) + si(3 ϕ1)] = , = = ( )( )( )= Pierwiastek treciego stopia licby 1 : a ϕ , e, 6878e 1, ,971997, = = m = = + ϕ1 π ( + ) 3 3 3, b = m1 e =, 6878e =, ,516473, ϕ1 4π ( + ) , c = m1 e =, 6878e =, , Moża sprawdić, że ab c = Logarytm aturaly licby 1 : 1 l(, ) = l( m1e ϕ ) = l( m1) + ϕ1 =, ,55359=3, e Logarytm diesięty licby 1 : 1 log( ) = log( me ϕ ) = log( m ) + ϕ log(e)=1, ,1911=1, e,

7 3.1. Fukca ekspoecala: 1 ( 15+1) e = e = e e = 3, e = (, , ) Fukce trygoometryce: s = si( 1) = si( 15)cosh(1) + cos( 15)sih(1 = 7161, ,6199, c= cos( 1) = cos( 15)cosh(1) si( 15)sih(1) = 8366, ,7714. Moża sprawdić, że s + c = Fukce hiperbolice: sh = sih( )=sih( 15)cos(1) + cosh( 15)si(1) = ,7 8897,3, ch = cosh( )=cosh(-15)cos(1)+sih(-15)si(1)= , ,3. Moża sprawdić, że ch sh = Rowiąywaie rówań w biore licb espoloych Zgodie podstawowym twierdeiem algebry, każdy wielomia stopia ma miesc erowych (licąc krotości) i rokłada się a ilocy wielomiaów stopia pierwsego W( x) = a ( x x ). k = 1 Jeżeli współcyiki wielomiau są recywiste, to każdemu espoloemu miescu erowemu towarysy miesce erowe espoloe sprężoe. Dla wielomiau drugiego stopia dla którego W( x) = a x + a x+ a, 1 a + a 4a a a a 4a a,, = x = a a * x = x1, a a 1 a < x eżeli 4. Prykład Dla licb 1 = + 3 i = 1 + skostruować wielomia cwartego stopia o współcyikach recywistych. 4 3 w( x) = ( x 1)( x 1*)( x )( x *) = x 6x + 6x 46x Dobrać wartość współcyika a tak, aby pierwiastki rówaia 4x + ax+ 5= były: a. recywiste, b. espoloe. Wyróżik rówaia Δ = a 4* 4*5 = a 8. a. Pierwiastki rówaia będą recywiste, eżeli a 8 >, t. a< 8,9447 a> 8,9447. b. Pierwiastki rówaia będą espoloe, eżeli a 8 <, t. 8,9447 < a < 8,9447. W tym prypadku pierwiastki będą espoloe, waemie sprężoe. k 7

8 5. Predstawieie symbolice prebiegów siusoidalych Niech f() t = Fm si( ω t+ ϕ). Dla takiego prebiegu moża utworyć prebieg espoloy ( ωt+ ϕ) Fm ϕ ωt f() t = Fme = e e. Jeżeli wprowadić espoloą wartość skutecą prebiegu siusoidalego F m ϕ e, F = to f() t = Fe ωt, i wtedy f( t) = Im{ f( t)} = F si( ω t+ ϕ). Widać więc, że aby edoacie repreetować symbolicie prebieg siusoidaly, wystarcy podać dwie licby: espoloą wartość skutecą F ora pulsacę prebiegu: Fm ϕ Fm si( ωt+ ϕ) F, ω, F = e. Jeżeli wiadomo, że licby F ora ω repreetuą symbolicie prebieg siusoidaly, to prebieg siusoidaly moża odtworyć drogą astępuące operaci ωt F, ω f( t) = Im{ Fe } = F si( ωt+ ϕ), Fm = F, ϕ = arg( F). Prebieg kosiusoidaly moża repreetować symbolicie po amiaie go a prebieg siusoidaly: ( + π π Fm ϕ ). Fmcos( ωt+ ϕ) = Fmsi( ωt+ ϕ + ) F = e Prykład Prebiegi f1( t) = 35,3si( ω t+ 4 ) i f( t) = 5cos(1 t+ ) apisać w postaci symbolice. 35,3 4 F1 = e = 176, ,84, ω =314 rad/s F = e = 1,9 + 33,3, ω =1 rad/s. 5.. Wiadomo, że licba F = 5+ 6 pry pulsaci ω = 1 4 rad/s repreetue prebieg siusoidaly. Zapisać te prebieg. 19,81 4 F = 7,81e, ω = 1 rad/s. m 4 19,81 1 t 4 f( t) = Im{ 7,81e e = 11, 5cos (1 t+ 39,81 ) Różicę prebiegów f1( t) = 1si( ωt+ ) i f( t) = cos( ωt ) apisać ako ede prebieg siusoidaly. 8,565 F = (66, ,1844) (48,369+13,896)=11,1e, f t f t f t ωt ( ) = 1( ) ( ) = 155,848si( 8,56 ). m Opracowaie: dr Cesław Michalik i dr Włodimier Wolski 8

