Zeszyty Koła Naukowego Młodych sekcja matematyczno naukowo - techniczna. Złota Liczba. Zeszyt II. 2009/2010r.

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zeszyty Koła Naukowego Młodych sekcja matematyczno naukowo - techniczna. Złota Liczba. Zeszyt II. 2009/2010r."

Transkrypt

1 Zeszyty Koła Naukowego Młodych sekcja matematyczno naukowo - techniczna Złota Liczba Zeszyt II 009/00r.

2 Spis treści:. Złota liczba.. 3. Złoty podział odcinka.3. Złoty prostokąt Złoty trójkąt.6.4 Złote spirale 7. Pentagram.8.6 Algebra złotej liczby.9. Ciąg Fibonacciego.0. Ciąg Fibonacciego a złota liczba.. Ciąg Fibonacciego a trójkąt Pascala...3 Ciąg Fibonacciego a trójki pitagorejskie.3.4 Własności liczb Fibbonaciego Przykłady zastosowań złotej liczby 3. Złota liczba w architekturze i sztuce. 3. Złota liczba w przyrodzie Złota liczba w muzyce Redakcja 9

3 . Złota liczba.. ZŁOTY PODZIAŁ ODCINKA. Czym jest złoty podział? Złoty podział (łac. sectio aurea), podział harmoniczny, boska proporcja (łac. divina proportio) podział odcinka na dwie części tak, by stosunek długości dłuższej z nich do krótszej był taki sam, jak całego odcinka do części dłuższej. Stosunek ten nazywa się złotą liczbą i oznacza grecką literą φ - czyt. "fi". φ, Konstrukcja geometryczna liczby φ. Odcinek o długości ma długość będącą sumą dwóch liczb: oraz. Pierwszą wielkość nietrudno skonstruować natomiast kwadrat drugiej czyli jest sumą kwadratów dwóch liczb: i. A to oznacza, że odcinek o długości jest przeciwprostokątną trójkąta o przyprostokątnych i. Trójkąt ten występuje w kwadracie o boku. Łuk okręgu o promieniu długości wykreślony ze środka tego odcinka przetnie półprostą w punkcie F. Odcinek OF ma długość będącą złotą liczbą. Konstrukcja pozwala na znalezienie na osi liczbowej liczby. Nie pozwala jednak podzielić danego odcinka punktem w sposób złoty. Iwona Kusz, Bronisława Pabiach, Złota liczba z Cabri II, Biblioteczka Cabristy zeszyt 3

4 Konstrukcja złotego podziału odcinka. Tok postępowania: rysujemy odcinek AB rysujemy prostopadłą do niego prostą na prostej wyznaczamy odcinek BC, który jest połową długości odcinka AB łączymy punkt A i C rysujemy łuk o środku w punkcie C i promieniu BC na odcinku AC zaznaczamy punkt D rysujemy łuk o środku w punkcie A i promieniu AD wyznaczamy na odcinku AB punkt E W ten sposób wyznaczyliśmy złotą proporcję odcinka AB (w punkcie E prosta AB podzielona jest według złotego podziału). Z historii złotej liczby Najstarsza wzmianka o złotej liczbie jako o,,świętej proporcji sięga 60 r p.n.e., kiedy to spisano w Egipcie papirus Rhinda opisujący konstrukcję Wielkiej Piramidy w Gizie. Herodot (48-4 p.n.e.) nazywany przez Cycerona ojcem historii, w jednym ze swych opisów ok. 440 r p.n.e. relacjonuje, że egipscy kapłani przekazali mu informację, iż rozmiary piramidy są tak dobrane, że pole kwadratu zbudowanego na jej wysokości jest równe polu trójkąta będącego ścianą boczną piramidy. Nieznane oblicze złotej liczby Okazuje się, iż,,boska proporcja może mieć wiele wspólnego z,,tym Złym. Wynika to z działania: sin(666)+cos(6*6*6)= φ Cóż, to, co boskie, równie dobrze może być szatańskie. 4

5 . ZŁOTY PROSTOKĄT Czym jest złoty prostokąt? Złoty prostokąt - to prostokąt, w którym długości boków pozostają w złotym stosunku. Konstrukcja złotego prostokąta. ) Rysujemy kwadrat. ) Kwadrat dzielimy na dwa jednakowe prostokąty. 3) W jednym prostokącie prowadzimy przekątną. 4) Kreślimy łuk o promieniu równym długości przekątnej prostokąta. ) Prowadzimy prostopadłą przechodzącą przez punkt przecięcia łuku z linią podstawy. Otrzymujemy złoty prostokąt.

6 .3. ZŁOTY TRÓJKĄT. Czym jest złoty trójkąt? Złoty trójkąt to trójkąt, który przy wierzchołku posiada kąt ostry 36 0 oraz dwa kąty ostre przy podstawie 7 0. Stosunek długości boku każdego z nich do długości jego podstawy jest złotą liczbą. Konstrukcja pięciokąta foremnego. Rysujemy okrąg o środku S.. Rysujemy średnicę okręgu i prostopadły do niej promień BS. 3. Wyznaczamy połowę jednego z promieni zawierających się w średnicy - punkt A. 4. Odmierzamy odległość AB tworząc łuk od punktu A, wyznaczający punkt C jego przecięcia na średnicy.. Odcinek BC jest długością boku pięciokąta. Konstrukcja złotego trójkąta Przekątne pięciokąta foremnego utworzonego w poprzednim ćwiczeniu wyznaczają złoty trójkąt. 6

