2. Zasada działania cewki Rogowskiego

Wielkość: px
Rozpocząć pokaz od strony:

Download "2. Zasada działania cewki Rogowskiego"

Transkrypt

1 ZBIGNIEW FJAŁKOWSKI, MARCIN HABRYCH*, ALEKSANDER LISOWIEC**, BOGDAN MIEDZIŃSKI, GRZEGORZ WIŚNIEWSKI Karkonoska Państwowa Szkoła Wyższa w Jeleniej Górze, *Politechnika Wrocławska, **ITR Warszawa, Problemy projektowe i optymalizacji cewki Rogowskiego wykonanej w technologii PCB Streszczenie W artykule przedstawiono wybrane problemy doboru wymaganych parametrów elektrycznych cewki Rogowskiego podczas jej projektowania. Określono wartości tych parametrów dla cewek wykonanych w technologii PCB oraz wpływ na efektywność transformacji przebiegu prądu-napięcie. Przedstawiono wyniki odpowiednich symulacji transmitancji widmowej i aproksymacji dla wielu modeli cewek oraz omówiono wyniki interpolacji ich parametrów R, L, C w funkcji ilości zastosowanych cewek drukowanych. 1. Wstęp Wzrastająca liczba i moc elementów nieliniowych w sieciach elektroenergetycznych jest przyczyną coraz to większego odkształcania przebiegu prądów pobieranych przez współczesne odbiorniki. Nowoczesne kompaktowe cyfrowe rozwiązania urządzeń elektrycznych zarówno zabezpieczeń jak i aparatury kontrolno-pomiarowej wymagają między innymi małych gabarytowo i lekkich przetworników prądu zapewniających możliwie jak najdokładniejsze transformowanie sinusoidalnych przebiegów prądu także tych znacznie odkształconych od sinusoidy. Jednym z rozwiązań znajdujących zastosowanie w praktyce pomiarowej jest zastosowanie cewki Rogowskiego jako przetwornika prądowo-napięciowego. Przetwornik ten zapewnia przetwarzanie zarówno przebiegów sinusoidalnych jak i przebiegów okresowo zmiennych odkształconych w szerokim zakresie. Dotyczy to zwłaszcza przetwarzania przebiegów prądowych o znacznych wartościach częstotliwości. Występują tutaj problemy związane z zapewnieniem odpowiedniej czułości pomiarowej oraz problemy dotyczące efektywnego ekranowania od zakłóceń elektromagnetycznych pól zewnętrznych. Jest to szczególnie trudne do wykonania w przypadku cewek Rogowskiego o małych wymiarach geometrycznych wymaganych do zastosowań w nowoczesnych małogabarytowych urządzeniach elektroenergetycznych. W tych przypadkach dobre efekty można uzyskać przy zastosowaniu wielowarstwowych obwodów drukowanych (technologia PCB). W artykule omówiono sposób optymalizacji konstrukcji cewek Rogowskiego w oparciu o wykorzystanie technologii PCB.

2 Przedstawiono wyniki badań symulacyjnych ich charakterystyk transmitancyjnych w oparciu o wyniki pomiarów dla wykonanych modeli fizycznych o określonych wymiarach geometrycznych oraz liczbie zastosowanych płytek (cewek) drukowanych. Wykonano również odpowiednie aproksymacje parametrów R, L, C przydatne w procesie projektowania cewek Rogowskiego o wymaganych właściwościach transmisyjnych. Sformułowano odpowiednie wnioski praktyczne. 2. Zasada działania cewki Rogowskiego Schemat ideowy cewki Rogowskiego pokazano na rysunku 1. Na jej zaciskach o liczbie zwojów z sprzężonych z obwodem pierwotnym (stanowiącym jeden zwój) pod wpływem zmiany strumienia φ wywołanego przepływającym prądem i(t) indukuje się siła elektromotoryczna e(t) zgodnie z równaniem (1). Rys. 1. Idea przetwornika z cewką Rogowskiego, z - liczba zwojów cewki Rogowskiego, S - pole przekroju pojedynczego zwoju, r - promień cewki liczony do osi symetrii pola S. (1) e(t ) = z dφ µ 0 z S di di = =M, dt 2π r dt dt gdzie: M - indukcyjność wzajemna obwodu pierwotnego i wtórnego. Odkształcony okresowy przebieg monitorowanego prądu i(t) można przedstawić jako sumę harmonicznych: (2) i (t ) = I km sin(k ωt + ψ k ). k =0 Harmoniczne prądu i(t) indukują w efekcie na zaciskach uzwojenia wtórnego siłę elektromotoryczną esum(t) o wartości: (3) 2 π k =1 2 esum (t ) = Ekm sin(k ωt + ψ k + ),

3 gdzie ich amplitudy: E km =ω. M. k. I km = n 2. k. I km, I km - amplituda k-tej harmonicznej prądu, ω pulsacja harmonicznej podstawowej. Współczynnik n przekształcania prądów odkształconych, określony jest jako stosunek wartości skutecznej E sk odkształconej sem indukowanej w cewce Rogowskiego do wartości skutecznej I sk odkształconego prądu i wynosi: (4) co można zapisać w postaci (5) 2 2 k I km Esk k = 1 n = = ω M, I sk 2 I k= 1 k = 1 km 2 2 k I km k= 1 n = n1, 2 I km gdzie n1 = ω M - stała przekształcania dla przebiegu nieodkształconego, dla przypadku podstawowej harmonicznej, dla pulsacji ω. Wartość współczynnika n przekształcania prądów odkształconych zgodnie z zależnością (5) jest większa od stałej przekształcania n 1 przebiegu nieodkształconego i silnie zależy od zawartości wyższych harmonicznych w monitorowanym cewką Rogowskiego prądzie i(t). Odwrotny problem występuje w przypadku transformacji prądu o częstotliwości mniejszej od harmonicznej podstawowej. Cewka Rogowskiego przekształca liniowo tylko poszczególne harmoniczne prądu natomiast wartość współczynnika przekształcania n (wartości skutecznej odkształconej sem indukowanej w cewce Rogowskiego do wartości skutecznej odkształconego prądu) zmienia się zależnie od stopnia odkształcenia prądu, a więc od zawartości wyższych harmonicznych. Bezpośrednie wykorzystanie pomiaru wartości skutecznej sem uzyskanej z cewki Rogowskiego jako sygnału np. w układach zabezpieczeń może w efekcie spowodować sytuację, w której pomimo ustalonej wartości progu rozruchowego zabezpieczenia, rozrzut jego zadziałania może dochodzić do kilkudziesięciu procent. Przykładowo, jeśli dla monitorowanego przebiegu sinusoidalnego prądu zadziałanie zabezpieczenia nastąpi przy wartości skutecznej prądu równej I, to w przypadku prądu odkształconego zadziałanie tego samego zabezpieczenia może wystąpić już wcześniej przy wartościach prądu z przedziału (0,5-1)I [1, 2]. Jeśli problem ten jest istotny wówczas cyfrowo należy odfiltrować harmoniczną podstawową stosowaną jako wielkość kryterialną. 3