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił

( ) O k k k. A k. P k. r k. M O r 1. -P n W. P 1 P k. Rys. 3.21. Redukcja dowolnego przestrzennego układu sił 3.7.. Reducja dowolego uładu sił do sił i par sił Dowolm uładem sił będiem awać uład sił o liiach diałaia dowolie romiescoch w prestrei. tm pucie ajmiem się sprowadeiem (reducją) taiego uładu sił do ajprostsej

Bardziej szczegółowo

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami

Zastosowanie funkcji inżynierskich w arkuszach kalkulacyjnych zadania z rozwiązaniami Tadeus Wojnakowski Zastosowanie funkcji inżynierskich w arkusach kalkulacyjnych adania rowiąaniami Funkcje inżynierskie występują we wsystkich arkusach kalkulacyjnych jak Excel w MS Office Windows cy Gnumeric

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)!

A = {dostęp do konta} = {{właściwe hasło,h 2, h 3 }} = 0, 0003. (10 4 )! 2!(10 4 3)! 3!(104 3)! Wstęp do rachunku prawdopodobieństwa i statystyki matematycnej MAP037 wykład dr hab. A. Jurlewic WPPT Fiyka, Fiyka Technicna, I rok, II semestr Prykłady - Lista nr : Prestreń probabilistycna. Prawdopodobieństwo

Bardziej szczegółowo

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa

Metody dokładne w zastosowaniu do rozwiązywania łańcuchów Markowa Metody dokładne w astosowaniu do rowiąywania łańcuchów Markowa Beata Bylina, Paweł Górny Zakład Informatyki, Instytut Matematyki, Uniwersytet Marii Curie-Skłodowskiej Plac Marii Curie-Skłodowskiej 5, 2-31

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM. Rok szkolny 2015/16 WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Rok skolny 2015/16 POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopscająca (2); (3) - ocena dostatecna (3); (4) - ocena dobra (4);

Bardziej szczegółowo

ORGANIZACJA I ZARZĄDZANIE

ORGANIZACJA I ZARZĄDZANIE P O L I T E C H N I K A W A R S Z A W S K A WYDZIAŁ BUDOWNICTWA, MECHANIKI I PETROCHEMII INSTYTUT INŻYNIERII MECHANICZNEJ ORGANIZACJA I ZARZĄDZANIE Optymaliacja transportu wewnętrnego w akładie mechanicnym

Bardziej szczegółowo

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń

3. Wykład III: Warunki optymalności dla zadań bez ograniczeń 3 Wkład III: Waruki optmalości dla zadań bez ograiczeń Podae poiże waruki optmalości dla są uogólieiem powszechie zach waruków dla fukci ede zmiee (zerowaie się pierwsze pochode i lokala wpukłość) 3 Twierdzeie

Bardziej szczegółowo

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego.

Transformator Φ M. uzwojenia; siła elektromotoryczna indukowana w i-tym zwoju: dφ. = z1, z2 liczba zwojów uzwojenia pierwotnego i wtórnego. Transformator Φ r Φ M Φ r i i u u Φ i strumień magnetycny prenikający pre i-ty wój pierwsego uwojenia; siła elektromotorycna indukowana w i-tym woju: dφ ei, licba wojów uwojenia pierwotnego i wtórnego.

Bardziej szczegółowo

VIII Skalmierzycki Konkurs Interdyscyplinarny Z matematyka w XXI wieku

VIII Skalmierzycki Konkurs Interdyscyplinarny Z matematyka w XXI wieku Zadanie 3 Zad. 1 Skreśli licby, które są jednoceśnie podielne pre 2 i 3. Odcytaj litery, które najdją się pod skreślonymi licbami, tworą one bardo ważne słowa, o których wsyscy powinni pamiętać na co dień.

Bardziej szczegółowo

Matematyka. Opracował: dr hab. Mieczysław Kula, prof. WSBiF dr Michał Baczyński

Matematyka. Opracował: dr hab. Mieczysław Kula, prof. WSBiF dr Michał Baczyński Matematka Opracował: dr hab. Miecsław Kula, prof. WSBiF dr Michał Bacński I. Ogóle iformacje o predmiocie: Cel predmiotu: Celem główm kursu jest apoaie studetów wbrami diałami matematki stosowami w aukach

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

ZEWNĘTRZNA MODULACJA ŚWIATŁA

ZEWNĘTRZNA MODULACJA ŚWIATŁA ZWNĘTRZNA MOACJA ŚWATŁA . Wsęp Modulacją świała aywamy miay w casie paramerów fali świelej. Modulaorem jes urądeie, kóre wymusa miay paramerów fali w casie. Płaską falę moochromaycą rochodącą się w ośrodku

