Zasada włączeń i wyłączeń 1 ZASADA WŁACZEŃ I WYŁĄCZEŃ. Przypominamy, że w wykładzie 1 udowodniliśmy następujące dwie równości:

Wielkość: px
Rozpocząć pokaz od strony:

Download "Zasada włączeń i wyłączeń 1 ZASADA WŁACZEŃ I WYŁĄCZEŃ. Przypominamy, że w wykładzie 1 udowodniliśmy następujące dwie równości:"

Transkrypt

1 Zasada włączeń i wyłączeń 1 ZASADA WŁACZEŃ I WYŁĄCZEŃ 1. Przypomnienie Przyjmiemy również oznaczenie [n]{1,...,n} dlan>0, P (n){a [n]: A }. P (n){a [n]: A }. Przypominamy, że w wyładzie 1 udowodniliśmy następujące dwie równości: oraz A B A B A B (.1) A B C A B C A B A C B C A B C. (.) Udowodnimy teraz twierdzenie będące uogólnieniem tych dwóch równości na przypade dowolnej liczby zbiorów sończonych.. Wzór włączeń i wyłączeń Twierdzenie.1.JeśliA 1,...,A n sązbioramisończonymi,to A 1... A n Dowód. Wprowadźmy oznaczenie: (1) 1 S (B 1,...,B m ) Teza twierdzenia przybiera wtedy postać: A 1... A n T P (m) T P (n). (.3) B j. (1) 1 S (A 1,...,A n ). Twierdzenia dowodzimy przez inducję względem n. Dla n 1 twierdzenie jest oczywiste.dlanin3byłojużudowodnione.załadamyteraz,żedladowolnychn zbiorów(gdzie n ) twierdzenie jest prawdziwe i dowodzimy, że jest prawdziwe dla dowolnychn1zbiorów.niechwięca 1,...,A n1 będądowolnymizbioramisończonymi. Wówczas A 1... A n1 (A 1... A n ) A n1 A 1... A n A n1 (A 1... A n ) A n1 A 1... A n A n1 (A 1 A n1 )... (A n A n1 ). Wyłady z ombinatoryi

2 Wyład Korzystamyterazdwurotniezzałożeniainducyjnego:dlazbiorówA 1,...,A n oraz dlazbiorówa 1 A n1,...,a n A n1 : A 1... A n (1) 1 S (A 1,...,A n ), (A 1 A n1 )... (A n A n1 ) (1) 1 S (A 1 A n1,...,a n A n1 ). Zauważmy następnie, że A 1... A n A n1 S 1 (A 1,...,A n ) A n1 (1) 1 S (A 1,...,A n ) A 1... A n A n1 S 1 (A 1,...,A n1 ) (1) 1 S (A 1,...,A n ) (1) 1 S (A 1,...,A n ) oraz (A 1 A n1 )... (A n A n1 ) (1) 1 S (A 1 A n1,...,a n A n1 ) n1 (1) 1 S (A 1 A n1,...,a n A n1 ) (1) n1 S n (A 1 A n1,...,a n A n1 ) n1 (1) 1 S (A 1 A n1,...,a n A n1 ) (1) n1 (A 1 A n1 )... (A n A n1 ) n1 (1) 1 S (A 1 A n1,...,a n A n1 )(1) n1 A 1... A n A n1 (1) S 1 (A 1 A n1,...,a n A n1 )(1) n A 1... A n A n1 (1) S 1 (A 1 A n1,...,a n A n1 )(1) n S n1 (A 1,...,A n1 ) (1) 1 S 1 (A 1 A n1,...,a n A n1 )(1) n S n1 (A 1,...,A n1 ). Zatem A 1... A n S 1 (A 1,...,A n1 ) (1) 1 S (A 1,...,A n ) Wyłady z ombinatoryi