4 3. Koncepcje cewek Rogowskiego z wykorzystaniem obwodów drukowanych Rozwój kompaktowych cyfrowych rozwiązań urządzeń elektrycznych zarówno zabezpieczeń jak i aparatury kontrolno-pomiarowej wymaga od mało gabarytowo i lekkich przetworników prądu możliwie dokładnego przekształcania wszystkich parametrów przebiegów prądowych. Jednym z rozwiązań znajdujących zastosowanie w praktyce pomiarowej (np. przekładniki firmy LEM) może być zastosowanie obwodów drukowanych, zamiast dotychczasowego wytwarzania w sposób tradycyjny tj. poprzez nawijanie drutu nawojowego na odpowiednio przygotowane karkasy. Metoda ta może być więc zastąpiona technologią PCB (ang. Printed Circuit Board), umożliwiającą poprawę jakościową, oraz co jest bardzo istotne zwiększenie powtarzalności proponowanego rozwiązania. Na rysunku 2 a) przedstawiono przykładowe rozwiązanie tradycyjne oraz na rysunku 2 b) przykładowe nowoczesne oparte na technologii PCB. a) b) Rys. 2. Przetworniki z cewką Rogowskiego, a) wykonane w sposób tradycyjny zawierające 8 cewek, b) wykonane w oparciu o technologię PCB zawierające 12 cewek. W celu zbadania i określenia wszystkich wymiarów geometrycznych oraz liczby warstw cewek wykonanych w technologii PCB założono wstępnie wytworzenie w tej technologii obwodów drukowanych dla dwóch typów cewek wielowarstwowych z dwoma wyprowadzeniami do płyty bazowej o możliwie jak największej liczbie zwojów. Schemat zaprojektowanych płytek i gotowe ich rozwiązanie przedstawiono na rysunku 3. 4

5 a) b) Rys. 3. Druk pojedynczej warstwy cewki a) schemat pojedynczej warstwy cewki, b) gotowa płytka PCB Kolejnym etapem pracy, było stworzenie odpowiedniej płytki bazowej (podstawy) opartej na płytce drukowanej przeznaczonej do wlutowania cewek. Założono, że miejsca wlutowania powinny umożliwiać wlutowanie dowolnej skończonej (zadanej) ich liczby a ponadto podstawa powinna być wyposażona w pierścienie drukowane zewnętrzny i wewnętrzny (jak na rysunku 4) stanowiące również tzw. przewód powrotny. Rys. 4. Schemat druku płytki bazowej na 40 listków. 5

6 W rezultacie wykonano konstrukcję przetwornika prądowo-napięciowego opartego o wykorzystanie zasady działania cewki Rogowskiego, którego wygląd przedstawiono na rysunku 5. t Rys. 5. Wygląd zmontowanego przetwornika prądowego. 4. Analiza charakterystyk transmisyjnych wykorzystujących cewki Rogowskiego W celu określenia charakterystyk transmisyjnych oraz dobrania poszczególnych parametrów cewek przeprowadzono odpowiednie analizy symulacyjne w oparciu o pomierzone parametry modelu fizycznego cewki Rogowskiego. W tym celu wyliczono charakterystyki częstotliwościowe dla układu zastępczego cewki Rogowskiego. Przeprowadzono interpolację parametrów R, L, C cewek Rogowskiego w funkcji ilości płytek drukowanych na podstawie oraz dokonano odpowiedniej aproksymacji parametrów R, L, C tych cewek dla różnych ilości zainstalowanych cewek wykonanych w technologii PCB. 6

7 4.1. Charakterystyki częstotliwościowe układu zastępczego cewki Rogowskiego Transmitancje operatorowe oraz widmowe określono dla układu zastępczego cewki Rogowskiego pokazanego na rysunku 6. Do obliczeń przyjęto pomierzone wartości parametrów R, L, C dla modeli fizycznych w zależności od ilości zastosowanych płytek drukowanych równych odpowiednio 8, 16 i 32 zestawionych w tabeli 1. Rys. 6. Układ zastępczy cewki Rogowskiego. Przyjęto następujące oznaczenia parametrów cewek: R rezystancja układu zastępczego, L indukcyjność (własna cewki) układu zastępczego, C pojemność (między zwojowa cewki) układu zastępczego. Tabela 1. Zmierzone wartości wybranych parametrów elektrycznych przykładowych modeli cewek Rogowskiego w zależności od ilości płytek (listków) na cokole równej odpowiednio: 8, 16 oraz 32. Parametr Jednostka miary Wartość zmierzona Ilość płytek R L C [szt.] [Ω] [H] [pf] , , , Transmitancja operatorowa G (s) dla układu zastępczego cewki Rogowskiego (Rys. 6) określona jest zależnością: 2 ω =, s + n (6) G( s) 2 2 2ξω ns + ωn 7

8 gdzie odpowiednio: częstotliwości drgań własnych i rezonansowa oraz współczynnik tłumienia układu: 1 1 (7) ω = [ s ], n LC 2 1 (8) ω = ω 1 2ξ [ s ], r n (9) RC R C ξ = =. 2 LC 2 L Uzyskane charakterystyki amplitudowo-fazowe Nyquista na płaszczyźnie zmiennej zespolonej oraz charakterystyki widmowo amplitudowe oraz fazowe (logarytmiczne Bodego) pokazano na rysunkach Z przebiegów tych charakterystyk wynika, że maksymalne wzmocnienie sygnału na zaciskach cewki Rogowskiego występuje dla znacznej wartości częstotliwości (w granicach 10 6 rad/s) prądu i zmienia się w zakresie od ilości zastosowanych płytek drukowanych w danym modelu fizycznym przetwornika prądowonapięciowego. W oparciu jednak o analizę przebiegów wyżej wymienionych charakterystyk można określić wymagane wartości parametrów R, L, C w celu uzyskania największego wzmocnienia sygnału napięciowego dla żądanej częstotliwości odczytywanej w realnych ich granicach. Rys. 7. Charakterystyka Bodego układu zastępczego cewki Rogowskiego (Ilość płytek = 8, ξ = , ω r = e+06) 8

9 Rys. 8. Charakterystyka Bodego układu zastępczego cewki Rogowskiego (Ilość płytek = 16, ξ = , ω r = e+06) Rys. 9. Charakterystyka Bodego układu zastępczego cewki Rogowskiego (Ilość płytek = 32, ξ = , ω r = e+05) 9

10 Rys. 10. Zestawienie charakterystyk Nyquista układu zastępczego cewek Rogowskiego dla różnej ilości płytek na cokole cewki równej odpowiednio 8, 16, Interpolacja parametrów R, L, C cewek Rogowskiego w funkcji ilości płytek na podstawie Celem interpolacji jest znalezienie krzywej zmian wartości rezystancji R, indukcyjności własnej L i pojemności C, przechodzącej przez zadane punkty nazywane węzłami interpolacji. Przykładowo mając wstępne wyniki tylko dla trzech pomiarów wartości rezystancji R można wyznaczyć wartość rezystancji dla innej niż dla zastosowania w pomiarach liczby płytek zamontowanych na podstawie. Otrzymuje się wówczas w przybliżeniu paraboliczną zależność zmian wartości rezystancji R w funkcji ilości płytek, co zobrazowano na rysunku 11. Na podstawie uzyskanych wyników obliczeń można stwierdzić, że wartości bezwzględne różnic pomiędzy wynikami interpolacji wartość rezystancji R oszacowanej różnymi metodami nie przekraczają 3.0 [Ω] co ilustrują krzywe pokazane na rysunku

