PODSTAWY REZONANSÓW MAGNETYCZNYCH W.3

Wielkość: px
Rozpocząć pokaz od strony:

Download "PODSTAWY REZONANSÓW MAGNETYCZNYCH W.3"

Transkrypt

1 PODSTAWY REZONANSÓW MAGNETYCZNYCH W.3 Dzisiaj chciałbym powiedzieć o właściwościach elektrycznych jąder, czyli mały wstęp, Ŝeby móc zacząć mówić o jądrowym rezonansie kwadrupolowym, gdzie występuje oddziaływanie momentu kwadrupolowego elektrycznego jądra z polem elektrycznym wewnątrzmolekularnym. Ogólnie moŝemy stwierdzić, Ŝe istnieją multipole elektryczne i magnetyczne. Mówimy, Ŝe istnieją l-tego rzędu. Zapisujemy to: l i mówimy, Ŝe dipol jest l-tego rzędu. l l = 0 monopol l = 1 dipol układ ładunków l = kwadrupol układ 4 ładunków l = 3 oktupol - 6 l = 4 heksadekapol 8 l określa rząd multipola. Nie ma monopola magnetycznego!!! Bo nigdy nie będzie tak, Ŝe będzie sam biegun północny albo sam południowy. Z pewnych własności symetrii, jakie spełnia w mechanice kwantowej hamiltonian jądra wynika, Ŝe mogą istnieć tylko multipole magnetyczne nieparzystego rzędu l = 1, 3, 5,... oraz mogą istnieć tylko multipole elektryczne parzystego rzędu l = 0,, 4,... Z kolei z własności ortogonalności funkcji własnych jądra, jeśli chodzi o momenty elektryczne multipolowe jądra to istnieją tylko takiego rzędu, Ŝe spełniona jest zaleŝność l I. Czyli dalej wynika z tego, Ŝe jeśli chodzi o momenty kwadrupolowe to chodzi o jądra, które posiadają spin o wartości I 1. Nie interesują nas wyŝsze multipole elektryczne. Wiadomo, Ŝe jądro z racji tej, Ŝe ma ładunek dodatni nie moŝe być dipolem, a moŝe być kwadrupolem elektrycznym. Wykorzystuje się ten fakt, Ŝe takie jądro oddziałuje z polem elektrycznym wewnątrzmolekularnym i stąd spektroskopia jądrowego rezonansu kwadrupolowego. Moment heksadekapolowy elektryczny jądra jest mały, oddziaływania byłyby rzędu jeśli chodzi o częstotliwości przejścia rezonansowe 1 Hz. Nie ma z tego względu spektroskopii heksadekapolowej. Interesuje nas moment kwadrupolowy jądra. Jeśli rozłoŝenie ładunku nie ma symetrii sferycznej tzn. moŝe to być rozłoŝenie ładunku jądra, w kształcie elipsoidy wydłuŝonej w kierunku osi tego obrotu jądra. Przyjmijmy, Ŝe jądro ma taki moment kwadrupolowy. 1

2 Układ współrzędnych, który jest ściśle związany z jądrem. Jego początek jest ściśle ulokowany w środku jądra. Wówczas elektryczny moment kwadrupolowy jest multipolem drugiego rzędu, czyli jest tensorem o składowych: eq ij = ρx' x' dτ i j - bo to będzie moment kwadrupolowy w tym układzie związanym z jądrem ρ gęstość ładunku elektrycznego w jądrze A poniewaŝ tak przyjęliśmy rozkład ładunku w jądrze, Ŝe te osie jakoś tak zgadzają się z osiami symetrii tego jądra. Czyli w takim układzie osi głównych tego tensora wystarczy podać tylko 3 składowe tego tensora dla jego określenia, tzn. opisania. eq eq z' z' x' x' = ρz' = eq y' y' dτ = ρx' dτ śeby scharakteryzować sam moment kwadrupolowy jądra przyjęło się podawać anizotropię tego tensora, którą definiujemy w następujący sposób: eq = ( eq z eq ' z' x' x' ) Po podstawieniu tych całek otrzymujemy, Ŝe moment kwadrupolowy jądra, a w zasadzie anizotropia tego tensora, którą nazywamy momentem kwadrupolowym jądra to jest: eq = ρ(3z' r' ) dτ e ładunek elementarny Promień wodzący to jest: r = x + y + z I tak zdefiniowany moment kwadrupolowy moŝna by uznać za charakterystykę pewną własności kwadrupolowych jądra. Postępuje się jednak inaczej. Wiadomo, Ŝe nigdy nie będziemy mogli rozwaŝać takich właściwości tak ściśle z danym konkretnym jednym jądrem, tylko w stosunku do jakiegoś układu zewnętrznego, który łatwo moŝemy zdefiniować. Zazwyczaj tak bywa, Ŝe te jądra precesują tak samo w NMR, EPR wokół jakiegoś wyróŝnionego kierunku. W NMR tym wyróŝnionym kierunkiem jest pole magnetyczne zewnętrzne, a w NQR wartość największej wymiany pola elektrycznego wewnątrzmolekularnego, czyli konkretnie największa wartość gradientu pola elektrycznego. To jest uwarunkowane budową molekuły. Dlatego przetransponujemy to wyraŝenie do układu zewnętrznego. Dla uproszczenia oś y = y.

