Spektroskopia Ramana

Wielkość: px
Rozpocząć pokaz od strony:

Download "Spektroskopia Ramana"

Transkrypt

1 Spektroskopia Ramana Źródło światła Próbka Promieniowanie rozproszone

2 Rozpraszanie światła Rozpraszanie światła (fal elektromagnetycznych) to zjawisko oddziaływania światła z materią w wyniku którego następuje zmiana kierunku rozchodzenia się światła, z wyjątkiem zjawisk opisanych przez odbicie i załamanie światła. Wywołuje złudzenie świecenia ośrodka. Rozróżnia się rozpraszanie światła: sprężyste (Rayleigh a) - podczas rozpraszania nie następuje zmiana energii (częstotliwości) światła niesprężyste - podczas rozpraszania zmienia się energia (częstotliwość) światła rok Intensywność rozproszonego światła proporcjonalna do 1 4

3 Rozpraszanie światła Rozpraszanie wiąże się z niejednorodnościami układu, w którym zachodzi propagacja fal. Rozpraszanie może zachodzić na skalę cząstek elementarnych, molekularnych lub w skalach znacznie większych od molekularnych: przykładami są rozpraszanie fal elektromagnetycznych na pyłach i aerozolach zawieszonych w powietrzu.

4 Dlaczego niebo jest niebieskie? I ~ 1/ 4 (700 nm / 400 nm) 4 = = 9.4 Światło czerwone rozprasza się nawet 9-krotnie słabiej niż fioletowe

5 Dlaczego niebo jest czerwone? I ~ 1/ 4 Podczas wschodu lub zachodu Słońca promienie słoneczne muszą przebyć dłuższą drogę w atmosferze niż gdy Słońce znajduje się wysoko na niebie. Krótsze długości fal ulegają silnemu rozpraszaniu i nie docierają do obserwatora.

6 Spektroskopia Ramana Pamiętamy, że cząsteczki nie posiadające stałego momentu dipolowego nie dają widm rotacyjnych Cząsteczki, dla których w czasie drgań nie zmienia się moment dipolowy nie wykazują przejść oscylacyjnych Jednakże chcemy znać strukturę i właściwości takich cząsteczek! Jeżeli cząsteczka nie posiada momentu dipolowego oscylującego wraz z ruchem (rotacyjnym/oscylacyjnym), to może należy wyindukować moment dipolowy przy pomocy pola elektrycznego światła? Ze względu na to, że wywołany w ten sposób proces jest pośredni (tj. pole elektryczne światła indukuje dipol, a następnie światło oddziałuje z oscylującym dipolem) uzyskane przejścia są względnie słabe. Jednakże jest on niezwykle cenny ponieważ pozwala spojrzeć na cząsteczki, które są niewidzialne w spektroskopii IR lub MW.

7 W 1923 roku Smekal zwraca uwagę, że w promieniowaniu rozproszonym powinny się pojawiać obok fotonów h 0 fotony o częstościach różnych od częstości promieniowania padającego W 1925 roku Kramers i Heisenberg opracowali kwantowomechaniczną teorię rozpraszania, która przewidywała, że wśród rozproszonych fotonów znajdują się nie tylko fotony h 0, lecz także fotony o częstościach 0 ± osc,rot. W 1927 roku Dirac opracował kwantowomechaniczną teorię rozpraszania W 1928 roku pojawiają się publikacje fizyka hinduskiego Chandrasekhary Venkaty Ramana (Nature, 121, 501,1928) oraz dwóch fizyków radzieckich G.D. Landsberga i L.I. Mandelstama (Naturwissenschaften, 16, 557,1928), w których donosi się doświadczalne odkrycie zjawiska przewidzianego przez teoretyków odpowiednio w cieczach m.in. w benzenie oraz w krysztale kwarcu Nagroda Nobla z Fizyki 1930 za " odkrycie rozpraszania światła połączonego ze zmianą długości fali dla Chandrasekhara Venkata Raman, University Kalkuta, Indie

8 Nagroda Nobla z fizyki 1930 za jego pracę nad rozpraszaniem światła i odkrycie efektu nazwanego jego imieniem" Profesor Sir C.V. Raman ( ) Indyjski Instytut Naukowy w Bangalore Fotografia pierwszego widma Ramana Drzewo posadzone na Campusie Raman Research Institue gdzie Raman został skremowany

9 Chandrasekhara Venkata Raman (ur. 7 listopada 1888, zm. 21 listopada 1970), indyjski fizyk, laureat Nagrody Nobla (1930) za prace dotyczące rozpraszania światła i za odkrycie zjawiska nazwanego jego imieniem. Raman był pierwszym Hindusem urodzonym i wykształconym w Indiach który otrzymał Nagrodę Nobla. Był całkowitym abstynentem, kiedy w czasie przyjęcia po otrzymaniu Nagrody Nobla wzniesiono na jego cześć toast, miał podobno powiedzieć "Sir, widział pan efekt Ramana w alkoholu, proszę nie próbować zobaczyć efektu alkoholu w Ramanie!" Urodził się w Tiruchirapalli, India Profesor fizyki, University of Calcutta 1922 Opublikował pracę 'Molecular Diffraction of Light.' Uzyskał tytuł Sir 1930 Nagroda Nobla z Fizyki za odkrycie efektu Ramana 1933 Szef Wydziału Fizyki Indyjskiego Instytutu Naukowego w Bangalore 1934 Szef Indyjskiej Akademii Nauk 1947 Dyrektor Naukowego Instytutu Ramana w Bangalore 1951 Publikuje 'The New Physics; Talks on Aspects of Science Zmarł w Bangalore

10 R. Chandrasekhar Iyer (Ojciec Ramana) Parvathi Ammal (matka Ramana) Niels Bohr i Raman Raman i Compton (środek)

11 Na czym polega zjawisko Ramana? Czy promieniowanie elektromagnetyczne, w którym nie ma fotonów pasujących do odstępów między poziomami energetycznymi, w ogóle z molekułami nie oddziałuje?

12 Spektroskopia Ramana Według teorii kwantowej promieniowania, wiązka światła o częstości 0 jest w rzeczywistości strumieniem cząstek (fotonów) o energii h 0. Gdy fotony zderzą się z atomami/cząsteczkami, rozpraszają się na wszystkie strony. Zderzenia mogą być elastyczne (pęd jest zachowany, ale nie ma wymiany energii z cząsteczkami) jest to rozpraszanie Rayleigha - roz. = 0 Zderzenia mogą być nieelastyczne (cząsteczka zyskuje energię lub traci) jest to rozpraszanie Ramana rozproszone = 0 E/h Skoro cząsteczki mają skwantowane poziomy energetyczne to E musi być odległością pomiędzy poziomami rotacyjnymi lub oscylacyjnorotacyjnymi Historycznie nazwy rozproszonego promieniowania są następujące: rozpraszanie stokesowskie cząsteczka zyskuje energię od światła, rozpraszanie antystokesowskie cząsteczka oddaje energię

13 Spektroskopia Ramana Zapamiętajmy, że w procesie rozpraszania padające promieniowanie o częstości 0 nie wpływa na właściwości cząsteczki. Wymagane jest jedynie aby h 0 E. Padające promieniowanie powinno być bardzo intensywne (ponieważ tylko nieznaczna część promieniowania zwykle 0.001% -ulega rozproszeniu Ramana). Dlatego do wzbudzenia efektu używa się światła wiązek laserowych o dużych intensywnościach.

14 H H H H Elipsoida polaryzowalności H H E Kierunkowa zmiana elipsoidy polaryzowalności spowodowana rotacją cząsteczki H H H H H H E Każdy atom jest polaryzowalny izotropowo tzn., że wywołane odkształcenie nie zależy od kierunku przyłożonego pola. Polaryzowalność rotatorów sferycznych (CH 4, SF 6 ) jest również izotropowa, Rotatory niesferyczne charakteryzują się polaryzowalnością, która zależy od kierunku przyłożonego pola są wiec polaryzowalne anizotropowo. Wszystkie cząsteczki liniowe i dwuatomowe (homo i heterojądrowe) mają polaryzowalność anizotropową a wiec dają rotacyjne widma Ramana.