11 Rys. 11. Wyniki interpolacji różnymi metodami wartości rezystancji zastępczej R[Ω] dla różnej ilości płytek rozmieszczonych na podstawie cewki Rogowskiego. 11

12 Rys. 12. Różnice między interpolowanymi wartościami rezystancji zastępczej R[Ω] dla różnej ilości płytek na cokole: o dla zmierzonych wartości rezystancji, * dla funkcji sklejanej 1 3-go stopnia i funkcji łamanej, + dla funkcji sklejanej 3-go stopnia i wielomianu 3-go stopnia, dla wielomianu 3- go stopnia i funkcji łamanej. Analogicznie, jak dla rezystancji R cewki, na podstawie otrzymanych wyników obliczeń można stwierdzić, że wartości bezwzględne różnic między wynikami interpolacji indukcyjności L różnymi metodami nie przekraczają [H]. Wyniki interpolacji oraz różnice między interpolowanymi wartościami indukcyjności L przedstawiono na rysunkach 13 i 14. Podobną zależność zaś zmian pojemności C w funkcji ilości płytek na cokole, obrazują rysunki 15 i 16 odpowiednio. Rys. 13. Wyniki interpolacji różnymi metodami wartości indukcyjności zastępczej L[H] dla różnej ilości płytek na cokole cewki Rogowskiego. 1 W ogólności przez funkcję sklejaną rozumie się każdą funkcję przedziałami wielomianową. 12

13 Rys. 14. Różnice między interpolowanymi wartościami indukcyjności zastępczej L[H] dla różnej ilości płytek na cokole: o dla zmierzonych wartości indukcyjności, * dla funkcji sklejanej 3-go stopnia i funkcji łamanej, + dla funkcji sklejanej 3-go stopnia i wielomianu 3-go stopnia, dla wielomianu 3- go stopnia i funkcji łamanej. 13

14 Rys. 15. Wyniki interpolacji różnymi metodami wartości pojemności zastępczej C[F] dla różnej ilości płytek na cokole cewki Rogowskiego. Rys. 16. Różnice między interpolowanymi wartościami pojemności zastępczej C[F] dla różnej ilości płytek na cokole: o dla zmierzonych wartości pojemności, * dla funkcji sklejanej 3-go stopnia i funkcji łamanej, + dla funkcji sklejanej 3-go stopnia i wielomianu 3-go stopnia, dla wielomianu 3- go stopnia i funkcji łamanej. Na podstawie otrzymanych wyników obliczeń można również stwierdzić, że wartości bezwzględne różnic między wynikami interpolacji pojemności C różnymi metodami nie przekraczają [F] co przedstawiono na rys Aproksymacja parametrów R, L, C cewek Rogowskiego w funkcji ilości płytek na podstawie W celu uzyskania przydatnej do projektowania informacji odnośnie do zmiany parametrów elektrycznych R, L, C cewek Rogowskiego w funkcji ilości płytek na podstawie przeprowadzono dodatkowo odpowiednią aproksymację wielomianową, która oblicza współczynniki wielomianu zadanego stopnia aproksymującego dane wejściowe optymalnie w sensie minimum sumy kwadratów błędów. Dysponując zatem wykresem dla trzech pomiarów analizowanych wielkości fizycznych dokonano aproksymacji z wykorzystaniem 14

15 wielomianu drugiego stopnia. W efekcie otrzymano wielomian aproksymujący wartość rezystancji R w postaci otrzymanej zależności (10): (10) R = -0, Ip Ip , gdzie Ip - ilości płytek zamontowanych na podstawie cewki. W postaci graficznej powyższą zależność przedstawiono na rysunku 17. Rys. 17. Wynik aproksymacji wartości rezystancji zastępczej R[Ω] dla różnej ilości płytek na cokole cewki Rogowskiego. Podobnie w wyniku dokonanych obliczeń współczynników wielomianu drugiego stopnia otrzymano wielomian aproksymujący indukcyjność L w następującej postaci (11): (11) L = e-06 Ip e-04 Ip e-05 Co w postaci graficznej ilustruje rysunek

16 Rys. 18. Wynik aproksymacji wartości indukcyjności zastępczej L[H] dla różnej ilości płytek na cokole cewki Rogowskiego. W ten sam sposób otrzymano wielomian aproksymujący pojemność C w postaci: (12) C = 1.25e-13 Ip e-12 Ip e-10 Wynik obliczeń aproksymacji wartości pojemności zastępczej C przedstawia krzywa pokazana na rysunku 19. Wnioski, uwagi końcowe: Z uzyskanych wyników analiz symulacyjnych opartych o wyniki pomiarów na modelu fizycznym można stwierdzić jednoznacznie, że zastosowanie technologii PCB umożliwia uzyskanie przetworników prądowonapięciowych (w postaci cewek Rogowskiego) o dobrych parametrach transmisyjnych. Bardzo pomocne do zoptymalizowania parametrów cewki Rogowskiego mogą być zaprezentowane w artykule analizy umożliwiające aproksymację wartości parametrów elektrycznych R, L, C w zakresie od ilości zastosowanych płytek drukowanych. 16

17 Rys. 19. Wynik aproksymacji wartości pojemności zastępczej C[F] dla różnej ilości płytek na cokole cewki Rogowskiego. LITERATURA [1] Szkółka S., Wiśniewski G. Cewka Rogowskiego w środowisku przebiegów odkształconych przykładowe zastosowania ; Przegląd Elektrotechniczny, Nr r., str [2] Szkółka S., Wiśniewski G., Fjałkowski Z., Lisowiec A. Filtr składowej zerowej prądu z cewką Rogowskiego w środowisku prądów odkształconych ; Mechanizacja i Automatyzacja Górnictwa, Nr 7-8 (450), sierpień 2008, s

Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2

Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2 dr inż. ALEKSANDER LISOWIEC dr hab. inż. ANDRZEJ NOWAKOWSKI Instytut Tele- i Radiotechniczny Parametry częstotliwościowe przetworników prądowych wykonanych w technologii PCB 1 HDI 2 W artykule przedstawiono

Bardziej szczegółowo

Charakterystyki częstotliwościowe cewek Rogowskiego

Charakterystyki częstotliwościowe cewek Rogowskiego dr inż. STANISŁAW SZKÓŁKA Politechnika Wrocławska Charakterystyki częstotliwościowe cewek Rogowskiego W artykule przedstawiono wyniki badań symulacyjnych dotyczących wierności transformacji przebiegów

Bardziej szczegółowo

Cewka Rogowskiego w środowisku przebiegów odkształconych dokładność przekształcania

Cewka Rogowskiego w środowisku przebiegów odkształconych dokładność przekształcania dr inż. STANISŁAW SZKÓŁKA Instytut Energoelektryki Politechnika Wrocławska Cewka Rogowskiego w środowisku przebiegów odkształconych dokładność przekształcania W artykule przedstawiono problematykę wierności