Bardziej szczegółowo

I N S T Y T U T A N A L I Z R E G I O N A L N Y C H

I N S T Y T U T A N A L I Z R E G I O N A L N Y C H I N S T Y T U T A N A L I Z R E G I O N A L N Y C H OCHÓ BUŻETU GMINY A KWOTA POSTAWOWA SUBWENCJI WYRÓWNAWCZEJ Autory: r Boa Stęień r Mear Makreek Coyriht Boa Stęień Wselkie rawa astreżoe LUTY 005 autory:

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Spis treści. I. Wiadomości wstępne... 3

Spis treści. I. Wiadomości wstępne... 3 Spis treści I. Wiadomości wstępe... 3 II. Pojęcia ogóle wraz z twierdzeiami... 4 1. Jedostka urojoa... 4. Liczba zespoloa... 4 3. Iterpretacja geometrycza... 7 4. Moduł liczby zespoloej... 8 5. Liczba

Bardziej szczegółowo

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ).

P K. Położenie punktu na powierzchni kuli określamy w tym układzie poprzez podanie dwóch kątów (, ). Materiał ddaktcne Geodeja geometrcna Marcin Ligas, Katedra Geomatki, Wdiał Geodeji Górnicej i Inżnierii Środowiska UKŁADY WSPÓŁZĘDNYCH NA KULI Pierwsm prbliżeniem kstałtu Ziemi (ocwiście po latach płaskich

Bardziej szczegółowo

SUBWENCJA WYRÓWNAWCZA DLA GMIN

SUBWENCJA WYRÓWNAWCZA DLA GMIN I N S T Y T U T A N A L I Z R E G I O N A L N Y C H SUBWENCJA WYRÓWNAWCZA DLA GMIN ANALIZA SZCZEGÓŁOWA Autory: dr Boda Stęień dr Medard Makreek Coyriht Boda Stęień Wselkie rawa astreżoe GRUDZIEŃ 004 autory:

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice laboratorium

Metody Obliczeniowe w Nauce i Technice laboratorium Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia

Bardziej szczegółowo

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA

POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI PRACA DYPLOMOWA MAGISTERSKA POLITECHNIKA WROCŁAWSKA WYDZIAŁ ELEKTRONIKI KIERUNEK: Automatyka i Robotyka (AiR) SPECJALNOŚĆ: Robotyka (ARR) PRACA DYPLOMOWA MAGISTERSKA Wyposażenie robota dwukołowego w cujniki ewnętrne Equipping a two

Bardziej szczegółowo

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych

Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 INSTRUKCJA DO ĆWICZENIA NR 3. Optymalizacja wielowarstwowych płyt laminowanych Document: Exercise-03-manual --- 2014/12/10 --- 8:54--- page 1 of 8 PRZEDMIOT TEMAT KATEDRA MECHANIKI STOSOWANEJ Wydiał Mechanicny POLITECHNIKA LUBELSKA INSTRUKCJA DO ĆWICZENIA NR 3 1. CEL ĆWICZENIA Wybrane

Bardziej szczegółowo

Przestrzeń liniowa R n.

Przestrzeń liniowa R n. MATEMATYKA IIb - Lcjan Kowalski Prestreń liniowa R n. Element (wektor) prestreni R n będiem onacać [,,, ] Element erow [,, L, ]. Diałania. a) ilocn element pre licbę: b) sma elementów [ c, c, ] c L, c

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

1. Podstawy rachunku wektorowego

1. Podstawy rachunku wektorowego 1 Postaw rachunku wektorowego Wektor Wektor est wielkością efiniowaną pre ługość (mouł) kierunek iałania ora wrot Dwa wektor o tm samm moule kierunku i wrocie są sobie równe Wektor presunięt równolegle

Bardziej szczegółowo

PROWIZJA I AKORD1 1 2

PROWIZJA I AKORD1 1 2 PROWIZJA I AKORD 1 1 1. Pracodawca może ustalić wynagrodenie w formie prowiji lub akordu. 2. Prowija lub akord mogą stanowić wyłącną formę wynagradania lub występować jako jeden e składników wynagrodenia.

Bardziej szczegółowo

Analiza transformatora

Analiza transformatora ĆWICZENIE 4 Analia transformatora. CEL ĆWICZENIA Celem ćwicenia jest ponanie bodowy, schematu astępcego ora ocena pracy transformatora.. PODSTAWY TEORETYCZNE. Budowa Podstawowym adaniem transformatora

Bardziej szczegółowo

ZAGADNIENIE TRANSPORTOWE

ZAGADNIENIE TRANSPORTOWE ZAGADNIENIE TRANSPORTOWE ZT.. Zagadee trasportowe w postac tablcy Z m puktów (odpowedo A,...,A m ) wysyłamy edorody produkt w loścach a,...,a m do puktów odboru (odpowedo B,...,B ), gdze est odberay w

Bardziej szczegółowo

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach.

PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE. WALCOWE (równoległe) STOŻKOWE (kątowe) ŚLIMAKOWE HIPERBOIDALNE. o zebach prostych. walcowe. o zębach. CZOŁOWE OWE PRZEKŁADNIE STOŻKOWE PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o ebach prostych o ębach prostych walcowe walcowe o ębach śrubowych o

Bardziej szczegółowo

Regulamin Promocji kredytu gotówkowego Oprocentowanie niższe niż najniższe - edycja świąteczna. Obowiązuje od 13.11.2014 r. do 30.04.2015 r.

Regulamin Promocji kredytu gotówkowego Oprocentowanie niższe niż najniższe - edycja świąteczna. Obowiązuje od 13.11.2014 r. do 30.04.2015 r. Regulamin Promocji kredytu gotówkowego Oprocentowanie niżse niż najniżse - edycja świątecna Obowiąuje od 13.11.2014 r. do 30.04.2015 r. 1. Organiator Promocji 1. Promocja Oprocentowanie niżse niż najniżse

Bardziej szczegółowo

Wydawnictwo Wyższej Szkoły Komunikacji i Zarządzania w Poznaniu

Wydawnictwo Wyższej Szkoły Komunikacji i Zarządzania w Poznaniu CMYK ISBN 98-8-888-- Wdanicto Wżsej Skoł Komunikacji i Zarądania - Ponań, ul Różana a tel 8 9, fa 8 9 skiedu danicto@skiponanpl analia89indd Wdanicto Wżsej Skoł Komunikacji i Zarądania Ponaniu 9--8 ::

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

1. Relacja preferencji

1. Relacja preferencji dr Mchał Koopczyńsk EKONOMIA MATEMATYCZNA Wykłady, 2, 3 (a podstawe skryptu r 65) Relaca preferec koszyk towarów: przestrzeń towarów: R + = { x R x 0} x = ( x,, x ) X X R+ x 0 x 0 =, 2,, x~y xf y x y x

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1

LICZBY ZESPOLONE. 1. Wiadomości ogólne. 2. Płaszczyzna zespolona. z nazywamy liczbę. z = a + bi (1) i = 1 lub i 2 = 1 LICZBY ZESPOLONE 1. Wiadomości ogólne DEFINICJA 1. Liczba zespolona z nazywamy liczbę taką, że a, b R oraz i jest jednostka urojona, definiowaną następująco: z = a + bi (1 i = 1 lub i = 1 Powyższą postać

Bardziej szczegółowo

MMF ćwiczenia nr 1 - Równania różnicowe

MMF ćwiczenia nr 1 - Równania różnicowe MMF ćwiczia r - Rówaia różicow Rozwiązać rówaia różicow pirwszgo rzędu: y + y = y = y + y =! y = Wsk Podzilić rówai przz! i podstawić z y /( )! Rozwiązać rówaia różicow drugigo rzędu: 5 6 F F F F F (ciąg

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

1 Liczby zespolone. 1.1 Dlaczego nie wystarczaj liczby rzeczywiste

1 Liczby zespolone. 1.1 Dlaczego nie wystarczaj liczby rzeczywiste 1 Licby espoloe 1.1 Dlacego ie wystarcaj licby recywiste W diejach systemów licbowych, iejedokrotie treba byªo rosera istiej ce wyikaªo to aturalych apotrebowa«. Licby aturale N = {1, 2, 3,... } diaªaiami

Bardziej szczegółowo

BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ

BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ LABORATORIU WYTRZYAŁOŚCI ATERIAŁÓW Ćiceie 0 BADANIE ODKSZTAŁCEŃ SRĘŻYNY ŚRUBOWEJ 0.. Wproadeie Sprężyy, elemety sprężyste mają bardo różorode astosoaie ielu kostrukcjach mechaicych. Wykorystuje się je

Bardziej szczegółowo

2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie

2015-01-15. Edycja pierwsza 2014/1015. dla kierunku fizyka medyczna, I rok, studia magisterskie 05-0-5. Opis różnicę pomiędy błędem pierwsego rodaju a błędem drugiego rodaju Wyniki eksperymentu składamy w dwie hipotey statystycne: H0 versus H, tak, by H0 odrucić i pryjąć H. Jeśli decydujemy, że pryjmujemy

Bardziej szczegółowo

PODSTAWY KONSTRUKCJI MASZYN

PODSTAWY KONSTRUKCJI MASZYN POLITECHNIA LUBELSA J. Banasek, J. Jonak PODSTAW ONSTRUCJI MASN WPROWADENIE DO PROJETOWANIA PREŁADNI ĘBATCH I DOBORU SPRĘGIEŁ MECHANICNCH Wydawnictwa Ucelniane 008 Opiniodawca: dr hab. inŝ. Stanisław rawiec

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

Uchwała nr 68/2015. Senatu AGH z dnia 27 maja 2015 r.