15 Polaryzowalność zmienia się wraz z długością wiązania C=O

16 Elipsoida polaryzowalności Oscylujący indukowany dipol rotującej, niepolarnej cząsteczki w zewnętrznym polu elektrycznym Oscylujący indukowany dipol oscylującej, niepolarnej cząsteczki w zewnętrznym polu elektrycznym

17 Indukowany przez promieniowanie drgający moment dipolowy jest zależny od polaryzowalności molekuły ind E Pole elektryczne światła padającego oscyluje z częstością 0 więc jego natężenie zmienia się zgodnie ze wzorem: E E sin(2 t) 0 0 Jeżeli cząsteczka wykonuje drgania wewnętrzne (rotacje lub oscylacje), wówczas periodycznie zmienia się polaryzowalność ()

18 Teoria polaryzowalności Placzka Indukowany przez promieniowanie drgający moment cos 2 t ind E o 0 dipolowy jest zależny od polaryzowalności molekuły i oscyluje z częstością 0 f (q) q Qcos 2t W czasie drgania normalnego powodującego periodyczne zmiany struktury szkieletu zrębów atomowych zmienia się siła związania elektronów w molekule. Stąd polaryzowalność może być funkcją współrzędnej normalnej drgania 2 d 2 2 dq d 1 2 q0 q q q... dq q0 q0 rozwijamy w szereg Maclaurina, zakładamy małe wychylenia

19 Teoria polaryzowalności Placzka ind E o 0 cos 2 t Indukowany przez promieniowanie drgający moment dipolowy jest zależny od polaryzowalności molekuły f (q) q Qcos 2t W czasie drgania normalnego powodującego periodyczne zmiany struktury szkieletu zrębów atomowych zmienia się siła związania elektronów w molekule. Stąd też polaryzowalność może być funkcją współrzędnej normalnej drgania 2 d 2 2 dq d 1 2 q0 q q q... dq q0 q0 rozwijamy w szereg Maclaurina, zakładamy małe wychylenia ind 1 d 1 d 0E o cos 2 0t QE0 cos 2 ( 0 ) t QE0 cos dq 2 dq 0 0 t

20 Efekt Ramana Wzbudzony stan elektronowy Rozproszenie Stokesowskie Rozpraszanie Rayleigha Rozpraszanie Antystokesowskie Wirtualny stan elektronowy s = 0 -E/h s = 0 +E/h 0 0 s = Podstawowy stan elektronowy E Rejestrujemy promieniowanie rozproszone i obserwowane przesunięcie częstości dostarcza informacji o odległościach poziomów energetycznych

21 Energia Efekt Ramana : Rozpraszanie h i Nieelastyczne h( i - R ) h i S1 Nieelastyczne rozpraszanie Energia przekazywana jest z padającego światła do oscylacji cząsteczek Emitowane światło ma mniejszą energię ( i < R ) Poziom wirtualny Rozpraszanie Rayleigh RozpraszanieRamana 0 S0 Roznica energii

22 Widmo Ramana Pełne widmo Raman składa się z: Pasma Rayleigh (duża intensywność, częstość = częstości wzbudzającej) Linie Stokesowskie (mała intensywność, dłuższe fale) Linie anti-stokesowskie (mała intensywność, krótsze fale) Widmo niezależne od fali wzbudzającej (488, 632.8, lub 1064 nm) Widmo CCl 4, Ar + laser, 488 nm

23 Natura rozproszenia Ramanowskiego Oscylujący dipol cząsteczkowy h rozproszone h padające E ind Oscylujące pole elektryczne Indukowany moment dipolowy Polaryzowalność Przejścia Ramana są procesem dwufotonowym

24 Teoria polaryzowalności Placzka ind 1 d 1 d 0E o cos 2 0t QE0 cos 2 ( 0 ) t QE0 cos dq 2 dq 0 0 t Kiedy przejście ramanowskie jest zabronione?

25 Teoria polaryzowalności Placzka ind 1 d 1 d 0E o cos 2 0t QE0 cos 2 ( 0 ) t QE0 cos dq 2 dq 0 0 t Kiedy przejście ramanowskie jest zabronione? f (q) d dq q0 0

26 Teoria polaryzowalności Placzka ind 1 d 1 d 0E o cos 2 0t QE0 cos 2 ( 0 ) t QE0 cos dq 2 dq 0 0 t Kiedy przejście ramanowskie jest zabronione? f (q) d dq q0 0 Przypadek ten występuje, gdy wiązania chemiczne molekuły są całkowicie spolaryzowane, to znaczy jonowe. Z taką sytuacją możemy mieć do czynienia gdy molekuła ma środek symetrii (np. dla CO 2 ).

27 Reguła wyboru: w widmie Ramana pojawiają się pasma tych drgań normalnych, w czasie których zmienia się polaryzowalność (przynajmniej jedna składowa tensora polaryzowalności). W widmie Ramana intensywność promieniowania wychodzącego z próbki jest liniową funkcją stężenia i grubości warstwy, podczas gdy w widmie podczerwieni zależność ta jest funkcją wykładniczą. Dla molekuł posiadających środek symetrii obowiązuje zasada wzajemnego wykluczania, nazywana również zakazem alternatywnym. Głosi ona, że drgania aktywne w podczerwieni są zabronione w widmie Ramana i na odwrót. Spektroskopowe kryterium polarności wiązania głosi, że jeżeli intensywność pasma w podczerwieni rośnie, a w widmie Ramana maleje, to oznacza to, że odpowiednie wiązanie w molekule staje się bardziej spolaryzowane. I na odwrót, jeśli rośnie intensywność pasma ramanowskiego, a maleje intensywność tegoż pasma w podczerwieni, oznacza to wzrost kowalencyjności wiązania.

28 Efekt Ramana - uwagi Stany wirtualne nie są poziomami energetycznymi własnymi cząsteczki Rozpraszanie jest procesem dwufotonowym (jeden foton pochłonięty, drugi oddany), angażującym dwa fotony, każdy o momencie pędu h/2, dlatego zgodnie z regułami kwantowymi kwantowa liczba rotacji J musi spełniać regułę wyboru J 2,0, 2 Odległości pomiędzy poziomami E=E - E mogą być obserwowane przy pomocy rozpraszania stokesowskiego lub antysokesowskiego (uzyskujemy takie same informacje) ale rozpraszanie Stokesowskie ma nieco większą intensywność, ponieważ niższy poziom E jest bardziej obsadzony niż poziom wyższy E Możliwa jest obserwacja zarówno czystych przejść rotacyjnych (małe E) jak i przejść oscylacyjno-rotacyjnych (większe E)

29 J J 2 Pamo Rayleigh a J cm -1 Pasma Stokesowskie Pasma Anty-Stokesowskie

30 Schemat ilustrujący rotacyjne i oscylacyjne widma Ramana Podstawowe Podstawowe pasmo pasmo oscylacyjne oscylacyjne Stokesowskie Stokesowskie Linia Rayleigh a Podstawowe pasmo oscylacyjne antystokesowskie S J=+2 J=-2

31 Oznaczenia przejść rotacyjnych J=J -J = J wyż -J niz Oznaczenie O P Q R S Widma MW oraz IR mają tylko gałęzie P i R czasami Q Oscylacyjne widma Ramana mają gałęzie O, Q i S Rotacyjne widma Ramana mają gałąź S Uwaga: Pasma stokesowskie/antystokesowskie nie są powiązane z oznaczeniami O,Q, S

32 Częstości promieniowania rozpraszanego w rotacyjnym widmie E hc Ramana ' '' Stokes 0 0 rot ( ) rot ( ) / '' '' '' '' 0 B( J 2) J 3 BJ ( J 1) 0 '' [4J 6] E J E J hc '' '' 0 Erot ( J 2) Erot ( J ) / hc B antstokes B J '' 0 [4 6] Odległości pomiędzy sąsiednimi liniami (gałąź S) wynoszą 4B - - dwa razy tyle ile w normalnych widmach IR!