3 Zasada włączeń i wyłączeń 3 (1) 1 S 1 (A 1 A n1,...,a n A n1 )(1) n S n1 (A 1,...,A n1 ) S 1 (A 1,...,A n1 ) Następnie zauważmy, że (1) 1 (S (A 1,...,A n )S n1 (A 1,...,A n1 )) (1) n S n1 (A 1,...,A n1 ). S (A 1,...,A n )S 1 (A 1 A n1,...,a n A n1 )S (A 1,...,A n1 ) Stąd ostatecznie dostajemy A 1... A n S 1 (A 1,...,A n1 ) (1) 1 S (A 1,...,A n1 )(1) n S n1 (A 1,...,A n1 ) n1 (1) 1 S (A 1,...,A n1 ), co ończy dowód twierdzenia. Wzór(.3) nazywamy wzorem włączeń i wyłączeń. Inny dowód. Przeglądamy olejne sładnii sumy stojącej po prawej stronie równości iprzyażdymelemencieiloczynu od tego, czy liczba rysujemyznapluslubminuswzależności występowaławsumiezeznaiemplusczyminus.inaczej mówiąc, jeśli zbiór T ma nieparzystą liczbę elementów, to rysujemy zna plus; jeśli zaś zbiór T ma parzystą liczbę elementów, to rysujemy zna minus. Zilustrujemy tę procedurę(w przypadu sumy trzech zbiorów A B C) serią rysunów. Dowodzimy równości A B C A B C A B A C B C A B C. Przeglądamy sładnii sumy po prawej stronie i rysujemy znai plus olejno przy ażdym elemencie zbiorów A, B i C, potem znai minus przy ażdym elemencie zbiorów A B,A CiB C,wreszcieznaiplusprzyażdymelemenciezbioruA B C. Rysune 1: zbiory A, B i C wraz z zaznaczonymi przyładowymi elementami(po jednym elemencie w ażdej sładowej). A B C Wyłady z ombinatoryi

4 4 Wyład Rysune : przy ażdym elemencie zbioru A rysujemy zna plus A B C Rysune 3: przy ażdym elemencie zbioru B rysujemy zna plus A B C Rysune 4: przy ażdym elemencie zbioru C rysujemy zna plus A B C Rysune5:przyażdymelemenciezbioruA Brysujemyznaminus A B C Wyłady z ombinatoryi

5 Zasada włączeń i wyłączeń 5 Rysune6:przyażdymelemenciezbioruA Crysujemyznaminus A B C Rysune7:przyażdymelemenciezbioruB Crysujemyznaminus A B C Rysune8:przyażdymelemenciezbioruA B Crysujemyznaplus A B C Zauważamy,żeprzyażdymelemenciesumyA B Cliczbanarysowanychplusów jest o jeden więsza od liczby narysowanych minusów: przy elementach należących do jednego zbioru narysowaliśmy tylo jeden plus, przy elementach należących do dwóch zbiorów narysowaliśmy dwa plusy i jeden minus, wreszcie przy elementach należących do wszystich trzech zbiorów narysowaliśmy cztery plusy i trzy minusy. To daje równość (liczbaplusów)(liczbaminusów) A B C. Wyłady z ombinatoryi

6 6 Wyład Nietrudno przy tym zauważyć, że w ażdym z siedmiu powyższych roów liczba narysowanych znaów była równa liczbie elementów rozpatrywanego zbioru. Stąd dostajemy równość (liczba plusów)(liczba minusów) A B C A B A C B C A B C, z tórej wynia równość(.). Powróćmy do dowodu twierdzenia.1. Znów zauważamy, że prawa strona równości(.3) jest różnicą między liczbą plusów i liczbą minusów. Wystarczy zatem poazać, że przy ażdymelemenciesumyzbiorówa 1... A n narysowaliśmyojedenpluswięcej.niech x A 1... A n.niechnastępnie M{j: x }. Inaczejmówiąc,x wtedyitylowtedy,gdyj M.Oznaczmym M ;oczywiście m>0.niechterazt P (n)ipopatrzmynazbiór ;jesttojedenzezbiorów występującychpoprawejstronierówności(.3).jeślit\m,tooczywiściemamy x.przypuśćmyzatem,żet M.Wtedyprzyelemenciexrysowaliśmyzna plus lub minus, w zależności od parzystości : plus dla nieparzystych, minus dla parzystych.dladanegoliczbataichzbiorówt jestrówna ( m ).Liczbyplusów i minusów narysowanych przy x są zatem równe liczbaplusów. liczbaminusów, >0, sąd dostajemy liczba plusów liczba minusów m ( m (1) 1 ). Zrówności(przypominamy,żem>0) m (1) 0 wynia, że czyli 1 0 m (1) 0, m (1) m ( m (1) 1 ). Wyłady z ombinatoryi

