Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Wielkość: px
Rozpocząć pokaz od strony:

Download "Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego"

Transkrypt

1 Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład XIV Techniki spektroskopii ramanowskiej Budowa spektrofotometrów ramanowskich, źródła wzbudzania, detektory Mikroskopia ramanowska (µr) Przykłady zastosowań

2 Kilka uwag Sir Sandrasekhara Venkata Raman ( ), profesor Uniwersytecie w Kalkucie, nagroda Nobla w 1930 roku za prace nad rozpraszaniem światła i odkrycie zjawiska, które nazwane zostało jego nazwiskiem. Spektroskopia ramanowska, podobnie jak spektroskopia absorpcyjna w podczerwieni, naleŝy do technik badania widm oscylacyjnych materiałów. MoŜe być stosowana zarówno do gazów, cieczy, jak i ciał stałych. W większości spektrometrów ramanowskich jako źródła wzbudzenia uŝywa się laserów. Technika ta jest komplementarna do spektroskopii w podczerwieni. Pierwsze zarejestrowane widmo ramanowskie

3 Rozpraszanie promieniowania przez oscylator w molekule KaŜdą składową tensora polaryzowalności moŝna przedstawić jako αij αij = ( αij ) 0 + q +..., q 0 gdzie (α ij ) 0 jest wartością α ij w połoŝeniu równowagi jąder. Periodyczne zmiany współrzędnej normalnej oscylacji moŝna opisać funkcją q = Qcos2πν. Po wstawieniu do wzoru na tensor polaryzowalności dostaje się α = α α Qcos2πν. 0 + q t 0

4 Rozpraszanie promieniowania przez oscylator w molekule Podstawiając do równania na indukowany moment dipolowy µ ind =αe0 cos2πν 0t. dostajemy µ ind Korzystając z zaleŝności α = α0e0 cos( 2πν 0t) + QE0 cos(2πν 0t) cos(2πνt). q cosα sin β = cos( α β ) + 1 cos( α β ) 2 otrzymujemy formułe, która opisuje trzy rodzaje promieniowania rozproszonego µ ind = α0e0 cos(2πν 0t) + rozpraszanie Rayleigha 1 α + QE0 cos[2π ( ν 0 ν ) t] + 2 q 0 rozpraszanie stokesowskie 1 α + QE0 cos[2π ( ν 0 + ν ) t]. 2 q rozpraszanie antystokesowskie 0

5 NatęŜenie pasm promieniowania rozproszonego Stosunki natęŝeń pasm obliczamy ze wzoru. ~ 2 ν 4 M ind I Amplituda indukowanego momentu dipolowego wynosi oraz QE q M E M ind ind = = α α zatem. ) ( ~, ) ( ~, ~ ν ν α ν ν α ν α + E Q q I E Q q I E I antyst stokes rayl Korzystając z tych zaleŝności moŝna oszacować, Ŝe. 10 ) ( = α α ν α ν ν α Q q Q q I I rayl st

6 Rozpraszanie ramanowskie wzbudzanie rozpraszanie Rayleigha Elektronowy stan wzbudzony rozpraszanie Ramana Stan wirtualny E = 0 Stokes anty-stokes Elektronowy stan podstawowy

7 Widmo ramanowskie Całkowite widmo ramanowskie składa się z: maksimum rozpraszania Rayleigha (duŝe natęŝenie, długość fali taka sama, jak długość fali wzbudzającej); szeregu maksimów stokesowskich (niŝsze częstotliwości, większe długości fali); szeregu maksimów antystokesowskich (wyŝsze częstości, mniejsze długości fali); 459 rozpraszanie Rayleigha ~ 1 λ 0 pasma stokesowskie ν 0 = cm = 488 nm NatęŜenie [jedn wzgl.] pasma antystokesowskie Przesunięcie ramanowskie [cm -1 ] Widmo ramanowskie CCl 4 uzyskane przy wzbudzaniu linią 488 nm lasera argonowego

8 Widmo ramanowskie Widmo ramanowskie jest niezaleŝne od długości fali wzbudzającej (488, 632,8, 1064 nm). W praktyce najczęściej rejestruje się widma z maksimami stokesowskimi, które mają większe natęŝenia niŝ antystokesowskie, albowiem liczba molekuł w pierwszym oscylacyjnym stanie wzbudzonym jest mniejsza niŝ w stanie podstawowym. Ze wzrostem temperatury wzrasta ilość molekuł w pierwszym stanie wzbudzonym, wzrasta zatem natęŝenie linii antystokesowskich.

9 Widma ramanowskie a widma w podczerwieni Przesunięcia ramanowskie w widmach ramanowskich są identyczne co do wartości z połoŝeniem pików absorpcyjnych w widmach IR, jednakŝe róŝnią się ich względne natęŝenia. IR Niektóre maksima mogą być widoczne w jednym widmie, w drugim zaś nie. Rozpraszanie Ramana związane jest ze Raman zniekształceniem rozkładu gęstości elektronów wokół wiązania, po którym następuje reemisja promieniowania związania z powrotem wiązania do pierwotnego kształtu. Molekuły homojądrowe, nieaktywne w podczerwieni, dają linie ramanowskie, poniewaŝ polaryzowalność wiązań zmienia się periodycznie i zgodnie w fazie z drganiami rozciągającymi. Widmo IR oraz Ramana niperytu

10 Podstawowe róŝnice pomiędzy spektroskopią ramanowską (rozpraszania) oraz spektroskopią IR (absorpcyjną) Spektroskopia rozpraszania Ramana - mierzymy zmianę częstotliwości (lub długości) promieniowania padającego. W technice tej wykorzystuje się róŝne źródła, które mogą emitować promieniowanie o róŝnych długościach fali. JednakŜe częstościom oscylacyjnym drgań mierzonych molekuł odpowiadają zmiany częstotliwości promieniowania padającego będące skutkiem procesów rozpraszania. Spektroskopia absorpcyjna IR - pomiary absorpcji promieniowania IR w określonym zakresie długości fal, który pokrywa się z częstościami (energią) przejść oscylacyjnych molekuły. Stosowane źródła promieniowania muszą emitować promieniowanie podczerwone w całym zakresie mierzonej absorpcji.

11 Podstawowe róŝnice pomiędzy spektroskopią ramanowską (rozpraszania) oraz spektroskopią IR (absorpcyjną) Reguły wyboru dla przejść oscylacyjnych: IR energia fotonu dopasowana do energii poziomów rotacyjnych, tzn. hv = E osc Raman róŝnica energii fotonu padającego i rozproszonego odpowiada róŝnicy poziomów oscylacyjnych hv 0 hv R = E osc następuje zmiana momentu dipolowego w czasie drgania µ Q przejściom towarzyszą zmiany kwantowej liczby oscylacji 0 0 υ = +1, +2, +3,... następuje zmiana polaryzowalności w czasie drgania α Q przejściom towarzyszą zmiany kwantowej liczby oscylacji υ = ±1, ±2, ±3,..., przy czym nadtony znacznie mniej widoczne niŝ w przypadku IR 0 0

12 Podstawowe róŝnice pomiędzy spektroskopią ramanowską (rozpraszania) oraz spektroskopią IR (absorpcyjną) NatęŜenie pasm w widmach oscylacyjnych IR oraz Ramana Wiązanie, grupa IR Raman Grupy polarne o duŝym trwałym momencie dipolowym, np. OH, NH, CO C S S S Si O Si C==C C C drgania szkieletowe w pełni symetryczne drgania poszczególnych pierścieni aromatycznych i cyklicznych (względna absorbancja) bardzo duŝa średnia duŝa średnia bardzo mała lub zerowa (drgania zabronione w IR) (natęŝenie względne) małe duŝe lub bardzo duŝe bardzo duŝe duŝe duŝe lub bardzo duŝe

13 Zalety spektroskopii ramanowskiej W spektroskopii ramanowskiej moŝemy posługiwać się róŝnymi źródłami promieniowania wzbudzającego. NatęŜenie pasm ramanowskich wzrasta z częstotliwością promieniowania źródła jak v 4. Zatem większe natęŝenie będziemy obserwować przy wzbudzaniu światłem o mniejszych długościach fal, np. linią 488 nm lasera argonowego. W wielu przypadkach, w celu uniknięcia uszkodzenia próbki stosuje się źródła wzbudzania emitujące dłuŝsze fale, np. lasery czerwone i podczerwone. Często jako źródła stosowane są lasery diodowe (785 oraz 830 nm) oraz Nd- YAG (1064 nm). Laser diodowy Starbright 785S (Torsana Laser Technologies) emitujacy linię 785 nm o mocy 500 mw.