33 Układ linii Stokesowskich i antystokesowskich 2 ( E E ) / hc 2B 2J 3 4 D(2J 3)( J 3J 3) J2 J J 2 Linia Rayleigha J 2 6B 10B 14B cm -1 Linie Stokesowskie Linie Anti-Stokesowskie W widmach rotacyjnych odległość pomiędzy liniami wynosi 4B!

34 Częstości promieniowania rozpraszanego w widmie oscylacyjnorotacyjnym Sytuacja jest podobna jak dla rotacyjnego widma Ramana z tą różnicą, że E zawiera przejścia oscylacyjne i rotacyjne. Zależność jest nieco skomplikowana ponieważ każda gałąź stokesowska i antystokesowska mają po trzy gałęzie rotacyjne O, Q i S. S stokes 0 ' '' E(, J 2) E(, J ) / hc ' '' ' '' 0 Eosc ( ) Eosc ( ) / hc B ( J 2)( J 3) B J ( J 1) O stokes 0 ' '' E(, J 2) E(, J ) / hc ' '' ' '' 0 Eosc ( ) Eosc ( ) / hc B ( J 2)( J 1) B J ( J 1) dodatnie ujemne

35 Oscylacyjne reguły wyboru Częściowo są takie same jak dla normalnej spektroskopii IR A) =1 silne pasma =2 słabe pasma =3 bardzo słabe pasma etc. B) Przejścia Ramana są dozwolone jeżeli elipsoida polaryzowalności cząsteczki zmienia się w czasie ruchu ROTACJE Dla cząsteczek liniowych symetrycznych takich jak N 2 lub C 2 H 2 polaryzowalność elektronów w kierunku równoległym do osi cząsteczki jest znacznie większa niż w kierunku prostopadłym. W czasie rotacji w przestrzeni cząsteczka jest wrażliwa na oscylujące pole fali elektromagnetycznej i oscyluje w górę i dół. Przejścia rotacyjne w Ramanie są dozwolone (chociaż nie ma dipola)

36 Oscylacyjne reguły wyboru OSCYLACJE Ze względu na symetrię niektóre rodzaje drgań oscylacyjnych są dozwolone w Ramanie a inne niedozwolone. Jeżeli cząsteczka ma środek symetrii, to w widmie ramanowskim mogą pojawiać się tylko pasma odpowiadające drganiom symetrycznym względem elementu symetrii. Drgania te są nieaktywne w widmie IR. Odwrotna reguła dotyczy drgań antysymetrycznych. Dla molekuł posiadających środek symetrii (np. N 2, CO 2, CH 4, SF 6, C 2 H 2 ) obowiązuje zasada wzajemnego wykluczania, nazywana również zakazem alternatywnym. Głosi ona, że drgania aktywne w podczerwieni są zabronione w widmie Ramana i na odwrót Drganie symetryczne rozciągające nieaktywne w IR Zginające (podwójnie zdegenerowane) - aktywne w IR Niesymetryczne rozciągające aktywne w IR Uwaga: Woda silnie absorbuje w IR ale bardzo słabo w R. Dzięki temu przy pomocy R można analizować roztwory wodne jest to istotne z punktu widzenia analiz materiałów biologicznych i z środowiska naturalnego.

37 Raman vs. IR W cząsteczkach ze środkiem symetrii : ozmiana dipola = utrata środka symetrii ozmiana polaryzowalności = zachowanie środka symetrii W cząsteczkach centrosymetrycznych: asymetryczne rozciągające i zginające drgania będą aktywne w IR i nieaktywne w Ramanie, symetryczne rozciągające i zginające będą aktywne w Ramanie i nieaktywne w IR.

38 Oscylacyjne reguły wyboru Każde drganie pełnosymetryczne dowolnej cząsteczki jest aktywne w widmie ramanowskim. Względne intensywności pasm ramanowskich: Drgania normalne o wysokiej symetrii dają pasma silniejsze niż drgania o mniejszej symetrii Pasma drgań rozciągających wiązań chemicznych są bardziej intensywne niż odpowiadające drgania deformacyjne Pasma drgań słabo spolaryzowanych wiązań są bardzie intensywne niż grup silnie spolaryzowanych. Odwrotna zasada obowiązuje w widmie IR. Jest to tzw. spektroskopowe kryterium polarności wiązania Przykładem jest woda. Woda silnie absorbuje w IR ale bardzo słabo w R. Dzięki temu przy pomocy R można analizować roztwory wodne jest to istotne z punktu widzenia analiz materiałów biologicznych i pochodzących ze środowiska naturalnego.

39 Widma Raman Reguły wyboru powiązanie z symetrią: symetryczne=aktywne w Ramanie, asymetryczne=aktywne w IR CO 2 Raman: 1335 cm 1 IR: 2349 cm 1 H 2 O Raman + IR: 3657 cm 1 Raman + IR: 3756 cm 1 IR: 667 cm 1 Raman + IR: 1594 cm 1

40 Elipsoidy polaryzowalności CO 2 Aktywne w Ramanie Aktywne IR Aktywne IR Podwójnie zdegenergowane

41 Zmiany momentu dipolowego i polaryzowalności w czasie oscylacji CO 2 4 drgania normalne CO 2. Tylko 1 jest aktywne w Ramanie - moment dipolowy - polaryzowalność Q - współrządna Nachylenie mierzone w położeniu równowagi Q = 0 1 3

42 Raman vs. IR Uzupełniają się mierząc energie poziomów oscylacyjnych cząsteczek Raman Foton powoduje chwilowe zaburzenie rozkładu elektronów wokół wiązania, a następnie reemituje promieniowanie pozwalając wiązaniu powrócić do normalnego stanu (dipol wówczas zanika) IR Aby było aktywne przejście w IR moment dipolowy musi się zmieniać Polaryzowalność cząsteczki musi się zmieniać wraz z drganiem oscylacyjnym

43 Natężenia pasm w widmach IR i R można przewidzieć! 1. Niepolarnym lub małopolarnym ugrupowaniom atomów odpowiadają pasma o dużym natężeniu w R natomiast silnie polarnym grupom pasma o dużym natężeniu w IR 2. Cząsteczkom mającym środek symetrii odpowiadają inne pasma w R, a inne w IR (zakaz alternatywny) 3. Drgania rozciągające alifatyczne C-H są intensywne w R, słabe w IR 4. Drgania rozciągające aromatyczne C-H są średniointensywne w R, słabe w IR 5. Drgania zginające C-H w związkach aromatycznych są silne tylko w IR 6. Pasma odpowiadające drganiom rozciągającym grup polarnych takich jak O-H, N-H są intensywne w IR natomiast bardzo słabe w R

44 Aceton - Porównanie widma IR i Ramana Widmo IR C-H szkieletowe C-C C=O Widmo R

45 Widmo IR i R Toluenu IR R

46 Etanol - Porównanie widma IR i Ramana O-H Widmo IR O-H Etanol C-H szkieletowe C-C O-H C=O Widmo R

47 Natężenia pasm w widmach IR i R można przewidzieć 7. Pasma odpowiadające drganiom rozciągającym wiązań wielokrotnych C=C, C=N, N=N itd., są bardzo intensywne w R natomiast bardzo słabe w IR 8. Pasmo C=O w IR jest bardzo intensywne a w Ramanie słabe 9. W widmie R związków pierścieniowych pojawia się tylko jedno intensywne pasmo odpowiadające drganiom symetrycznym pulsacyjnym pierścienia. Częstość drgania pozwala określić wielkość pierścienia 10. Pasma nadtonów i pasm kombinacyjnych są widoczne w IR a widmach Ramana ich się nie obserwuje