7 .4. ZŁOTE SPIRALE Spirala na bazie złotego prostokąta Wiadomo, że jeżeli od złotego prostokąta odetniemy kwadrat to pozostanie kolejny złoty prostokąt. Teraz utwórzmy w każdym kolejnym kwadracie ćwierć okręgu o średnicy długości boku kwadratu, tak aby otrzymać krzywą ciągłą. Wykreślimy tym sposobem Złotą Spiralę. Złota spirala została uznana za reprezentatywny przykład złotej liczby, ponieważ jest to spirala, jaką odnajdujemy w skręcie muszli ślimaka oraz ostrygi. Spirala na bazie złotego trójkąta Podobnie do spirali opartej na złotym prostokącie można skonstruować spiralę na bazie złotego trójkąta. 7

8 . PENTAGRAM. Czym jest pentagram? Pentagram rodzaj gwiazdy pięcioramiennej, figura geometryczna, w wielu kulturach uważana za symbol magiczny. Słowo pentagram pochodzi z języka greckiego, gdzie "pente" znaczy, a "gamma" literę, tak wiec pentagram odnosi się do pięcioramiennej gwiazdy lub dowolnej innej figury składającej się z pięciu linii, a sami Grecy zapisywali pentagram jako A. Z historii pentagramu Najstarszy pentagram został odnaleziony w starożytnym mieście Ur - centrum cywilizacji Mezopotamii i datowany jest (według naukowców) na rok 300 p.n.e. Prawdopodobnie używany był jako pieczęć królewska. Co łączy pentagram i złotą liczbę? Idealny pentagram powstaje poprzez wyrysowanie przekątnych pięciokąta foremnego i następnie zamazanie oryginału. Można również wydłużać boki pięciokąta do momentu spotkania, otrzymując większy pentagram.kąt wewnętrzny pentagramu ma miarę 36. W pentagramie ukryty jest złoty podział φ = (+ )/ =

9 9.6 ALGEBRA ZŁOTEJ LICZBY. Punkt F dzieli w złotym stosunku odcinek AB jeżeli: jest więc rozwiązaniem równania: 0 0 lub lub ) ( czyli Złota liczba ma ciekawe właściwości: aby ją podnieść do kwadratu wystarczy dodać do niej jedynkę: 0 aby znaleźć jej liczbę odwrotną wystarczy odjąć jedynkę: ułamek piętrowy (łańcuchowy), złożony z samych jedynek jest równy złotej liczbie.

10 . Ciąg Fibonacciego. Co to jest ciąg rekurencyjny? Rekurencyjne określenie ciągu wygląda np. tak: Rekurencyjne określenie ciągu polega na wyliczaniu danego wyrazu ciągu na podstawie poprzedniego. W tym przykładzie: a = a = a -= -=3 a 3 = a -= 3-= itd. Czym jest ciąg Fibonacciego? Ciąg Fibonacciego to ciąg liczb określony rekurencyjnie w sposób następujący: F F FF n n F n dla n Początkowe wartości tego ciągu to: 0,,,, 3,, 8, 3,, 34,, 89, 44, 33,... Każda liczba w ciągu jest sumą dwóch poprzednich (poza pierwszą i drugą). Ciąg liczbowy Fibonacciego jest pierwszym ze znanych ciągów tego rodzaju. Portret Fibonacciego Leonardo Bonacci zwany Fibonaccim urodził się pod koniec XII wieku w Pizie. W młodości był kupcem i podróżnikiem. Odwiedził kraje islamskie północnej Afryki, Egipt, Syrię, Grecję i Sycylię, czyli dawne wielkie ośrpdki rozkwitu matematyki. Po powrocie do Włoch uporządkował i spisał zdobytą wiedzę w dziełach Liber abaci i Practica geoetriae. Magazyn Miłośników Matematyki, nr 4 październik 00 0

11 Słynne zadanie Fibonacciego. Każda para dojrzałych królików rodzi co miesiąc parę młodych królików. Na początku roku mamy jedną parę młodych królików. Pod koniec pierwszego miesiąca para młodych osiąga dojrzałość; pod koniec drugiego para już dojrzałych królików wciąż żyje i daje życie parze młodych. Proces dojrzewania i rozmnażania trwa nieustannie, jakimś cudem żaden królik nie umiera. Kolejne liczby, mówiące o liczbie par królików w poszczególnych miesiącach, tworzą ciąg Fibonacciego. CIĄG FIBONACCIEGO A ZŁOTA LICZBA. Co łączy ciąg Fibonacciego i złotą liczbę? W wyniku podzielenia każdej z liczb ciągu przez jej poprzednik otrzymuje się iloraz oscylujący wokół,68 - liczby złotego podziału. W miarę zwiększania się liczb zmniejszają się odchylenia od tej wartości. Dokładna wartość granicy jest złotą liczbą: φ, / / 3/ /3 8/ 3/8 /3 34/ /34,,333,6,6,6,69,67

12 . CIĄG FIBONACCIEGO A TRÓJKĄT PASCALA. Co łączy ciąg Fibonacciego i trójkąt Pascala? Utwórzmy ukośne kolumny tego trójkąta liczb i obliczmy ich sumy. Wypiszmy je kolejno. Czy są one przypadkowe? Kolejne sumy tworzą kolejne liczby ciągu Fibonacciego.