14 Zalety spektroskopii ramanowskiej Łatwość przygotowania próbek jest duŝą zaletą spektroskopii ramanowskiej. Technika ta nie wymaga stosowania niestabilnych chemicznie okienek KBr. MoŜna wykonywać pomiary roztworów wodnych próbek, co jest niemoŝliwe w przypadku pomiarów absorpcji IR. W technice tej moŝliwe jest wykonywanie pomiarów w wyŝszych temperaturach. WyŜsze temperatury nie mają bezpośredniego wpływu na sam pomiar. Technika ta jest szczególnie przydatna do pomiarów częstości oscylacyjnych kompleksów metal-ligand, których drgania przypadają na obszar cm -1. Pomiary widm w podczerwieni są w tym obszarze bardzo trudne. Kolejną zaletą tej techniki jest fakt, iŝ źródła wzbudzania emitują promieniowanie w zakresie widzialnym, co pozwala na precyzyjne zestrojenie układu optycznego mikroskopów ramanowskich.

15 Rozpraszanie ramanowskie a problem fluorescencji Energia wzbudzania, Ε (cm 1 ) 25,000 Rozpraszane elastyczne (Rayleigh) Ε Ε emit Stokes Anty-Stokes Ε Ε emit Ε fluorescencja Ε emit Drugi stan wzbudzony Pierwszy stan wzbudzony 4,000 0 Ε IR ± Ε Raman Ε=Ε emit Ε UV/Vis Fluorescencja Stany oscylacyjne Stan podstawowy

16 Problem fluorescencji Zjawiskiem niepoŝądanym w spektroskopii ramanowskiej jest fluorescencja. Wzbudzając niektóre próbki światłem zielonym, niebieskim bądź fioletowym moŝemy indukować przejścia elektronowe, które z kolei mogą wywołać świecenie fluorescencyjne. Powstające w ten sposób tło fluorescencyjne przysłania linie ramanowskie. Aby zminimalizować fluorescencję stosuje się w takich przypadkach wzbudzanie promieniowaniem o większej długości fali, której energia nie pokrywa się z energią przejść elektronowych. Widma ramanowskie antracenu uzyskane przy wzbudzaniu laserem argonowym, linia 514,5 nm (A), oraz laserem Nd:YAG, linia 1064 nm (B)

17 Problem fluorescencji Tło fluorescencyjne moŝna obniŝyć eksponując próbkę na działanie wzbudzającego promieniowania laserowego przez dłuŝszy czas. Raman Intensity Poly (diallyl phthalate) λ ex = nm Without Bleaching After 2 hours Bleaching Raman Shift (cm -1 )

18 Rodzaje spektrometrów ramanowskich spektrometr fourierowski przetwornik Ge chłodzony ciekłym azotem zwierciadło półprzepuszczalne zwierciadło ruchome zwierciadło nieruchome próbka filtr przestrzenny filtry dielektryczne paraboliczne zwierciadło zbierające laser Nd:YAG z filtrem liniowym

19 Rodzaje spektrometrów ramanowskich spektrometr siatkowy Konfiguracja do pomiarów ramanowskich in situ. Głowica pomiarowa połączona ze źródłem wzbudzania oraz spektrometrem włóknem światłowodowym. włókno światłowodowe (wzbudzanie) filtr interferencyjny dioda laserowa głowica pomiarowa filtr obcinający pasmo Rayleigha próbka siatka kamera CCD

20 Źródła wzbudzania w spektroskopii ramanowskiej NatęŜenie pasm ramanowskich jest bardzo słabe (0,001% natęŝenia wiązki rozpraszanej). W celu uzyskania sygnału ramanowskiego naleŝy stosować źródła o duŝym natęŝeniu. Aby widma miały nieskomplikowaną strukturę, źródło musi być monochromatyczne. Wynika to z faktu, Ŝe w spektroskopii ramanowskiej rejestruje się róŝnicę częstotliwości promieniowania padającego i rozproszonego. Jako źródła wzbudzania moŝna równieŝ wykorzystywać lampy o duŝym natęŝeniu, jednakŝe po zmonochromatyzowaniu mają one bardzo małą moc. Dlatego niemal wyłącznie stosuje się lasery. Lasery argonowe (jony Ar + ): linie 488 oraz 514,5 nm; Lasery kryptonowe (jony Kr + ): linie 530,9 oraz 647,1 nm; Lasery He-Ne: linia 632,8 nm; Diody laserowe: 785 oraz 830 nm; Lasery Nd:YAG: 1024 nm (532 nm przy wykorzystaniu drugiej harmonicznej) laser półprzewodnikowy XTRA laser argonowy

21 Detektory NatęŜenie rozpraszania ramanowskiego jest bardzo małe. Do jego detekcji zarówno w instrumentach dyspersyjnych jak równieŝ z transformatą Fouriera stosowano do niedawna bardzo czułe fotopowielacze. Obecnie większość spektrometrów jest wyposaŝona w chłodzone kamery CCD (charge-coupled device). Kamery CCD są bardzo czułe w obszarze światła widzialnego oraz bliskiej podczerwieni. W przypadku wzbudzania laserem neodymowym (1064 nm), stosuje się detektory germanowe. Chłodzony detektor pracujący w zakresie bliskiej podczerwieni, matryca 1024 x 256 pikseli, rozmiary 1 piksela - 25 µm 2 (Jobin-Yvon).

22 Przygotowanie próbek Przygotowanie próbek w spektroskopii ramanowskiej jest prostsze niŝ w spektroskopii IR. W przypadku próbek stałych wiązka promieniowania rozpraszanego kierowana jest wprost na próbkę. Próbki ciekłe oraz gazowe mierzy się w kuwetach kwarcowych, które są chemicznie duŝo bardziej odporne niŝ stosowane w spektroskopii UV kuwety KBr. filtr interferencyjny zwierciadło zbierające promieniowanie rozproszone próbka kapilara z mierzonym roztworem soczewka laser okienko przesłona soczewka obiektywowa zwierciadło zbierające promieniowanie wzbudzające do spektrometru Układy wzbudzania próbek laser do spektrometru filtr interferencyjny

23 Spektroskopia mikroramanowska

24 Mikroskop konfokalny detektor przysłona laser zwierciadło półprzepuszczalne obiektyw płaszczyzna ogniskowa próbka

25 Spektrometr mikroramanowski

26 Zastosowania Chemia strukturalna, Fizyka ciała stałego, Chemia analityczna, Badania materiałów pod kątem zastosowań, Kontrola procesów, Mikrospektroskopia obrazowanie, Monitorowanie środowiska, Biomedycyna, Badania i diagnostyka obiektów zabytkowych.

