Minimalizacja ryzyka strukturalnego, podejście Vapnika

Wielkość: px
Rozpocząć pokaz od strony:

Download "Minimalizacja ryzyka strukturalnego, podejście Vapnika"

Transkrypt

1 Miimalizacja ryzyka strukturalego, podejście Vapika Wykład IV Wisła, grudzień 2009

2 Miimalizacja ryzyka strukturalego Problem klasyfikacji dla dwóch klas, g = 2. L(f (x), y) = I {f (x) y}. Załóżmy, że daa jest rodzia C potecjalych klasyfikatorów φ R p φ : R p { 1, 1}. (ideks klasy Y = ±1). Na przykład C = {φ a : φ a (x) = sig(a x)} Problem: Ocea błędu predykcji dla reguły miimalizującej ryzyko empirycze (estymator błędu przez powtóre podstawieie).

3 Przykład p(x 1) U[0, 1] i p(x 1) U[1, 2] Miimale ryzyko reguły (ryzyko bayesowskie rówa) się 0. A 1,..., A obserwacje z populacji pierwszej B 1,..., B obserwacje z populacji drugiej. LDA Fishera w tym przypadku redukuje się do: klasyfikuj do drugiej populacji gdy X > T = (Ā + B )/2 Err U = 1 (P(X > T Y = 1) + P(X < T Y = 1) = T 1 /2 2 Err = E T 1 /2 E N(0, 1 24 ) = 1 4 π

4 Szacujemy bład, jaki popełimy, wybierając klasyfikator φ miimalizujący estymator błędu przez powtóre podstawieie (ryzyko empirycze) Ile różi się err(φ) = 1 I {φ(x i ) Y i }. i=1 φ = argmi φ C err(φ). Err U (φ ) = P(φ (X 0 ) Y 0 U) od miimalego błędu w klasie wszystkich klasyfikatorów if φ Err(φ).

5 (Err U (φ ) if Err(φ)) φ C } {{ } błąd estymacji Err U (φ ) if φ Err(φ) = + (if φ C Err(φ) if φ Err(φ)) } {{ } błąd aproksymacji Zwiększając rodzię C zwiększamy (zmiejszamy) błąd estymacji (aproksymacji). Zmiejszając rodzię C zmiejszamy (zwiększamy) błąd estymacji (aproksymacji).

6 Błąd estymacji φ = argmi φ C Err(φ) Err U (φ ) Err( φ) Err U (φ ) err(φ ) + err( φ) Err( φ) } {{ } 0 Err U (φ ) err(φ } {{ ) } + err( φ) Err( φ) } {{ } 2 sup φ C Err(φ) err(φ) ( ) Poadto Err U (φ ) err(φ ) + sup(err(φ) err(φ)) φ C ( ) Problem ( ): szacowaie błędu predykcji Err U (φ ) w termiach err(φ ).

7 sup(err(φ) err(φ)) = sup(pf P f ) φ C f F Z = (X, Y ), Z i = (X i, Y i ) f (z) = I {φ(x) y}, Pf = Ef (Z), P f = 1 i=1 f (Z i). F: rodzia fukcji f utworzoa a podstawie C.

8 Nierówość kocetracyja McDiarmida g : X R: sup g(x 1,..., x ) g(x 1,..., x i 1, x x 1,...,x,x i X i, x i+1,..., x ) c 1 i to dla Z = g(x 1,..., X ), gdzie X 1,..., X - iezależe, P(Z EZ > t) exp( 2t 2 /c 2 ) (!) Dla Z = sup f F Pf P f, c = 2/ i (!) implikuje

9 Z prawdopodobieństwem > 1 δ ( sup[pf P f ] E f F sup f F Średie Rademachera zbioru A R R (A) = E { ) 2 log(1/δ) [Pf P f ] + sup a a = (a 1,..., a ) i σ i zl Rademachera. 1 σ i a i }, i=1

10 Własości średich Rademachera (i) R (A) = R (abscov(a)), gdzie abscov(a) = { N j=1 c ja (j), N j=1 c j 1, a (j) A} (ii) R (φ A) L φ R (A), gdzie φ : R R Lipschitzowska ze stałą L φ, a φ A = {(φ(a 1 ),..., φ(a )), a = (a 1,..., a ) A} (iii) A = {a 1,..., a m } to R (A) max i=1,...,m a i 2 log m

11 (Z 1,..., Z ) iezależa kopia (Z 1,..., Z ) i P f = 1 i=1 f (Z i). Techika sprzęgaia daje ( ) E [Pf P f ] sup f F = E(sup f F = E sup 1 f F i=1 E[P f P f Z 1,..., Z ]) E sup E[P f P f ] f F σ i (f (Z i ) f (Z i )) 2ER (Z ) Nasz zbiór A: F(z ) = {(f (z 1 ),..., f (z ))} f F, (iii) 2 log R (Z SF (Z ) ), gdzie S F (z ) = F(z ), z = (z 1, z 2,..., z ).

12 Jeśli V (z ) wymiar Vapika-Czervoekisa zbioru S F (z ) to i log S F (z ) V (z ) log( + 1) 2V R (Z (Z ) log( + 1) ), Jeśli sup z V (z ) V to z prawdopodobieństwem > 1 δ V log 2 log(1/δ) sup[pf P f ] C + f F Czyik log moża pomiąć.