Uchwała nr 68/2015. Senatu AGH z dnia 27 maja 2015 r. Uchwała nr 68/2015 Senatu AGH dnia 27 maja 2015 r. w sprawie warunków, trybu ora terminu ropocęcia i akońcenia rekrutacji na pierwsy rok studiów pierwsego i drugiego stopnia w roku akademickim 2016/2017.

Bardziej szczegółowo

10.0. Przekładnie 10.1. Podział i cechy konstrukcyjne

10.0. Przekładnie 10.1. Podział i cechy konstrukcyjne Postawy Kostrukcji Masy - projektowaie.. Prekłaie.. Poiał i cechy kostrukcyje Zespoły służące o miay astępujących parametrów prekaywaej eergii mechaicej ruchu obrotowego: prekaywaego mometu (lub w scególych

Bardziej szczegółowo

a n 7 a jest ciągiem arytmetycznym.

a n 7 a jest ciągiem arytmetycznym. ZADANIA MATURALNE - CIĄGI LICZBOWE - POZIOM PODSTAWOWY Opracowała mgr Dauta Brzezińska Zad.1. ( pkt) Ciąg a określoy jest wzorem 5.Wyzacz liczbę ujemych wyrazów tego ciągu. Zad.. ( 6 pkt) a Day jest ciąg

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

Jakie nowe możliwości daje właścicielom i zarządcom budynków znowelizowana Ustawa termomodrnizacyjna

Jakie nowe możliwości daje właścicielom i zarządcom budynków znowelizowana Ustawa termomodrnizacyjna dr inż. Wiesław Sarosiek mgr inż. Beata Sadowska mgr inż. Adam Święcicki Katedra Podstaw Budownictwa i Fiyki Budowli Politechniki Białostockiej Narodowa Agencja Posanowania Energii S.A. Filia w Białymstoku

Bardziej szczegółowo

INCYDENCYJNE SIECI NEURONOWE JAKO

INCYDENCYJNE SIECI NEURONOWE JAKO INSTYTUT BADAŃ SYSTEMOWYCH POLSKA AKADEMIA NAUK INCYDENCYJNE SIECI NEURONOWE JAKO GENERATOR NOMOGRAMÓW STRESCENIE ROPRAWY DOKTORSKIEJ BOGUMIŁ FIKSAK PROMOTOR: DR HAB INŻ MACIEJ KRAWCAK, PROF PAN WARSAWA

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji

Bardziej szczegółowo

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE

ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 6 nr Archiwum Technologii Masn i Automatacji 6 ROMAN STANIEK * ZŁOŻONE RUCHY OSI OBROTOWYCH STEROWANYCH NUMERYCZNIE W artkule predstawiono ależności matematcne

Bardziej szczegółowo

ROZKŁAD BŁĘDÓW PRZY PROJEKTOWANIU POŚREDNIEGO OŚWIETLENIA ELEKTRYCZNEGO ZA POMOCĄ OPRAW KWADRATOWYCH

ROZKŁAD BŁĘDÓW PRZY PROJEKTOWANIU POŚREDNIEGO OŚWIETLENIA ELEKTRYCZNEGO ZA POMOCĄ OPRAW KWADRATOWYCH Andrej PAWLAK Krystof ZAREMBA ROZKŁAD BŁĘDÓW PRZY PROJEKTOWANIU POŚREDNIEGO OŚWIETLENIA ELEKTRYCZNEGO ZA POMOCĄ OPRAW KWADRATOWYCH STRESZCZENIE W wielkoowierchniowych instalacjach oświetlenia ośredniego

Bardziej szczegółowo

MODEL MUNDELLA-FLEMINGA

MODEL MUNDELLA-FLEMINGA Danuta Miłasewic Uniwersytet Sceciński MODEL MUNDELLA-FLEMINGA 1. OPIS MODELU MUNDELLA-FLEMINGA Model ten, stworony na pocątku lat seśćdiesiątych XX wieku pre Roberta A. Mundella i Markusa Fleminga, opisuje

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki

Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki Informatyk i matematyk: dwa spojrzenia na jedno zadanie (studium przypadku) Krzysztof Ciebiera, Krzysztof Diks, Paweł Strzelecki Zadanie (matura z informatyki, 2009) Dane: dodatnia liczba całkowita R.

Bardziej szczegółowo

Wykres 1: Liczba szkół do których zgłosili się kandydaci niepełnosprawni w roku 2010/2011

Wykres 1: Liczba szkół do których zgłosili się kandydaci niepełnosprawni w roku 2010/2011 Wyniki monitorowania rekrutacji młodieży niepełnosprawnej i prewlekle chorej do publicnych skół ponadgimnajalnych dla młodieży w wojewódtwie podlaskim. Badaniem objęto 18 skół ponadgimnajalnych wojewódtwa

Bardziej szczegółowo

UCHWAŁA NR XXVII/287/12 RADY MIASTA PUŁAWY. z dnia 29 listopada 2012 r.