27 Biomedycyna Widmo ramanowskie holesterolu Hanlon et al. Prospects for in vivo Raman spectroscopy, Phys Med Biol 45: R1 (2000)

28 Badanie składników krwi Przykłady składników krwi, których poziom moŝe być określany na podstawie analizy widm ramanowskich. MoŜliwa jest diagnostyka in vivo. Jason T. Motz, Biomedical Raman Spectroscopy, Massachusetts General Hospital

29 Fizyka ciała stałego węgle niskowymiarowe D G laser excitation at 488 nm (2.54 ev) G' graphite exfoliated graphene epitaxial graphene SWNTs pristine CNTs P-CNTs N-CNTs Raman schift [cm -1 ]

30 Badana defektów w węglach model Lucchese a I D /I G 3,6 3,2 2,8 2,4 2,0 1,6 1,2 0,8 0,4 0,0 obszar aktywny nieporządek L D [nm] L D średnia odległość pomiędzy defektami. Dla L D < 3.5 nm zachodzą procesy amorfizacji struktur sp 2. L D M.M. Lucchese et al.., Carbon 48 (5); 2010;

31 Badania i diagnostyka obiektów zabytkowych Identyfikacja spoiw i pigmentów. Badanie procesów starzeniowych. Identyfikacja substancji wprowadzanych w skutek ataku mikroorganizmów. Monitorowanie skutków zabiegów konserwatorskich. Określanie autentyczności dzieł sztuki.

32 Wybrane widma wzorcowe spoiw Ŝywica damarowa Ŝywica elemi klej glutynowy kazeina

33 Wybrane widma wzorcowe pigmentów azuryt malachit kreda ochra

34 Seria widm ramanowskich próbek olejów lnianych ν C=C ν C-C ν C-O δο Η? ν C=O [cm -1 ] Pomiar wykonywany przy wzbudzaniu linią argonową o długości fali 488 nm. W starszych próbkach wskutek fluorescencji pasma ramanowskie są słabiej widoczne.

35 Przykład zastosowania mikrospektroskopii ramanowskiej, badanie składu warstw malarskich Tryptyk gotycki z Katedry we Włocławku Tryptyk Najświętsza Maria Panna ze św. Katarzyną i św. Barbarą (koniec XV w.)

36 Archanioł malachit biel ołowiowa retusze azuryt kolorowa podczerwień fluorescencja w UV

37 3 warstwa PARAFFIN PARAFFIN CHALK CARBON BLACK 1616 kreda CHALK parafina czerń węglowa warstwa 3 Raman shift, cm -1 czerwień lakowa WHITE LEAD 1053 LAC LAKE ~ 1610 biel ołowiowa Raman shift, cm -1

38 Św. Barbara biel ołowiowa malachit czerwień organicza kolorowa podczerwień fluorescencja w UV

39 warstwa 4 LEAD WHITE LAC LAKE LAC LAKE LAC LAKE 460 biel ołowiowa Raman shift, cm -1 czerwień lakowa warstwa czerwień lakowa Raman shift, cm -1

40 Kościół NMP na Zamku KrzyŜackim w Malborku Zamek Wysoki w Malborku pierwsza faza budowy przebudowa

41 Zamek Wysoki wschodnia elewacja. Początek XX wieku

42 Zniszczenia kościoła NMP wskutek II wojny światowej

43 Wnętrze kościoła NMP, stan dzisiejszy

44 Fragment polichromii z XIII w. Odkrywka warstwy malarskiej z fryzu arkadowego na ścianie zachodniej 1) XIX w. warstwa malarska - ochra 2) XIX w. tynk 3) warstwa malarska ochra 4) pobiała wapienna 5) róŝowy tynk 6) XIII w. błękitna warstwa malarska 7) pobiała 8) cegła

45 Cas - kazeina Ch - kreda Azu - azuryt WL biel ołowiowa Widmo mikroramanowskie z warstwy błękitnej oraz białej

46 Fragment polichromii z XIV w. Odkrywka na ścianie zachodniej (Ŝagielek pomiędzy ramionami arkad): 1) XIX w. warstwa malarska ochra 2) XIX w. tynk 3) warstwa błękitna XIV w. czarne i błękitne ornamenty 4) XIV w. pobiała wapienna 5) XIV w. róŝowy tynk 6) cegła

47 CB czerń węglowa Azu - azuryt Widmo mikroramanowskie warstwy błękitnej

48 Fragment polichromii z XIX w. Odkrywka na fryzie arkadowym (pierwsza arkada na ścianie południowej): 1) XIX w. warstwa malarska czerwień 2) XIX w. tynk 3) tynk 4) tynk 5) cegła

49 PbCrO 4 PbSO 4 siarczan ołowiu PbCrO 4 Ŝółcień chromowa Fe 2 O 3 czerwień Ŝelazowa Fe 2 O 3 PbCrO 4 PbSO 4 PbSO 4 Widmo mikroramanowskie czerwonej warstwy

50 CB Azu Azu PbSO 4 Mal CB Azu CB czerń węglowa Mal - malachit Azu PbSO 4 siarczan ołowiu Azu - azuryt Widmo mikroramanowskie warstwy błękitnej

51 Mal Mal - malachit Widmo mikroramanowskie warstwy zielonej

52 RL RL czerwień ołowiowa BaSO 4 siarczan baru RL BaSO 4 BaSO 4 Widmo mikroramanowskie warstwy czerwonej

53 Władysław KrzyŜanowski, Martwa natura z rzeźbą, Lwowska Galeria Obrazów Władysław KrzyŜanowski, Martwa natura z rzeźbą, falsyfikat w handlu antykwarycznym

54 Han van Meegeren (rzekomo Jan Vermeer van Delft), Uczniowie w Emmaus Jan Vermeer van Delft, Koncert, 1660, Boston Museum, skradziony

55 Frans Hals, ), Hille Bobbe (Czarownica), Galeria Dahlem, Berlin Han van Meegeren (rzekomo Frans Hals, ), Pijąca kobieta, sygn.; F.H., ok

56 Oryginał czy falsyfikat? - badania mikroramanowskie Jacek Malczewski ( ), Portret Mieczysława Gąseckiego w pracowni

57 Pomiary mikroramanowskie ~1375 ~ Raman shift, cm -1 ultramaryna czerń węglowa Ŝółcień indyjska biel ołowiowa

58 Pomiary mikroramanowskie Raman shift, cm -1 czerń węglowa błękit pruski biel ołowiowa

59 Rezonansowy efekt Ramana NatęŜenie rozpraszania ramanowskiego jest razy słabsze niŝ natęŝenie rozpraszania rayleighowskiego. RóŜnica ta spowodowana jest małym prawdopodobieństwem przeniesienia energii do molekuły znajdującej się w stanie podstawowym, której towarzyszy reemisja promieniowania z jednoczesnym powrotem do stanu podstawowego. Jeśli poziomy wirtualne znajdują się w pobliŝu wzbudzonych elektronowych stanów molekularnych (najczęściej pierwszy stan wzbudzony), prawdopodobieństwo przejść oscylacyjnych wzrasta o 10 2 do 10 6 razy. Rezonansowe linie ramanowskie obserwuje się nawet przy stęŝeniach molowych rzędu 10-8 M. Rezonansowe widma ramanowskie mają na ogół prostą strukturę (do kilku linii), poniewaŝ wzmocnienie dotyczy jedynie przejść związanych bezpośrednio z chromoforami.

60 Rezonansowy efekt Ramana przejścia bezpromieniste v ex v rozp s v ex v fl s v rozpraszanie Ramana fluorescencja

61 Powierzchniowo wzmocniona spektroskopia Ramana SERS (surface enhanced Raman spectroscopy) JeŜeli molekuły są absorbowane na koloidalnych cząsteczkach Au, Ag, Cu lub nierównościach powierzchni tych metali o rozmiarach nanometrowych, natęŝenie rozpraszania ramanowskiego wzrasta o razy. Metalem, który daje największe wzmocnienie jest srebro. Mechanizm zjawiska SERS jest nieznany, powszechnie uwaŝa się, Ŝe jest on spowodowany wzmocnieniem pola elektrycznego na nanocząsteczkach. Kiedy długość fali padającego promieniowania EM jest bliska długości fali plazmowej metalu, elektrony mogą zostać wzbudzone do rozszerzonych stanów powierzchniowych (powierzchniowy rezonans plazmonowy). Kombinacja techniki SERS ze spektroskopią rezonansową pozwala na wzmocnienie sygnału rzędu UmoŜliwia to detekcję substancji juŝ przy stęŝeniu M.