13 .3 CIĄG FIBONACCIEGO A TRÓJKI PITAGOREJSKIE. Co łączy ciąg Fibonacciego i trójki pitagorejskie? Trójka pitagorejska to trzy liczby dodatnie, y, z takie, że + y = z. Nazwa pochodzi od twierdzenia Pitagorasa, które w jednej z interpretacji mówi, że każdy trójkąt prostokątny o całkowitych długościach boków określa trójkę pitagorejską. Rozważmy trójkąty prostokątne, których przyprostokątne (, y) są kolejnymi liczbami ciągu Fibonacciego. Sprawdźmy ile wynosi suma kwadratów tych liczb (z). n liczba Fibonacciego numer n n+ y = liczba Fibonacciego numer n+ +y n+(n+) liczba Fibonacciego numer n+(n+) Okazuje się, że jeżeli dwie przyprostokątne trójkąta prostokątnego są kolejnymi liczbami Fibonacciego o numerze n i n+ to suma ich kwadratów jest liczbą ciągu Fibonacciego i jej numer jest sumą numerów tych liczb. n F n F F n gdzie F n oznacza n-tą liczbę Fibonacciego. Własność tę dostrzegł po raz pierwszy i udowodnił w 876 roku francuski matematyk Edward Lucas. 3

14 .4 WŁASNOŚCI LICZB FIBONACCIEGO Długości kolejnych boków kwadratów to kolejne liczby ciągu Fibonacciego. Jeśli dodamy do siebie kwadraty długości kolejnych kwadratów to otrzymamy pole powstałego prostokąta. Obserwując zależności: możemy zapisać ogólny wzór: F nfn n F Suma n poczatkowych liczb ciągu Fibonacciego wyraża się wzorem: n i F i F n Sprawdzenie wzoru dla n = 6 FFFFFFL 346 FP F Wyprowadzenie wzoru dla n =

15 3. Przykłady zastosowań złotej liczby. 3. ZŁOTA LICZBA W ARCHITEKTURZE I SZTUCE. Złota liczba została wykorzystana przy budowie piramid w Gizie. Jeżeli weźmiemy przekrój Wielkiej Piramidy, to otrzymamy trójkąt prostokątny, nazywany Trójkątem Egipskim. Stosunek przeciwprostokątnej (wysokości ściany bocznej) do podstawy (połowa wymiaru podstawy) wynosi,6804 i różni się od liczby φ tylko o jeden na piątym miejscu po przecinku. Innym przykładem jest Katedra w Mediolanie. Wszelkie proporcje są tu zachowane według złotego podziału. Najważniejszym przykładem wykorzystania złotej liczby jest znany człowiek witruwiański autorstwa Leonarda da Vinci. Zauważył on, że dla człowieka o prawidłowych proporcjach wysokość człowieka do długości dolnej części ciała (od pępka w dół) jest złotą liczbą (stosunek długości dolnej części ciała do górnej jest również złotą liczbą).

16 Złotą liczbę stosowano w proporcjach rzeźb. Słynne rzeźby: Apollo Belwederski, Wenus z Milo czy Diany do dziś zadziwiają wielu koneserów sztuki. W konstrukcji Partenonu antycznej Greckiej świątyni bogini Ateny - również został wykorzystany złoty podział. 6

17 3. ZŁOTA LICZBA W PRZYRODZIE. Filotaksja (z gr. Phyllo = liść, tai = porządek) to sposób ułożenia powtarzających się elementów budowy roślin (takich jak liście, pędy boczne, kwiaty, płatki, ziemia) charakterystyczny dla tego gatunku. Tworzą one najczęściej układ spiral, których parametry są związane z liczbami Fibonacciego i liczbą złotą. Nasiona słoneczników tworzą spirale układające się w dwóch przeciwnych kierunkach. W niektórych gatunkach tych roślin jest spiral rozwijających się w jedną stronę i 34 w drugą stronę. Istnieją również gatunki, dla których liczba spiral wynosi odpowiednio 34 i. Wspomniane liczby to kolejne wyrazy ciągu Fibonacciego:,,, 3,, 8, 3,, 34,... Innym przykładem występowania złotej liczby w przyrodzie są muszle zwierząt, np. łodzika. Przekrój jego muszli (wypełnionej głównie powietrzem) ukazuje, iż pasuje ona idealnie do złotego prostokątu, a jej łuki mieszczę się po ćwierć okręgu w każdym ze złotych kwadratów. 7

18 3.3 ZŁOTA LICZBA W MUZYCE. Antonio Stradivari (ur. 643 lub 644 w Cremonie, zm. 8 grudnia 737 tamże) włoski lutnik, przedstawiciel kremońskiej szkoły lutniczej, jeden z najwybitniejszych budowniczych instrumentów w historii lutnictwa. Wykorzystywał on złoty podział w budowie swoich skrzypiec. Różne kolory odcinków odnoszą się do różnych części skrzypiec, w których zachodzi stosunek złotej liczby Złoty podział w muzyce dostrzeżono również w dziełach Jana Sebastiana Bacha. Złote cięcie pojawia się tam nie tylko w budowie frazy ale również w harmonice i przebiegu linii melodycznych poszczególnych instrumentów. Znaleziono to również w fugach i kantatach innych twórców muzyki baroku. Podobnie jest z większości sonat Mozarta. Innymi muzykami, którzy świadomie lub nie wykorzystywali złoty podział byli: Bartok, Debussy, Bethoveen, Schubert i Satie. Przykładem utworu w którym wykorzystano złotą liczbę jest V Symfonia Beethovena. Jej tempo jest oparte na złotej liczbie a dokładnie /3, co jest stosunkiem czwartej liczby ciągu Fibonacciego do trzeciej. Iwona Kusz, Bronisława Pabiach, Złota liczba z Cabri II, Biblioteczka Cabristy zeszyt Aby usłyszeć złotą gamę wystarczy w tym celu rozpocząć ją od dźwięku C a następnie naciskać kolejno klawisze zgodnie z regułą Fibonacciego, czyli drugi, trzeci, piąty itd. Gama składa się z 8 dźwięków i podzielona jest na tercję (3 dźwięki) i kwintę ( dźwięków). Liczby te dzielą całą wielkość w stosunku złotym (liczby 3,, 8 to trójka Fibonacciego). 8