13 Miimalizacja ryzyka strukturalego Rodziy klasyfikatorów C 1 C 2... C N (1) Err U (φ,i) err(φ,i) + B(, F i ) i = 1,..., Miimalizacja prawej stroy (1) Problemy: (i) Klasy z małym wymiarem mogą mieć duży bład aproksymacji (ii) miimalizacja err(φ) często problem NP-trudy (ii) ierówość Err U (φ ) err(φ ) + sup(err(φ) err(φ)) φ C ( ) za gruba!

14 Oszacowaia oparte a margiesach Niech φ będzie regułą klasyfikacyją oparta a fukcji klasyfikacyjej d: φ(x) = 1 jeśli d(x) 0 i φ(x) = 1 w przeciwym przypadku. Wtedy P(φ(X) Y ) = P(sig(d(X)) Y ) E I {d(x)y 0} Niech γ : R R + będzie fukcją kosztu taką, że γ(x) I {x 0}. Typowe przykłady γ(x) = e x, γ(x) = (1 + x) +, γ(x) = log 2 (1 + x) Fukcjoał kosztu i jego wersja empirycza A(d) = E(γ( d(x)y ) U), A (d) = 1 γ( d(x i )Y i ) i=1

15 Mamy Err(d) A(d) Niech B = γ( d(x)y)). Wtedy err (d) A (d). Err U (d ) A(d ) = E(γ( d (X)Y ) U)) L γ - stała Lipschitza fukcji γ. A (d ) + sup(a(d) A (d)) d D A (d ) + 2L γ ER (F(Z 2 log 1 δ )) + B,

16 Systemy głosowaia Systemy głosowaia opierają się a podejmowaiu decyzji a podstawie kombiacji liiowych klasyfikatorów. C- rodzia bazowych klasyfikatorów. D λ = { d(x) = m c j g j (x) : m N, i=1 j=1 } c j λ, g 1,..., g C Na podstawie własości średich Rademachera zbioru R (D λ (Z 2VC log( + 1) )) = λr (C(Z )) λ

17 Stąd Err U (sig(d )) A (d 2VC log( + 1) 2 log 1 δ ) + 2L φ λ + B, gddzie sig(d ) miimalizuje ryzyko empirycze w klasie {sig(d)} d D Oszacowaie błedu predykcji sig(d ) w termiach wymiaru Vapika-Chervoekisa klasy bazowej.

18 Margiesy Przykład φ η (x) = 1 x η φ η (x) = 0 x 0 φ η (x) = 1 + x/η w p.p. W tym przypadku B = 1 i L φ = 1/η. Poadto A (d) err γ (d), gdzie err γ (d) = 1 I {d(x i )Y i η}. Liczymy ie tylko źle sklasyfikowae elemety, ale rówież te sklasyfikowae dobrze, ale z małym margiesem i=1

19 Err U (d ) err (d ) + 2λ η 2VC log( + 1) + 2 log 1 δ.

20 Ie waże kieruki/perspektywy Własości skończeiepróbkowe estymatorów PMS i ich ryzyka (Barro, Birgé, Massart, Barraud..) Metody rzadkiej regresji (Lasso, Least Agle Regressio LAR,...). potecjala liczba predyktorów w modelu liiowym p, p >, jedakże #{i : β i 0} << p Związki metod selekcji z wielokrotym testowaiem, w szczególości z procedurami typu Bejamiiego-Hochberga (M 1 M 2 ˆM AIC = M 2 LRT M1,M 2 > 2(p 2 p 1 )) metody selekcji w modelach regresyjych oparte a wstępym uporządkowaiu predyktorów. metody predykcji oparte a uśrediaiu modeli

21 Własości skończeiepróbkowe Y i = f (x i ) + ε i, i = 1,..., ε i (0, σ 2 ), σ 2 -zae, f ; [0, 1] R, x i [0, 1]. M m : fukcje stałe a odcikach [(j 1)/m, j/m). f Holder(L, α), to dla ˆf = ˆf MNK (M m ) optymaly wybór m: R = E f ˆf 2 L 2 M 2α + mσ2 ( L m(α, L) = σ ) 2/(1+α)m 1/(2α+1) Ryzyko R = O( 2α/(2α+1) ). Kostrukcja estymatorów PMS o takim rzędzie ryzyka, bez wykorzystywaia wiedzy, że f Holder(L, α). Kalibracja stałych w fukcji kryterialej!!!

22 Referecje Bousquet, O., Bouchero, S., Lugosi, G. (2005) Theory of classificatio: a survey of recet results, ESAIM: Probability ad Statistics, Claeskes, G., Hjort, N. (2008) Model selectio ad model averagig, Cambridge Uiversity Press Friedma, J. (1997) O bias, variace, 0/1-loss ad the curse of dimesioality, Data miig ad Kowledge Discovery, str Hastie, T., Tibshirai, R., Friedma, J. (2009) The Elemets of Statistical Learig, (wydaie drugie) tibs/elemstatlear/ Koishi, S., Kitagawa, G. (2008) Iformatio Criteria ad Statistical Modellig, Spriger Leeb, H., Pötscher, B. (2008) Sparse estimators ad the oracle property, or the retur of Hodges estimator, J. Ecoometrics, str Leeb, H., Pötscher, B. (2008) Model selectio,w Hadbook of Fiacial Time Series (wyd Aderse,Davis,Kreiss,Mikosch), Spriger,2008