Bardziej szczegółowo

Układy przekładników prądowych

Układy przekładników prądowych Politechnika Lubelska Wydział Elektrotechniki i Informatyki Katedra Urządzeń Elektrycznych i TWN 20-618 Lublin, ul. Nadbystrzycka 38A www.kueitwn.pollub.pl LABORATORIUM URZĄDZEŃ ELEKTRYCZNYCH Instrukcja

Bardziej szczegółowo

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE

CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWE Do opisu członów i układów automatyki stosuje się, oprócz transmitancji operatorowej (), tzw. transmitancję widmową. Transmitancję widmową () wyznaczyć można na podstawie

Bardziej szczegółowo

Przetwornik prądowo-napięciowy ze zmodyfikowanym rdzeniem amorficznym do pomiarów prądowych przebiegów odkształconych

Przetwornik prądowo-napięciowy ze zmodyfikowanym rdzeniem amorficznym do pomiarów prądowych przebiegów odkształconych dr inż. MARCIN HABRYCH Instytut Energoelektryki Politechnika Wrocławska mgr inż. JAN LUBRYKA mgr inż. DARIUSZ MACIERZYŃSKI Kopex Electric Systems S.A. dr inż. ARTUR KOZŁOWSKI Instytut Technik Innowacyjnych

Bardziej szczegółowo

Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego"

Ćwiczenie: Obwody prądu sinusoidalnego jednofazowego Ćwiczenie: "Obwody prądu sinusoidalnego jednofazowego" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8

Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 Dynamiczne badanie wzmacniacza operacyjnego- ćwiczenie 8 1. Cel ćwiczenia Celem ćwiczenia jest dynamiczne badanie wzmacniacza operacyjnego, oraz zapoznanie się z metodami wyznaczania charakterystyk częstotliwościowych.

Bardziej szczegółowo

Indukcyjność. Autorzy: Zbigniew Kąkol Kamil Kutorasiński

Indukcyjność. Autorzy: Zbigniew Kąkol Kamil Kutorasiński Indukcyjność Autorzy: Zbigniew Kąkol Kamil Kutorasiński 2019 Indukcyjność Autorzy: Zbigniew Kąkol, Kamil Kutorasiński Powszechnie stosowanym urządzeniem, w którym wykorzystano zjawisko indukcji elektromagnetycznej

Bardziej szczegółowo

Ryszard Kostecki. Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego

Ryszard Kostecki. Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego Ryszard Kostecki Badanie własności filtru rezonansowego, dolnoprzepustowego i górnoprzepustowego Warszawa, 3 kwietnia 2 Streszczenie Celem tej pracy jest zbadanie własności filtrów rezonansowego, dolnoprzepustowego,

Bardziej szczegółowo

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO Politechnika Gdańska Wydział Elektrotechniki i Automatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Mechatronika (WM) Laboratorium Elektrotechniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDALNEGO

Bardziej szczegółowo

Obwody sprzężone magnetycznie.

Obwody sprzężone magnetycznie. POLITECHNIKA ŚLĄSKA WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTT MASZYN I RZĄDZEŃ ENERGETYCZNYCH LABORATORIM ELEKTRYCZNE Obwody sprzężone magnetycznie. (E 5) Opracował: Dr inż. Włodzimierz OGLEWICZ

Bardziej szczegółowo

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym

rezonansu rezonansem napięć rezonansem szeregowym rezonansem prądów rezonansem równoległym Lekcja szósta poświęcona będzie analizie zjawisk rezonansowych w obwodzie RLC. Zjawiskiem rezonansu nazywamy taki stan obwodu RLC przy którym prąd i napięcie są ze sobą w fazie. W stanie rezonansu przesunięcie

Bardziej szczegółowo

Przenoszenie wyższych harmonicznych generowanych przez odbiory nieliniowe przez transformatory do kablowych sieci zasilających

Przenoszenie wyższych harmonicznych generowanych przez odbiory nieliniowe przez transformatory do kablowych sieci zasilających prof. dr hab. inż. BOGDAN MIEDZIŃSKI dr inż. ARTUR KOZŁOWSKI mgr inż. JULIAN WOSIK dr inż. MARIAN KALUS Instytut Technik Innowacyjnych EMAG Przenoszenie wyższych harmonicznych generowanych przez odbiory

Bardziej szczegółowo

I we. F (filtr) U we. Rys. 1. Schemat blokowy układu zasilania odbiornika prądu stałego z sieci energetycznej z zastosowaniem stabilizatora napięcia

I we. F (filtr) U we. Rys. 1. Schemat blokowy układu zasilania odbiornika prądu stałego z sieci energetycznej z zastosowaniem stabilizatora napięcia 22 ĆWICZENIE 3 STABILIZATORY NAPIĘCIA STAŁEGO Wiadomości wstępne Stabilizatory napięcia stałego są to układy elektryczne dostarczające do odbiornika napięcie o stałej wartości niezależnie od zmian w określonych

Bardziej szczegółowo

Badanie zasilacza niestabilizowanego

Badanie zasilacza niestabilizowanego UKŁADY ELEKTRONICZNE Instrukcja do ćwiczeń laboratoryjnych Badanie zasilacza niestabilizowanego Laboratorium Układów Elektronicznych Poznań 2008 1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

PL B1. Układ zabezpieczenia od zwarć doziemnych wysokooporowych w sieciach średniego napięcia. POLITECHNIKA WROCŁAWSKA, Wrocław, PL

PL B1. Układ zabezpieczenia od zwarć doziemnych wysokooporowych w sieciach średniego napięcia. POLITECHNIKA WROCŁAWSKA, Wrocław, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 211182 (13) B1 (21) Numer zgłoszenia: 385971 (51) Int.Cl. H02H 7/26 (2006.01) H02H 3/16 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data

Bardziej szczegółowo

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Ćwiczenie 4 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ Ćwiczenie 4 WYZNCZNE NDUKCYJNOŚC WŁSNEJ WZJEMNEJ Celem ćwiczenia jest poznanie pośrednich metod wyznaczania indukcyjności własnej i wzajemnej na podstawie pomiarów parametrów elektrycznych obwodu. 4..

Bardziej szczegółowo

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu

Ćw. 27. Wyznaczenie elementów L C metoda rezonansu 7 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A F I Z Y K I Ćw. 7. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony z połączonych: kondensatora C cewki L i opornika R

Bardziej szczegółowo

Projektowanie systemów pomiarowych

Projektowanie systemów pomiarowych Projektowanie systemów pomiarowych 03 Konstrukcja mierników analogowych Zasada działania mierników cyfrowych Przetworniki pomiarowe wielkości elektrycznych 1 Analogowe przyrządy pomiarowe Podział ze względu

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 4 WYZNACZANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH UKŁADÓW RLC. Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

Bezrdzeniowy przetwornik prądu przemiennego

Bezrdzeniowy przetwornik prądu przemiennego STANISŁAW SZKÓŁKA Politechnika Wrocławska Bezrdzeniowy przetwornik prądu przemiennego Drastycznie malejąca moc pobierana przez współczesne obwody wejściowe układów monitorowania wielkości elektrycznych

Bardziej szczegółowo

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy

LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH. Ćwiczenie nr 2. Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy LABORATORIUM PODZESPOŁÓW ELEKTRONICZNYCH Ćwiczenie nr 2 Pomiar pojemności i indukcyjności. Szeregowy i równoległy obwód rezonansowy Wykonując pomiary PRZESTRZEGAJ przepisów BHP związanych z obsługą urządzeń