3 Dokonujemy transformacji tego wyraŝenia układu związanego z jądrem do układu niesumowanego????? niepiłowanego???? nie rozumiem co gada... który zazwyczaj jest związany z osią wokół której te jądra rotują. OtóŜ, nasze jądro, które jest taką elipsoidką na osi z i jednocześnie interjądra i teŝ to jest moment kwadrupolowy jądra. napisać, Ŝe: Przejście do nowego układu jest bardzo proste. Wystarcz znać kąt tylko θ i wówczas moŝemy eq = 1 (3cos Θ 1) eq Tak się przyjęło, Ŝe moment kwadrupolowy to ładunek elementarny wyciągany z jakiejś wielkości. eq - juŝ jest anizotropią tego tensora momentu kwadrupolowego, ale w układzie współrzędnych związanych z osią precesji. cos Θ = m I( I + 1) W tym przypadku juŝ jest to normalne kwantowanie przestrzenne. m kwantowa liczba magnetyczna Czyli tak jak to było w kwantowaniu dipola magnetycznego. Oczywiście moŝna by stwierdzić, Ŝe juŝ jakoś tam opisaliśmy ten moment kwadrupolowy w tym układzie, ale jeszcze jedno przybliŝenie. Mianowicie, robi się tak, Ŝe ten moment kwadrupolowy określa się dla najmniejszego kąta precesji. A najmniejszy kąt precesji θ jest wówczas, gdy m = I. Gdy podsumujemy to wszystko to otrzymujemy na wielkość momentu kwadrupolowego: eq = I 1/ eq I + 1 eq nazywa się skalarnym momentem kwadrupolowym jądra A o samej wartości Q krótko mówi się moment kwadrupolowy. Czyli jądro posiada moment kwadrupolowy i w związku ze swoim specyficznym rozkładem elipsoidalnym, albo elipsoidy wydłuŝonej w kierunku osi obrotu, albo elipsoidy spłaszczonej w kierunku osi obrotu moment kwadrupolowy dla: 3

4 - elipsoidy wydłuŝonej - eq > 0 - elipsoidy spłaszczonej eq < 0 Mniej interesują nas jądra z symetrią sferyczną, rozkład w kształcie kuli wówczas moment kwadrupolowy eq = 0. W zasadzie ok. 57 izotopów posiada takie momenty kwadrupolowe i dlaczego to jest istotne? PoniewaŜ obojętnie czy robimy to w sposób naukowy czy stosujemy daną spektroskopię do jakichś rutynowych badań, np. mamy molekułę, i czy to będzie przemysł spoŝywczy, kosmetyczny czy inne badanie naukowe, znamy róŝne metody na to by poznać budowę danej molekuły. Patrzymy jakie mamy atomy. Jeśli mamy wodory to stosujemy NMR. Jeśli mamy Cl, N itp. stosujemy NQR. Po to by dokładnie rozszyfrować budowę, strukturę elektronową, gęstości elektronowe itd. Jak to się dzieje, Ŝe atomy łączą się ze sobą i tworzą molekułę, a molekuły kryształ??? Jeśli będziemy zbliŝać do siebie atomy to będziemy mieli do czynienia z siłami elektrostatycznymi. Jeśli daleko będą od siebie te dwa atomy to siły przyciągania, jeśli coraz bliŝej to zaczną odgrywać coraz większą rolę siły odpychania. Mamy dwa atomy o promieniu R w odległości r od siebie rys Jak wygląda siła oddziaływania między tymi dwoma atomami od odległości oraz energia potencjalna jak wygląda? W tym punkcje, gdzie jest r 0 tj. te siły się równowaŝą jest minimum energii potencjalnej i to jest ta odległość, która jest jakby długością wiązania chemicznego. Czyli wówczas te atomy się połączyły. Co to jest najmniejsza energia? Oznaczę ją przez C, jest to energia wiązania, albo energia dysocjacji. To by było na tyle jeśli chodzi o tworzenie molekuły. Mamy molekuły. Jeśli one będą zbliŝały się do siebie, to będą występowały oddziaływania międzymolekularne. MoŜemy wykreślić takie same krzywe dla tych oddziaływań między molekułami, ale w zasadzie dla molekuł te potencjały opisuje się potencjałem Lenarda Jonesa: C1 C6 U ( r) = 1 6 r r Część do potęgi 1 opisuje odpychanie, a do potęgi 6 przyciąganie. Są tam jeszcze inne potencjały, jak potencjał Morse a. Ogólnie w procesie tworzenia molekuł występują siły elektrostatyczne róŝnego rodzaju, przyciągania, odpychania. 4

5 Rodzaje wiązań międzyatomowych i międzymolekularnych Spektroskopie uŝywamy po to, aby rozszyfrować budowę molekuły. Musimy tę budowę znać: wiązania chemiczne, efekty elektronowe. - jonowe najprostsze wiązanie A + B A + B - (energia kj/mol) Atom A oddaje elektron atomowi B i otrzymujemy układ atomów zjonizowanych, np. NaCl. - kowalencyjne atomowe 1 atom oddaje 1e, drugi teŝ, oczywiście z przeciwległą orientacją spinów. Wówczas mamy uwspólnioną parę elektronową, np. Cl Cl, F - kowalencyjne spolaryzowane - generalnie zazwyczaj wiązania są pośrednie, częściowo kowalencyjne, częściowo jonowe, czyli spolaryzowane, np. HCl. W tym wiązaniu na wodorze jest ładunek +, a para elektronowa jest bliŝej atomu chloru, to są takie częściowe ładunki. - wiązania donorowo akceptorowe in. koordynacyjne występują, gdy 1 z atomów posiada wolną parę elektronową, którą oddaje do wspólnego uŝytkowania z atomem. Wówczas atomy mają wspólną parę elektronową, ale pochodzącą od 1 atomu. A: + B A : B A B - wiązania zdelokalizowane niezlokalizowane, np. benzen, antracen, albo inne pierwiastki o właściwościach metalicznych. Wówczas elektrony nie naleŝą do Ŝadnego z atomów, są uwspólnione i to powoduje, Ŝe spełniają pewną rolę wiąŝącą. - oddziaływanie van der Waalsa najsłabsze oddziaływanie, wszystkie oddziaływania międzyatomowe, międzycząsteczkowe, których energie są odwrotnie proporcjonalne do 6 potęgi odległości - wiązanie wodorowe bardzo istotne, występuje w większości układów biologicznych, warunkują róŝne procesy Ŝyciowe. Polega na tym, Ŝe jeśli mamy molekuły: pierwszą o właściwościach kwasowych i drugą o właściwościach zasadowych, to pierwsza molekuła zawsze posiada wodór, tak skonfigurowany, Ŝe widoczny jest na zewnątrz proton. Druga molekuła posiada jakiś atom N albo O, który posiada wolną parę elektronową. Występuje oddziaływanie elektrostatyczne między tym +, a i powstaje wiązanie wodorowe. To wiązanie oznaczamy takimi trzema kropeczkami... :) W zaleŝności od mocy tej drugiej molekuły, z jaką chęcią ona przyciągnęła ten proton, to wiązanie wodorowe moŝe być symetryczne wodór będzie pośrodku, albo wodór będzie przesunięty w jedną, albo drugą stronę. 5