62 Powierzchniowo wzmocniona spektroskopia Ramana SERS (surface enhanced Raman spectroscopy) SERS moŝe być wykorzystywany do uzyskiwania informacji przestrzennej poprzez sprzęŝenie spektrometru ramanowskiego z AFM

63 SERS sprzęŝony z AFM Raman laser obiektyw detektor nanosprzęŝenie osi z mikroskopu stolik xyz dioda laserowa sonda z ostrzem próbka Wraz ze zmianą topografii próbki zmienia się połoŝenie stolika wzdłuŝ osi z, dopasowując się do sygnału detektora. Dzięki tej konfiguracji zapewniona jest kontrola odległości powierzchni próbki od soczewki mikroskopu ramanowskiego.

Spektroskopia ramanowska w badaniach powierzchni

Spektroskopia ramanowska w badaniach powierzchni Spektroskopia ramanowska w badaniach powierzchni z Efekt Ramana (1922, CV Raman) I, ν próbka y Chandra Shekhara Venketa Raman x I 0, ν 0 Monochromatyczne promieniowanie o częstości ν 0 ulega rozproszeniu

Bardziej szczegółowo

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman

Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Porównanie Przewaga klasycznego spektrometru Ramana czyli siatkowego, dyspersyjnego nad przystawką ramanowską FT-Raman Spektroskopia FT-Raman Spektroskopia FT-Raman jest dostępna od 1987 roku. Systemy

Bardziej szczegółowo

SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ

SPEKTROSKOPIA RAMANA. Laboratorium Laserowej Spektroskopii Molekularnej PŁ SPEKTROSKOPIA RAMANA Laboratorium Laserowej Spektroskopii Molekularnej PŁ WIDMO OSCYLACYJNE Zręby atomowe w molekule wykonują oscylacje wokół położenia równowagi. Ruch ten można rozłożyć na 3n-6 w przypadku

Bardziej szczegółowo

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności

Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie. Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektrometria w bliskiej podczerwieni - zastosowanie w cukrownictwie Radosław Gruska Politechnika Łódzka Wydział Biotechnologii i Nauk o Żywności Spektroskopia, a spektrometria Spektroskopia nauka o powstawaniu

Bardziej szczegółowo

Możliwości wykorzystania spektroskopii ramanowskiej w branży naftowej

Możliwości wykorzystania spektroskopii ramanowskiej w branży naftowej NAFTA-GAZ listopad 2012 ROK LXVIII Sylwia Jędrychowska Instytut Nafty i Gazu, Kraków Możliwości wykorzystania spektroskopii ramanowskiej w branży naftowej Część I. Podstawy teoretyczne spektroskopii ramanowskiej

Bardziej szczegółowo

Spektroskopia Ramana

Spektroskopia Ramana Spektroskopia Ramana Źródło światła Próbka Promieniowanie rozproszone Rozpraszanie światła Rozpraszanie światła (fal elektromagnetycznych) to zjawisko oddziaływania światła z materią w wyniku którego następuje

Bardziej szczegółowo

ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA

ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA ZASTOSOWANIE LASERÓW W OCHRONIE ŚRODOWISKA W tym przypadku lasery pozwalają na prowadzenie kontroli stanu sanitarnego Powietrza, Zbiorników wodnych, Powierzchni i pokrycia terenu. Stosowane rodzaje laserów

Bardziej szczegółowo

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni

IR II. 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni IR II 12. Oznaczanie chloroformu w tetrachloroetylenie metodą spektrofotometrii w podczerwieni Promieniowanie podczerwone ma naturę elektromagnetyczną i jego absorpcja przez materię podlega tym samym prawom,

Bardziej szczegółowo

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %.

Informacje ogólne. 45 min. test na podstawie wykładu Zaliczenie ćwiczeń na podstawie prezentacji Punkty: test: 60 %, prezentacja: 40 %. Informacje ogólne Wykład 28 h Ćwiczenia 14 Charakter seminaryjny zespołu dwuosobowe ~20 min. prezentacje Lista tematów na stronie Materiały do wykładu na stronie: http://urbaniak.fizyka.pw.edu.pl Zaliczenie:

Bardziej szczegółowo

Mikroskopia konfokalna: techniki obrazowania i komputerowa analiza danych.

Mikroskopia konfokalna: techniki obrazowania i komputerowa analiza danych. Mikroskopia konfokalna: techniki obrazowania i komputerowa analiza danych. Pracownia Mikroskopii Konfokalnej Instytut Biologii Doświadczalnej PAN Jarosław Korczyński, Artur Wolny Spis treści: Co w konfokalu

Bardziej szczegółowo

Wstęp do Optyki i Fizyki Materii Skondensowanej

Wstęp do Optyki i Fizyki Materii Skondensowanej Wstęp do Optyki i Fizyki Materii Skondensowanej Część I: Optyka, wykład 8 wykład: Piotr Fita pokazy: Andrzej Wysmołek ćwiczenia: Anna Grochola, Barbara Piętka Wydział Fizyki Uniwersytet Warszawski 2014/15

Bardziej szczegółowo

Spektroskopia Ramanowska

Spektroskopia Ramanowska Spektroskopia Ramanowska Część A 1.Krótki wstęp historyczny 2.Oddziaływanie światła z osrodkiem materialnym (rozpraszanie światła) 3.Opis klasyczny zjawiska Ramana 4. Widmo ramanowskie. 5. Opis półklasyczny

Bardziej szczegółowo

Opis przedmiotu zamówienia

Opis przedmiotu zamówienia ZP/UR/169/2012 Zał. nr 1a do siwz Opis przedmiotu zamówienia A. Spektrometr ramanowski z mikroskopem optycznym: 1) Spektrometr ramanowski posiadający podwójny tor detekcyjny, wyposażony w chłodzony termoelektrycznie

Bardziej szczegółowo

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS

OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS OZNACZANIE ŻELAZA METODĄ SPEKTROFOTOMETRII UV/VIS Zagadnienia teoretyczne. Spektrofotometria jest techniką instrumentalną, w której do celów analitycznych wykorzystuje się przejścia energetyczne zachodzące

Bardziej szczegółowo

Metody badań spektroskopowych

Metody badań spektroskopowych Metody badań spektroskopowych Program wykładu Wstęp A. Spektroskopia optyczna 1. Podstawy spektroskopii optycznej 1.1 Promieniowanie elektromagnetyczne 1.2 Kwantowanie energii 1.3 Emisja i absorpcja promieniowania

Bardziej szczegółowo

Spektroskopia ramanowska w badaniach białek porównanie technik

Spektroskopia ramanowska w badaniach białek porównanie technik 10 Spektroskopia ramanowska w badaniach białek porównanie technik 10.1. Wprowadzenie Spektroskopia ramanowska (RS) jest metodą badania przejść pomiędzy poziomami energetycznymi cząsteczek, zachodzącymi

Bardziej szczegółowo

Ćwiczenie 5 Protonowanie wody. Różnice w widmie wibracyjnym między H 3 O + i H 2 O. Wyznaczanie widma Ramana wody

Ćwiczenie 5 Protonowanie wody. Różnice w widmie wibracyjnym między H 3 O + i H 2 O. Wyznaczanie widma Ramana wody Ćwiczenie 5 Protonowanie wody. Różnice w widmie wibracyjnym między H 3 O + i H 2 O Wyznaczanie widma Ramana wody 1. Wstęp teoretyczny 2. Część doświadczalna. Opis budowy aparatury badawczej i technika

Bardziej szczegółowo

2. Metody, których podstawą są widma atomowe 32

2. Metody, których podstawą są widma atomowe 32 Spis treści 5 Spis treści Przedmowa do wydania czwartego 11 Przedmowa do wydania trzeciego 13 1. Wiadomości ogólne z metod spektroskopowych 15 1.1. Podstawowe wielkości metod spektroskopowych 15 1.2. Rola