48 Acetonitryl - Porównanie widma IR i Ramana Widmo IR C=C Widmo R

49 Widma IR i Ramana H-C C-H Asymmetric C-H Stretch C C Stretch Symmetric C-H Stretch

50 Drgania oscylacyjne CCl cm cm -1 Nieaktywne w IR, Aktywne w Ramanie 776 cm cm -1 Aktywne w IR, Nieaktywne w Ramanie

51 Widma IR i Ramana CCl 4 IR kombinacyjne 314 cm cm -1 Raman 463 cm cm -1

52 Wykorzystanie pasm stokesowskich do określania oscylacji IR

53 Widmo Ramana CCl4 Obserwowane w typowym eksperymencie Ramana Linie Stokesowskie Rozproszenie nieelastyczne) Linia Rayleigh (elastyczne rozpraszanie) 0 = cm -1 0 = nm Linie Anty-Stokesowskie Rozproszenie nieelastyczne) Przesunięcie Ramana

54 Widmo Ramana CCl 4 wzbudzone przez laser 0 = 488 nm

55 Istotne uwagi o widmach Ramana Wzór przesunięć ramanowskich jest taki sam po obu stronach pasma Rayleigha Wielkość tego przesunięcia jest niezależna od długości fali wzbudzającej Anti-Stokesowskie linie są znacznie mniej intensywne niż odpowiadające im linie Stokesowskie (stosunek intensywności linii anti-stokes i Stokes będzie wzrastał wraz ze wzrostem temperatury wyższa temperatura bardziej osadzony pierwszy poziom oscylacyjny) Zazwyczaj tylko linie Stokesowskie są pokazywane w widmie Ramana Widma Ramana są otrzymywane poprzez wzbudzenie promieniowaniem laserowym o długości fali, która nie jest związana z różnicą poziomów oscylacyjno-rotacyjnych

56 Zadanie Przy jakich długościach fali pojawią się Ramanowskie linie stokesowskie i anty-stokesowskie dla tetrachlorku węgla ( = 218, 459 i 769 cm -1 ) jeżeli źródłem wzbudzenia jest 1) Laser helowo-neonowy (632.8nm)? 2) Laser argonowy jonowy (488.0 nm)?

57 He/Ne laser (632.8nm cm -1 ) s = 218, 459 and 769 cm -1 Sygnały rozproszenia Ramana : Linia Stokesowska : = = cm -1 = nm Linia Anty-Stokesowska : = = cm -1 = nm

58 Widmo Ramana CCl 4 I Antystokesowskie Stokesowskie 15802,8 cm ,8 nm 16020, ,8 Liczba falowa (cm -1 )

59 Cząsteczka P 2 została wzbudzona przez laser (=180 nm). Zaobserwowano w oscylacyjnym widmie Ramana gałąź Q Stokesowską, w której dwie linie były położone przy i nm. Określ częstość oscylacyjną w Hz, stałą oscylacyjną harmoniczną i anharmoniczną w cm -1 oraz oszacuj energię dysocjacji dla tej cząsteczki w cm -1. stok Q stok Q cm cm cm cm cm cm E cm E cm Skoro są to pasma Stokesowskie to energia czasteczki zwiększa się 1 1

60 Cząsteczka P 2 została wzbudzona przez laser (=180 nm). Zaobserwowano w oscylacyjnym widmie Ramana gałąź Q Stokesowską, w której dwie linie były położone przy i nm. Określ częstość oscylacyjną w Hz, stałą oscylacyjną harmoniczną i anharmoniczną w cm -1 oraz oszacuj energię dysocjacji dla tej cząsteczki w cm -1. Skoro są to pasma Stokesowskie to energia cząsteczki zwiększa się E cm E cm 2E 1 E E(1) ton podstawowy E(2) nadton E cm E 1 E 0 E 2 x 1 E cm E 2 E 0 E 2 6 x x 3.74cm cm c Hz e e e e e 1 1 ZPE x cm D cm e 1 e e e e exe D D ZPE 40293cm e 1 1/ 2 1/ 2 e e e e e e

61 Raman Intensity Raman jest techniką rozpraszania światła LASER rozproszenie Rayleigh : Rozproszenie elastyczne Raman : Stokes AntyStokes 800 Rozproszenie nieelastyczne Raman Shift (cm-1) -400

62 Spektrometr Ramana dyspersyjny Próbka Element rozszczepiający Detektor (90 ) Zrodlo prom. Zródła promieniowania: lasery są generalnie jedynymi żródłami dostatecznie silnymi aby wywołać zauważalne rozproszenie Ramana Zapobieganie fluorescencji: He-Cd (441.6 nm), Ar ion (488.0 nm, nm), He-Ne (632.8), Diode (782 or 830), Nd/YAG (1064)

63 Schemat spektrometru Ramana Wzmacniacz Szczelina Lustro Obrót Lustro Wyświetlacz Laser Siatka dyfrakcyjna Próbka Wiązka laserowa soczewka szczelina Lustro

64 Schemat blokowy spektrometru Raman Detektor CCD Laser i filtry Siatka dyfrakcyjna Zwierciadła Próbka Obiektyw mikroskopu Filtr filtr Advanced Vitreous State 2007, Szczelina Raman spectroscopy L1, M.

65 Instytut Fizyki Molekularnej PAN, Poznań mikroskop spektrometr LabRAM HR800 detektor CCD laser argonowy

66 In-Via Raman Mikroskop firmy Renishaw Laboratorium BioNanoTechno UwB

67 Źródła promieniowania Słaba intensywność widm Ramana wymagana duża intensywność stosowanych źródeł promieniowania Ar + : i nm Kr + : i nm He:Ne: nm Diody Laserowe: 782 i 830 nm Nd: YAG: 1064 (532 nm podwojona częstość) Widmo Ramana wzbudzane jest w świetle widzialnym lub bliskim nadfiolecie

68 Zalety spektroskopii Ramana Nie niszczy preparatów Skuteczny w wysokich temperaturach Łatwo osiągalny zakres niskich częstości: 100 cm -1 Możliwość połączenia mikroskopu ze spektrometrem Ramana Problem wody nie istnieje Widma IR są przesłaniane przez wodę, w Ramanie pasma wody są mniej intensywne jednakże woda może absorbować światło i obniżać czułość

69 Fluorescencja wybór lasera Widmo antracenu: Ar + laser nm. B: Nd:YAG laser 1064 nm bardzo istotny Im krótsze fale tym efektywniejsze rozpraszanie Ramana Im dłuższe fale tym mniejsze prawdopodobieństwo fluorescencji

70 ćwiczenie Który z laserów może dać lepsze rezultaty gdy mierzymy słabe sygnały Ramanowskie i w przyblizeniu jak bardzo intensywniejsze? Zielona linia argonowa (514.5 nm) vs. niebieska linia argonowa(488 nm):? Nd:YAG (1064 nm) vs. laser diodowy(785 nm):?

71 ćwiczenie Który z laserów może dać lepsze rezultaty gdy mierzymy słabe sygnały Ramanowskie i w przyblizeniu jak bardzo intensywniejsze? Zielona linia argonowa (514.5 nm) vs. niebieska linia argonowa(488 nm): Nd:YAG (1064 nm) vs. laser diodowy(785 nm):

72 Spektroskopia Ramana : Podsumowanie Raman jest spektroskopia oscylacyjna podobnie jak IR Obszar daktyloskopowy, sondowanie symetrii cząsteczki zakres energii: cm 1 Podstawą metody jest rozproszenie, a nie transmisja czy odbicie Oznacza to, ze nie wymagane jest skomplikowane próbek Stosujemy zawsze linie Stokesowskie ze względu na większą intensywność przygotowanie Potrzebujemy energii wzbudzającej (laser) 785 nm: Fluorescencja mniej prawdopodobna; Słabe sygnały Raman 514 nm: Fluorescencja bardziej prawdopodobna; Silniejsze sygnały

73 Porównanie spektroskopii IR i Ramana Przewaga Ramana nad IR: Unika interferencji z rozpuszczalnikiem, z kuwetami i przygotowania próbek Lepsza selektywność, piki są wąskie Możliwe badania depolaryzacji Możliwa detekcja drgań nieaktywnych w IR Przewaga IR nad Ramanem: Raman wrażliwy na fluorescencje wywołaną przez laser oraz na rozkład próbki Raman linie sa słabointensywne, pasma Rayleigha są również obecne Przyrządy Ramana dużo droższe Konkluzja IR i Raman są technikami uzupełniającymi się!