UCHWAŁA NR XXVII/287/12 RADY MIASTA PUŁAWY. z dnia 29 listopada 2012 r. UCHWAŁA NR XXVII/287/12 RADY MIASTA PUŁAWY dnia 29 listopada 2012 r. w sprawie ustalenia trybu udielania i rolicania dotacji dla niepublicnych: predskoli, innych form wychowania predskolnego, skół a także

Bardziej szczegółowo

Dział 1. Osądzeni wg rodzajów przestępstw i kar

Dział 1. Osądzeni wg rodzajów przestępstw i kar MINISTERSTWO SPRAWIEDLIWOŚCI, Al. Ujadowskie 11, 00-950 Warsawa SO w Opolu [WYDZIAL] Okręg Sadu Apelacyjnego w Apelacja Wrocławska Numer identyfikacyjny REGON Diał 1. Osądeni wg rodajów prestępstw i kar

Bardziej szczegółowo

Charakterystyka frezarki uniwersalnej oraz zastosowanie podzielnicy uniwersalnej

Charakterystyka frezarki uniwersalnej oraz zastosowanie podzielnicy uniwersalnej POLITECHNIA POZNAŃSA Instytut Technologii Mechanicnej Masyny i urądenia technologicne laboratorium Charakterystyka frearki uniwersalnej ora astosowanie podielnicy uniwersalnej Opracował: dr inż. rystof

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

Wielokryteriowa optymalizacja liniowa (WPL)

Wielokryteriowa optymalizacja liniowa (WPL) arek isyński BO UŁ 007 - Wielokryteriowa optymaliaja liniowa (WPL) -. Wielokryteriowa optymaliaja liniowa (WPL) Zadaniem WPL naywamy następująe adanie optymaliaji liniowej: a a m L O L L O L L a a n n

Bardziej szczegółowo

Zasady rekrutacji uczniów do I Liceum Ogólnokształcącego im. Tadeusza Kościuszki na rok szkolny 2015/2016

Zasady rekrutacji uczniów do I Liceum Ogólnokształcącego im. Tadeusza Kościuszki na rok szkolny 2015/2016 Zasady rekrutacji ucniów do I Liceum Ogólnokstałcącego im. Tadeusa Kościuski na rok skolny 201/2016 Podstawa prawna: Roporądenie Ministra Edukacji Narodowej i Sportu dnia 20 lutego 2004 roku w sprawie

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn

Podstawy Konstrukcji Maszyn Pdsty Knstrukcji Msyn Wykłd 9 Prekłdnie ębte cęść Krekcje Dr inŝ. Jcek Crnigski Obróbk kół ębtych Metd biedni Pdcięcie ębó Pdcięcie stpy ęb Wstępuje gdy jest duŝ kąt dległść ębó, cyli pry ncinniu młej

Bardziej szczegółowo

Zadania o liczbach zespolonych

Zadania o liczbach zespolonych Zadania o liczbach zespolonych Zadanie 1. Znaleźć takie liczby rzeczywiste a i b, aby zachodzi ly równości: a) a( + i) + b(4 i) 6 i, b) a( + i) + b( + i) 8i, c) a(4 i) + b(1 + i) 7 1i, ( ) a d) i + b +i

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

ĆWICZENIE 5 BADANIE ZASILACZY UPS

ĆWICZENIE 5 BADANIE ZASILACZY UPS ĆWICZENIE 5 BADANIE ZASILACZY UPS Cel ćwicenia: aponanie budową i asadą diałania podstawowych typów asilacy UPS ora pomiar wybranych ich parametrów i charakterystyk. 5.1. Podstawy teoretycne 5.1.1. Wstęp

Bardziej szczegółowo

Ochrona_pporaz_ISiW J.P. Spis treści:

Ochrona_pporaz_ISiW J.P. Spis treści: Spis treści: 1. Napięcia normaliowane IEC...2 1.1 Podstawy prawne 2 1.2 Pojęcia podstawowe 2 2. Zasilanie odbiorców niepremysłowych...3 2.1 kłady sieciowe 4 3. Zasady bepiecnej obsługi urądeń elektrycnych...8

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera

Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: Badania operacyjne. Temat ćwiczenia: Problemy transportowe cd, Problem komiwojażera Istrukcja do ćwiczeń laboratoryjych z przedmiotu: Badaia operacyje Temat ćwiczeia: Problemy trasportowe cd Problem komiwojażera Zachodiopomorski Uiwersytet Techologiczy Wydział Iżyierii Mechaiczej i Mechatroiki

Bardziej szczegółowo

FUNKCJE DWÓCH ZMIENNYCH

FUNKCJE DWÓCH ZMIENNYCH FUNKCJE DWÓCH MIENNYCH De. JeŜel kaŝdemu puktow (, ) ze zoru E płaszczz XY przporządkujem pewą lczę rzeczwstą z, to mówm, Ŝe a zorze E określoa została ukcja z (, ). Gd zór E e jest wraźe poda, sprawdzam