19 4. Redakcja. Od lewej stoją: Maciej Bonk, Bartłomiej Majewski, Adam Mikuła, Grzegorz Kotysz, Alicja Długosz. Od prawej siedzą: Wiktoria Nowak, Agnieszka Paul, Żaklina Osmenda, Katarzyna Wrona. Opiekun: P. Joanna Olesińska 9

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 1 Planimetria to dział geometrii, w którym przedmiotem badań są własności figur geometrycznych leżących na płaszczyźnie (patrz określenie płaszczyzny). Pojęcia

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

Podstawowe pojęcia geometryczne

Podstawowe pojęcia geometryczne PLANIMETRIA Podstawowe pojęcia geometryczne Geometria (słowo to pochodzi z języka greckiego i oznacza mierzenie ziemi) jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych

Bardziej szczegółowo

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej.

Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. C Trójkąty Zad. 0 W trójkącie ABC, AB=40, BC=23, wyznacz AC wiedząc że jest ono sześcianem liczby naturalnej. Zad. 1 Oblicz pole trójkąta o bokach 13 cm, 14 cm, 15cm. Zad. 2 W trójkącie ABC rys. 1 kąty

Bardziej szczegółowo

Matematyka podstawowa VII Planimetria Teoria

Matematyka podstawowa VII Planimetria Teoria Matematyka podstawowa VII Planimetria Teoria 1. Rodzaje kątów: a) Kąty wierzchołkowe; tworzą je dwie przecinające się proste, mają takie same miary. b) Kąty przyległe; mają wspólne jedno ramię, ich suma

Bardziej szczegółowo

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM

WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM Na ocenę dopuszczającą uczeń umie : WYMAGANIA EDUKACYJN KRYTERIA OCENY Z MATEMATYKI W KLASIE II GIMNAZJUM stosować cztery podstawowe działania na liczbach wymiernych, zna kolejność wykonywania działań

Bardziej szczegółowo

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO:

KRZYŻÓWKA 2. 11. Może być np. równoboczny lub rozwartokątny. Jego pole to a b HASŁO: KRZYŻÓWKA.Wyznaczają ją dwa punkty.. Jego pole to π r² 3. Jego pole to a a 4.Figura przestrzenna, której podstawą jest dowolny wielokąt, a ściany boczne są trójkątami o wspólnym wierzchołku. 5.Prosta mająca

Bardziej szczegółowo

Mini tablice matematyczne. Figury geometryczne

Mini tablice matematyczne. Figury geometryczne Mini tablice matematyczne Figury geometryczne Spis treści Własności kwadratu Ciekawostka:Kwadrat magiczny Prostokąt Własności prostokąta Trapez Własności trapezu Równoległobok Własności równoległoboku

Bardziej szczegółowo

Geometria. Rodzaje i własności figur geometrycznych:

Geometria. Rodzaje i własności figur geometrycznych: Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni

Bardziej szczegółowo

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3) Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.

Bardziej szczegółowo

Ćwiczenia z Geometrii I, czerwiec 2006 r.

Ćwiczenia z Geometrii I, czerwiec 2006 r. Waldemar ompe echy przystawania trójkątów 1. unkt leży na przekątnej kwadratu (rys. 1). unkty i R są rzutami prostokątnymi punktu odpowiednio na proste i. Wykazać, że = R. R 2. any jest trójkąt ostrokątny,

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii

Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Wielokąty na płaszczyźnie obliczenia z zastosowaniem trygonometrii Obliczenia geometryczne z zastosowaniem własności funkcji trygonometrycznych w wielokątach wypukłych Wielokąt - figura płaską będąca sumą

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS IA I IB NA ROK SZKOLNY 2014/2015

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS IA I IB NA ROK SZKOLNY 2014/2015 WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLAS IA I IB NA ROK SZKOLNY 2014/2015 UŁAMKI ZWYKŁE I DZIESIĘTNE Rozpoznaje ułamki właściwe i niewłaściwe Rozszerza ułamek zwykły Skraca ułamek zwykły Zapisuje ułamek

Bardziej szczegółowo

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia.

2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 1. Wykaż, że liczba 2 2 jest odwrotnością liczby 1 2. 2. Wykaż, że dla dowolnej wartości zmiennej x wartość liczbowa wyrażenia (x 6)(x + 8) 2(x 25) jest dodatnia. 3. Wykaż, że dla każdej liczby całkowitej

Bardziej szczegółowo

Przedmiotowy system oceniania

Przedmiotowy system oceniania Przedmiotowy system oceniania gimnazjum - matematyka Opracowała mgr Katarzyna Kukuła 1 MATEMATYKA KRYTERIA OCEN Kryteria oceniania zostały określone przez podanie listy umiejętności, którymi uczeń musi

Bardziej szczegółowo

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych

Klucz odpowiedzi do zadań zamkniętych i przykładowe rozwiązania zadań otwartych Centralna Komisja Egzaminacyjna Materiał współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Próbny egzamin maturalny z matematyki listopad 009 Klucz odpowiedzi do

Bardziej szczegółowo

Test kwalifikacyjny na I Warsztaty Matematyczne

Test kwalifikacyjny na I Warsztaty Matematyczne Test kwalifikacyjny na I Warsztaty Matematyczne Na pytania odpowiada się tak lub nie poprzez wpisanie odpowiednio T bądź N w pole obok pytania. W danym trzypytaniowym zestawie możliwa jest dowolna kombinacja