6 Między pierwszym a trzecim zapisem widać róŝnicę w usytuowaniu protonu. Przykładając pole elektryczne moŝnaby tym protonem sterować. Nawet powstawały takie układy półprzewodnikowe, molekularne. Sterowanie było w ośrodku poznańskim bardzo intensywnie badane. Nawet Pan Nogaj był na takim spotkaniu. Bo to takie ciekawe. NATO zorganizowało konferencję na Korsyce...wow! Musimy podkreślić, Ŝe te metody spektroskopii w niektórych przypadkach juŝ znalazły swoje zastosowanie, w niektórych mogą mieć zastosowanie bardzo praktyczne... takie pierdzielenie ehh SPRAWA WIDMA FAL ELEKTROMAGNETYCZNYCH Idąc od fal najdłuŝszych, częstotliwości najmniejszych mamy: - mała częstotliwość przemysłowa - następnie fale radiowe - promieniowanie podczerwone - nadfioletowe - rentgenowskie - gamma W kaŝdym zakresie tego promieniowania są jakieś spektroskopie: podczerwieni, ultrafioletu. Wszystkie są wykorzystywane. Nas interesuje tylko ten zakres fal radiowych. Pomimo tego, Ŝe są to najdłuŝsze fale to posiadają najmniejsze częstotliwości, które są związane z przejściem między poziomami. Czyli są to spektroskopie badające najsubtelniejsze efekty. Spektroskopia molekularna zajmuje się oddziaływaniem między promieniowaniem elektromagnetycznym a materią. To oddziaływanie polega na pochłanianiu jakiejś części promieniowania elektromagnetycznego przez materię. Wówczas mamy do czynienia z absorpcją lub oddawaniem przez materię części energii w postaci promieniowania elektromagnetycznego, lub mamy do czynienia z emisją. Takie oddziaływania między promieniowaniem a materią występują tylko wtedy, gdy spełnione są pewne warunki, które określa mechanika kwantowa. Tu chodzi o to przejście. Tak przebiegają te zmiany pola elektrycznego i magnetycznego. 6

7 Promieniowanie elektromagnetyczne to naprzemienne zmiany pola elektrycznego i magnetycznego. Charakterystyczne parametry: λ długość fali ν - częstotliwość drgań [Hz] W zaleŝności od tego w jakim ośrodku rozchodzi się fala, to jej prędkość to juŝ nie jest m/s Jeśli chodzi o częstotliwości to są one oczywiście w Hz, ale często w niektórych spektroskopiach uŝywa się tzw. liczby falowej ν = 1/ λ[1/ cm] - np. w spektroskopii podczerwieni uŝywa się głównie tej częstotliwości. Jeśli chodzi o mechanikę kwantową, moŝemy mówić o kwancie energii, a kwant energii to jest hν. RODZAJE SPEKTROSKOPII: Istnieją róŝne kryteria podziału spektroskopii. 1) Emisja lub pochłanianie fotonów przez substancję oddziałującą z tym promieniowaniem: a: spektroskopia absorbcyjna b: spektroskopia emisyjna c: spektroskopia rozpraszania np. widmo Ramana ) Formy energii molekuł: (Energia wskutek skwantowania stwarza moŝliwość przejść pomiędzy poziomami energetycznymi) a: elektronowa b: oscylacyjna 7

8 c: rotacyjna d: NMR e: EPR f: NQR Oczywiście te podziały się troszeczkę nakładają. 3) Wielkość fotonów promieniowania, które są pochłaniane, względnie emitowane zakres widma tego promieniowania: Radiospektroskopia Mikrofalowa NMR NQR EPR EPR Rotacyjna SPEKTROSKOPIA Podczerwieni (IR) Oscylacyjna widmo Ramana W obszarze widzialnym i w nadfiolecie (UV) Elektronowa widmo Ramana Widmo Ramana zajmuje szczególną role, jest wzbudzane w obszarze widzialnym lub w nadfiolecie, ale dostarcza informacji o oscylacjach w molekułach jest więc widmem oscylacyjnym. PARAMETRY PASMA SPEKTRALNEGO IN. LINII WIDMOWEJ Kontury jednej linii rezonansowej. Jest to zaleŝność intensywności, jako funkcja częstotliwości: I = f(ν) I o częstotliwość całkowita tej linii W połowie wysokości tej linii rezonansowej mamy szerokość połówkową. Obszar pod krzywą intensywność całkowita, integralna - I ν o - częstość osi symetrii tej linii, charakteryzuje połoŝenie tej linii I ( ν ) + = ( ν ) 1 Idν I - intensywność integralna powierzchnia pod krzywą 8

9 ν 1/ - szerokość połówkowa - w połowie wysokości linii rezonansowej szerokość w sensie częstości szerokość nachyleniowa jeśli mamy linię to istnieją takie punkty, gdzie jest największe nachylenie tej linii. Trudno je określić dokładnie (to są linie absorpcji). Wówczas rysujemy pierwszą pochodną tej linii. Tam, gdzie będzie największe nachylenie i najmniejsze nachylenie będzie maksimum i minimum. W ten sposób łatwo moŝemy określić szerokość nachyleniową. ν nach - pomiędzy max i min, po wykreśleniu pierwszej pochodnej Kształt linii widmowej moŝe być opisany funkcją Lorentza i Gaussa. Krzywa Lorentza bardziej smukła :) dla Lorentza: a I ( ν ) = ( ν ν ν 1 / = b o ) + b a I o = - maksymalna intensywność b Πa I = - powierzchnia pod krzywą b Krzywa Gaussa ma inny charakter, nie ma takich spadków łagodnych 9

10 dla Gaussa: I( ν ) = a' e ν 1/ = q I o = a' I = a' q ( ν ν o ) q Π ln Rzeczywiste kontury linii rezonansowych są pomiędzy funkcją Lorentza a funkcją Gaussa. Określa się pewien współczynnik, który charakteryzuje to odstępstwo. r - współczynnik konturu Π ν 1/ r = I I o Lorentz r = 1 Gauss r = Π ln = 1, 47 Te krzywe występują we wszystkich spektroskopiach, bo wszystkie spektroskopie polegają na jakimś przejściu pomiędzy poziomami energetycznymi. Są to krzywe absorpcji, względnie emisji. 10