Bardziej szczegółowo

13 K A T E D R A F I ZYKI S T O S O W AN E J

13 K A T E D R A F I ZYKI S T O S O W AN E J 3 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 3. Wyznaczenie elementów L C metoda rezonansu Wprowadzenie Obwód złożony

Bardziej szczegółowo

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną

X L = jωl. Impedancja Z cewki przy danej częstotliwości jest wartością zespoloną Cewki Wstęp. Urządzenie elektryczne charakteryzujące się indukcyjnością własną i służące do uzyskiwania silnych pól magnetycznych. Szybkość zmian prądu płynącego przez cewkę indukcyjną zależy od panującego

Bardziej szczegółowo

WZMACNIACZ NAPIĘCIOWY RC

WZMACNIACZ NAPIĘCIOWY RC WZMACNIACZ NAPIĘCIOWY RC 1. WSTĘP Tematem ćwiczenia są podstawowe właściwości jednostopniowego wzmacniacza pasmowego z tranzystorem bipolarnym. Zadaniem ćwiczących jest dokonanie pomiaru częstotliwości

Bardziej szczegółowo

2 K A T E D R A F I ZYKI S T O S O W AN E J

2 K A T E D R A F I ZYKI S T O S O W AN E J 2 K A T E D R A F I ZYKI S T O S O W AN E J P R A C O W N I A P O D S T A W E L E K T R O T E C H N I K I I E L E K T R O N I K I Ćw. 2. Łączenie i pomiar pojemności i indukcyjności Wprowadzenie Pojemność

Bardziej szczegółowo

Własności dynamiczne przetworników pierwszego rzędu

Własności dynamiczne przetworników pierwszego rzędu 1 ĆWICZENIE 7. CEL ĆWICZENIA. Własności dynamiczne przetworników pierwszego rzędu Celem ćwiczenia jest poznanie własności dynamicznych przetworników pierwszego rzędu w dziedzinie czasu i częstotliwości

Bardziej szczegółowo

WZMACNIACZ OPERACYJNY

WZMACNIACZ OPERACYJNY 1. OPIS WKŁADKI DA 01A WZMACNIACZ OPERACYJNY Wkładka DA01A zawiera wzmacniacz operacyjny A 71 oraz zestaw zacisków, które umożliwiają dołączenie elementów zewnętrznych: rezystorów, kondensatorów i zwór.

Bardziej szczegółowo

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych

Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Ćwiczenie 3 Badanie własności podstawowych liniowych członów automatyki opartych na biernych elementach elektrycznych Cel ćwiczenia Celem ćwiczenia jest poznanie podstawowych własności członów liniowych

Bardziej szczegółowo

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7

Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 Statyczne badanie wzmacniacza operacyjnego - ćwiczenie 7 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z podstawowymi zastosowaniami wzmacniacza operacyjnego, poznanie jego charakterystyki przejściowej

Bardziej szczegółowo

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu

Wykład Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu Wykład 7 7. Drgania elektromagnetyczne Wstęp Przypomnienie: masa M na sprężynie, bez oporów. Równanie ruchu M d x kx Rozwiązania x = Acost v = dx/ =-Asint a = d x/ = A cost przy warunku = (k/m) 1/. Obwód

Bardziej szczegółowo

PL B1. Sposób oceny dokładności transformacji indukcyjnych przekładników prądowych dla prądów odkształconych. POLITECHNIKA ŁÓDZKA, Łódź, PL

PL B1. Sposób oceny dokładności transformacji indukcyjnych przekładników prądowych dla prądów odkształconych. POLITECHNIKA ŁÓDZKA, Łódź, PL PL 223692 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 223692 (13) B1 (21) Numer zgłoszenia: 399602 (51) Int.Cl. G01R 35/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny

Wielkości opisujące sygnały okresowe. Sygnał sinusoidalny. Metoda symboliczna (dla obwodów AC) - wprowadzenie. prąd elektryczny prąd stały (DC) prąd elektryczny zmienny okresowo prąd zmienny (AC) zmienny bezokresowo Wielkości opisujące sygnały okresowe Wartość chwilowa wartość, jaką sygnał przyjmuje w danej chwili: x x(t) Wartość

Bardziej szczegółowo

Wzmacniacz jako generator. Warunki generacji

Wzmacniacz jako generator. Warunki generacji Generatory napięcia sinusoidalnego Drgania sinusoidalne można uzyskać Poprzez utworzenie wzmacniacza, który dla jednej częstotliwości miałby wzmocnienie równe nieskończoności. Poprzez odtłumienie rzeczywistego

Bardziej szczegółowo

Akustyczne wzmacniacze mocy

Akustyczne wzmacniacze mocy Akustyczne wzmacniacze mocy 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z budową, sposobem projektowania oraz parametrami wzmacniaczy mocy klasy AB zbudowanych z użyciem scalonych wzmacniaczy

Bardziej szczegółowo

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1-

Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Cyfrowe przetwarzanie sygnałów Jacek Rezmer -1- Filtry cyfrowe cz. Zastosowanie funkcji okien do projektowania filtrów SOI Nierównomierności charakterystyki amplitudowej filtru cyfrowego typu SOI można

Bardziej szczegółowo

Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"

Ćwiczenie: Właściwości wybranych elementów układów elektronicznych Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych

Zakres wymaganych wiadomości do testów z przedmiotu Metrologia. Wprowadzenie do obsługi multimetrów analogowych i cyfrowych Zakres wymaganych wiadomości do testów z przedmiotu Metrologia Ćwiczenie 1 Wprowadzenie do obsługi multimetrów analogowych i cyfrowych budowa i zasada działania przyrządów analogowych magnetoelektrycznych

Bardziej szczegółowo

Wzmacniacz tranzystorowy

Wzmacniacz tranzystorowy Wzmacniacz tranzystorowy. Cel ćwiczenia Celem ćwiczenia jest poznanie właściwości jednostopniowego, tranzystorowego wzmacniacza napięcia. Wyniki pomiarów parametrów samego tranzystora jak i całego układu

Bardziej szczegółowo

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych

Laboratorium Wirtualne Obwodów w Stanach Ustalonych i Nieustalonych ĆWICZENIE 1 Badanie obwodów jednofazowych rozgałęzionych przy wymuszeniu sinusoidalnym Cel ćwiczenia Celem ćwiczenia jest Poznanie podstawowych elementów pasywnych R, L, C, wyznaczenie ich wartości na

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1. Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PĄDU SINUSOIDLNEGO

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 7 BADANIE ODPOWIEDZI USTALONEJ NA OKRESOWY CIĄG IMPULSÓW 1. Cel ćwiczenia Obserwacja przebiegów wyjściowych

Bardziej szczegółowo

Filtry aktywne filtr środkowoprzepustowy

Filtry aktywne filtr środkowoprzepustowy Filtry aktywne iltr środkowoprzepustowy. Cel ćwiczenia. Celem ćwiczenia jest praktyczne poznanie właściwości iltrów aktywnych, metod ich projektowania oraz pomiaru podstawowych parametrów iltru.. Budowa

Bardziej szczegółowo

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC

BADANIE ELEKTRYCZNEGO OBWODU REZONANSOWEGO RLC Ćwiczenie 45 BADANE EEKTYZNEGO OBWOD EZONANSOWEGO 45.. Wiadomości ogólne Szeregowy obwód rezonansowy składa się z oporu, indukcyjności i pojemności połączonych szeregowo i dołączonych do źródła napięcia

Bardziej szczegółowo

LABORATORIUM PRZEKŁADNIKÓW

LABORATORIUM PRZEKŁADNIKÓW Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Instytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki...