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem

Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem Wymagania edukacyjne z matematyki dla klasy II gimnazjum wg programu Matematyka z plusem pojęcie potęgi o wykładniku naturalnym wzór na mnożenie i dzielenie potęg o tych samych podstawach wzór na potęgowanie

Bardziej szczegółowo

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut

Międzyszkolne Zawody Matematyczne Klasa I LO i I Technikum - zakres podstawowy Etap wojewódzki 02.04.2005 rok Czas rozwiązywania zadań 150 minut Klasa I - zakres podstawowy Etap wojewódzki 17.04.004 rok Zad 1 ( 6 pkt) Znajdź wszystkie liczby czterocyfrowe podzielne przez 15, w których cyfrą tysięcy jest jeden, a cyfrą dziesiątek dwa. Odpowiedź

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI poziom rozszerzony Próbny egzamin maturalny z matematyki. Poziom rozszerzony 1 PRÓNY EGZMIN MTURLNY Z MTEMTYKI poziom rozszerzony ZNI ZMKNIĘTE W każdym z zadań 1.. wybierz i zaznacz jedną poprawną odpowiedź. Zadanie 1. (0

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki

Elżbieta Świda Elżbieta Kurczab Marcin Kurczab. Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Elżbieta Świda Elżbieta Kurczab Marcin Kurczab Zadania otwarte krótkiej odpowiedzi na dowodzenie na obowiązkowej maturze z matematyki Zadanie Trójkąt ABC jest trójkątem prostokątnym. Z punktu M, należącego

Bardziej szczegółowo

DZIAŁ 1. POTĘGI (14 h)

DZIAŁ 1. POTĘGI (14 h) Wymagania przedmiotowe z matematyki w klasie II gimnazjum opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna

Bardziej szczegółowo

Wymagania edukacyjne klasa trzecia.

Wymagania edukacyjne klasa trzecia. TEMAT Wymagania edukacyjne klasa trzecia. WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I WYRAŻENIA ALGEBRAICZNE Lekcja organizacyjna System dziesiątkowy System rzymski Liczby wymierne i niewymierne

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I GIMNAZJUM LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę

Bardziej szczegółowo

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum)

Podstawa programowa przedmiotu MATEMATYKA. III etap edukacyjny (klasy I - III gimnazjum) Podstawa programowa przedmiotu MATEMATYKA III etap edukacyjny (klasy I - III gimnazjum) Cele kształcenia wymagania ogólne: I. Wykorzystanie i tworzenie informacji. Uczeń interpretuje i tworzy teksty o

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

Zadania na dowodzenie Opracowała: Ewa Ślubowska

Zadania na dowodzenie Opracowała: Ewa Ślubowska Egzamin Gimnazjalny Zadania na dowodzenie Opracowała: Ewa Ślubowska W nauczaniu matematyki ważne jest rozwijanie różnych aktywności umysłu. Ma temu służyć min. rozwiązywanie jednego zadania czy dowodzenie

Bardziej szczegółowo

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH

ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH ZBIÓR ZADAŃ Z MATEMATYKI DLA KLASY II GIMNAZJUM W ZAKRESIE WYMAGAŃ KONIECZNYCH I PODSTAWOWYCH Opracowała: nauczyciel matematyki mgr Małgorzata Drejka Legionowo 007 SPIS TREŚCI ALGEBRA potęgi i pierwiastki

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 011 Instrukcja dla zdającego Czas pracy: 170 minut 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA

ZBIÓR ZADAŃ - ROZUMOWANIE I ARGUMENTACJA ZIÓR ZŃ - ROZUMOWNIE I RGUMENTJ 0--30 Strona ZIÓR ZO O WYMGNI EGZMINYJNEGO - ROZUMOWNIE I RGUMENTJ. Zapisz sumę trzech kolejnych liczb naturalnych, z których najmniejsza jest liczba n. zy suma ta jest

Bardziej szczegółowo

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016

SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 SZCZEGÓŁOWE WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY Z MATEMATYKI KLASA I 2015/2016 Ocenę dopuszczającą otrzymuje uczeń, który: (Liczby i działania) zna pojęcie liczby naturalnej, całkowitej, wymiernej

Bardziej szczegółowo

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA:

WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: WYMAGANIA KONIECZNE - OCENA DOPUSZCZAJĄCA: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie zaznaczać liczbę wymierną na osi liczbowej umie

Bardziej szczegółowo

Wymagania eduka cyjne z matematyki

Wymagania eduka cyjne z matematyki Wymagania eduka cyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZ B Y I DZIAŁANIA porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej, zamieniać ułamki zwykłe na

Bardziej szczegółowo

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2

MARATON MATEMATYCZNY-MARZEC 2015 KLASA I. Zadanie 1. Zadanie 2 MARATON MATEMATYCZNY-MARZEC 2015 KLASA I Obwód poniższej figury wynosi: Zredukuj wyrażenia Zadanie 2 Uprość wyrażenia, a następnie oblicz ich wartości dla: a = -1, b = 2 Wyłącz wspólny czynnik przed nawias.