ZASADY ZALICZENIA PRZEDMIOTU MBS

ZASADY ZALICZENIA PRZEDMIOTU MBS ZASADY ZALICZENIA PRZEDMIOTU MBS LABORATORIUM - MBS 1. ROZWIĄZYWANIE WIDM kolokwium NMR 25 kwietnia 2016 IR 30 maja 2016 złożone 13 czerwca 2016 wtorek 6.04 13.04 20.04 11.05 18.05 1.06 8.06 coll coll

Bardziej szczegółowo

Spektroskopowe metody identyfikacji związków organicznych

Spektroskopowe metody identyfikacji związków organicznych Spektroskopowe metody identyfikacji związków organicznych Wstęp Spektroskopia jest metodą analityczną zajmującą się analizą widm powstających w wyniku oddziaływania promieniowania elektromagnetycznego

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 1 SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE 2 Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE

SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE SPEKTROSKOPIA IR I SPEKTROSKOPIA RAMANA JAKO METODY KOMPLEMENTARNE Promieniowanie o długości fali 2-50 μm nazywamy promieniowaniem podczerwonym. Absorpcja lub emisja promieniowania z tego zakresu jest

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab.

WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. WYKŁAD 2 Podstawy spektroskopii wibracyjnej, model oscylatora harmonicznego i anharmonicznego. Częstość oscylacji a struktura molekuły Prof. dr hab. Halina Abramczyk POLITECHNIKA ŁÓDZKA Wydział Chemiczny

Bardziej szczegółowo

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne

SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa przedmiotu SYLABUS A. Informacje ogólne SPEKTROSKOPIA MOLEKULARNA 2015/16 nazwa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków

Budowa atomów. Atomy wieloelektronowe Układ okresowy pierwiastków Budowa atomów Atomy wieloelektronowe Układ okresowy pierwiastków Model atomu Bohra atom zjonizowany (ciągłe wartości energii) stany wzbudzone jądro Energia (ev) elektron orbita stan podstawowy Poziomy

Bardziej szczegółowo

SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ

SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi. Ruch ten można rozłożyć na 3n-6 w przypadku

Bardziej szczegółowo

I. PROMIENIOWANIE CIEPLNE

I. PROMIENIOWANIE CIEPLNE I. PROMIENIOWANIE CIEPLNE - lata '90 XIX wieku WSTĘP Widmo promieniowania elektromagnetycznego zakres "pokrycia" różnymi rodzajami fal elektromagnetycznych promieniowania zawartego w danej wiązce. rys.i.1.

Bardziej szczegółowo

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy

Metody rezonansowe. Magnetyczny rezonans jądrowy Magnetometr protonowy Metody rezonansowe Magnetyczny rezonans jądrowy Magnetometr protonowy Co należy wiedzieć Efekt Zeemana, precesja Larmora Wektor magnetyzacji w podstawowym eksperymencie NMR Transformacja Fouriera Procesy

Bardziej szczegółowo

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych typ kowalencyjne jonowe metaliczne Van der Waalsa wodorowe siła* silne silne silne pochodzenie uwspólnienie e- (pary e-) przez

Bardziej szczegółowo

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM

Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Jan Drzymała ANALIZA INSTRUMENTALNA SPEKTROSKOPIA W ŚWIETLE WIDZIALNYM I PODCZERWONYM Światło słoneczne jest mieszaniną fal o różnej długości i różnego natężenia. Tylko część promieniowania elektromagnetycznego

Bardziej szczegółowo

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA)

Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Metody analizy pierwiastków z zastosowaniem wtórnego promieniowania rentgenowskiego. XRF, SRIXE, PIXE, SEM (EPMA) Promieniowaniem X nazywa się promieniowanie elektromagnetyczne o długości fali od około

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 4 v.16 Wiązanie metaliczne Wiązanie metaliczne Zajmujemy się tylko metalami dlatego w zasadzie interesuje nas tylko wiązanie metaliczne.

Bardziej szczegółowo

Ćw.6. Badanie własności soczewek elektronowych

Ćw.6. Badanie własności soczewek elektronowych Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki

Bardziej szczegółowo

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm)

Podczerwień bliska: cm -1 (0,7-2,5 µm) Podczerwień właściwa: cm -1 (2,5-14,3 µm) Podczerwień daleka: cm -1 (14,3-50 µm) SPEKTROSKOPIA W PODCZERWIENI Podczerwień bliska: 14300-4000 cm -1 (0,7-2,5 µm) Podczerwień właściwa: 4000-700 cm -1 (2,5-14,3 µm) Podczerwień daleka: 700-200 cm -1 (14,3-50 µm) WIELKOŚCI CHARAKTERYZUJĄCE

Bardziej szczegółowo

Ćwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy)

Ćwiczenie 3 ANALIZA JAKOŚCIOWA PALIW ZA POMOCĄ SPEKTROFOTOMETRII FTIR (Fourier Transform Infrared Spectroscopy) POLITECHNIKA ŁÓDZKA WYDZIAŁ INśYNIERII PROCESOWEJ I OCHRONY ŚRODOWISKA KATEDRA TERMODYNAMIKI PROCESOWEJ K-106 LABORATORIUM KONWENCJONALNYCH ŹRÓDEŁ ENERGII I PROCESÓW SPALANIA Ćwiczenie 3 ANALIZA JAKOŚCIOWA

Bardziej szczegółowo

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej metodę (teorię): metoda wiązań walencyjnych (VB)

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej metodę (teorię): metoda wiązań walencyjnych (VB) CZĄSTECZKA Stanislao Cannizzaro (1826-1910) cząstki - elementy mikroświata, termin obejmujący zarówno cząstki elementarne, jak i atomy, jony proste i złożone, cząsteczki, rodniki, cząstki koloidowe; cząsteczka

Bardziej szczegółowo

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu:

Atom wodoru. Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: ATOM WODORU Atom wodoru Model klasyczny: nieruchome jądro +p i poruszający się wokół niego elektron e w odległości r; energia potencjalna elektronu: U = 4πε Opis kwantowy: wykorzystując zasadę odpowiedniości

Bardziej szczegółowo

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1)

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1) h S = I(I+) gdzie: I kwantowa liczba spinowa jądra I = 0, ½,, /,, 5/,... itd gdzie: = γ S γ współczynnik żyromagnetyczny moment magnetyczny brak spinu I = 0 spin sferyczny I = _ spin elipsoidalny I =,,,...