23 Nishii, R. (1984) Asymptotic properties of criteria for selectio of variables i multiple regressio, A. Statist., str Schiavo, R., Had, D.(2000) Te more years of error rate research, Iteratioal Statistical Review, str Shao, J. (1993) Liear model selectio by cross-validatio, JASA, str Shao, J. (1997) A asymptotic theory for liear model selectio, Statistica Siica, str Yag, Y. (2005) Ca the stregths of AIC ad BIC be shared? A coflict betwee model idetificatio ad regressio estimatio, Biometrika, str

Jądrowe klasyfikatory liniowe

Jądrowe klasyfikatory liniowe Jądrowe klasyfikatory liniowe Waldemar Wołyński Wydział Matematyki i Informatyki UAM Poznań Wisła, 9 grudnia 2009 Waldemar Wołyński () Jądrowe klasyfikatory liniowe Wisła, 9 grudnia 2009 1 / 19 Zagadnienie

Bardziej szczegółowo

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 +

P = 27, 8 27, 9 27 ). Przechodząc do granicy otrzymamy lim P(Y n > Y n+1 ) = P(Z 1 0 > Z 2 X 2 X 1 = 0)π 0 + P(Z 1 1 > Z 2 X 2 X 1 = 1)π 1 + Zadaia róże W tym rozdziale zajdują się zadaia ietypowe, często dotyczące łańcuchów Markowa oraz własości zmieych losowych. Pojawią się także zadaia z estymacji Bayesowskiej.. (Eg 8/) Rozważamy łańcuch

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

Estymacja parametru rozkładu Rayleigha i logistycznego w terminach k-tych wartości rekordowych

Estymacja parametru rozkładu Rayleigha i logistycznego w terminach k-tych wartości rekordowych Estymacja parametru rozkładu Rayleigha i logistycznego w terminach k-tych wartości rekordowych Iwona Malinowska Politechnika Lubelska Dominik Szynal UMCS, Lublin XXXIII Konferencja "STATYSTYKA MATEMATYCZNA

Bardziej szczegółowo

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych

Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych Zrównoleglona optymalizacja stochastyczna na dużych zbiorach danych mgr inż. C. Dendek prof. nzw. dr hab. J. Mańdziuk Politechnika Warszawska, Wydział Matematyki i Nauk Informacyjnych Outline 1 Uczenie

Bardziej szczegółowo

Elementy modelowania matematycznego

Elementy modelowania matematycznego Elemety modelowaia matematyczego Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Modelowaie daych (ilościowe): Metody statystycze: estymacja parametrów modelu,

Bardziej szczegółowo

Rozpoznawanie obrazów

Rozpoznawanie obrazów Rozpoznawanie obrazów Ćwiczenia lista zadań nr 5 autorzy: A. Gonczarek, J.M. Tomczak Przykładowe problemy Klasyfikacja binarna Dla obrazu x zaproponowano dwie cechy φ(x) = (φ 1 (x) φ 2 (x)) T. Na obrazie

Bardziej szczegółowo

Wybór modelu i ocena jakości klasyfikatora

Wybór modelu i ocena jakości klasyfikatora Wybór modelu i ocena jakości klasyfikatora Błąd uczenia i błąd testowania Obciążenie, wariancja i złożoność modelu (klasyfikatora) Dekompozycja błędu testowania Optymizm Estymacja błędu testowania AIC,

Bardziej szczegółowo

NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A

NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Autor: 1. Dobromił Serwa 2. Tytuł przedmiotu Sygnatura (będzie nadana, po akceptacji przez Senacką Komisję Programową) Wprowadzenie do teorii

Bardziej szczegółowo

Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów. Wit Jakuczun

Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów. Wit Jakuczun Konstrukcja biortogonalnych baz dyskryminacyjnych dla problemu klasyfikacji sygnałów Politechnika Warszawska Strona 1 Podstawowe definicje Politechnika Warszawska Strona 2 Podstawowe definicje Zbiór treningowy

Bardziej szczegółowo

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7

Estymacja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 7 Metody probabilistycze i statystyka Estymacja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

Estymacja w regresji nieparametrycznej

Estymacja w regresji nieparametrycznej Estymacja w regresji nieparametrycznej Jakub Kolecki Politechnika Gdańska 28 listopada 2011 1 Wstęp Co to jest regresja? Przykład regresji 2 Regresja nieparametryczna Założenia modelu Estymacja i jej charakterystyki

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH Z WYTRZYMAŁOŚCI MATERIAŁÓW BADANIE ODKSZTAŁCEŃ SPRĘŻYNY ŚRUBOWEJ Opracował: Dr iż. Grzegorz

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH

POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH POISSONOWSKA APROKSYMACJA W SYSTEMACH NIEZAWODNOŚCIOWYCH Barbara Popowska bpopowsk@math.put.poznan.pl Politechnika Poznańska http://www.put.poznan.pl/ PROGRAM REFERATU 1. WPROWADZENIE 2. GRAF JAKO MODEL

Bardziej szczegółowo

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i.