Bardziej szczegółowo

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 1

KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 1 KATALOG WYMAGAŃ PROGRAMOWYCH NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 1 Przedstawiamy, jakie umiejętności z danego działu powinien zdobyć uczeń, aby uzyskać poszczególne stopnie. Na ocenę dopuszczający uczeń

Bardziej szczegółowo

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki

DZIAŁ I: LICZBY I DZIAŁANIA Ocena dostateczna. Ocena dobra. Ocena bardzo dobra (1+2) (1+2+3+4) Uczeń: (1+2+3) Uczeń: określone warunki MATEMATYKA KLASA I I PÓŁROCZE -wyróżnia liczby naturalne, całkowite, wymierne -zna kolejność wykonywania działań -rozumie poszerzenie osi liczbowej na liczby ujemne -porównuje liczby wymierne -zaznacza

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Klasa I - program Matematyka z plusem" Dział: LICZBY I DZIAŁANIA Poziom konieczny - ocena dopuszczająca porównywać liczby wymierne, zaznaczać liczby wymierne na osi liczbowej,

Bardziej szczegółowo

Fraktale w matematyce

Fraktale w matematyce Zeszyty Koła Naukowego Młodych sekcja matematyczno naukowo - techniczna Fraktale w matematyce Zeszyt I 009/00r. Spis treści:. Definicja fraktala. Przykłady fraktali 4. Zbiór Cantora.4. Dywan Sierpińskiego.

Bardziej szczegółowo

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący

Dopuszczający Dostateczny Dobry Bardzo dobry Celujący Liczby i wyrażenia zna pojęcie liczby naturalnej, całkowitej, wymiernej zna pojęcie liczby niewymiernej, rzeczywistej zna sposób zaokrąglania liczb umie zapisać i odczytać liczby naturalne dodatnie w systemie

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE NA POSZCZEGÓLNE OCENY W KLASIE I GIMNAZJUM NA OCENĘ DOPUSZCZJĄCĄ UCZEN: zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie

Bardziej szczegółowo

Definicja obrotu: Definicja elementów obrotu:

Definicja obrotu: Definicja elementów obrotu: 5. Obroty i kłady Definicja obrotu: Obrotem punktu A dookoła prostej l nazywamy ruch punktu A po okręgu k zawartym w płaszczyźnie prostopadłej do prostej l w kierunku zgodnym lub przeciwnym do ruchu wskazówek

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego w klasie 2 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym tworzyć teksty w stylu

Bardziej szczegółowo

W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH

W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH ul. Konarskiego 2, 30-049 Kraków tel. 12 633 13 83 lub 12 633 02 47 W ŚWIECIE WIELOKĄTÓW GWIAŹDZISTYCH Arkadiusz Biel Kraków 2011 Wielokąty gwiaździste są ciekawym przypadkiem wielokątów, gdyż posiadają

Bardziej szczegółowo

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum

Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum Kryteria oceniania z zakresu klasy pierwszej opracowane w oparciu o program Matematyki z plusem dla Gimnazjum DZIAŁ 1. LICZBY I DZIAŁANIA HASŁO PROGRAMOWE WIADOMOŚCI I UMIEJĘTNOŚCI PODSTAWOWE WIADOMOŚCI

Bardziej szczegółowo

Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4

Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Katalog wymagań programowych z matematyki na poszczególne stopnie szkolne. Matematyka wokół nas klasa 4 Kategorie zostały określone następująco: dotyczy wiadomości uczeń zna uczeń rozumie dotyczy przetwarzania

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 1 gimnazjum I.UŁAMKI ZWYKŁE I DZESIĘTNE

WYMAGANIA PROGRAMOWE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 1 gimnazjum I.UŁAMKI ZWYKŁE I DZESIĘTNE WYMAGANIA PROGRAMOWE Z MATEMATYKI MATEMATYKA WOKÓŁ NAS NA POSZCZEGÓLNE STOPNIE SZKOLNE klasa 1 gimnazjum I.UŁAMKI ZWYKŁE I DZESIĘTNE Rozpoznaje ułamki właściwe i niewłaściwe. Rozszerza ułamek zwykły. Skraca

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym.

Katalog wymagań programowych na poszczególne stopnie szkolne. Matematyka. Poznać, zrozumieć. Kształcenie w zakresie podstawowym. Katalog wymagań programowych na poszczególne stopnie szkolne Matematyka. Poznać, zrozumieć Kształcenie w zakresie podstawowym. Klasa 2 Poniżej podajemy umiejętności, jakie powinien zdobyć uczeń z każdego

Bardziej szczegółowo

INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Moduł interdyscyplinarny: informatyka matematyka Rozmaitości matematyczne

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI W KLASIE II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI W KLASIE II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI W KLASIE II GIMNAZJUM MATEMATYKA 2 - WYDAWNICTWO OPERON DZIAŁ 1 POTĘGI DOPUSZCZAJĄCY uczeń: Zapisuje potęgę w postaci iloczynu jednakowych czynników Przedstawia iloczyn jednakowych

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50

EGZAMIN MATURALNY Z MATEMATYKI 5 MAJA 2016 POZIOM PODSTAWOWY. Godzina rozpoczęcia: 9:00. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 013 KOD UZUPEŁNIA ZDAJĄCY PESEL dyskalkulia miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI

Bardziej szczegółowo

Rysowanie precyzyjne. Polecenie:

Rysowanie precyzyjne. Polecenie: 7 Rysowanie precyzyjne W ćwiczeniu tym pokazane zostaną różne techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2010, między innymi wykorzystanie punktów charakterystycznych. Z uwagi na

Bardziej szczegółowo

Ułamki zwykłe i dziesiętne klasa I

Ułamki zwykłe i dziesiętne klasa I Ułamki zwykłe i dziesiętne klasa I - Rozpoznaje ułamki właściwe i niewłaściwe. - Rozszerza ułamek zwykły. - Skraca ułamek zwykły. - Zapisuje ułamek niewłaściwy w postaci liczby mieszanej. - Sprowadza dwa

Bardziej szczegółowo

Wymagania edukacyjne z matematyki dla kl. 1a Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016