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

Wiązania chemiczne. Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych. 5 typów wiązań

Wiązania chemiczne. Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych. 5 typów wiązań Wiązania chemiczne Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych 5 typów wiązań wodorowe A - H - A, jonowe ( np. KCl ) molekularne (pomiędzy atomami gazów szlachetnych i małymi

Bardziej szczegółowo

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej jedną z dwóch metod (teorii): metoda wiązań walencyjnych (VB)

CZĄSTECZKA. Do opisu wiązań chemicznych stosuje się najczęściej jedną z dwóch metod (teorii): metoda wiązań walencyjnych (VB) CZĄSTECZKA Stanislao Cannizzaro (1826-1910) cząstki - elementy mikroświata, termin obejmujący zarówno cząstki elementarne, jak i atomy, jony proste i złożone, cząsteczki, rodniki, cząstki koloidowe; cząsteczka

Bardziej szczegółowo

Oddziaływanie cząstek z materią

Oddziaływanie cząstek z materią Oddziaływanie cząstek z materią Trzy główne typy mechanizmów reprezentowane przez Ciężkie cząstki naładowane (cięższe od elektronów) Elektrony Kwanty gamma Ciężkie cząstki naładowane (miony, p, cząstki

Bardziej szczegółowo

Konfiguracja elektronowa atomu

Konfiguracja elektronowa atomu Konfiguracja elektronowa atomu ANALIZA CHEMICZNA BADANIE WŁAŚCIWOŚCI SUBSTANCJI KONTROLA I STEROWANIE PROCESAMI TECHNOLOGICZNYMI Właściwości pierwiastków - Układ okresowy Prawo okresowości Mendelejewa

Bardziej szczegółowo

Spektroskopia. Spotkanie drugie UV-VIS, NMR

Spektroskopia. Spotkanie drugie UV-VIS, NMR Spektroskopia Spotkanie drugie UV-VIS, NMR Spektroskopia UV-Vis 2/32 Promieniowanie elektromagnetyczne: Ultrafioletu ~100-350 nm światło widzialne ~350-900 nm Kwanty energii zgodne z róŝnicami poziomów

Bardziej szczegółowo

39 DUALIZM KORPUSKULARNO FALOWY.

39 DUALIZM KORPUSKULARNO FALOWY. Włodzimierz Wolczyński 39 DUALIZM KORPUSKULARNO FALOWY. ZJAWISKO FOTOELEKTRYCZNE. FALE DE BROGILE Fale radiowe Fale radiowe ultrakrótkie Mikrofale Podczerwień IR Światło Ultrafiolet UV Promienie X (Rentgena)

Bardziej szczegółowo

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR

Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Ćwiczenie 2 Przejawy wiązań wodorowych w spektroskopii IR i NMR Szczególnym i bardzo charakterystycznym rodzajem oddziaływań międzycząsteczkowych jest wiązanie wodorowe. Powstaje ono między molekułami,

Bardziej szczegółowo

Atom wodoru i jony wodoropodobne

Atom wodoru i jony wodoropodobne Atom wodoru i jony wodoropodobne dr inż. Ireneusz Owczarek CMF PŁ ireneusz.owczarek@p.lodz.pl http://cmf.p.lodz.pl/iowczarek 2012/13 Spis treści Spis treści 1. Model Bohra atomu wodoru 2 1.1. Porządek

Bardziej szczegółowo

Temat: Promieniowanie atomu wodoru (teoria)

Temat: Promieniowanie atomu wodoru (teoria) Temat: Promieniowanie atomu wodoru (teoria) Zgodnie z drugim postulatem Bohra elektron poruszając się po dozwolonej orbicie nie wypromieniowuje energii. Promieniowanie zostaje wyemitowane, gdy elektron

Bardziej szczegółowo

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C

Wymiana ciepła. Ładunek jest skwantowany. q=n. e gdzie n = ±1, ±2, ±3 [1C = 6, e] e=1, C Wymiana ciepła Ładunek jest skwantowany ładunek elementarny ładunek pojedynczego elektronu (e). Każdy ładunek q (dodatni lub ujemny) jest całkowitą wielokrotnością jego bezwzględnej wartości. q=n. e gdzie

Bardziej szczegółowo

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych

Bardziej szczegółowo

PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ

PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ Kierowniczka pracowni: dr hab. Magdalena Pecul-Kudelska, (pok. 417), e-mail mpecul@chem.uw.edu.pl, tel 0228220211 wew 501; Spis ćwiczeń i osoby prowadzące 1.

Bardziej szczegółowo

Orbitale typu σ i typu π

Orbitale typu σ i typu π Orbitale typu σ i typu π Dwa odpowiadające sobie orbitale sąsiednich atomów tworzą kombinacje: wiążącą i antywiążącą. W rezultacie mogą powstać orbitale o rozkładzie przestrzennym dwojakiego typu: σ -

Bardziej szczegółowo

Magnetyczny rezonans jądrowy

Magnetyczny rezonans jądrowy Magnetyczny rezonans jądrowy Widmo NMR wykres absorpcji promieniowania magnetycznego od jego częstości Częstość pola wyraża się w częściach na milion (ppm) częstości pola magnetycznego pochłanianego przez

Bardziej szczegółowo

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz. Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa

ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH. Witold Danikiewicz. Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa ZAAWANSOWANE METODY USTALANIA BUDOWY ZWIĄZKÓW ORGANICZNYCH Witold Danikiewicz Instytut Chemii Organicznej PAN ul. Kasprzaka 44/52, 01-224 Warszawa CZĘŚĆ I PRZEGLĄD METOD SPEKTRALNYCH Program wykładów Wprowadzenie:

Bardziej szczegółowo

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków).

Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). Właściwości chemiczne i fizyczne pierwiastków powtarzają się w pewnym cyklu (zebrane w grupy 2, 8, 8, 18, 18, 32 pierwiastków). 1925r. postulat Pauliego: Na jednej orbicie może znajdować się nie więcej

Bardziej szczegółowo

Elementy Fizyki Jądrowej. Wykład 3 Promieniotwórczość naturalna

Elementy Fizyki Jądrowej. Wykład 3 Promieniotwórczość naturalna Elementy Fizyki Jądrowej Wykład 3 Promieniotwórczość naturalna laboratorium Curie troje noblistów 1903 PC, MSC 1911 MSC 1935 FJ, IJC Przemiany jądrowe He X X 4 2 4 2 A Z A Z e _ 1 e X X A Z A Z e 1 e

Bardziej szczegółowo

SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS

SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS SPEKTROSKOPIA ATOMOWA ATOMOWA SPEKTROMETRIA ABSORPCYJNA ATOMOWA SPEKTROMETRIA EMISYJNA FLUORESCENCJA ATOMOWA ATOMOWA SPEKTROMETRIA MAS PROMIENIOWANIE ELEKTROMAGNETYCZNE Promieniowanie X Ultrafiolet Ultrafiolet

Bardziej szczegółowo

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl

Ładunki elektryczne i siły ich wzajemnego oddziaływania. Pole elektryczne. Copyright by pleciuga@ o2.pl Ładunki elektryczne i siły ich wzajemnego oddziaływania Pole elektryczne Copyright by pleciuga@ o2.pl Ładunek punktowy Ładunek punktowy (q) jest to wyidealizowany model, który zastępuje rzeczywiste naelektryzowane

Bardziej szczegółowo

Kulka krąży wokół jądra po orbicie, o ustalonych parametrach, które mogą się zmieniać tylko skokowo, kiedy elektron przeskakuje na inną orbitę.

Kulka krąży wokół jądra po orbicie, o ustalonych parametrach, które mogą się zmieniać tylko skokowo, kiedy elektron przeskakuje na inną orbitę. Widmo elektronowe Elektrony w molekule poruszają się wokół jąder, mają więc pewną energię kinetyczną. Ponieważ znajdują się one w polu sil elektrostatycznych przyciągania przez jądra i odpychania przez

Bardziej szczegółowo

Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej

Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej Zastosowanie spektroskopii w podczerwieni w jakościowej i ilościowej analizie organicznej dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB Tematyka Spektroskopia - podział i zastosowanie

Bardziej szczegółowo

PDF stworzony przez wersję demonstracyjną pdffactory

PDF stworzony przez wersję demonstracyjną pdffactory Promieniowanie elektromagnetyczne (fala elektromagnetyczna) rozchodzące się w przestrzeni zaburzenie pola elektromagnetycznego. Zaburzenie to ma charakter fali poprzecznej, w której składowa elektryczna

Bardziej szczegółowo

MAGNETYCZNY REZONANS JĄDROWY - podstawy

MAGNETYCZNY REZONANS JĄDROWY - podstawy 1 MAGNETYCZNY REZONANS JĄDROWY - podstawy 1. Wprowadzenie. Wstęp teoretyczny..1 Ruch magnetyzacji jądrowej, relaksacja. Liniowa i kołowa polaryzacja pola zmiennego (RF)..3 Metoda echa spinowego 1. Wprowadzenie

Bardziej szczegółowo

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania Cz. I Materiał powtórzeniowy do sprawdzianu dla klas I LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela

Bardziej szczegółowo

ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ

ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ ĆWICZENIE NR 5 ANALIZA NMR PRODUKTÓW FERMENTACJI ALKOHOLOWEJ Uwaga: Ze względu na laboratoryjny charakter zajęć oraz kontakt z materiałem biologicznym, studenci zobowiązani są uŝywać fartuchów i rękawiczek

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania

Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania Cz. I Materiał powtórzeniowy do sprawdzianu dla klas II LO - Wiązania chemiczne + przykładowe zadania i proponowane rozwiązania I. Elektroujemność pierwiastków i elektronowa teoria wiązań Lewisa-Kossela

Bardziej szczegółowo

Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego.

Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego. Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego. Zmienne pole magnetyczne wytwarza zmienne pole elektryczne i odwrotnie zmienne pole elektryczne jest źródłem zmiennego pola magnetycznego

Bardziej szczegółowo

3. Cząsteczki i wiązania

3. Cząsteczki i wiązania 20161020 3. Cząsteczki i wiązania Elektrony walencyjne Wiązania jonowe i kowalencyjne Wiązanie typu σ i π Hybrydyzacja Przewidywanie kształtu cząsteczek AX n Orbitale zdelokalizowane Cząsteczki związków

Bardziej szczegółowo

Rozdział 7 Molekuły. 7.1: Jak się formują molekuły? 7.2: Wiązania molekularne 7.3: Rotacje 7.4: Wibracje 7.5: Spektra 7.6: Złożone płaskie molekuły

Rozdział 7 Molekuły. 7.1: Jak się formują molekuły? 7.2: Wiązania molekularne 7.3: Rotacje 7.4: Wibracje 7.5: Spektra 7.6: Złożone płaskie molekuły Rozdział 7 Molekuły 7.1: Jak się formują molekuły? 7.2: Wiązania molekularne 7.3: Rotacje 7.4: Wibracje 7.5: Spektra 7.6: Złożone płaskie molekuły Johannes Diderik van der Waals (1837 1923) Nie, ta sztuczka

Bardziej szczegółowo

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św.

Foton, kwant światła. w klasycznym opisie świata, światło jest falą sinusoidalną o częstości n równej: c gdzie: c prędkość światła, długość fali św. Foton, kwant światła Wielkość fizyczna jest skwantowana jeśli istnieje w pewnych minimalnych (elementarnych) porcjach lub ich całkowitych wielokrotnościach w klasycznym opisie świata, światło jest falą

Bardziej szczegółowo

NMR Nuclear Magnetic Resonance. Co to jest?