Bardziej szczegółowo

WYKŁAD 6 TRANZYSTORY POLOWE

WYKŁAD 6 TRANZYSTORY POLOWE WYKŁA 6 RANZYSORY POLOWE RANZYSORY POLOWE ZŁĄCZOWE (Juctio Field Effect rasistors) 55 razystor polowy złączowy zbudoway jest z półprzewodika (w tym przypadku typu p), w który wdyfudowao dwa obszary bramki

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa:

PRAWA ZACHOWANIA Prawa zachowania najbardziej fundamentalne prawa: PRW ZCHOWNI Pawa achowania nabadie fundamentalne pawa: o ewnętne : pawo achowania pędu, pawo achowania momentu pędu, pawo achowania enegii; o wewnętne : pawa achowania np. całkowite licb nukleonów w eakci

Bardziej szczegółowo

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1

TEMAT: Próba statyczna rozciągania metali. Obowiązująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 ĆWICZENIE NR 1 TEMAT: Próba statycna rociągania metali. Obowiąująca norma: PN-EN 10002-1:2002(U) Zalecana norma: PN-91/H-04310 lub PN-EN10002-1+AC1 Podać nacenie następujących symboli: d o -.....................................................................

Bardziej szczegółowo

WYKŁAD 6. MODELE OBIEKTÓW 3-D3 część 2. 1. Powierzchnie opisane parametrycznie. Plan wykładu: Powierzchnie opisane parametrycznie

WYKŁAD 6. MODELE OBIEKTÓW 3-D3 część 2. 1. Powierzchnie opisane parametrycznie. Plan wykładu: Powierzchnie opisane parametrycznie WYKŁAD 6. owierchnie opisane paraetrcnie MODELE OIEKÓW -D cęść (,v (,v (,v f (,v f (,v f (,v v in in v v a a lan wkład: owierchnie opisane paraetrcnie v a v Krwe paraetrcne w -D D (krwa Herite a v in (,v

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ

SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ SZKOŁA GŁÓWNA SŁUŻBY POŻARNICZEJ KATEDRA TECHNIKI POŻARNICZEJ ZAKŁAD ELEKTROENERGETYKI Ćwicenie: URZĄDZENIA PRZECIWWYBUCHOWE BADANIE TRANSFORMATORA JEDNOFAZOWEGO Opracował: kpt.dr inż. R.Chybowski Warsawa

Bardziej szczegółowo

WPŁYW STRUKTUR POROWATYCH ORAZ CIECZY ROBOCZYCH NA SPRAWNOŚĆ RUR CIEPLNYCH W WENTYLACJI I KLIMATYZACJI

WPŁYW STRUKTUR POROWATYCH ORAZ CIECZY ROBOCZYCH NA SPRAWNOŚĆ RUR CIEPLNYCH W WENTYLACJI I KLIMATYZACJI WPŁYW STRUKTUR POROWATYCH ORAZ CIECZY ROBOCZYCH NA SPRAWNOŚĆ RUR CIEPLNYCH W WENTYLACJI I KLIMATYZACJI Adrej JEDLIKOWSKI, Maciej SKRZYCKI, Maciej BESLER Wydiał IŜyierii Środowiska, Politechika Wrocławska,

Bardziej szczegółowo

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU Celem każdego ćwiczeia w laboratorium studeckim jest zmierzeie pewych wielkości, a astępie obliczeie a podstawie tych wyików pomiarów

Bardziej szczegółowo

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/

Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ Zakres na egzaminy poprawkowe w r. szk. 2013/14 /nauczyciel M.Tatar/ MATEMATYKA Klasa III ZAKRES PODSTAWOWY Dział programu Temat Wymagania. Uczeń: 1. Miara łukowa kąta zna pojęcia: kąt skierowany, kąt

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

1. Powtórzenie: określenie i przykłady grup

1. Powtórzenie: określenie i przykłady grup 1. Powtórzeie: określeie i przykłady grup Defiicja 1. Zbiór G z określoym a im działaiem dwuargumetowym azywamy grupą, gdy: G1. x,y,z G (x y) z = x (y z); G2. e G x G e x = x e = x; G3. x G x 1 G x x 1

Bardziej szczegółowo

Moduł 4. Granica funkcji, asymptoty

Moduł 4. Granica funkcji, asymptoty Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae

Bardziej szczegółowo

REKONSTRUKCJA OSTATNIEJ FAZY LOTU SAMOLOTU TU-154M. Opracował: prof. dr hab. inż. Grzegorz Kowaleczko