74 Podsumowanie oscylator harmoniczny Dobry model oscylacji atomów w cząsteczkach V(r)=1/2k(r-r e ) 2 Wg fizyki klasycznej częstość oscylacji e 1 2 k 1 [ s ] Według mechaniki kwantowej energia jest skwantowana E osc [cm -1 ]= e (+1/2) Odległości poziomów oscylacyjnych są jednakowe i równe E= e Przejścia oscylacyjne są dozwolone tylko gdy =±1 oraz gdy drganiu towarzyszy zmiana momentu dipolowego

75 Podsumowanie oscylator Skoro e i e są proporcjonalne do harmoniczny k a) Cięższe izotopomery absorbują przy mniejszych częstościach (HF vs. DF k takie same to ( DF) e( HF) ( HF) ( DF) b) Silniejsze wiązanie większa częstość HI H 79 Br H 35 Cl HF e e /cm D 0 /ev eV=8065 cm -1 Moc wiązania rośnie

76 Podsumowanie oscylator Morse a Energia potencjalna Według mechaniki kwantowej Odległości pomiędzy poziomami oscylacyjnymi maleją ze wzrostem r re V ( r) D e 1e E 1 1 ( ) x 2 2 osc e e e E 2 x ( 1) osc e e e 2 2 Przy znanych wartościach e (H 35 Cl)= cm -1 e e (H 35 Cl)= cm -1 można przewidzieć te wartości dla innych izotopomerów [ J] e h 2 2 2De

77 Podsumowanie oscylator Morse a Przejścia oscylacyjne są dozwolone gdy: =1 najbardziej intensywne =2 słabe =3 bardzo słabe etc

78 Podsumowanie struktura rotacyjna widm oscylacyjnych Zawsze jest obecna ponieważ foton zabsorbowany/wyemitowany posiada moment pędu h/2, J poziom wyższy, J poziom niższy ' '' J J J 1 '' R( J ) ' '' J J J 1 '' P( J ) Oznaczenie pasm (, ); Nazwy pasmo podstawowe, pierwszy nadton, drugi nadton pasma gorące Energia przejścia ' ' '' '' ' ' ' '' '' '' E E(, J ) E(, J ) Eosc ( ) B ' J ( J 1) Eosc ( ) B '' J ( J 1) E E B J J B J J ' '' ' ' '' '' ( ) ( ) ( 1) ( 1) osc osc ' '' ( ', '' ) 0 Pasmo wyjściowe ( Band origin ) energia hipotetycznego przejścia (, J =0) (, J =0)

79 Podsumowanie struktura rotacyjna widm oscylacyjnych E ( J ) ( J ) (, ) ( B B ) J ( B B )( J ) (, ) 2BJ P '' '' ' '' '' '' 2 ' '' '' P 0 '' ' '' ' 0 E J J B B J B B J B J '' '' ' '' '' '' 2 ' '' '' R( ) R( ) 0(, ) ( '' ' )( 1) ( '' ' )( 1) 0(, ) 2 ( 1) Linie w gałęziach dla małych wartości J są w przybliżeniu równooddalone od siebie 2B Band Gap odległość pomiędzy pierwszą linią gałęzi P i pierwszą gałęzi R równa 4B

80 Podsumowanie intensywność pasm rotacyjnych w widmach oscylacyjnych Tak jak w widmach rotacyjnych intensywność jest proporcjonalna do obsadzenia poziomu podstawowego B 2J 1 e BJ ( J 1)/ k T

81 Podsumowanie oscylacje cząsteczek wieloatomowych Cząsteczki N-atomowe wykonują 3N-5 liniowe 3N-6 nieliniowe drgań własnych Struktura rotacyjna staje się bardziej zwarta maksima gałęzi P i R zbiegają się dla większych cząsteczek J=0 jest również dozwolone - gałąź Q (J =J )

82 Podsumowanie- spektroskopia rozproszenia ramanowskiego Reguły wyboru zezwalają na J= -2, 0, +2 (proces dwufotonowy) Pasma obserwowane - Stokesowskie - Anty-Stokesowskie 0 E 0 E

SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ

SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi. Ruch ten można rozłożyć na 3n-6 w przypadku

Bardziej szczegółowo

Spektroskopia ramanowska w badaniach powierzchni

Spektroskopia ramanowska w badaniach powierzchni Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu

Bardziej szczegółowo

Metody badań spektroskopowych

Metody badań spektroskopowych Metody badań spektroskopowych Program wykładu Wstęp A. Spektroskopia optyczna 1. Podstawy spektroskopii optycznej 1.1 Promieniowanie elektromagnetyczne 1.2 Kwantowanie energii 1.3 Emisja i absorpcja promieniowania

Bardziej szczegółowo

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy

Bardziej szczegółowo

ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA

ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA W tym przypadku lasery pozwalają na prowadzenie kontroli stanu sanitarnego Powietrza, Zbiorników wodnych, Powierzchni i pokrycia terenu. Stosowane rodzaje laserów

Bardziej szczegółowo

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu

Bardziej szczegółowo

Spektroskopia Ramana drgania i widmo rozpraszania

Spektroskopia Ramana drgania i widmo rozpraszania Spektroskopia Ramana drgania i widmo rozpraszania drian Kamiński, Instytut Fizyki UM I. Czym jest spektroskopia ramanowska Spektroskopia Ramana jest istotną metodą badania widm rotacyjnych i oscylacyjnych

Bardziej szczegółowo

Możliwości wykorzystania spektroskopii ramanowskiej w branży naftowej

Możliwości wykorzystania spektroskopii ramanowskiej w branży naftowej NAFTA-GAZ listopad 2012 ROK LXVIII Sylwia Jędrychowska Instytut Nafty i Gazu, Kraków Możliwości wykorzystania spektroskopii ramanowskiej w branży naftowej Część I. Podstawy teoretyczne spektroskopii ramanowskiej

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo

Spektroskopia Ramanowska

Spektroskopia Ramanowska Spektroskopia Ramanowska Część A 1.Krótki wstęp historyczny 2.Oddziaływanie światła z osrodkiem materialnym (rozpraszanie światła) 3.Opis klasyczny zjawiska Ramana 4. Widmo ramanowskie. 5. Opis półklasyczny

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Przejścia optyczne w strukturach niskowymiarowych

Przejścia optyczne w strukturach niskowymiarowych Współczynnik absorpcji w układzie dwuwymiarowym można opisać wyrażeniem: E E gdzie i oraz f są energiami stanu początkowego i końcowego elektronu, zapełnienie tych stanów opisane jest funkcją rozkładu

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

Ćwiczenie 5 Protonowanie wody. Różnice w widmie wibracyjnym między H 3 O + i H 2 O. Wyznaczanie widma Ramana wody

Ćwiczenie 5 Protonowanie wody. Różnice w widmie wibracyjnym między H 3 O + i H 2 O. Wyznaczanie widma Ramana wody Ćwiczenie 5 Protonowanie wody. Różnice w widmie wibracyjnym między H 3 O + i H 2 O Wyznaczanie widma Ramana wody 1. Wstęp teoretyczny 2. Część doświadczalna. Opis budowy aparatury badawczej i technika

Bardziej szczegółowo

Zastosowanie spektroskopii w podczerwieni w analizie jakościowej i ilościowej. dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB

Zastosowanie spektroskopii w podczerwieni w analizie jakościowej i ilościowej. dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB Zastosowanie spektroskopii w podczerwieni w analizie jakościowej i ilościowej dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB Tematyka Spektroskopia - podział i zastosowanie Promieniowanie

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ

PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ Kierowniczka pracowni: dr hab. Magdalena Pecul-Kudelska, (pok. 417), e-mail mpecul@chem.uw.edu.pl, tel 0228220211 wew 501; Spis ćwiczeń i osoby prowadzące 1.