NMR Nuclear Magnetic Resonance. Co to jest? 1 NMR Nuclear Magnetic Resonance Co to jest? Spektroskopia NMR ang. Nuclear Magnetic Resonance Spektroskopia Magnetycznego Rezonansu Jądrowego (MRJ) Wykorzystuje własności magnetyczne jąder atomowych Spektroskopia

Bardziej szczegółowo

Rozmycie pasma spektralnego

Rozmycie pasma spektralnego Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α

Elektrostatyka ŁADUNEK. Ładunek elektryczny. Dr PPotera wyklady fizyka dosw st podypl. n p. Cząstka α Elektrostatyka ŁADUNEK elektron: -e = -1.610-19 C proton: e = 1.610-19 C neutron: 0 C n p p n Cząstka α Ładunek elektryczny Ładunek jest skwantowany: Jednostką ładunku elektrycznego w układzie SI jest

Bardziej szczegółowo

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu

Spektroskop, rurki Plückera, cewka Ruhmkorffa, aparat fotogtaficzny, źródło prądu Imię i nazwisko ucznia Nazwa i adres szkoły Imię i nazwisko nauczyciela Tytuł eksperymentu Dział fizyki Potrzebne materiały do doświadczeń Kamil Jańczyk i Mateusz Kowalkowski I Liceum Ogólnokształcące

Bardziej szczegółowo

Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego

Spektroskopia molekularna. Ćwiczenie nr 1. Widma absorpcyjne błękitu tymolowego Spektroskopia molekularna Ćwiczenie nr 1 Widma absorpcyjne błękitu tymolowego Doświadczenie to ma na celu zaznajomienie uczestników ćwiczeń ze sposobem wykonywania pomiarów metodą spektrofotometryczną

Bardziej szczegółowo

Fizyka atomowa r. akad. 2012/2013

Fizyka atomowa r. akad. 2012/2013 r. akad. 2012/2013 wykład VII - VIII Podstawy Procesów i Konstrukcji Inżynierskich Fizyka atomowa Zakład Biofizyki 1 Spin elektronu Elektrony posiadają własny moment pędu L s. nazwany spinem. Wartość spinu

Bardziej szczegółowo

W latach dwudziestych XX wieku pojawiły się koncepcje teoretyczne, które pozwoliły przewidzieć jądrowy rezonans magnetyczny, przez szereg lat eksperymentatorzy usiłowali bez skutku odkryć to zjawisko doświadczalnie.

Bardziej szczegółowo

Analiza spektralna widma gwiezdnego

Analiza spektralna widma gwiezdnego Analiza spektralna widma gwiezdnego JG &WJ 13 kwietnia 2007 Wprowadzenie Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe źródło informacji Wprowadzenie- światło- podstawowe

Bardziej szczegółowo

BADANIA GRUNTU W APARACIE RC/TS.

BADANIA GRUNTU W APARACIE RC/TS. Str.1 SZCZEGÓŁOWE WYPROWADZENIA WZORÓW DO PUBLIKACJI BADANIA GRUNTU W APARACIE RC/TS. Dyka I., Srokosz P.E., InŜynieria Morska i Geotechnika 6/2012, s.700-707 III. Wymuszone, cykliczne skręcanie Rozpatrujemy

Bardziej szczegółowo

2. WIĄZANIA CHEMICZNE, BUDOWA CZĄSTECZEK. Irena Zubel Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska (na prawach rękopisu)

2. WIĄZANIA CHEMICZNE, BUDOWA CZĄSTECZEK. Irena Zubel Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska (na prawach rękopisu) 2. WIĄZANIA CHEMICZNE, BUDOWA CZĄSTECZEK Irena Zubel Wydział Elektroniki Mikrosystemów i Fotoniki Politechnika Wrocławska (na prawach rękopisu) Wiązania chemiczne Podstawowe stany skupienia materii (w

Bardziej szczegółowo

Widmo promieniowania

Widmo promieniowania Widmo promieniowania Spektroskopia Każde ciało wysyła promieniowanie. Promieniowanie to jest składa się z wiązek o różnych długościach fal. Jeśli wiązka światła pada na pryzmat, ulega ono rozszczepieniu,

Bardziej szczegółowo

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan

Promieniowanie jonizujące i metody radioizotopowe. dr Marcin Lipowczan Promieniowanie jonizujące i metody radioizotopowe dr Marcin Lipowczan Budowa atomu 897 Thomson, 0 0 m, kula dodatnio naładowana ładunki ujemne 9 Rutherford, rozpraszanie cząstek alfa na folię metalową,

Bardziej szczegółowo

Fala EM w izotropowym ośrodku absorbującym

Fala EM w izotropowym ośrodku absorbującym Fala EM w izotropowym ośrodku absorbującym Fala EM powoduje generację zmienne pole elektryczne E Zmienne co do kierunku i natężenia, Pole E Nie wywołuje w ośrodku prądu elektrycznego Powoduje ruch elektronów

Bardziej szczegółowo

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie

Podstawy chemii. dr hab. Wacław Makowski. Wykład 1: Wprowadzenie Podstawy chemii dr hab. Wacław Makowski Wykład 1: Wprowadzenie Wspomnienia ze szkoły Elementarz (powtórka z gimnazjum) Układ okresowy Dalsze wtajemniczenia (liceum) Program zajęć Podręczniki Wydział Chemii

Bardziej szczegółowo

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki?

Mechanika kwantowa. Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Jak opisać atom wodoru? Jak opisać inne cząsteczki? Mechanika kwantowa Równanie Schrödingera Ĥ E ψ H ˆψ = Eψ operator różniczkow Hamiltona energia funkcja falowa h d d d + + m d d dz

Bardziej szczegółowo

Techniczne podstawy promienników

Techniczne podstawy promienników Techniczne podstawy promienników podczerwieni Technical Information,, 17.02.2009, Seite/Page 1 Podstawy techniczne Rozdz. 1 1 Rozdział 1 Zasady promieniowania podczerwonego - Podstawy fizyczne - Widmo,

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo

3. Cząsteczki i wiązania

3. Cząsteczki i wiązania 3. Cząsteczki i wiązania Elektrony walencyjne Wiązania jonowe i kowalencyjne Wiązanie typu σ i π Hybrydyzacja Przewidywanie kształtu cząsteczek AX n Orbitale zdelokalizowane Cząsteczki związków organicznych

Bardziej szczegółowo

Informacje uzyskiwane dzięki spektrometrii mas

Informacje uzyskiwane dzięki spektrometrii mas Slajd 1 Spektrometria mas i sektroskopia w podczerwieni Slajd 2 Informacje uzyskiwane dzięki spektrometrii mas Masa cząsteczkowa Wzór związku Niektóre informacje dotyczące wzoru strukturalnego związku

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

Fizyka elektryczność i magnetyzm

Fizyka elektryczność i magnetyzm Fizyka elektryczność i magnetyzm W5 5. Wybrane zagadnienia z optyki 5.1. Światło jako część widma fal elektromagnetycznych. Fale elektromagnetyczne, które współczesny człowiek potrafi wytwarzać, i wykorzystywać

Bardziej szczegółowo

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM.