Bardziej szczegółowo

II. WYBRANE LASERY. BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet

II. WYBRANE LASERY. BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet II. WYBRANE LASERY BERNARD ZIĘTEK IF UMK www.fizyka.umk.pl/~ /~bezet Laser gazowy Laser He-Ne, Mechanizm wzbudzenia Bernard Ziętek IF UMK Toruń 2 Model Bernard Ziętek IF UMK Toruń 3 Rozwiązania stacjonarne

Bardziej szczegółowo

Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection)

Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection) Metoda osłabionego całkowitego wewnętrznego odbicia ATR (Attenuated Total Reflection) Całkowite wewnętrzne odbicie n 2 θ θ n 1 n > n 1 2 Kiedy promień pada na granicę ośrodków pod kątem większym od kąta

Bardziej szczegółowo

Zastosowanie spektroskopii w podczerwieni w analizie jakościowej i ilościowej. dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB

Zastosowanie spektroskopii w podczerwieni w analizie jakościowej i ilościowej. dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB Zastosowanie spektroskopii w podczerwieni w analizie jakościowej i ilościowej dr Alina Dubis Zakład Chemii Produktów Naturalnych Instytut Chemii UwB Tematyka Spektroskopia - podział i zastosowanie Promieniowanie

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Ruchy jąder w cząsteczkach dwu- i wieloatomowych: a) model oscylatora harmonicznego;

Bardziej szczegółowo

SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s]

SPEKTROFOTOMETRIA UV-Vis. - długość fali [nm, m], - częstość drgań [Hz; 1 Hz = 1 cykl/s] SPEKTROFOTOMETRIA UV-Vis Instrukcja do ćwiczeń opracowana w Katedrze Chemii Środowiska Uniwersytetu Łódzkiego. Spektrofotometria w zakresie nadfioletu (UV) i promieniowania widzialnego (Vis) jest jedną

Bardziej szczegółowo

Rozmycie pasma spektralnego

Rozmycie pasma spektralnego Rozmycie pasma spektralnego Rozmycie pasma spektralnego Z doświadczenia wiemy, że absorpcja lub emisja promieniowania przez badaną substancję występuje nie tylko przy częstości rezonansowej, tj. częstości

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 6 Temat: Wyznaczenie stałej siatki dyfrakcyjnej i dyfrakcja światła na otworach kwadratowych i okrągłych. 1. Wprowadzenie Fale

Bardziej szczegółowo

Współczesne metody badań instrumentalnych

Współczesne metody badań instrumentalnych Współczesne metody badań instrumentalnych Wykład III Techniki fotograficzne Fotografia w świetle widzialnym Techniki fotograficzne Techniki fotograficzne techniki rejestracji obrazów powstałych wskutek

Bardziej szczegółowo

Spektroskopia modulacyjna

Spektroskopia modulacyjna Spektroskopia modulacyjna pozwala na otrzymanie energii przejść optycznych w strukturze z bardzo dużą dokładnością. Charakteryzuje się również wysoką czułością, co pozwala na obserwację słabych przejść,

Bardziej szczegółowo

spektroskopia UV Vis (cz. 2)

spektroskopia UV Vis (cz. 2) spektroskopia UV Vis (cz. 2) spektroskopia UV-Vis dlaczego? wiele związków organicznych posiada chromofory, które absorbują w zakresie UV duża czułość: zastosowanie w badaniach kinetyki reakcji spektroskop

Bardziej szczegółowo

Ogólne cechy ośrodków laserowych

Ogólne cechy ośrodków laserowych Ogólne cechy ośrodków laserowych Gazowe Cieczowe Na ciele stałym Naturalna jednorodność Duże długości rezonatora Małe wzmocnienia na jednostkę długości ośrodka czynnego Pompowanie prądem (wzdłużne i poprzeczne)

Bardziej szczegółowo

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita

Niezwykłe światło. ultrakrótkie impulsy laserowe. Piotr Fita Niezwykłe światło ultrakrótkie impulsy laserowe Laboratorium Procesów Ultraszybkich Zakład Optyki Wydział Fizyki Uniwersytetu Warszawskiego Światło Fala elektromagnetyczna Dla światła widzialnego długość

Bardziej szczegółowo

AFM. Mikroskopia sił atomowych

AFM. Mikroskopia sił atomowych AFM Mikroskopia sił atomowych Siły van der Waalsa F(r) V ( r) = c 1 r 1 12 c 2 r 1 6 Siły van der Waalsa Mod kontaktowy Tryby pracy AFM związane z zależnością oddziaływania próbka ostrze od odległości

Bardziej szczegółowo

PROBLEMATYKA: Oznaczanie substancji czynnej w próbce z zastosowaniem spektroskopii rozproszenia Ramana WPROWADZENIE

PROBLEMATYKA: Oznaczanie substancji czynnej w próbce z zastosowaniem spektroskopii rozproszenia Ramana WPROWADZENIE PROBLEMATYKA: Oznaczanie substancji czynnej w próbce z zastosowaniem spektroskopii rozproszenia Ramana TEMAT ĆWICZENIA: OZNACZANIE GLUKOZY W PREPARATACH FARMACEUTYCZNYCH I PŁYNACH USTROJOWYCH METODA: Spektroskopia

Bardziej szczegółowo

SPEKTROSKOPIA W PODCZERWIENI - MOŻLIWOŚCI I ZASTOSOWANIA

SPEKTROSKOPIA W PODCZERWIENI - MOŻLIWOŚCI I ZASTOSOWANIA SPEKTROSKOPIA W PODCZERWIENI - MOŻLIWOŚCI I ZASTOSOWANIA Beata Rozum Seminarium Analityczne MS Spektrum 2013 Porównania laboratoryjne, akredytacja, typowe problemy w laboratoriach SPEKTROSKOPIA Oddziaływanie

Bardziej szczegółowo

Badania własności optycznych grafenu

Badania własności optycznych grafenu Badania własności optycznych grafenu Mateusz Klepuszewski 1, Aleksander Płocharski 1, Teresa Kulka 2, Katarzyna Gołasa 3 1 III Liceum Ogólnokształcące im. Unii Europejskiej, Berlinga 5, 07-410 Ostrołęka

Bardziej szczegółowo

Spektroskopia Ramana drgania i widmo rozpraszania

Spektroskopia Ramana drgania i widmo rozpraszania Spektroskopia Ramana drgania i widmo rozpraszania drian Kamiński, Instytut Fizyki UM I. Czym jest spektroskopia ramanowska Spektroskopia Ramana jest istotną metodą badania widm rotacyjnych i oscylacyjnych

Bardziej szczegółowo

PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ

PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ PRACOWNIA PODSTAW SPEKTROSKOPII MOLEKULARNEJ Kierowniczka pracowni: dr hab. Magdalena Pecul-Kudelska, (pok. 417), e-mail mpecul@chem.uw.edu.pl, tel 0228220211 wew 501; Spis ćwiczeń i osoby prowadzące 1.

Bardziej szczegółowo

Załącznik nr 8. do sprawozdania merytorycznego z realizacji projektu badawczego

Załącznik nr 8. do sprawozdania merytorycznego z realizacji projektu badawczego Załącznik nr 8 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

Deuterowa korekcja tła w praktyce

Deuterowa korekcja tła w praktyce Str. Tytułowa Deuterowa korekcja tła w praktyce mgr Jacek Sowiński jaceksow@sge.com.pl Plan Korekcja deuterowa 1. Czemu służy? 2. Jak to działa? 3. Kiedy włączyć? 4. Jak/czy i co regulować? 5. Jaki jest

Bardziej szczegółowo

Metody chemiczne w analizie biogeochemicznej środowiska. (Materiał pomocniczy do zajęć laboratoryjnych)

Metody chemiczne w analizie biogeochemicznej środowiska. (Materiał pomocniczy do zajęć laboratoryjnych) Metody chemiczne w analizie biogeochemicznej środowiska. (Materiał pomocniczy do zajęć laboratoryjnych) Metody instrumentalne podział ze względu na uzyskane informację. 1. Analiza struktury; XRD (dyfrakcja

Bardziej szczegółowo

Grafen materiał XXI wieku!?