REKONSTRUKCJA OSTATNIEJ FAZY LOTU SAMOLOTU TU-154M. Opracował: prof. dr hab. inż. Grzegorz Kowaleczko REKONSTRUKCJA OSTATNIEJ AZY LOTU SAMOLOTU TU-154M Opracował: prof. dr hab. inż. Greor Kowalecko 31 rdnia 013 SPIS TREŚCI WSTĘP 5 CZĘŚĆ I MODEL MATEMATYCZNY.. 7 1. UKŁADY WSPÓŁRZĘDNYCH... 7 1.1. Układ wiąany

Bardziej szczegółowo

KARTA OCENY FORMALNO-MERYTORYCZNEJ WNIOSKU O DOFINANSOWANIE PROJEKTU KONKURSOWEGO W RAMACH PO WER

KARTA OCENY FORMALNO-MERYTORYCZNEJ WNIOSKU O DOFINANSOWANIE PROJEKTU KONKURSOWEGO W RAMACH PO WER )ałązik 7 Wzór karty oceny formalno-merytorycznej wniosku o dofinansowanie projektu konkursowego w ramach PO WER KARTA OCENY FORMALNO-MERYTORYCZNEJ WNIOSKU O DOFINANSOWANIE PROJEKTU KONKURSOWEGO W RAMACH

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

Atom wodoru. -13.6eV. Seria Lymana. od 91 nm to 122 nm. n = 2, 3,... Seria Paschena n = 4, 5,... n = 5, 6,... Seria Bracketta.

Atom wodoru. -13.6eV. Seria Lymana. od 91 nm to 122 nm. n = 2, 3,... Seria Paschena n = 4, 5,... n = 5, 6,... Seria Bracketta. Atom wodou -3.6eV Seia Lmana n 2, 3,... od 9 nm to 22 nm Seia Paschena n 4, 5,... Seia Backetta n 5, 6,... Ogólnie: n 2, 2, 3; n (n 2 + ), (n 2 + 2),... Atom wodou We współędnch sfecnch: metoda odielania

Bardziej szczegółowo

REGUŁY POLITYKI PIENIĘŻNEJ A PROGNOZOWANIE WSKAŹNIKA INFLACJI

REGUŁY POLITYKI PIENIĘŻNEJ A PROGNOZOWANIE WSKAŹNIKA INFLACJI gnieska Prybylska-Maur Uniwersye Ekonomicny w aowicach REGUŁY POLIYI PIENIĘŻNEJ PROGNOZOWNIE WSŹNI INFLCJI Wprowadenie Jednym rodaów poliyki pieniężne es poliyka opara na regułach poliyki pieniężne. en

Bardziej szczegółowo

Specyficzne filtry cyfrowe

Specyficzne filtry cyfrowe Specyicne iltry cyrowe Materiał w nacnej cęści acerpnięty książki Sanjit K. Mitra Digital Signal Processing. A Computer-Based Approach Charakterystyki cęstotliwościowe iltrów IIR p t / sin cos j e j N

Bardziej szczegółowo

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU

MINIMALIZACJA PUSTYCH PRZEBIEGÓW PRZEZ ŚRODKI TRANSPORTU Przedmiot: Iformatyka w logistyce Forma: Laboratorium Temat: Zadaie 2. Automatyzacja obsługi usług logistyczych z wykorzystaiem zaawasowaych fukcji oprogramowaia Excel. Miimalizacja pustych przebiegów

Bardziej szczegółowo

sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin,

sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin, Wykład XI Elemety optycze II pryzmat kąt ajmiejszego odchyleia powierzchia serycza tworzeie obrazów rówaie soczewka rodzaje rówaia szliierzy i Gaussa kostrukcja obrazów moc optycza korekcja wad wzroku

Bardziej szczegółowo

ROZDZIAŁ 12 PRZYKŁAD ZASTOSOWANIA METOD WAP DO ANALIZY PROCESÓW GOSPODAROWANIA ZASOBAMI LUDZKIMI W PRZEDSIĘBIORSTWIE

ROZDZIAŁ 12 PRZYKŁAD ZASTOSOWANIA METOD WAP DO ANALIZY PROCESÓW GOSPODAROWANIA ZASOBAMI LUDZKIMI W PRZEDSIĘBIORSTWIE Marek Kunas ROZDZIAŁ 2 PRZYKŁAD ZASTOSOWANIA METOD WAP DO ANALIZY PROCESÓW GOSPODAROWANIA ZASOBAMI LUDZKIMI W PRZEDSIĘBIORSTWIE. Wprowaenie Celem głównym niniejsego opracowania jest prestawienie wybranych

Bardziej szczegółowo

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza 1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza x µ x = 06e. dożyje wieku największej śmiertelności (tzn. takiego wieku, w którym

Bardziej szczegółowo

Funkcje wielu zmiennych

Funkcje wielu zmiennych Funkcje wielu miennch wkład MATEMATYKI Automatka i robotka studia niestacjonarne sem II, rok ak 2009/2010 Katedra Matematki Wdiał Informatki Politechnika Białostocka Niech R ndef ={( 1, 2,, n ): 1 R 2

Bardziej szczegółowo