Wymagania edukacyjne z matematyki dla kl. 1a Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016 edukacyjne z matematyki dla kl. 1a Gimnazjum Publicznego im. Jana Pawła II w Żarnowcu w roku szkolnym 2015/2016 NAUCZYCIEL: PODRĘCZNIK: mgr Marta Kamińska Liczy się matematyka wyd. WSiP Na lekcjach matematyki

Bardziej szczegółowo

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM

WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM WYMAGANIA Z MATEMATYKI NA POSZCZEGÓLNE OCENY DLA I KLASY GIMNAZJUM OPRACOWANO NA PODSTAWIE PLANU REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI Matematyka 1 Podręcznik do gimnazjum Nowa wersja, praca zbiorowa

Bardziej szczegółowo

Wymagania edukacyjne z matematyki Klasa I

Wymagania edukacyjne z matematyki Klasa I Wymagania edukacyjne z matematyki Klasa I Ocena Celujący (obejmuje wymagania na ocenę bardzo dobrą) Ocena śródroczna DZIAŁ I - LICZBY I DZIAŁANIA - umie znajdować liczby spełniające określone nietypowe

Bardziej szczegółowo

Zadanie 2. (0 1) Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe.

Zadanie 2. (0 1) Oceń prawdziwość podanych zdań. Wybierz P, jeśli zdanie jest prawdziwe, lub F jeśli jest fałszywe. Strona 1 z 12 liczba osób Informacje do zadań 1. i 2. W dwóch dziesięcioosobowych grupach uczniów przeprowadzono test sprawności notując czas (w sekundach) wykonywania ćwiczenia. Wyniki przedstawia poniższy

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU MATEMATYKA GIMNAZJUM

WYMAGANIA EDUKACYJNE Z PRZEDMIOTU MATEMATYKA GIMNAZJUM WYMAGANIA EDUKACYJNE Z PRZEDMIOTU MATEMATYKA GIMNAZJUM KLASA I Na ocenę dopuszczającą: DZIAŁ 1. LICZBY I DZIAŁANIA Uczeń: zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryterialnych wymagań na ocenę dopuszczającą.

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I. Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryterialnych wymagań na ocenę dopuszczającą. WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY I Ocenę niedostateczną otrzymuje uczeń, który nie spełnia kryterialnych wymagań na ocenę dopuszczającą. Aby otrzymać ocenę wyższą uczeń musi opanować wymagania

Bardziej szczegółowo

Numer zadania Liczba punktów

Numer zadania Liczba punktów Kod ucznia Łączna liczba punktów Numer zadania 1 13 14 16 17 18 19 20 Liczba punktów Drogi Uczniu! Przed Tobą test składający się z 20 zadań. Za wszystkie zadania razem możesz zdobyć 45 punktów. Aby mieć

Bardziej szczegółowo

GRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są.

GRANIASTOSŁUPY. Graniastosłupy dzielimy na proste i pochyłe. W graniastosłupach prostych krawędzie są prostopadłe do podstaw, w pochyłych nie są. GRANIASTOSŁUPY Euklides (365-300 p.n.e.) słynny grecki matematyk i fizyk. Jego najwybitniejsze dzieło Elementy składało się z trzynastu ksiąg, z czego trzy ostatnie księgi dotyczą geometrii przestrzennej:

Bardziej szczegółowo

Ułamki i działania 20 h

Ułamki i działania 20 h Propozycja rozkładu materiału Klasa I Razem h Ułamki i działania 0 h I. Ułamki zwykłe II. Ułamki dziesiętne III. Ułamki zwykłe i dziesiętne. Przypomnienie wiadomości o ułamkach zwykłych.. Dodawanie i odejmowanie

Bardziej szczegółowo

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI

MATERIAŁ ĆWICZENIOWY Z MATEMATYKI Materiał ćwiczeniowy zawiera informacje prawnie chronione do momentu rozpoczęcia diagnozy. Materiał ćwiczeniowy chroniony jest prawem autorskim. Materiału nie należy powielać ani udostępniać w żadnej innej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II A ROK SZKOLNY 2013/2014 - ZAKRES PODSTAWOWY 1. FUNKCJA KWADRATOWA rysuje wykres funkcji i podaje jej własności sprawdza algebraicznie, czy dany punkt należy

Bardziej szczegółowo

KLASA 1 DZIAŁ 1. LICZBY I DZIAŁANIA (17 h) Aby otrzymać ocenę dopuszczającą uczeń:

KLASA 1 DZIAŁ 1. LICZBY I DZIAŁANIA (17 h) Aby otrzymać ocenę dopuszczającą uczeń: KLASA 1 DZIAŁ 1. LICZBY I DZIAŁANIA (17 h) zna podręcznik i zeszyt ćwiczeń, z których będzie korzystał w ciągu roku szkolnego na lekcjach matematyki; zna PSO; posiada zeszyt, książkę oraz potrzebne przyrządy;

Bardziej szczegółowo

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012

KGGiBM GRAFIKA INŻYNIERSKA Rok III, sem. VI, sem IV SN WILiŚ Rok akademicki 2011/2012 Rysowanie precyzyjne 7 W ćwiczeniu tym pokazane zostaną wybrane techniki bardzo dokładnego rysowania obiektów w programie AutoCAD 2012, między innymi wykorzystanie punktów charakterystycznych. Narysować

Bardziej szczegółowo

X Olimpiada Matematyczna Gimnazjalistów

X Olimpiada Matematyczna Gimnazjalistów www.omg.edu.pl X Olimpiada Matematyczna Gimnazjalistów Zawody stopnia pierwszego część korespondencyjna (10 listopada 01 r. 15 grudnia 01 r.) Szkice rozwiązań zadań konkursowych 1. nia rozmieniła banknot

Bardziej szczegółowo

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON.

Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Propozycje rozwiązań zadań otwartych z próbnej matury rozszerzonej przygotowanej przez OPERON. Zadanie 6. Dane są punkty A=(5; 2); B=(1; -3); C=(-2; -8). Oblicz odległość punktu A od prostej l przechodzącej

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE I GIMNAZJUM OCENA DOPUSZCZAJĄCA I DZIAŁ; LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź D C B A C B C C D C C D A

Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź D C B A C B C C D C C D A Kujawsko-Pomorskie Centrum Edukacji Nauczycieli w Bydgoszczy PLACÓWKA AKREDYTOWANA KRYTERIA OCENIANIA POZIOM PODSTAWOWY Klucz odpowiedzi do zadań zamkniętych Zadanie 1 2 3 4 5 6 7 8 9 10 11 12 13 Odpowiedź

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ

WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ WYMAGANIA EDUKACYJNE Z MATEMATYKI DLA KLASY VI ROK SZKOLNY 2015/2016 PROGRAM NAUCZANIA MATEMATYKA 2001 DLA KLAS 4 6 SZKOŁY PODSTAWOWEJ REALIZOWANY PRZY POMOCY PODRĘCZNIKA MATEMATYKA 2001 DLA KLASY VI I.

Bardziej szczegółowo

Dopuszczający. Opracowanie: mgr Michał Wolak 2

Dopuszczający. Opracowanie: mgr Michał Wolak 2 Dopuszczający zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby wymierne proste przypadki umie zaznaczać liczbę wymierną na

Bardziej szczegółowo

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA

Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO DZIAŁ 1. LICZBY I DZIAŁANIA Wymagania przedmiotowe z matematyki w klasie I gimnazjum opracowane dla programu Matematyka z plusem GWO POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca (2) P - podstawowy ocena dostateczna

Bardziej szczegółowo

Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum

Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum Szczegółowe wymagania edukacyjne na poszczególne oceny dla klasy I gimnazjum POZIOMY WYMAGAŃ EDUKACYJNYCH: K konieczny ocena dopuszczająca DZIAŁ 1. LICZBY I DZIAŁANIA pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH I - III GIMNAZJUM Autor i nazwa programu nauczania: Marta Jucewicz, Marcin Karpiński, Jacek Lech MATEMATYKA Z PLUSEM. Program nauczania matematyki

Bardziej szczegółowo

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM

KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM KRYTERIA OCENY Z MATEMATYKI W KLASIE I GIMNAZJUM Na stopień dostateczny uczeń powinien umieć: Arytmetyka - zamieniać procent/promil na liczbę i odwrotnie, - zamieniać procent na promil i odwrotnie, - obliczać

Bardziej szczegółowo

Matematyka jest wszędzie W każdej nauce jest tyle prawdy ile jest w niej matematyki J.Kant

Matematyka jest wszędzie W każdej nauce jest tyle prawdy ile jest w niej matematyki J.Kant Matematyka jest wszędzie W każdej nauce jest tyle prawdy ile jest w niej matematyki J.Kant BUDOWA CIAŁA CZŁOWIEKA Matematyka jest miarą wszystkiego Arystotel Człowiek witruwiański rysunek autorstwa Leonarda

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum

Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum Wymagania edukacyjne na poszczególne oceny Matematyka klasa I Gimnazjum Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których

Bardziej szczegółowo

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny

KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Kryteria oceniania z matematyki KLASA 3 Wiedza i umiejętności ucznia na poszczególne oceny Arytmetyka: Ocenę dopuszczającą otrzymuje uczeń, który potrafi : - określić pojęcie liczby naturalnej, całkowitej,

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV

WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV WYMAGANIA EDUKACYJNE Z MATEMATYKI NA POSZCZEGOLNE OCENY W KLASIE IV I SEMESTR a) Wymagania konieczne (na ocenę dopuszczającą) Obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez

Bardziej szczegółowo

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt Era inżyniera pewna lokata na przyszłość jest współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Materiały dydaktyczne na zajęcia wyrównawcze z matematyki dla studentów pierwszego roku kierunku zamawianego Biotechnologia w ramach projektu Era inżyniera pewna lokata na przyszłość Projekt Era inżyniera

Bardziej szczegółowo

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY

KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KRYTERIA WYMAGAŃ Z MATEMATYKI NA POSZCZEGÓLNE OCENY KLASA I LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej rozumie rozszerzenie osi liczbowej na liczby ujemne umie porównywać liczby

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH 1-3 GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH 1-3 GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE OCENY Z MATEMATYKI W KLASACH 1-3 GIMNAZJUM POZIOMY WYMAGAŃ EDUKACYJNYCH: (2) - ocena dopuszczająca (2); (3) - ocena dostateczna (3); (4) - ocena dobra (4); (5) - ocena bardzo

Bardziej szczegółowo

Wymagania z matematyki na poszczególne oceny III klasy gimnazjum

Wymagania z matematyki na poszczególne oceny III klasy gimnazjum Wymagania z matematyki na poszczególne oceny III klasy gimnazjum Opracowano na podstawie planu realizacji materiału nauczania matematyki Matematyka Podręcznik do gimnazjum Nowa wersja Praca zbiorowa pod

Bardziej szczegółowo

Konspekt do lekcji matematyki w klasie II gimnazjum

Konspekt do lekcji matematyki w klasie II gimnazjum Agnieszka Raczkiewicz Konspekt do lekcji matematyki w klasie II gimnazjum Temat lekcji: Wielokąty foremne - konstrukcje i zadania. Temat poprzedniej lekcji: Wielokąt opisany na okręgu. Czas realizacji

Bardziej szczegółowo