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

Rozmycie pasma spektralnego

Rozmycie pasma spektralnego Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

Spektroskopia ramanowska w badaniach białek porównanie technik

Spektroskopia ramanowska w badaniach białek porównanie technik 10 Spektroskopia ramanowska w badaniach białek porównanie technik 10.1. Wprowadzenie Spektroskopia ramanowska (RS) jest metodą badania przejść pomiędzy poziomami energetycznymi cząsteczek, zachodzącymi

Bardziej szczegółowo

II. WYBRANE LASERY. BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet

II. WYBRANE LASERY. BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet II. WYBRANE LASERY BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet Laser gazowy Laser He-Ne, Mechanizm wzbudzenia Bernard Ziętek IF UMK Toruń 2 Model Bernard Ziętek IF UMK Toruń 3 Rozwiązania stacjonarne

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s]

SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s] SPEKTROFOTOMETRIA UV-Vis Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. Spektrofotometria w zakresie nadfioletu (UV) i promieniowania widzialnego (Vis) jest jedną

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

Mikroskopia konfokalna: techniki obrazowania i komputerowa analiza danych.

Mikroskopia konfokalna: techniki obrazowania i komputerowa analiza danych. Mikroskopia konfokalna: techniki obrazowania i komputerowa analiza danych. Pracownia Mikroskopii Konfokalnej Instytut Biologii Doświadczalnej PAN Jarosław Korczyński, Artur Wolny Spis treści: Co w konfokalu

Bardziej szczegółowo

Efekt Dopplera. dr inż. Romuald Kędzierski

Efekt Dopplera. dr inż. Romuald Kędzierski Efekt Dopplera dr inż. Romuald Kędzierski Christian Andreas Doppler W 1843 roku opublikował swoją najważniejszą pracę O kolorowym świetle gwiazd podwójnych i niektórych innych ciałach niebieskich. Opisał

Bardziej szczegółowo

Orbitale typu σ i typu π

Orbitale typu σ i typu π Orbitale typu σ i typu π Dwa odpowiadające sobie orbitale sąsiednich atomów tworzą kombinacje: wiążącą i antywiążącą. W rezultacie mogą powstać orbitale o rozkładzie przestrzennym dwojakiego typu: σ -

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z FIZYKI

WYMAGANIA EDUKACYJNE Z FIZYKI WYMAGANIA EDUKACYJNE Z FIZYKI KLASA III Drgania i fale mechaniczne Wymagania na stopień dopuszczający obejmują treści niezbędne dla dalszego kształcenia oraz użyteczne w pozaszkolnej działalności ucznia.

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

Prawa optyki geometrycznej

Prawa optyki geometrycznej Optyka Podstawowe pojęcia Światłem nazywamy fale elektromagnetyczne, o długościach, na które reaguje oko ludzkie, tzn. 380-780 nm. O falowych własnościach światła świadczą takie zjawiska, jak ugięcie (dyfrakcja)

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

Fizyka powierzchni 6-7/7. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Fizyka powierzchni 6-7/7. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Fizyka powierzchni 6-7/7 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni ciał stałych Termodynamika równowagowa i

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Ruchy jąder w cząsteczkach dwu- i wieloatomowych: a) model oscylatora harmonicznego;

Bardziej szczegółowo

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące

Bardziej szczegółowo

Spektroskopowe metody analizy

Spektroskopowe metody analizy Spektroskopowe metody analizy Dr inż. Leszek Siergiejczyk Zakład Chemii Produktów Naturalnych Al. J. Piłsudskiego 11/4 p. 3 i 9 Tel. 0-85-7457577, 7457579 Tematyka Wprowadzenie do spektroskopii Spektroskopia:

Bardziej szczegółowo

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1)

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1) h S = I(I+) gdzie: I kwantowa liczba spinowa jądra I = 0, ½,, /,, 5/,... itd gdzie: = γ S γ współczynnik żyromagnetyczny moment magnetyczny brak spinu I = 0 spin sferyczny I = _ spin elipsoidalny I =,,,...

Bardziej szczegółowo

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,

Bardziej szczegółowo

III.3 Emisja wymuszona. Lasery

III.3 Emisja wymuszona. Lasery III.3 Emisja wymuszona. Lasery 1. Wyprowadzenie wzoru Plancka metodą Einsteina. Emisja wymuszona 2. Koherencja ciągów falowych. Laser jako źródło koherentnego promieniowania e-m 3. Zasada działania lasera.

Bardziej szczegółowo

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład XIV Techniki spektroskopii ramanowskiej Budowa spektrofotometrów ramanowskich, źródła wzbudzania, detektory

Bardziej szczegółowo

w obszarze linii Podziały z różnych punktów widzenia lasery oscylatory (OPO optical parametric oscillator)

w obszarze linii Podziały z różnych punktów widzenia lasery oscylatory (OPO optical parametric oscillator) Rodzaj przestrajania Lasery przestrajalne dyskretne wybór linii widmowej wyższe harmoniczne w obszarze linii szerokie szerokie pasmo Podziały z różnych punktów widzenia lasery oscylatory (OPO optical parametric

Bardziej szczegółowo

Magnetyczny rezonans jądrowy

Magnetyczny rezonans jądrowy Magnetyczny rezonans jądrowy Widmo NMR wykres absorpcji promieniowania magnetycznego od jego częstości Częstość pola wyraża się w częściach na milion (ppm) częstości pola magnetycznego pochłanianego przez

Bardziej szczegółowo

PROBLEMATYKA: Oznaczanie substancji czynnej w próbce z zastosowaniem spektroskopii rozproszenia Ramana WPROWADZENIE

PROBLEMATYKA: Oznaczanie substancji czynnej w próbce z zastosowaniem spektroskopii rozproszenia Ramana WPROWADZENIE PROBLEMATYKA: Oznaczanie substancji czynnej w próbce z zastosowaniem spektroskopii rozproszenia Ramana TEMAT ĆWICZENIA: OZNACZANIE GLUKOZY W PREPARATACH FARMACEUTYCZNYCH I PŁYNACH USTROJOWYCH METODA: Spektroskopia

Bardziej szczegółowo

Wstęp do astrofizyki I

Wstęp do astrofizyki I Wstęp do astrofizyki I Wykład 5 Tomasz Kwiatkowski Uniwersytet im. Adama Mickiewicza w Poznaniu Wydział Fizyki Instytut Obserwatorium Astronomiczne Tomasz Kwiatkowski, shortinst Wstęp do astrofizyki I,

Bardziej szczegółowo

VI. Elementy techniki, lasery

VI. Elementy techniki, lasery Światłowody VI. Elementy techniki, lasery BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet a) Sprzęgacze czołowe 1. Sprzęgacze światłowodowe (czołowe, boczne, stałe, rozłączalne) Złącza,

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych

Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych Zwiększenie liczby wysoko wykwalifikowanych absolwentów kierunków ścisłych Uniwersytetu Jagiellońskiego POKL.04.01.02-00-097/09-00 Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych

Bardziej szczegółowo

Metody spektroskopowe w identyfikacji związków organicznych. Barbara Guzowska-Świder Zakład Informatyki Chemicznej, PRz

Metody spektroskopowe w identyfikacji związków organicznych. Barbara Guzowska-Świder Zakład Informatyki Chemicznej, PRz Metody spektroskopowe w identyfikacji związków organicznych Barbara Guzowska-Świder Zakład Informatyki Chemicznej, PRz Metody spektralne wykorzystują zjawiska związane z oddziaływaniem materii z promieniowaniem

Bardziej szczegółowo

Ćwiczenie 5. Spektroskopia w podczerwieni w badaniu struktury biomakromolekuł

Ćwiczenie 5. Spektroskopia w podczerwieni w badaniu struktury biomakromolekuł Ćwiczenie 5. Spektroskopia w podczerwieni w badaniu struktury biomakromolekuł Metody spektroskopowe polegają na obserwacji oddziaływania promieniowania elektromagnetycznego z materią. Można je podzielić

Bardziej szczegółowo

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic

Bardziej szczegółowo

1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY.