Grafen materiał XXI wieku!? Grafen materiał XXI wieku!? Badania grafenu w aspekcie jego zastosowań w sensoryce i metrologii Tadeusz Pustelny Plan prezentacji: 1. Wybrane właściwości fizyczne grafenu 2. Grafen materiał 21-go wieku?

Bardziej szczegółowo

VI. Elementy techniki, lasery

VI. Elementy techniki, lasery Światłowody VI. Elementy techniki, lasery BERNARD ZIĘTEK http://www.fizyka.umk.pl www.fizyka.umk.pl/~ /~bezet a) Sprzęgacze czołowe 1. Sprzęgacze światłowodowe (czołowe, boczne, stałe, rozłączalne) Złącza,

Bardziej szczegółowo

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej.

Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. POLITECHNIKA ŚLĄSKA WYDZIAŁ CHEMICZNY KATEDRA FIZYKOCHEMII I TECHNOLOGII POLIMERÓW LABORATORIUM Z FIZYKI Pomiar długości fali świetlnej i stałej siatki dyfrakcyjnej. Wprowadzenie Przy opisie zjawisk takich

Bardziej szczegółowo

Ćw.6. Badanie własności soczewek elektronowych

Ćw.6. Badanie własności soczewek elektronowych Pracownia Molekularne Ciało Stałe Ćw.6. Badanie własności soczewek elektronowych Brygida Mielewska, Tomasz Neumann Zagadnienia do przygotowania: 1. Budowa mikroskopu elektronowego 2. Wytwarzanie wiązki

Bardziej szczegółowo

NRS-3000 Systems wysoko wydajne spektrofotometry rozpraszającego Raman

NRS-3000 Systems wysoko wydajne spektrofotometry rozpraszającego Raman NRS-3000 Systems wysoko wydajne spektrofotometry rozpraszającego Raman Wyższa czułość, niezawodność i łatwość obsługi Mikro-spektrometry serii NRS-3000 wykorzystują najnowsze rozwiązania optyczne oraz

Bardziej szczegółowo

Katedra Fizyki i Biofizyki instrukcje do ćwiczeń laboratoryjnych dla kierunku Lekarskiego

Katedra Fizyki i Biofizyki instrukcje do ćwiczeń laboratoryjnych dla kierunku Lekarskiego Ćw. M8 Zjawisko absorpcji i emisji światła w analityce. Pomiar widm absorpcji i stężenia ryboflawiny w roztworach wodnych za pomocą spektrofotometru. Wyznaczanie stężeń substancji w roztworze metodą fluorescencyjną.

Bardziej szczegółowo

w obszarze linii Podziały z różnych punktów widzenia lasery oscylatory (OPO optical parametric oscillator)

w obszarze linii Podziały z różnych punktów widzenia lasery oscylatory (OPO optical parametric oscillator) Rodzaj przestrajania Lasery przestrajalne dyskretne wybór linii widmowej wyższe harmoniczne w obszarze linii szerokie szerokie pasmo Podziały z różnych punktów widzenia lasery oscylatory (OPO optical parametric

Bardziej szczegółowo

Przejścia optyczne w strukturach niskowymiarowych

Przejścia optyczne w strukturach niskowymiarowych Współczynnik absorpcji w układzie dwuwymiarowym można opisać wyrażeniem: E E gdzie i oraz f są energiami stanu początkowego i końcowego elektronu, zapełnienie tych stanów opisane jest funkcją rozkładu

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 13 Temat: Biostymulacja laserowa Istotą biostymulacji laserowej jest napromieniowanie punktów akupunkturowych ciągłym, monochromatycznym

Bardziej szczegółowo

UCZESTNICY POSTĘPOWANIA

UCZESTNICY POSTĘPOWANIA ATI 55, 57/II/LJ/2007 Bielsko-Biała 22.02.2007r. UCZESTNICY POSTĘPOWANIA Dotyczy: Postępowania prowadzonego w trybie przetargu nieograniczonego powyŝej 60 000 euro na: Dostawa spektrofotometru z oprzyrządowaniem

Bardziej szczegółowo

Temat ćwiczenia. Pomiary oświetlenia

Temat ćwiczenia. Pomiary oświetlenia POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary oświetlenia Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z metodami pomiaru natęŝenia oświetlenia oraz wyznaczania poŝądanej wartości

Bardziej szczegółowo

Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane. Piotr Perlin Instytut Wysokich Ciśnień PAN

Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane. Piotr Perlin Instytut Wysokich Ciśnień PAN Metody optyczne w badaniach półprzewodników Przykładami różnymi zilustrowane Piotr Perlin Instytut Wysokich Ciśnień PAN Jak i czym scharakteryzować kryształ półprzewodnika Struktura dyfrakcja rentgenowska

Bardziej szczegółowo

h λ= mv h - stała Plancka (4.14x10-15 ev s)

h λ= mv h - stała Plancka (4.14x10-15 ev s) Twórcy podstaw optyki elektronowej: De Broglie LV. 1924 hipoteza: każde ciało poruszające się ma przyporządkowaną falę a jej długość jest ilorazem stałej Plancka i pędu. Elektrony powinny więc mieć naturę

Bardziej szczegółowo

POTWIERDZANIE TOŻSAMOSCI PRZY ZASTOSOWANIU RÓŻNYCH TECHNIK ANALITYCZNYCH

POTWIERDZANIE TOŻSAMOSCI PRZY ZASTOSOWANIU RÓŻNYCH TECHNIK ANALITYCZNYCH POTWIERDZANIE TOŻSAMOSCI PRZY ZASTOSOWANIU RÓŻNYCH TECHNIK ANALITYCZNYCH WSTĘP Spełnianie wymagań jakościowych stawianych przed producentami leków jest kluczowe dla zapewnienia bezpieczeństwa pacjenta.

Bardziej szczegółowo

L E D light emitting diode

L E D light emitting diode Elektrotechnika Studia niestacjonarne L E D light emitting diode Wg PN-90/E-01005. Technika świetlna. Terminologia. (845-04-40) Dioda elektroluminescencyjna; dioda świecąca; LED element półprzewodnikowy

Bardziej szczegółowo

Ćwiczenie nr 4. Badanie dystrybucji substancji czynnych w tabletce leku przeciwbólowego techniką mapowania ramanowskiego

Ćwiczenie nr 4. Badanie dystrybucji substancji czynnych w tabletce leku przeciwbólowego techniką mapowania ramanowskiego Laboratorium Fizykochemii Nowych Materiałów Wydział Chemii Uniwersytetu Warszawskiego Semestr zimowy 2011/2012 Ćwiczenie nr 4 Badanie dystrybucji substancji czynnych w tabletce leku przeciwbólowego techniką

Bardziej szczegółowo

Pomiar drogi koherencji wybranych źródeł światła

Pomiar drogi koherencji wybranych źródeł światła Politechnika Gdańska WYDZIAŁ ELEKTRONIKI TELEKOMUNIKACJI I INFORMATYKI Katedra Optoelektroniki i Systemów Elektronicznych Pomiar drogi koherencji wybranych źródeł światła Instrukcja do ćwiczenia laboratoryjnego

Bardziej szczegółowo

Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego.