Bardziej szczegółowo

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji

Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji Wpływ nieliniowości elementów układu pomiarowego na błąd pomiaru impedancji Wiesław Miczulski* W artykule przedstawiono wyniki badań ilustrujące wpływ nieliniowości elementów układu porównania napięć na

Bardziej szczegółowo

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego

LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Ćwiczenie 5 Wydział Geoinżynierii, Górnictwa i Geologii LABORATORIUM PODSTAW ELEKTROTECHNIKI Badanie transformatora jednofazowego Opracował: Grzegorz Wiśniewski Zagadnienia do przygotowania Rodzaje transformatorów.

Bardziej szczegółowo

Przydatne wzory trygonometryczne: cos2. sin 2. cos. sin

Przydatne wzory trygonometryczne: cos2. sin 2. cos. sin Przydatne wzory trygonometryczne: ( ( ( ( 5. Moce dla przebiegów usoidalnych i(t u(t ys. 7. Dwónik liniowy u(t (t i(t (t odzae mocy: moc chwilowa: p(t u(t i(t ϕ (t ϕ gdzie: ϕ Dwie składowe: - stała: ϕ

Bardziej szczegółowo

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne

Interpolacja, aproksymacja całkowanie. Interpolacja Krzywa przechodzi przez punkty kontrolne Interpolacja, aproksymacja całkowanie Interpolacja Krzywa przechodzi przez punkty kontrolne Aproksymacja Punkty kontrolne jedynie sterują kształtem krzywej INTERPOLACJA Zagadnienie interpolacji można sformułować

Bardziej szczegółowo

Ćwiczenie: "Silnik prądu stałego"

Ćwiczenie: Silnik prądu stałego Ćwiczenie: "Silnik prądu stałego" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

Badanie transformatora

Badanie transformatora Ćwiczenie 14 Badanie transformatora 14.1. Zasada ćwiczenia Transformator składa się z dwóch uzwojeń, umieszczonych na wspólnym metalowym rdzeniu. Do jednego uzwojenia (pierwotnego) przykłada się zmienne

Bardziej szczegółowo

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C

POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C ĆWICZENIE 4EMC POMIARY CHARAKTERYSTYKI CZĘSTOTLIWOŚCIOWEJ IMPEDANCJI ELEMENTÓW R L C Cel ćwiczenia Pomiar parametrów elementów R, L i C stosowanych w urządzeniach elektronicznych w obwodach prądu zmiennego.

Bardziej szczegółowo

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO

PRAWO OHMA DLA PRĄDU PRZEMIENNEGO ĆWICZENIE 53 PRAWO OHMA DLA PRĄDU PRZEMIENNEGO Cel ćwiczenia: wyznaczenie wartości indukcyjności cewek i pojemności kondensatorów przy wykorzystaniu prawa Ohma dla prądu przemiennego; sprawdzenie prawa

Bardziej szczegółowo

BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC

BADANIE SZEREGOWEGO OBWODU REZONANSOWEGO RLC BADANIE SZEREGOWEGO OBWOD REZONANSOWEGO RLC Marek Górski Celem pomiarów było zbadanie krzywej rezonansowej oraz wyznaczenie częstotliwości rezonansowej. Parametry odu R=00Ω, L=9,8mH, C = 470 nf R=00Ω,

Bardziej szczegółowo

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM AKADEMIA MORSKA Katedra Telekomunikacji Morskiej ĆWICZENIE 6 BADANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH FILTRÓW AKTYWNYCH. Cel ćwiczenia Celem ćwiczenia jest doświadczalne

Bardziej szczegółowo

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu

Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Zespół Szkół Technicznych im. J. i J. Śniadeckich w Grudziądzu Przedmiot: Pomiary Elektryczne Materiały dydaktyczne: Pomiar i regulacja prądu i napięcia zmiennego Zebrał i opracował: mgr inż. Marcin Jabłoński

Bardziej szczegółowo

STABILIZATORY NAPIĘCIA STAŁEGO O DZIAŁANIU CIĄGŁYM

STABILIZATORY NAPIĘCIA STAŁEGO O DZIAŁANIU CIĄGŁYM STABILIZATORY NAPIĘCIA STAŁEGO O DZIAŁANIU CIĄGŁYM Celem ćwiczenia jest zapoznanie się z problemami związanymi z projektowaniem, realizacją i pomiarami wartości parametrów stabilizatorów parametrycznych

Bardziej szczegółowo

Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi"

Ćwiczenie: Obwody ze sprzężeniami magnetycznymi Ćwiczenie: "Obwody ze sprzężeniami magnetycznymi" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:

Bardziej szczegółowo

LABORATORIUM PRZEKŁADNIKÓW

LABORATORIUM PRZEKŁADNIKÓW Politechnika Łódzka, Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Instytut Elektroenergetyki, Zakład Przekładników i Kompatybilności Elektromagnetycznej Grupa dziekańska... Rok akademicki...

Bardziej szczegółowo

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH

Zwój nad przewodzącą płytą METODA ROZDZIELENIA ZMIENNYCH METODA ROZDZIELENIA ZMIENNYCH (2) (3) (10) (11) Modelowanie i symulacje obiektów w polu elektromagnetycznym 1 Rozwiązania równań (10-11) mają ogólną postać: (12) (13) Modelowanie i symulacje obiektów w

Bardziej szczegółowo

Laboratorium Podstaw Elektrotechniki i Elektroniki

Laboratorium Podstaw Elektrotechniki i Elektroniki Politechnika Gdańska Wydział Elektrotechniki i utomatyki 1) Wstęp st. stacjonarne I st. inżynierskie, Energetyka Laboratorium Podstaw Elektrotechniki i Elektroniki Ćwiczenie nr 3 OBWODY LINIOWE PRĄDU SINUSOIDLNEGO

Bardziej szczegółowo

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI

ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 1 ĆWICZENIE 15 BADANIE WZMACNIACZY MOCY MAŁEJ CZĘSTOTLIWOŚCI 15.1. CEL ĆWICZENIA Celem ćwiczenia jest poznanie podstawowych właściwości wzmacniaczy mocy małej częstotliwości oraz przyswojenie umiejętności

Bardziej szczegółowo

E107. Bezpromieniste sprzężenie obwodów RLC

E107. Bezpromieniste sprzężenie obwodów RLC E7. Bezpromieniste sprzężenie obwodów RLC Cel doświadczenia: Pomiar amplitudy sygnału w rezonatorze w zależności od wzajemnej odległości d cewek generatora i rezonatora. Badanie wpływu oporu na tłumienie

Bardziej szczegółowo

PL 196881 B1. Trójfazowy licznik indukcyjny do pomiaru nadwyżki energii biernej powyżej zadanego tg ϕ