Miary położenia. Miary rozproszenia. Średnia. Wariancja. Dla danych indywidualnych: Dla danych indywidualnych: s 2 = 1 n. (x i x) 2. x i. Miary położeia Średia Dla daych idywidualych: x = 1 x = 1 x i i ẋ i gdzie ẋ i środek i tego przedziału i - liczość i-tego przedziału Domiata moda Liczba ajczęściej występująca jeśli taka istieje - dla

Bardziej szczegółowo

Estymatory nieobciążone o minimalnej wariancji

Estymatory nieobciążone o minimalnej wariancji Estymatory ieobciążoe o miimalej wariacji Model statystyczy (X, {P θ, θ Θ}); g : Θ R 1 Zadaie: oszacować iezaą wartość g(θ) Wybrać takie δ(x 1, X 2,, X ) by ( θ Θ) ieobciążoość E θ δ(x 1, X 2,, X ) = g(θ)

Bardziej szczegółowo

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

Matematyka finansowa 08.10.2007 r. Komisja Egzaminacyjna dla Aktuariuszy. XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Matematyka fiasowa 08.10.2007 r. Komisja Egzamiacyja dla Aktuariuszy XLIII Egzami dla Aktuariuszy z 8 paździerika 2007 r. Część I Matematyka fiasowa WERSJA TESTU A Imię i azwisko osoby egzamiowaej:...

Bardziej szczegółowo

Monte Carlo, bootstrap, jacknife

Monte Carlo, bootstrap, jacknife Monte Carlo, bootstrap, jacknife Literatura Bruce Hansen (2012 +) Econometrics, ze strony internetowej: http://www.ssc.wisc.edu/~bhansen/econometrics/ Monte Carlo: rozdział 8.8, 8.9 Bootstrap: rozdział

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Entropia Renyi ego, estymacja gęstości i klasyfikacja

Entropia Renyi ego, estymacja gęstości i klasyfikacja Entropia Renyi ego, estymacja gęstości i klasyfikacja Wojciech Czarnecki Jacek Tabor 6 lutego 2014 1 / Wojciech Czarnecki, Jacek Tabor Renyi s Multithreshold Linear Classifier 1/36 36 2 / Wojciech Czarnecki,

Bardziej szczegółowo

Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej

Porównanie modeli regresji. klasycznymi modelami regresji liniowej i logistycznej Porównanie modeli logicznej regresji z klasycznymi modelami regresji liniowej i logistycznej Instytut Matematyczny, Uniwersytet Wrocławski Małgorzata Bogdan Instytut Matematyki i Informatyki, Politechnika

Bardziej szczegółowo

ć Ą ą ą Ż Ż ó ą ż Ć ą ĆŻ Ż Ó Ó Ó ą Ó ń ą ę ą ę Ź ń ą Ó ą ą ą ą ą ą Ó Ż ęż ę ą ę ą ą ż ĘĆ ż ę Żą ż ą ń Ó ą Ó ą ę ż ęż ó ó ć ż ń ęż ń ń ć ń ż ć ć ą ą Ó Ó ó ó ń ó ę ó Ó ą ż Ć ę Ó ę ż Ó ó ą ó Ó ż Ć ę ó Ó ó

Bardziej szczegółowo

O liczbach naturalnych, których suma równa się iloczynowi

O liczbach naturalnych, których suma równa się iloczynowi O liczbach aturalych, których suma rówa się iloczyowi Lew Kurladczyk i Adrzej Nowicki Toruń UMK, 10 listopada 1998 r. Liczby aturale 1, 2, 3 posiadają szczególą własość. Ich suma rówa się iloczyowi: Podobą

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

Estymacja współczynnika dopasowania w klasycznym modelu ryzyka

Estymacja współczynnika dopasowania w klasycznym modelu ryzyka Ogólopolska Koferecja Naukowa Zagadieia Aktuariale Teoria i praktyka Warszawa, 9- czerwca 008 Estymacja współczyika dopasowaia w klasyczym modelu ryzyka Aa Nikodem Uiwersytet Ekoomiczy we Wrocławiu Klasyczy

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

INWESTYCJE MATERIALNE

INWESTYCJE MATERIALNE OCENA EFEKTYWNOŚCI INWESTYCJI INWESTCJE: proces wydatkowaia środków a aktywa, z których moża oczekiwać dochodów pieiężych w późiejszym okresie. Każde przedsiębiorstwo posiada pewą liczbę możliwych projektów

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo

Model 1: Estymacja KMNK z wykorzystaniem 32 obserwacji 1964-1995 Zmienna zależna: st_g

Model 1: Estymacja KMNK z wykorzystaniem 32 obserwacji 1964-1995 Zmienna zależna: st_g Zadanie 1 Dla modelu DL dla zależności stopy wzrostu konsumpcji benzyny od stopy wzrostu dochodu oraz od stopy wzrostu cen benzyny w latach 1960 i 1995 otrzymaliśmy następujące oszacowanie parametrów.

Bardziej szczegółowo

Ćwiczenie 6 - Hurtownie danych i metody eksploracje danych. Regresja logistyczna i jej zastosowanie

Ćwiczenie 6 - Hurtownie danych i metody eksploracje danych. Regresja logistyczna i jej zastosowanie Ćwiczenie 6 - Hurtownie danych i metody eksploracje danych Regresja logistyczna i jej zastosowanie Model regresji logistycznej jest budowany za pomocą klasy Logistic programu WEKA. Jako danych wejściowych

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 9 Wrocław, 5 grudnia 2011 Temat. Test zgodności χ 2 Pearsona. Statystyka χ 2 Pearsona Rozpatrzmy ciąg niezależnych zmiennych losowych X 1,..., X n o jednakowym dyskretnym rozkładzie

Bardziej szczegółowo

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota

Ekonometria ćwiczenia 3. Prowadzący: Sebastian Czarnota Ekonometria ćwiczenia 3 Prowadzący: Sebastian Czarnota Strona - niezbędnik http://sebastianczarnota.com/sgh/ Normalność rozkładu składnika losowego Brak normalności rozkładu nie odbija się na jakości otrzymywanych