Lasery budowa, rodzaje, zastosowanie. Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Lasery budowa, rodzaje, zastosowanie Materiały dydaktyczne dla kierunku Technik Optyk (W12) Kwalifikacyjnego kursu zawodowego. Budowa i zasada działania lasera Laser (Light Amplification by Stimulated

Bardziej szczegółowo

Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej

Ćwiczenie nr 71: Dyfrakcja światła na szczelinie pojedynczej i podwójnej Wydział Imię i nazwisko 1. 2. Rok Grupa Zespół PRACOWNIA Temat: Nr ćwiczenia FIZYCZNA WFiIS AGH Data wykonania Data oddania Zwrot do popr. Data oddania Data zaliczenia OCENA Ćwiczenie nr 71: Dyfrakcja

Bardziej szczegółowo

Spektroskopia UV-VIS zagadnienia

Spektroskopia UV-VIS zagadnienia Spektroskopia absorbcyjna to dziedzina, która obejmuje metody badania materii przy użyciu promieniowania elektromagnetycznego, które może z tą materią oddziaływać. Spektroskopia UV-VS zagadnienia promieniowanie

Bardziej szczegółowo

PRACOWNIA PODSTAW BIOFIZYKI

PRACOWNIA PODSTAW BIOFIZYKI PRACOWNIA PODSTAW BIOFIZYKI Ćwiczenia laboratoryjne dla studentów III roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Pomiary zaników fluorescencji wybranych barwników (PB16)

Bardziej szczegółowo

Promieniowanie cieplne ciał.

Promieniowanie cieplne ciał. Wypromieniowanie fal elektromagnetycznych przez ciała Promieniowanie cieplne (termiczne) Luminescencja Chemiluminescencja Elektroluminescencja Katodoluminescencja Fotoluminescencja Emitowanie fal elektromagnetycznych

Bardziej szczegółowo

LASERY I ICH ZASTOSOWANIE

LASERY I ICH ZASTOSOWANIE LASERY I ICH ZASTOSOWANIE Laboratorium Instrukcja do ćwiczenia nr 5 Temat: Interferometr Michelsona 7.. Cel i zakres ćwiczenia 7 INTERFEROMETR MICHELSONA Celem ćwiczenia jest zapoznanie się z budową i

Bardziej szczegółowo

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan

NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan NMR (MAGNETYCZNY REZONANS JĄDROWY) dr Marcin Lipowczan Spis zagadnień Fizyczne podstawy zjawiska NMR Parametry widma NMR Procesy relaksacji jądrowej Metody obrazowania Fizyczne podstawy NMR Proton, neutron,

Bardziej szczegółowo

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM

Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM Materiał obowiązujący do ćwiczeń z analizy instrumentalnej II rok OAM Ćwiczenie 1 Zastosowanie statystyki do oceny metod ilościowych Błąd gruby, systematyczny, przypadkowy, dokładność, precyzja, przedział

Bardziej szczegółowo

Techniki mikroskopowe mikroskopia optyczna i fluorescencyjna, skaningowy mikroskop elektronowy i mikroskop sił atomowych

Techniki mikroskopowe mikroskopia optyczna i fluorescencyjna, skaningowy mikroskop elektronowy i mikroskop sił atomowych Techniki mikroskopowe mikroskopia optyczna i fluorescencyjna, skaningowy mikroskop elektronowy i mikroskop sił atomowych Mariusz Kępczyński, p. 148, kepczyns@chemia.uj.edu.pl Wstęp Plan wykładu mikroskopia

Bardziej szczegółowo

Fizyka Laserów wykład 11. Czesław Radzewicz

Fizyka Laserów wykład 11. Czesław Radzewicz Fizyka Laserów wykład 11 Czesław Radzewicz Lasery na ciele stałym (prócz półprzewodnikowych) matryca + domieszki izolatory=kryształy+szkła+ceramika metale przejściowe metale ziem rzadkich Matryca: kryształy

Bardziej szczegółowo

DETEKCJA W MIKRO- I NANOOBJĘTOŚCIACH. Ćwiczenie nr 3 Detektor optyczny do pomiarów fluorescencyjnych

DETEKCJA W MIKRO- I NANOOBJĘTOŚCIACH. Ćwiczenie nr 3 Detektor optyczny do pomiarów fluorescencyjnych DETEKCJA W MIKRO- I NANOOBJĘTOŚCIACH Ćwiczenie nr 3 Detektor optyczny do pomiarów fluorescencyjnych Cel ćwiczenia: Celem ćwiczenia jest zaznajomienie się z zasadą działania i zastosowaniami detektora optycznego

Bardziej szczegółowo

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2)

LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) LABORATORIUM ANALITYCZNEJ MIKROSKOPII ELEKTRONOWEJ (L - 2) Posiadane uprawnienia: ZAKRES AKREDYTACJI LABORATORIUM BADAWCZEGO NR AB 120 wydany przez Polskie Centrum Akredytacji Wydanie nr 5 z 18 lipca 2007

Bardziej szczegółowo

Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych

Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych Zwiększenie liczby wysoko wykwalifikowanych absolwentów kierunków ścisłych Uniwersytetu Jagiellońskiego POKL.04.01.02-00-097/09-00 Zastosowanie spektroskopii UV/VIS do określania struktury związków organicznych

Bardziej szczegółowo

Katedra Elektrotechniki Teoretycznej i Informatyki

Katedra Elektrotechniki Teoretycznej i Informatyki Katedra Elektrotechniki Teoretycznej i Informatyki Przedmiot: Badania nieniszczące metodami elektromagnetycznymi Numer Temat: Badanie materiałów kompozytowych z ćwiczenia: wykorzystaniem fal elektromagnetycznych

Bardziej szczegółowo

Właściwości światła laserowego

Właściwości światła laserowego Właściwości światła laserowego Cechy charakterystyczne światła laserowego: rozbieżność (równoległość) wiązki, pasmo spektralne, gęstość mocy spójność (koherencja). Równoległość wiązki Dyfrakcyjną rozbieżność

Bardziej szczegółowo

ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE

ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE ĆWICZENIE NR 3 POMIARY SPEKTROFOTOMETRYCZNE Cel ćwiczenia Poznanie podstawowej metody określania biochemicznych parametrów płynów ustrojowych oraz wymagań technicznych stawianych urządzeniu pomiarowemu.

Bardziej szczegółowo

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie

Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Spektroskopia magnetycznego rezonansu jądrowego - wprowadzenie Streszczenie Spektroskopia magnetycznego rezonansu jądrowego jest jedną z technik spektroskopii absorpcyjnej mającej zastosowanie w chemii,

Bardziej szczegółowo

Efekt Dopplera. dr inż. Romuald Kędzierski

Efekt Dopplera. dr inż. Romuald Kędzierski Efekt Dopplera dr inż. Romuald Kędzierski Christian Andreas Doppler W 1843 roku opublikował swoją najważniejszą pracę O kolorowym świetle gwiazd podwójnych i niektórych innych ciałach niebieskich. Opisał

Bardziej szczegółowo

Analiza spektralna i pomiary spektrofotometryczne

Analiza spektralna i pomiary spektrofotometryczne Analiza spektralna i pomiary spektrofotometryczne Zagadnienia: 1. Absorbcja światła. 2. Współrzędne trójchromatyczne barwy, Prawa Gassmana. 3. Trójkąt barw. Trójkąt nasyceń. 4. Rozpraszanie światła. 5.

Bardziej szczegółowo

Atomowa spektrometria absorpcyjna i emisyjna

Atomowa spektrometria absorpcyjna i emisyjna Nowoczesne techniki analityczne w analizie żywności Zajęcia laboratoryjne Atomowa spektrometria absorpcyjna i emisyjna Cel ćwiczenia: Celem ćwiczenia jest oznaczenie zawartości sodu, potasu i magnezu w

Bardziej szczegółowo

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka.

Fale materii. gdzie h= 6.6 10-34 J s jest stałą Plancka. Fale materii 194- Louis de Broglie teoria fal materii, 199- nagroda Nobla Hipoteza de Broglie głosi, że dwoiste korpuskularno falowe zachowanie jest cechą nie tylko promieniowania, lecz również materii.