PL 196881 B1. Trójfazowy licznik indukcyjny do pomiaru nadwyżki energii biernej powyżej zadanego tg ϕ RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 196881 (13) B1 (21) Numer zgłoszenia: 340516 (51) Int.Cl. G01R 11/40 (2006.01) G01R 21/00 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22)

Bardziej szczegółowo

Podstawowe człony dynamiczne

Podstawowe człony dynamiczne . Człon proporcjonalny 2. Człony całkujący idealny 3. Człon inercyjny Podstawowe człony dynamiczne charakterystyki czasowe = = = + 4. Człony całkujący rzeczywisty () = + 5. Człon różniczkujący rzeczywisty

Bardziej szczegółowo

PL B1. Sposób wyznaczania błędów napięciowego i kątowego indukcyjnych przekładników napięciowych dla przebiegów odkształconych

PL B1. Sposób wyznaczania błędów napięciowego i kątowego indukcyjnych przekładników napięciowych dla przebiegów odkształconych PL 216925 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 216925 (13) B1 (21) Numer zgłoszenia: 389198 (51) Int.Cl. G01R 35/02 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude

Podstawy Elektrotechniki i Elektroniki. Opracował: Mgr inż. Marek Staude Podstawy Elektrotechniki i Elektroniki Opracował: Mgr inż. Marek Staude Część 2 Analiza obwodów w stanie ustalonym przy wymuszeniu sinusoidalnym Przypomnienie ostatniego wykładu Prąd i napięcie Podstawowe

Bardziej szczegółowo

Obwody liniowe. Sprawdzanie praw Kirchhoffa

Obwody liniowe. Sprawdzanie praw Kirchhoffa POLTECHNK ŚLĄSK WYDZŁ NŻYNER ŚRODOWSK ENERGETYK NSTYTT MSZYN RZĄDZEŃ ENERGETYCZNYCH LBORTORM ELEKTRYCZNE Obwody liniowe. Sprawdzanie praw Kirchhoffa (E 2) Opracował: Dr inż. Włodzimierz OGLEWCZ 3 1. Cel

Bardziej szczegółowo

Pomiar indukcyjności.

Pomiar indukcyjności. Pomiar indukcyjności.. Cel ćwiczenia: Celem ćwiczenia jest zapoznanie się z metodami pomiaru indukcyjności, ich wadami i zaletami, wynikającymi z nich błędami pomiarowymi, oraz umiejętnością ich właściwego

Bardziej szczegółowo

Technik elektronik 311[07] moje I Zadanie praktyczne

Technik elektronik 311[07] moje I Zadanie praktyczne 1 Technik elektronik 311[07] moje I Zadanie praktyczne Firma produkująca sprzęt medyczny, zleciła opracowanie i wykonanie układu automatycznej regulacji temperatury sterylizatora o określonych parametrach

Bardziej szczegółowo

Badanie zjawiska rezonansu elektrycznego w obwodzie RLC

Badanie zjawiska rezonansu elektrycznego w obwodzie RLC Politechnika Łódzka FTIMS Kierunek: Informatyka rok akademicki: 2008/2009 sem. 2. Termin: 6 IV 2009 Nr. ćwiczenia: 321 Temat ćwiczenia: Badanie zjawiska rezonansu elektrycznego w obwodzie RLC Nr. studenta:...

Bardziej szczegółowo

PRACOWNIA ELEKTRONIKI

PRACOWNIA ELEKTRONIKI PRACOWNIA ELEKTRONIKI Temat ćwiczenia: BADANIE WZMACNIA- CZA SELEKTYWNEGO Z OBWODEM LC NIWERSYTET KAZIMIERZA WIELKIEGO W BYDGOSZCZY INSTYTT TECHNIKI. 2. 3. Imię i Nazwisko 4. Data wykonania Data oddania

Bardziej szczegółowo

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO

BADANIE SILNIKA WYKONAWCZEGO PRĄDU STAŁEGO Politechnika Warszawska Instytut Maszyn Elektrycznych Laboratorium Maszyn Elektrycznych Malej Mocy BADANIE SILNIKA WYKONAWCZEGO PRĄD STAŁEGO Warszawa 2003 1. WSTĘP. Silnik wykonawczy prądu stałego o wzbudzeniu

Bardziej szczegółowo

BADANIE ELEMENTÓW RLC

BADANIE ELEMENTÓW RLC KATEDRA ELEKTRONIKI AGH L A B O R A T O R I U M ELEMENTY ELEKTRONICZNE BADANIE ELEMENTÓW RLC REV. 1.0 1. CEL ĆWICZENIA - zapoznanie się z systemem laboratoryjnym NI ELVIS II, - zapoznanie się z podstawowymi

Bardziej szczegółowo

Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd dodruk (PWN). Warszawa, Spis treści

Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd dodruk (PWN). Warszawa, Spis treści Teoria obwodów elektrycznych / Stanisław Bolkowski. wyd. 10-1 dodruk (PWN). Warszawa, 2017 Spis treści Przedmowa 13 1. Wiadomości wstępne 15 1.1. Wielkości i jednostki używane w elektrotechnice 15 1.2.

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

Wzmacniacze operacyjne

Wzmacniacze operacyjne Wzmacniacze operacyjne Cel ćwiczenia Celem ćwiczenia jest badanie podstawowych układów pracy wzmacniaczy operacyjnych. Wymagania Wstęp 1. Zasada działania wzmacniacza operacyjnego. 2. Ujemne sprzężenie

Bardziej szczegółowo

4.2 Analiza fourierowska(f1)

4.2 Analiza fourierowska(f1) Analiza fourierowska(f1) 179 4. Analiza fourierowska(f1) Celem doświadczenia jest wyznaczenie współczynników szeregu Fouriera dla sygnałów okresowych. Zagadnienia do przygotowania: szereg Fouriera; sygnał

Bardziej szczegółowo

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015

EUROELEKTRA Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 2014/2015 EROELEKTR Ogólnopolska Olimpiada Wiedzy Elektrycznej i Elektronicznej Rok szkolny 014/015 Zadania z elektrotechniki na zawody II stopnia (grupa elektryczna) Zadanie 1 W układzie jak na rysunku 1 dane są:,

Bardziej szczegółowo

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena

Metody mostkowe. Mostek Wheatstone a, Maxwella, Sauty ego-wiena Metody mostkowe Mostek Wheatstone a, Maxwella, Sauty ego-wiena Rodzaje przewodników Do pomiaru rezystancji rezystorów, rezystancji i indukcyjności cewek, pojemności i stratności kondensatorów stosuje się

Bardziej szczegółowo

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1)

Ćwiczenie nr.14. Pomiar mocy biernej prądu trójfazowego. Q=UIsinϕ (1) 1 Ćwiczenie nr.14 Pomiar mocy biernej prądu trójfazowego 1. Zasada pomiaru Przy prądzie jednofazowym moc bierna wyraża się wzorem: Q=UIsinϕ (1) Do pomiaru tej mocy stosuje się waromierze jednofazowe typu

Bardziej szczegółowo

Ćwiczenie 5. Pomiary parametrów sygnałów napięciowych. Program ćwiczenia:

Ćwiczenie 5. Pomiary parametrów sygnałów napięciowych. Program ćwiczenia: Ćwiczenie 5 Pomiary parametrów sygnałów napięciowych Program ćwiczenia: 1. Pomiar wartości skutecznej, średniej wyprostowanej i maksymalnej sygnałów napięciowych o kształcie sinusoidalnym, prostokątnym

Bardziej szczegółowo

Kondensator wygładzający w zasilaczu sieciowym

Kondensator wygładzający w zasilaczu sieciowym 1 Kondensator wygładzający w zasilaczu sieciowym Wielu z Was, przyszłych techników elektroników, korzysta, bądź samemu projektuje zasilacze sieciowe. Gotowy zasilacz można kupić, w którym wszystkie elementy

Bardziej szczegółowo

4. Schemat układu pomiarowego do badania przetwornika

4. Schemat układu pomiarowego do badania przetwornika 1 1. Projekt realizacji prac związanych z uruchomieniem i badaniem przetwornika napięcie/częstotliwość z układem AD654 2. Założenia do opracowania projektu a) Dane techniczne układu - Napięcie zasilające

Bardziej szczegółowo

Sterowanie Napędów Maszyn i Robotów

Sterowanie Napędów Maszyn i Robotów Wykład 4 - Model silnika elektrycznego prądu stałego z magnesem trwałym Instytut Automatyki i Robotyki Warszawa, 2017 Wstęp Silniki elektryczne prądu stałego są bardzo często stosowanymi elementami wykonawczymi

Bardziej szczegółowo

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów

ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów ĆWICZENIE 6 Transmitancje operatorowe, charakterystyki częstotliwościowe układów aktywnych pierwszego, drugiego i wyższych rzędów. Cel ćwiczenia Badanie układów pierwszego rzędu różniczkującego, całkującego

Bardziej szczegółowo

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego:

Wartość średnia półokresowa prądu sinusoidalnego I śr : Analogicznie określa się wartość skuteczną i średnią napięcia sinusoidalnego: Ćwiczenie 27 Temat: Prąd przemienny jednofazowy Cel ćwiczenia: Rozróżnić parametry charakteryzujące przebieg prądu przemiennego, oszacować oraz obliczyć wartości wielkości elektrycznych w obwodach prądu

Bardziej szczegółowo

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU

Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Podstawy użytkowania i pomiarów za pomocą MULTIMETRU Spis treści Informacje podstawowe...2 Pomiar napięcia...3 Pomiar prądu...5 Pomiar rezystancji...6 Pomiar pojemności...6 Wartość skuteczna i średnia...7

Bardziej szczegółowo

Miernictwo I INF Wykład 13 dr Adam Polak

Miernictwo I INF Wykład 13 dr Adam Polak Miernictwo I INF Wykład 13 dr Adam Polak ~ 1 ~ I. Właściwości elementów biernych A. Charakterystyki elementów biernych 1. Rezystor idealny (brak przesunięcia fazowego między napięciem a prądem) brak części

Bardziej szczegółowo

Charakterystyka amplitudowa i fazowa filtru aktywnego

Charakterystyka amplitudowa i fazowa filtru aktywnego 1 Charakterystyka amplitudowa i fazowa filtru aktywnego Charakterystyka amplitudowa (wzmocnienie amplitudowe) K u (f) jest to stosunek amplitudy sygnału wyjściowego do amplitudy sygnału wejściowego w funkcji

Bardziej szczegółowo

Ćwiczenie 4 BADANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH ELEMENTÓW LC. Laboratorium Inżynierii Materiałowej

Ćwiczenie 4 BADANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH ELEMENTÓW LC. Laboratorium Inżynierii Materiałowej Ćwiczenie 4 BADANIE CHARAKTERYSTYK CZĘSTOTLIWOŚCIOWYCH ELEMENTÓW LC Laboratorium Inżynierii Materiałowej 1. CEL ĆWICZENIA Celem ćwiczenia jest zbadanie, jaki wpływ ma konstrukcja oraz materiał wykorzystany

Bardziej szczegółowo

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC.

Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Ćwiczenie - 1 OBSŁUGA GENERATORA I OSCYLOSKOPU. WYZNACZANIE CHARAKTERYSTYKI AMPLITUDOWEJ I FAZOWEJ NA PRZYKŁADZIE FILTRU RC. Spis treści 1 Cel ćwiczenia 2 2 Podstawy teoretyczne 2 2.1 Charakterystyki częstotliwościowe..........................

Bardziej szczegółowo

Ćwiczenie: "Silnik indukcyjny"

Ćwiczenie: Silnik indukcyjny Ćwiczenie: "Silnik indukcyjny" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: Zasada

Bardziej szczegółowo

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH

15. UKŁADY POŁĄCZEŃ PRZEKŁADNIKÓW PRĄDOWYCH I NAPIĘCIOWYCH 15. UKŁDY POŁĄCZEŃ PRZEKŁDNIKÓW PRĄDOWYCH I NPIĘCIOWYCH 15.1. Cel i zakres ćwiczenia Celem ćwiczenia jest zapoznanie się z najczęściej spotykanymi układami połączeń przekładników prądowych i napięciowych

Bardziej szczegółowo

Elementy indukcyjne. Konstrukcja i właściwości

Elementy indukcyjne. Konstrukcja i właściwości Elementy indukcyjne Konstrukcja i właściwości Zbigniew Usarek, 2018 Politechnika Gdańska, Wydział FTiMS, Katedra Fizyki Ciała Stałego Materiały dydaktyczne do użytku wewnętrznego Elementy indukcyjne Induktor

Bardziej szczegółowo

Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi:

Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi: Wydział: EAIiIB Imię i nazwisko (e mail): Rok: 2018/2019 Grupa: Zespół: Data wykonania: LABORATORIUM METROLOGII Ćw. 5: Pomiar parametrów sygnałów napięciowych Zaliczenie: Podpis prowadzącego: Uwagi: Wstęp

Bardziej szczegółowo

WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ POLITECHNIKA BIAŁOSTOCKA KATEDRA ZARZĄDZANIA PRODUKCJĄ Instrukcja do zajęć laboratoryjnych z przedmiotu: Fizyka Kod przedmiotu: ISO73, INO73 Ćwiczenie Nr 7 WYZNACZANIE INDUKCYJNOŚCI WŁASNEJ I WZAJEMNEJ

Bardziej szczegółowo

ZASTOSOWANIA WYBRANYCH UKŁADÓW SCALONYCH W POMIARACH POBORU MOCY MASZYN I URZĄDZEŃ ODLEWNICZYCH

ZASTOSOWANIA WYBRANYCH UKŁADÓW SCALONYCH W POMIARACH POBORU MOCY MASZYN I URZĄDZEŃ ODLEWNICZYCH ZASTOSOWANIA WYBRANYCH UKŁADÓW SCALONYCH W POMIARACH POBORU MOCY MASZYN I URZĄDZEŃ ODLEWNICZYCH ZASTOSOWANIA WYBRANYCH UKŁADÓW SCALONYCH W POMIARACH POBORU MOCY MASZYN I URZĄDZEŃ ODLEWNICZYCH E. ZIÓŁKOWSKI

Bardziej szczegółowo