Bardziej szczegółowo

Metody scoringowe w regresji logistycznej

Metody scoringowe w regresji logistycznej Metody scoringowe w regresji logistycznej Andrzej Surma Wydział Matematyki, Informatyki i Mechaniki Uniwersytetu Warszawskiego 19 listopada 2009 AS (MIMUW) Metody scoringowe w regresji logistycznej 19

Bardziej szczegółowo

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA

ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA ZAGADNIENIE ESTYMACJI. ESTYMACJA PUNKTOWA I PRZEDZIAŁOWA Mamy populację geeralą i iteresujemy się pewą cechą X jedostek statystyczych, a dokładiej pewą charakterystyką liczbową θ tej cechy (p. średią wartością

Bardziej szczegółowo

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY

SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY SIGMA KWADRAT LUBELSKI KONKURS STATYSTYCZNO- DEMOGRAFICZNY Weryfikacja hipotez statystyczych WNIOSKOWANIE STATYSTYCZNE Wioskowaie statystycze, to proces uogóliaia wyików uzyskaych a podstawie próby a całą

Bardziej szczegółowo

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74

4.1. Wprowadzenie...70 4.2. Podstawowe definicje...71 4.3. Algorytm określania wartości parametrów w regresji logistycznej...74 3 Wykaz najważniejszych skrótów...8 Przedmowa... 10 1. Podstawowe pojęcia data mining...11 1.1. Wprowadzenie...12 1.2. Podstawowe zadania eksploracji danych...13 1.3. Główne etapy eksploracji danych...15

Bardziej szczegółowo

Metoda największej wiarygodności

Metoda największej wiarygodności Metoda największej wiarygodności Próbki w obecności tła Funkcja wiarygodności Iloraz wiarygodności Pomiary o różnej dokładności Obciążenie Informacja z próby i nierówność informacyjna Wariancja minimalna

Bardziej szczegółowo

Statystyka Małych Obszarów w badaniach próbkowych

Statystyka Małych Obszarów w badaniach próbkowych Statystyka Małych Obszarów w badaniach próbkowych Łukasz Wawrowski l.wawrowski@stat.gov.pl Urząd Statystyczny w Poznaniu SKN Estymator, UEP 5.03.2012 1 Wprowadzenie Podstawowe pojęcia Badanie 2 Estymator

Bardziej szczegółowo

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą

EKONOMETRIA. Liniowy model ekonometryczny (regresji) z jedną zmienną objaśniającą EKONOMETRIA Tema wykładu: Liiowy model ekoomeryczy (regresji z jedą zmieą objaśiającą Prowadzący: dr iż. Zbigiew TARAPATA e-mail: Zbigiew.Tarapaa Tarapaa@isi.wa..wa.edu.pl hp:// zbigiew.arapaa.akcja.pl/p_ekoomeria/

Bardziej szczegółowo

ż ę ć ę ę ę ę ę ę ę ć Ż ę ę ę ż ę ę ę ę ę Ż ć ż ż ę ż Ę ć ę ż ę ęż ę ę ę ę ż ć ź Ł Ę ę ż Ę ć ę Ż ę ęż ę ę ę ę ż ć ź Ę Ł ę ę Ą ż Ę ż Ę ż Ę ż ę Ą Ą ę Ę ę ę Ż ź Ż Ż ż ć ź ź ę ż Ę ż Ę ę Ę Ę ć ż ę ć ż ć ź Ł

Bardziej szczegółowo

ć ą ą ą ż ą ż ć Ę ą ą ż ć ą ą ń ą ą ż ń ą ą ą ą ą ą ą ą ż ż ń ą ą ą ż ą ń Ś ą ą Ó ą Ęż ż ń Ś ń ń ń Ę ą ą Ó ń ą ą Ż ą ą Ó ą Ó ą Ż Ó Ó ą Ż ą ą Ó Ó ą ą Ś ą ą ń ń ą ą ą Ó ą Ż Ó ą Ę Ę Ł ą ą Ł Ą Ł Ł Ś ć ą Ś

Bardziej szczegółowo

ż ż Ę Ę Ę Ó ś ó ę Ć ęż ś ę ę ó ś ę ó ę ę Ę ę ó ść Ę ęć Ż Ś ę ę ę ó ż ż ź ę ż ż ś ę Ó ę ę Ł ęż ś ę ę ó ś ę ż ó Ę ę ę ę ść Ę ę ę ę ęć ę ż ś ę ę ę ę ó ż ę Ł Ę ę ż Ę ęż ś ę ó ę ś ę ż ó ę ę ż ść ę ę ę ę ę ęć

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH. Wykład 5 Kwadratowa analiza dyskryminacyjna QDA. Metody klasyfikacji oparte na rozkładach prawdopodobieństwa.

PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH. Wykład 5 Kwadratowa analiza dyskryminacyjna QDA. Metody klasyfikacji oparte na rozkładach prawdopodobieństwa. Wykład 5 Kwadratowa analiza dyskryminacyjna QDA. Metody klasyfikacji oparte na rozkładach prawdopodobieństwa. Kwadratowa analiza dyskryminacyjna Przykład analizy QDA Czasem nie jest możliwe rozdzielenie

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, Biomatematyka

EGZAMIN MAGISTERSKI, Biomatematyka Biomatematyka 90...... Zadanie 1. (8 punktów) Załóżmy, że w diploidalnej populacji, dla której zachodzi prawo Hardy ego- Weinberga dla loci o dwóch allelach A i a proporcja osobników o genotypie AA wynosi

Bardziej szczegółowo

Sztuczna Inteligencja Projekt

Sztuczna Inteligencja Projekt Sztuczna Inteligencja Projekt Temat: Algorytm LEM2 Liczba osób realizujących projekt: 2 1. Zaimplementować algorytm LEM 2. 2. Zaimplementować klasyfikator Classif ier. 3. Za pomocą algorytmu LEM 2 wygenerować

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIÑSKIEGO KILKA UWAG O TEORII WARTOŒCI REKORDOWYCH

ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIÑSKIEGO KILKA UWAG O TEORII WARTOŒCI REKORDOWYCH 237 ZESZYTY NAUKOWE UNIWERSYTETU SZCZECIÑSKIEGO NR 415 PRACE KATEDRY EKONOMETRII I STATYSTYKI NR 16 2005 BOGUS AW STANKIEWICZ KRZYSZTOF WISIÑSKI KILKA UWAG O TEORII WARTOŒCI REKORDOWYCH W ostatich latach

Bardziej szczegółowo

EKONOMETRIA PRZESTRZENNA

EKONOMETRIA PRZESTRZENNA EKONOMETRIA PRZESTRZENNA Wstęp podstawy ekonometrii Uniwersytet Ekonomiczny w Krakowie, 2012 1 EKONOMETRIA wybrane definicje (Osińska) Ekonometria dziedzina ekonomii wykorzystująca modele i sposoby wnioskowania

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji

Analiza numeryczna. Stanisław Lewanowicz. Aproksymacja funkcji http://www.ii.ui.wroc.pl/ sle/teachig/a-apr.pdf Aaliza umerycza Staisław Lewaowicz Grudzień 007 r. Aproksymacja fukcji Pojęcia wstępe Defiicja. Przestrzeń liiową X (ad ciałem liczb rzeczywistych R) azywamy

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych.

Przedmiot statystyki. Graficzne przedstawienie danych. Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych

Bardziej szczegółowo

O asymptotycznej efektywności estymatorów

O asymptotycznej efektywności estymatorów MATEMATYKA STOSOWANA 8, 2007 Teresa Ledwia (Wrocław) O asymptotyczej efektywości estymatorów Streszczeie. W pracy przedstawiamy i dyskutujemy pojęcie asymptotyczej efektywości estymatorów w ujęciu Hájeka

Bardziej szczegółowo

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład

Rozdział 1. Wektory losowe. 1.1 Wektor losowy i jego rozkład Rozdział 1 Wektory losowe 1.1 Wektor losowy i jego rozkład Definicja 1 Wektor X = (X 1,..., X n ), którego każda współrzędna jest zmienną losową, nazywamy n-wymiarowym wektorem losowym (krótko wektorem

Bardziej szczegółowo

Quick Launch Manual:

Quick Launch Manual: egresja Odds atio Quick Launch Manual: regresja logistyczna i odds ratio Uniwesytet Warszawski, Matematyka 28.10.2009 Plan prezentacji egresja Odds atio 1 2 egresja egresja logistyczna 3 Odds atio 4 5

Bardziej szczegółowo

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów. Rachunek prawdopodobieństwa MAP1181 Wydział PPT, MS, rok akad. 213/14, sem. zimowy Wykładowca: dr hab. Agnieszka Jurlewicz Wykład 12: Warunkowa wartość oczekiwana. Rozkłady warunkowe. Mieszanina rozkładów.

Bardziej szczegółowo

PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH

PODSTAWY STATYSTYCZNEJ ANALIZY DANYCH Wykład 3 Liniowe metody klasyfikacji. Wprowadzenie do klasyfikacji pod nadzorem. Fisherowska dyskryminacja liniowa. Wprowadzenie do klasyfikacji pod nadzorem. Klasyfikacja pod nadzorem Klasyfikacja jest

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10 System BCD z κ Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna Semestr letni 2009/10 Rozważamy system BCD ze stałą typową κ i aksjomatami ω κ κ i κ ω κ. W pierwszej części tej notatki

Bardziej szczegółowo

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i =

Teoria. a k. Wskaźnik sumowania można oznaczać dowolną literą. Mamy np. a j = a i = Zastosowaie symboli Σ i Π do zapisu sum i iloczyów Teoria Niech a, a 2,..., a będą dowolymi liczbami. Sumę a + a 2 +... + a zapisuje się zazwyczaj w postaci (czytaj: suma od k do a k ). Zak Σ to duża grecka

Bardziej szczegółowo

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L,

Klasyfikator. ˆp(k x) = 1 K. I(ρ(x,x i ) ρ(x,x (K) ))I(y i =k),k =1,...,L, Klasyfikator Jedną z najistotniejszych nieparametrycznych metod klasyfikacji jest metoda K-najbliższych sąsiadów, oznaczana przez K-NN. W metodzie tej zaliczamy rozpoznawany obiekt do tej klasy, do której

Bardziej szczegółowo

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12

Korelacja i regresja. Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych. Wykład 12 Wykład Korelacja i regresja Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Wykład 8. Badaie statystycze ze względu

Bardziej szczegółowo

Regresja liniowa wprowadzenie

Regresja liniowa wprowadzenie Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem

Bardziej szczegółowo

Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa

Marek Be±ka, Statystyka matematyczna, wykªad Wykªadnicze rodziny rozkªadów prawdopodobie«stwa Mare Be±a, Statystya matematycza, wyªad 3 38 3 Statystyi zupeªe 3. Wyªadicze rodziy rozªadów prawdopodobie«stwa Zacziemy od deicji Deicja 3. Rodzi rozªadów {µ θ } θ Θ azywamy wyªadicz rodzi rozªadów -

Bardziej szczegółowo

Popularne klasyfikatory w pakietach komputerowych

Popularne klasyfikatory w pakietach komputerowych Popularne klasyfikatory w pakietach komputerowych Klasyfikator liniowy Uogólniony klasyfikator liniowy SVM aiwny klasyfikator bayesowski Ocena klasyfikatora ROC Lista popularnych pakietów Klasyfikator

Bardziej szczegółowo

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów

Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów Eksploracja danych Piotr Lipiński Informacje ogólne Informacje i materiały dotyczące wykładu będą publikowane na stronie internetowej wykładowcy, m.in. prezentacje z wykładów UWAGA: prezentacja to nie

Bardziej szczegółowo

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016

Systemy pomiarowo-diagnostyczne. Metody uczenia maszynowego wykład I dr inż. 2015/2016 Systemy pomiarowo-diagnostyczne Metody uczenia maszynowego wykład I dr inż. Bogumil.Konopka@pwr.edu.pl 2015/2016 1 Wykład I - plan Sprawy organizacyjne Uczenie maszynowe podstawowe pojęcia Proces modelowania

Bardziej szczegółowo

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic).

Stwierdzenie 1. Jeżeli ciąg ma granicę, to jest ona określona jednoznacznie (żaden ciąg nie może mieć dwóch różnych granic). Materiały dydaktycze Aaliza Matematycza Wykład Ciągi liczbowe i ich graice. Graice ieskończoe. Waruek Cauchyego. Działaia arytmetycze a ciągach. Podstawowe techiki obliczaia graic ciągów. Istieie graic

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

Metody oparte na logicznej regresji. zastosowaniu do wykrywania interakcji SNPów

Metody oparte na logicznej regresji. zastosowaniu do wykrywania interakcji SNPów w zastosowaniu do wykrywania interakcji SNPów Instytut Matematyczny, Uniwersytet Wrocławski Wisła, 9 grudnia 2009 DNA Zmienność genetyczna Polimorfizm to zmiana w strukturze DNA, obecna u co najmniej 1%

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B

OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B OBLICZANIE NIEPEWNOŚCI METODĄ TYPU B W przypadku gdy e występuje statystyczy rozrzut wyków (wszystke pomary dają te sam wyk epewość pomaru wyzaczamy w y sposób. Główą przyczyą epewośc pomaru jest epewość

Bardziej szczegółowo

Ż ż Ź ż ż ć ż ż ż ż ć ż Ź ż ż ż ć Ś ż Ś ć ż ć ż ż ż ć ć ż Ź ż ćż ż ż ż Ż ż Ą ż żć ż ż Ś ż ż ż ć ż ż ż ż ż ż ż ć Ć ż Ą Ż Ż ć Ś ż ż Ś Ś Ęż ż ć ż Ż Żż Ć ż ż ż ż ż ć Ż ż Ćż Ż ż ż ż Ą ż ż ć ż ć ż ż ć ż ż ż

Bardziej szczegółowo

Diagnostyka w Pakiecie Stata

Diagnostyka w Pakiecie Stata Karol Kuhl Zgodnie z twierdzeniem Gaussa-Markowa, estymator MNK w KMRL jest liniowym estymatorem efektywnym i nieobciążonym, co po angielsku opisuje się za pomocą wyrażenia BLUE Best Linear Unbiased Estimator.

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 1.10.2012 r.

Matematyka ubezpieczeń majątkowych 1.10.2012 r. Zadanie. W pewnej populacji każde ryzyko charakteryzuje się trzema parametrami q, b oraz v, o następującym znaczeniu: parametr q to prawdopodobieństwo, że do szkody dojdzie (może zajść co najwyżej jedna

Bardziej szczegółowo

Ważne rozkłady i twierdzenia c.d.

Ważne rozkłady i twierdzenia c.d. Ważne rozkłady i twierdzenia c.d. Funkcja charakterystyczna rozkładu Wielowymiarowy rozkład normalny Elipsa kowariacji Sploty rozkładów Rozkłady jednostajne Sploty z rozkładem normalnym Pobieranie próby

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Kierunek studiów: Inżynieria Środowiska

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO

ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO B A D A N I A O P E R A C Y J N E I D E C Y Z J E Nr 3 4 006 Bogusław GUZIK ŚREDNI BŁĄD PROGNOZOWANIA DLA METODY EKSTRAPOLACJI PRZYROSTU EMPIRYCZNEGO W artykule sformułowano standardowy układ założeń stochastycznych

Bardziej szczegółowo

Ekonomiczny Uniwersytet Dziecięcy

Ekonomiczny Uniwersytet Dziecięcy Ekoomiczy Uiwersytet Dziecięcy Dlaczego jede kraje są biede a ie bogate? dr Baha Kaliowska-Sufiowicz Uiwersytet Ekoomiczy w Pozaiu 23 maja 2013 r. EKONOMICZNY UNIWERSYTET DZIECIĘCY WWW.UNIWERSYTET-DZIECIECY.PL