Bardziej szczegółowo

Informacje uzyskiwane dzięki spektrometrii mas

Informacje uzyskiwane dzięki spektrometrii mas Slajd 1 Spektrometria mas i sektroskopia w podczerwieni Slajd 2 Informacje uzyskiwane dzięki spektrometrii mas Masa cząsteczkowa Wzór związku Niektóre informacje dotyczące wzoru strukturalnego związku

Bardziej szczegółowo

Współczesne metody badań instrumentalnych

Współczesne metody badań instrumentalnych Współczesne metody badań instrumentalnych Wykład IV Promieniowanie UV Reflektografia UV, fluorescencja wzbudzana UV Promieniowanie UV X UV próżniowy daleki UV bliski UV VIS 4 nm 200 nm 300 nm 400 nm Bliski

Bardziej szczegółowo

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

MIKROSKOPIA ELEKTRONOWA. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego MIKROSKOPIA ELEKTRONOWA Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Tło historyczne Pod koniec XIX wieku stosowanie mikroskopów świetlnych w naukach

Bardziej szczegółowo

Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona

Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Interferencyjny pomiar krzywizny soczewki przy pomocy pierścieni Newtona Jakub Orłowski 6 listopada 2012 Streszczenie W doświadczeniu dokonano pomiaru krzywizny soczewki płasko-wypukłej z wykorzystaniem

Bardziej szczegółowo

Nanotechnologie w diagnostyce

Nanotechnologie w diagnostyce Nanotechnologie w diagnostyce Diagnostyka endoskopowa Nanotechnologie mogą być przydatne w diagnostyce niedostępnych miejsc w badaniach endoskopowych. Temu mogą służyć mikrokamery wielkości antybiotyku,

Bardziej szczegółowo

Współczesne metody badań instrumentalnych

Współczesne metody badań instrumentalnych Współczesne metody badań instrumentalnych Wykład V Reflektografia w podczerwieni Kolorowa podczerwień Badania w różnych pasmach promieniowania EM. Widmo promieniowania IR Promieniowanie podczerwone zostało

Bardziej szczegółowo

UMO-2011/01/B/ST7/06234

UMO-2011/01/B/ST7/06234 Załącznik nr 5 do sprawozdania merytorycznego z realizacji projektu badawczego Szybka nieliniowość fotorefrakcyjna w światłowodach półprzewodnikowych do zastosowań w elementach optoelektroniki zintegrowanej

Bardziej szczegółowo

Fizyka powierzchni 6-7/7. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska

Fizyka powierzchni 6-7/7. Dr Piotr Sitarek. Instytut Fizyki, Politechnika Wrocławska Fizyka powierzchni 6-7/7 Dr Piotr Sitarek Instytut Fizyki, Politechnika Wrocławska Lista zagadnień Fizyka powierzchni i międzypowierzchni, struktura powierzchni ciał stałych Termodynamika równowagowa i

Bardziej szczegółowo

Atomy w zewnętrznym polu magnetycznym i elektrycznym

Atomy w zewnętrznym polu magnetycznym i elektrycznym Atomy w zewnętrznym polu magnetycznym i elektrycznym 1. Kwantowanie przestrzenne momentów magnetycznych i rezonans spinowy 2. Efekt Zeemana (normalny i anomalny) oraz zjawisko Paschena-Backa 3. Efekt Starka

Bardziej szczegółowo

Wykorzystywane zjawiska Rodzaje laserów Kontrolowane cechy

Wykorzystywane zjawiska Rodzaje laserów Kontrolowane cechy ZASTOSOWANIE LASERÓW W OCHRONIE RODOWISKA W tym przypadku lasery pozwalaj na prowadzenie kontroli stanu sanitarnego - powietrza, - zbiorników wodnych, - powierzchni i pokrycia terenu. Stosowane rodzaje

Bardziej szczegółowo

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5)

Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Wojciech Niwiński 30.03.2004 Bartosz Lassak Wojciech Zatorski gr.7lab Sprzęganie światłowodu z półprzewodnikowymi źródłami światła (stanowisko nr 5) Zadanie laboratoryjne miało na celu zaobserwowanie różnic

Bardziej szczegółowo

Aparatura do badań spektroskopowych

Aparatura do badań spektroskopowych Aparatura do badań spektroskopowych Spektrofotometr Do rejestracji widm absorpcji używany jest spektrofotometr V-55 (Jasco) i Specord UV-VIS (Zeiss) oraz jeśli to konieczne to także Cary-3 (Varian). Spektrofotometry

Bardziej szczegółowo

KATALOG OSTATNICH BADAŃ

KATALOG OSTATNICH BADAŃ KATALOG OSTATNICH BADAŃ Tytuł badań: Badania nieinwazyjne obrazu olejnego na blasze miedzianej z XVI/XVII w. Data wykonania: wrzesień 2009 Opis: Przy pomocy podczerwonej kamery Hammamatsu wykonano 24 zdjęcia

Bardziej szczegółowo

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego

Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Paweł Szroeder Rezonanse magnetyczne oraz wybrane techniki pomiarowe fizyki ciała stałego Wykład XV Podsumowanie metod spektroskopowych Monochromatory Detektory Transformacje energii świetlnej oddziałującej

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM

Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Muzeum i Instytut Zoologii Polska Akademia Nauk Akademia im. Jana DługoszaD ugosza Inkluzje Protodikraneurini trib. nov.. (Hemiptera: Cicadellidae) w bursztynie bałtyckim i ich badania w technice SEM Magdalena

Bardziej szczegółowo

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2307863. (96) Data i numer zgłoszenia patentu europejskiego: 28.07.2009 09790873.

(12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2307863. (96) Data i numer zgłoszenia patentu europejskiego: 28.07.2009 09790873. RZECZPOSPOLITA POLSKA (12) TŁUMACZENIE PATENTU EUROPEJSKIEGO (19) PL (11) PL/EP 2307863 (96) Data i numer zgłoszenia patentu europejskiego: 28.07.2009 09790873.5 (13) (51) T3 Int.Cl. G01J 3/44 (2006.01)

Bardziej szczegółowo

OZNACZANIE STĘŻENIA BARWNIKÓW W WODZIE METODĄ UV-VIS

OZNACZANIE STĘŻENIA BARWNIKÓW W WODZIE METODĄ UV-VIS OZNACZANE STĘŻENA BARWNKÓW W WODZE METODĄ UV-VS. SPEKTROFOTOMETRA UV-Vis Spektrofotometria w zakresie nadfioletu (ang. ultra-violet UV) i promieniowania widzialnego (ang. visible- Vis), czyli spektrofotometria

Bardziej szczegółowo

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1)

ν 1 = γ B 0 Spektroskopia magnetycznego rezonansu jądrowego Spektroskopia magnetycznego rezonansu jądrowego h S = I(I+1) h S = I(I+) gdzie: I kwantowa liczba spinowa jądra I = 0, ½,, /,, 5/,... itd gdzie: = γ S γ współczynnik żyromagnetyczny moment magnetyczny brak spinu I = 0 spin sferyczny I = _ spin elipsoidalny I =,,,...

Bardziej szczegółowo

Specyfikacja istotnych warunków zamówienia publicznego

Specyfikacja istotnych warunków zamówienia publicznego DZPIE/014/2013 Specyfikacja istotnych warunków zamówienia publicznego Przedmiot postępowania: Spektrometr ramanowski z mikroskopem optycznym Kod CPV: 38.50.00.00-0 Tryb udzielenia Postępowanie jest prowadzone

Bardziej szczegółowo

PRACOWNIA CHEMII. Równowaga chemiczna (Fiz2)

PRACOWNIA CHEMII. Równowaga chemiczna (Fiz2) PRACOWNIA CHEMII Ćwiczenia laboratoryjne dla studentów II roku kierunku Zastosowania fizyki w biologii i medycynie Biofizyka molekularna Projektowanie molekularne i bioinformatyka Równowaga chemiczna (Fiz2)

Bardziej szczegółowo