1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY. 1. FALE ELEKTROMAGNETYCZNE: WŁASNOŚCI I PARAMETRY. 1. Napisz układ równań Maxwella w postaci: a) różniczkowej b) całkowej 2. Podaj trzy podstawowe równania materiałowe wiążące E z D, B z H, E z j 3. Zapisz

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1)

Analiza Organiczna. Jan Kowalski grupa B dwójka 7(A) Własności fizykochemiczne badanego związku. Zmierzona temperatura topnienia (1) Przykład sprawozdania z analizy w nawiasach (czerwonym kolorem) podano numery odnośników zawierających uwagi dotyczące kolejnych podpunktów sprawozdania Jan Kowalski grupa B dwójka 7(A) analiza Wynik przeprowadzonej

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection)

Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection) Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection) Całkowite wewnętrzne odbicie n 2 θ θ n 1 n > n 1 2 Kiedy promień pada na granicę ośrodków pod kątem większym od kąta

Bardziej szczegółowo

Właściwości światła laserowego

Właściwości światła laserowego Właściwości światła laserowego Cechy charakterystyczne światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność

Bardziej szczegółowo

PRACOWNIA CHEMII. Równowaga chemiczna (Fiz2)

PRACOWNIA CHEMII. Równowaga chemiczna (Fiz2) PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Równowaga chemiczna (Fiz2)

Bardziej szczegółowo

Recenzja rozprawy doktorskiej mgr Adriana Kamińskiego Drgania molekuł metoda opisu i jej zastosowanie do badań wybranych układów molekularnych

Recenzja rozprawy doktorskiej mgr Adriana Kamińskiego Drgania molekuł metoda opisu i jej zastosowanie do badań wybranych układów molekularnych Dr. hab. n. fiz. Jacek J. Fisz, prof. UMK 16.01.2011 Wydział Nauk o Zdrowiu Collegium Medicum Uniwersytet Mikołaja Kopernika e-mail: zimpn@cm.umk.pl Tel.+48525852193 +48525852194 Recenzja rozprawy doktorskiej

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego (NMR)

Spektroskopia magnetycznego rezonansu jądrowego (NMR) Spektroskopia magnetycznego rezonansu jądrowego (NM) Fizyczne podstawy spektroskopii NM W spektroskopii magnetycznego rezonansu jądrowego używane jest promieniowanie elektromagnetyczne o częstościach z

Bardziej szczegółowo

PODSTAWY FIZYKI LASERÓW Wstęp

PODSTAWY FIZYKI LASERÓW Wstęp PODSTAWY FIZYKI LASERÓW Wstęp LASER Light Amplification by Stimulation Emission of Radiation Składa się z: 1. ośrodka czynnego. układu pompującego 3.Rezonator optyczny - wnęka rezonansowa Generatory: liniowe

Bardziej szczegółowo

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin

Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin Elementy chemii obliczeniowej i bioinformatyki Zagadnienia na egzamin 1. Zapisz konfigurację elektronową dla atomu helu (dwa elektrony) i wyjaśnij, dlaczego cząsteczka wodoru jest stabilna, a cząsteczka

Bardziej szczegółowo

Zakresy promieniowania. Światło o widzialne. długość fali, λ. podczerwień. ultrafiolet. Wektor pola elektrycznego. Wektor pola magnetycznego TV AM/FM

Zakresy promieniowania. Światło o widzialne. długość fali, λ. podczerwień. ultrafiolet. Wektor pola elektrycznego. Wektor pola magnetycznego TV AM/FM Światło o widzialne Zakresy promieniowania ultrafiolet podczerwień Wektor pola elektrycznego Wektor pola magnetycznego TV AM/FM długość fali, λ Podział fal elektromagnetycznych Promieniowanie X Fale wolnozmiennesieci

Bardziej szczegółowo

Ćwiczenie: "Zagadnienia optyki"

Ćwiczenie: Zagadnienia optyki Ćwiczenie: "Zagadnienia optyki" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia: 1.

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został

Bardziej szczegółowo

Wzbudzony stan energetyczny atomu

Wzbudzony stan energetyczny atomu LASERY Wzbudzony stan energetyczny atomu Z III postulatu Bohra kj E k E h j Emisja spontaniczna Atom absorbuje tylko określone kwanty energii przechodząc ze stanu podstawowego do wzbudzonego. Zaabsorbowana

Bardziej szczegółowo

Dzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7

Dzień dobry. Miejsce: IFE - Centrum Kształcenia Międzynarodowego PŁ, ul. Żwirki 36, sala nr 7 Dzień dobry BARWA ŚWIATŁA Przemysław Tabaka e-mail: przemyslaw.tabaka@.tabaka@wp.plpl POLITECHNIKA ŁÓDZKA Instytut Elektroenergetyki Co to jest światło? Światło to promieniowanie elektromagnetyczne w zakresie

Bardziej szczegółowo

Badanie roli pudła rezonansowego za pomocą konsoli pomiarowej CoachLab II

Badanie roli pudła rezonansowego za pomocą konsoli pomiarowej CoachLab II 52 FOTON 99, Zima 27 Badanie roli pudła rezonansowego za pomocą konsoli pomiarowej CoachLab II Bogdan Bogacz Pracownia Technicznych Środków Nauczania Zakład Metodyki Nauczania i Metodologii Fizyki Instytut

Bardziej szczegółowo

Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Lasery budowa, rodzaje, zastosowanie Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Budowa i zasada działania lasera Laser (Light Amplification by Stimulated

Bardziej szczegółowo

Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego.

Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego. Fale elektromagnetyczne to zaburzenia pola elektrycznego i magnetycznego. Zmienne pole magnetyczne wytwarza zmienne pole elektryczne i odwrotnie zmienne pole elektryczne jest źródłem zmiennego pola magnetycznego

Bardziej szczegółowo

Czym jest prąd elektryczny

Czym jest prąd elektryczny Prąd elektryczny Ruch elektronów w przewodniku Wektor gęstości prądu Przewodność elektryczna Prawo Ohma Klasyczny model przewodnictwa w metalach Zależność przewodności/oporności od temperatury dla metali,

Bardziej szczegółowo

Ćwiczenie BADANIE WIDM OPTYCZNYCH ZA POMOCĄ SPEKTROMETRU O 9 O 12 Instrukcja dla studenta

Ćwiczenie BADANIE WIDM OPTYCZNYCH ZA POMOCĄ SPEKTROMETRU O 9 O 12 Instrukcja dla studenta Ćwiczenie BADANIE WIDM OPTYCZNYCH ZA POMOCĄ SPEKTROMETRU O 9 O 1 Instrukcja dla studenta I WSTĘP I1 Światło Z punktu widzenia fizyki światło widzialne jest falą elektromagnetyczną a jednocześnie zbiorem

Bardziej szczegółowo

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla

Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla Interferencja jest to zjawisko nakładania się fal prowadzące do zwiększania lub zmniejszania amplitudy fali wypadkowej. Interferencja zachodzi dla wszystkich rodzajów fal, we wszystkich ośrodkach, w których