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA

Wprowadzenie Model ARMA Sezonowość Prognozowanie Model regresji z błędami ARMA. Modele ARMA Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Ważną klasę modeli dynamicznych stanowią modele ARMA(p, q) Modele tej klasy są modelami ateoretycznymi Ważną klasę modeli dynamicznych stanowią

Bardziej szczegółowo

Systemy ekspertowe - wiedza niepewna

Systemy ekspertowe - wiedza niepewna Instytut Informatyki Uniwersytetu Śląskiego lab 8 Rozpatrzmy następujący przykład: Miażdżyca powoduje często zwężenie tętnic wieńcowych. Prowadzi to zazwyczaj do zmniejszenia przepływu krwi w tych naczyniach,

Bardziej szczegółowo

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska

Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska. Anna Stankiewicz Izabela Słomska Adam Kirpsza Zastosowanie regresji logistycznej w studiach nad Unią Europejska Anna Stankiewicz Izabela Słomska Wstęp- statystyka w politologii Rzadkie stosowanie narzędzi statystycznych Pisma Karla Poppera

Bardziej szczegółowo

Projektowanie (design) Eurostat

Projektowanie (design) Eurostat Projektowanie (design) Eurostat Podstawa prezentacji moduł Overall design autor Eva Elvers ze Statistics Sweden Prezentacja autora na szkoleniu w Hadze 28-29 listopada 2013 r. Zarys Badanie statystyczne

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

Piotr Michalski. X ). Wówczas modelowane. oczekiwany błąd predykcji w próbie testowej, jest klasyfikator bayesowski. g *

Piotr Michalski. X ). Wówczas modelowane. oczekiwany błąd predykcji w próbie testowej, jest klasyfikator bayesowski. g * Zastosowanie wybranych estymatorów modelu regresji logistycznej w credit scoringu Piotr Michalski 1. Wstęp Zadanie oceny zdolności kredytowej rozwaŝa się często w kontekście problemu klasyfikacji pod nadzorem,

Bardziej szczegółowo

Statystyczna analiza danych

Statystyczna analiza danych Statystyczna analiza danych Testowanie wielu hipotez statystycznych na raz Ewa Szczurek szczurek@mimuw.edu.pl Instytut Informatyki Uniwersytet Warszawski 1/31 Zdechła ryba i emocje http://www.wired.com/2009/09/fmrisalmon/

Bardziej szczegółowo

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności

O trzech elementarnych nierównościach i ich zastosowaniach przy dowodzeniu innych nierówności Edward Stachowski O trzech elemetarych ierówościach i ich zastosowaiach przy dowodzeiu iych ierówości Przy dowodzeiu ierówości stosujemy elemetare przejścia rówoważe, przeprowadzamy rozumowaie typu: jeżeli

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

ANALIZA ZJAWISKA STARZENIA SIĘ LUDNOŚCI ŚLĄSKA W UJĘCIU PRZESTRZENNYM

ANALIZA ZJAWISKA STARZENIA SIĘ LUDNOŚCI ŚLĄSKA W UJĘCIU PRZESTRZENNYM Katarzya Zeug-Żebro Uiwersytet Ekoomiczy w Katowicach Katedra Matematyki katarzya.zeug-zebro@ue.katowice.pl ANALIZA ZJAWISKA STARZENIA SIĘ LUDNOŚCI ŚLĄSKA W UJĘCIU PRZESTRZENNYM Wprowadzeie Zjawisko starzeia

Bardziej szczegółowo

Ą Ą Ą ń ż Ę Ż ż ń ż ć ż ż ć Ń Ż ż ż Ź Ą ń Ż Ę Ń ż Ą ń ż ć Ź ć ć ż ć ż ć ż Ż ż ż ż ć ż ń ż ć ń ż ż ż ć ć ń ń ż ć ż ćż ż ż ń ż ń ż ż Ę ż Ę Ą ż ż Ęć ż ż Ę ż ć ć ć ż ń ź ń ń Ź ż Ę Ę ń Ź Ź ć Ż ć ź ż ż ż ź Ę

Bardziej szczegółowo

Ł Ł Ś Ł Ń Ń Ł Ę ć ć Ż ć Ż Ę ć ć ć Ę Ę ć Ż ź Ż ć Ż Ą Ę Ę Ż Ę ź Ś ć ć Ę ź Ą ć Ł Ę Ę ź Ż ć ć Ę Ę Ż Ż ć Ż Ę ć Ę Ę ć ź Ą ć ć ć Ę ć ć ź ć ć ź ć Ś Ż ć ć Ż ć Ż ć Ż ć ź Ż Ż Ę Ę ź Ę ć Ż Ż Ę Ż Ę Ż Ą ć ć ć Ż ź Ż ć

Bardziej szczegółowo

Ę Ć Ę Ó Ą ź Ó Ń Ń Ć Ó Ó Ł Ź Ł Ą Ł ć Ł ć Ź Ź ź Ń Ń Ź ć ć Ó Ą ź ć ć Ż ć ć Ź ć Ą ź Ł Ł Ę ć ć Ł Ś ć Ź ć Ł ć ć ć Ż Ó Ś Ł ć ź ć Ć ć ź ć Ź Ź Ł ć ć ć ź ź Ż Ą ź Ł ć ć ć Ó Ś Ć Ń ć Ń ć ć ź ć ć ć ć Ą Ł Ń ć Ł ć Ę Ą

Bardziej szczegółowo