CHEMIA 1. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna ATOM. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne kierunek lekarski, stomatologia, farmacja, analityka medyczna tel. 0501 38 39 55 www.medicus.edu.pl CHEMIA 1 ATOM Budowa atomu - jądro, zawierające

Bardziej szczegółowo

Metody badań spektroskopowych

Metody badań spektroskopowych Metody badań spektroskopowych Program wykładu Wstęp A. Spektroskopia optyczna 1. Podstawy spektroskopii optycznej 1.1 Promieniowanie elektromagnetyczne 1.2 Kwantowanie energii 1.3 Emisja i absorpcja promieniowania

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

Pracownia fizyczna dla szkół

Pracownia fizyczna dla szkół Imię i Nazwisko Widma świecenia pierwiastków opracowanie: Zofia Piłat Cel doświadczenia Celem doświadczenia jest zaobserwowanie widm świecących gazów atomowych i zidentyfikowanie do jakich pierwiastków

Bardziej szczegółowo

Widmo fal elektromagnetycznych

Widmo fal elektromagnetycznych Czym są fale elektromagnetyczne? Widmo fal elektromagnetycznych dr inż. Romuald Kędzierski Podstawowe pojęcia związane z falami - przypomnienie pole falowe część przestrzeni objęta w danej chwili falą

Bardziej szczegółowo

Podstawowe właściwości fizyczne półprzewodników WYKŁAD 1 SMK J. Hennel: Podstawy elektroniki półprzewodnikowej, WNT, W-wa 2003

Podstawowe właściwości fizyczne półprzewodników WYKŁAD 1 SMK J. Hennel: Podstawy elektroniki półprzewodnikowej, WNT, W-wa 2003 Podstawowe właściwości fizyczne półprzewodników WYKŁAD 1 SMK J. Hennel: Podstawy elektroniki półprzewodnikowej, WNT, W-wa 003 1. Wiązania atomów w krysztale Siły wiążące atomy w kryształ mają charakter

Bardziej szczegółowo

Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań.

Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. 1 Oddziaływanie podstawowe rodzaj oddziaływania występującego w przyrodzie i nie dającego sprowadzić się do innych oddziaływań. Wyróżniamy cztery rodzaje oddziaływań (sił) podstawowych: oddziaływania silne

Bardziej szczegółowo

Potencjał pola elektrycznego

Potencjał pola elektrycznego Potencjał pola elektrycznego Pole elektryczne jest polem zachowawczym, czyli praca wykonana przy przesunięciu ładunku pomiędzy dwoma punktami nie zależy od tego po jakiej drodze przesuwamy ładunek. Spróbujemy

Bardziej szczegółowo

Wstęp. Krystalografia geometryczna

Wstęp. Krystalografia geometryczna Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.

Bardziej szczegółowo

Pole magnetyczne Wykład LO Zgorzelec 13-01-2016

Pole magnetyczne Wykład LO Zgorzelec 13-01-2016 Pole magnetyczne Igła magnetyczna Pole magnetyczne Magnetyzm ziemski kompas Biegun północny geogr. Oś obrotu deklinacja Pole magnetyczne Ziemi pochodzi od dipola magnetycznego. Kierunek magnetycznego momentu

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego (NMR)

Spektroskopia magnetycznego rezonansu jądrowego (NMR) Spektroskopia magnetycznego rezonansu jądrowego (NM) Fizyczne podstawy spektroskopii NM W spektroskopii magnetycznego rezonansu jądrowego używane jest promieniowanie elektromagnetyczne o częstościach z

Bardziej szczegółowo

5.1. Powstawanie i rozchodzenie się fal mechanicznych.

5.1. Powstawanie i rozchodzenie się fal mechanicznych. 5. Fale mechaniczne 5.1. Powstawanie i rozchodzenie się fal mechanicznych. Ruch falowy jest zjawiskiem bardzo rozpowszechnionym w przyrodzie. Spotkałeś się z pewnością w życiu codziennym z takimi pojęciami

Bardziej szczegółowo

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury.

Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. 1 Ciało doskonale czarne absorbuje całkowicie padające promieniowanie. Parametry promieniowania ciała doskonale czarnego zależą tylko jego temperatury. natężenie natężenie teoria klasyczna wynik eksperymentu

Bardziej szczegółowo

FIZYKA IV etap edukacyjny zakres podstawowy

FIZYKA IV etap edukacyjny zakres podstawowy FIZYKA IV etap edukacyjny zakres podstawowy Cele kształcenia wymagania ogólne I. Wykorzystanie wielkości fizycznych do opisu poznanych zjawisk lub rozwiązania prostych zadań obliczeniowych. II. Przeprowadzanie

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE 1 Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Wykład przygotowany w oparciu o podręczniki:

Wykład przygotowany w oparciu o podręczniki: Slajd 1 Wykład przygotowany w oparciu o podręczniki: Organic Chemistry 4 th Edition Paula Yurkanis Bruice Slajd 2 Struktura elektronowa wiązanie chemiczne Kwasy i zasady Slajd 3 Chemia organiczna Związki

Bardziej szczegółowo

Przejścia promieniste

Przejścia promieniste Przejście promieniste proces rekombinacji elektronu i dziury (przejście ze stanu o większej energii do stanu o energii mniejszej), w wyniku którego następuje emisja promieniowania. E Długość wyemitowanej

Bardziej szczegółowo

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin 1. Zapisz konfigurację elektronową dla atomu helu (dwa elektrony) i wyjaśnij, dlaczego cząsteczka wodoru jest stabilna, a cząsteczka

Bardziej szczegółowo