Bardziej szczegółowo

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit

Badanie zjawisk optycznych przy użyciu zestawu Laser Kit LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 5 Badanie zjawisk optycznych przy użyciu zestawu Laser Kit Cel ćwiczenia: Zapoznanie studentów ze zjawiskami optycznymi. Badane elementy: Zestaw ćwiczeniowy Laser

Bardziej szczegółowo

BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO

BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO Politechnika Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Politechnika Filipowicz Warszawska Wydział Fizyki Laboratorium Fizyki I P Jerzy Filipowicz BADANIE EFEKTU FOTOELEKTRYCZNEGO ZEWNĘTRZNEGO

Bardziej szczegółowo

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER

CHARAKTERYSTYKA WIĄZKI GENEROWANEJ PRZEZ LASER CHARATERYSTYA WIĄZI GENEROWANEJ PRZEZ LASER ształt wiązki lasera i jej widmo są rezultatem interferencji promieniowania we wnęce rezonansowej. W wyniku tego procesu powstają charakterystyczne rozkłady

Bardziej szczegółowo

SPEKTROSKOPIA W PODCZERWIENI

SPEKTROSKOPIA W PODCZERWIENI SPEKTROSKOPIA W PODCZERWIENI Obszar widma elektromagnetycznego ( od ok. 14000 do 200cm-1 ) między obszarem widzialnym a mikrofalowym nazywamy podczerwienią (IR). W określeniu struktury związków organicznych

Bardziej szczegółowo

Informacje uzyskiwane dzięki spektrometrii mas

Informacje uzyskiwane dzięki spektrometrii mas Slajd 1 Spektrometria mas i sektroskopia w podczerwieni Slajd 2 Informacje uzyskiwane dzięki spektrometrii mas Masa cząsteczkowa Wzór związku Niektóre informacje dotyczące wzoru strukturalnego związku

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 7 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Badania własności optycznych grafenu

Badania własności optycznych grafenu Badania własności optycznych grafenu Mateusz Klepuszewski 1, Aleksander Płocharski 1, Teresa Kulka 2, Katarzyna Gołasa 3 1 III Liceum Ogólnokształcące im. Unii Europejskiej, Berlinga 5, 07-410 Ostrołęka

Bardziej szczegółowo

ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE

ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE Cel ćwiczenia Poznanie podstawowej metody określania biochemicznych parametrów płynów ustrojowych oraz wymagań technicznych stawianych urządzeniu pomiarowemu.

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym

Bardziej szczegółowo

Rezonatory ze zwierciadłem Bragga

Rezonatory ze zwierciadłem Bragga Rezonatory ze zwierciadłem Bragga Siatki dyfrakcyjne stanowiące zwierciadła laserowe (zwierciadła Bragga) są powszechnie stosowane w laserach VCSEL, ale i w laserach z rezonatorem prostopadłym do płaszczyzny

Bardziej szczegółowo

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich

Bardziej szczegółowo

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki

OPTYKA KWANTOWA Wykład dla 5. roku Fizyki OPTYKA KWANTOWA Wykład dla 5. roku Fizyki c Adam Bechler 2006 Instytut Fizyki Uniwersytetu Szczecińskiego Absorpcja promieniowania w ośrodku Promieniowanie elektromagnetyczne przy przejściu przez ośrodek

Bardziej szczegółowo

Zastosowanie spektroskopii UV/VIS w określaniu struktury związków organicznych Małgorzata Krasodomska

Zastosowanie spektroskopii UV/VIS w określaniu struktury związków organicznych Małgorzata Krasodomska Zastosowanie spektroskopii UV/VIS w określaniu struktury związków organicznych Małgorzata Krasodomska 1.1. Wprowadzenie do spektroskopii UV/VIS Spektroskopia w nadfiolecie, oraz świetle widzialnym UV/VIS

Bardziej szczegółowo

h λ= mv h - stała Plancka (4.14x10-15 ev s)

h λ= mv h - stała Plancka (4.14x10-15 ev s) Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę

Bardziej szczegółowo

Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK

Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK Dioda półprzewodnikowa OPRACOWANIE: MGR INŻ. EWA LOREK Budowa diody Dioda zbudowana jest z dwóch warstw półprzewodników: półprzewodnika typu n (nośnikami prądu elektrycznego są elektrony) i półprzewodnika

Bardziej szczegółowo

Grafen materiał XXI wieku!?

Grafen materiał XXI wieku!? Grafen materiał XXI wieku!? Badania grafenu w aspekcie jego zastosowań w sensoryce i metrologii Tadeusz Pustelny Plan prezentacji: 1. Wybrane właściwości fizyczne grafenu 2. Grafen materiał 21-go wieku?

Bardziej szczegółowo

Wykład 15 Rozpraszanie światła Ramana i luminescencja

Wykład 15 Rozpraszanie światła Ramana i luminescencja Wykład 5 Rozpraszanie światła Ramana i luminescencja Zjawisko rozpraszania Ramana jest związane z niesprężystym rozpraszaniem padającego fotonu o częstości ν na cząsteczce, wskutek czego foton zmienia

Bardziej szczegółowo

Propagacja światła we włóknie obserwacja pól modowych.

Propagacja światła we włóknie obserwacja pól modowych. Propagacja światła we włóknie obserwacja pól modowych. Przy pomocy optyki geometrycznej łatwo można przedstawić efekty propagacji światła tylko w ośrodku nieograniczonym. Nie ukazuje ona jednak interesujących

Bardziej szczegółowo

PODSTAWY REZONANSÓW MAGNETYCZNYCH W.3

PODSTAWY REZONANSÓW MAGNETYCZNYCH W.3 PODSTAWY REZONANSÓW MAGNETYCZNYCH W.3 Dzisiaj chciałbym powiedzieć o właściwościach elektrycznych jąder, czyli mały wstęp, Ŝeby móc zacząć mówić o jądrowym rezonansie kwadrupolowym, gdzie występuje oddziaływanie

Bardziej szczegółowo

Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane. Piotr Perlin Instytut Wysokich Ciśnień PAN

Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane. Piotr Perlin Instytut Wysokich Ciśnień PAN Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane Piotr Perlin Instytut Wysokich Ciśnień PAN Jak i czym scharakteryzować kryształ półprzewodnika Struktura dyfrakcja rentgenowska

Bardziej szczegółowo

Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Spektroskopia (0310-CH-S2-016)

Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Spektroskopia (0310-CH-S2-016) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Chemia, drugi Sylabus modułu: Spektroskopia () 1. Informacje ogólne koordynator modułu prof. dr hab. Henryk Flakus rok akademicki 2013/2014

Bardziej szczegółowo

Załącznik nr 8. do sprawozdania merytorycznego z realizacji projektu badawczego

Załącznik nr 8. do sprawozdania merytorycznego z realizacji projektu badawczego Załącznik nr 8 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Ćwiczenie 46 Spektrometr. Wyznaczanie długości fal linii widmowych pierwiastków

Ćwiczenie 46 Spektrometr. Wyznaczanie długości fal linii widmowych pierwiastków Ćwiczenie 46 Spektrometr. Wyznaczanie długości fal linii widmowych pierwiastków Wstęp teoretyczny: Krzysztof Rębilas. Autorem ćwiczenia w Pracowni Fizycznej Zakładu Fizyki Uniwersytetu Rolniczego w Krakowie

Bardziej szczegółowo

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego MIKROSKOPIA ELEKTRONOWA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Tło historyczne Pod koniec XIX wieku stosowanie mikroskopów świetlnych w naukach

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WARSZAWIE WYDZIAŁ.. LABORATORIUM FIZYCZNE Ćwiczenie Nr 7 Temat: WYZNACZANIE STA ŁEJ SIATKI DYFRAKCYJNEJ I DŁUGOŚCI FALI ŚWIETLNEJ Warszawa 9 POMIARDŁUGOŚCI FALI ŚWIETLNEJ ZA POMOCĄ SIATKI DYFRAKCYJNEJ

Bardziej szczegółowo