7 Zasada włączeń i wyłączeń 7 Stąd wynia, że przy elemencie x narysowaliśmy o jeden plus więcej. Ta jest dla ażdego elementuxsumya 1... A n.tozaśoznacza,żesumapoprawejstronierówności będzierównaliczbieelementówsumya 1... A n,coończydowód. 3. Liczba funcji z jednego zbioru sończonego na drugi zbiór sończony Twierdzenie..DanesądwazbiorysończoneAiB.Niech A mi B n. Wtedy m {f A B : fjest na } (1) (m) n. (.4) Dowód.Bezzmniejszeniaogólnościmożemyprzyjąć,żeA[m]iB[n].Definiujemy zbiorya 1,...,A m wnastępującysposób: dlaj1,,...,m.inaczejmówiąc {f A B : j R f } (A\{j}) B. Korzystając ze wzoru włączeń i wyłączeń otrzymujemy A 1... A m NiechzatemT P (m).wtedy m (1) 1. T P (m) (A\{j}) B (A\T) B, sąd otrzymujemy A j (A\T) B (m) n. Zatem A 1... A m m (1) 1 T P (m) (m) n m ( m (1) 1 ) (m) n. Dozaończeniadowoduwystarczyzauważyć,żesumazbiorówA 1... A m sładasię ztychfuncjif:b A,tóreniesą na.zatem {f A B : fjest na }A B \(A 1... A m ), Wyłady z ombinatoryi

8 8 Wyład czyli c.b.d.o. {f A B : fjest na } m n A 1... A m m m n (1) 1 (m) n m m n (1) (m) n m (1) (m) n, 4. Liczba nieporządów Permutacją zbioru sończonego A nazywamy funcję różnowartościową π: A A przeształcającą zbiór A na siebie. Puntem stałym permutacji π nazywamy tai element a zbioru A, dla tórego π(a) a. Nieporządiem nazywamy permutację bez puntów stałych. Zbiór wszystich permutacji zbioru A oznaczymy symbolem S(A), a zbiór nieporządów zbioru A symbolem D(A). Powyższa definicja permutacji nie jest identyczna z definicją przyjętą w wyładzie pierwszym. Poażemy teraz, że w pewnym sensie te dwie definicje opisują te same obiety ombinatoryczne. Przypuśćmy zatem, że mamy dany zbiór sończony A. Ustalmy pewne uporządowanie tego zbioru: A{a 1,a,...,a n }. Niechπ:A AbędziepermutacjązbioruAwsensiepowyższejdefinicji.Przeształcenieπmożemywtedyutożsamićzciągiem ( π(a 1 ),π(a ),...,π(a n ) ) elementówzbioru A. Oczywiście ten ciąg jest różnowartościowy, a więc jest permutacją zbioru A w sensie definicji z wyładu pierwszego. Zwróćmy uwagę na to, że utożsamienie przeształcenia π z ciągiem elementów zbioru est zależne od przyjętego na początu uporządowania zbiorua.zauważmyteż,żewprzypadu,gdya[n],obiedefinicjeporywająsię. NiechwreszcieD n oznaczaliczbęnieporządówzbiorun-elementowego,toznaczynp. D n D([n])dlan>0.PrzyjmujemyponadtoD 0 1. Twierdzenie.3Niech A n>0.wtedy D n D(A) n! (1). (.5)! Dowód.DefiniujemyzbioryA 1,...,A n wnastępującysposób: dlaj1,...,n.mamywówczas A 1... A n {π S(A): π(j)j} (1) 1 T P (n) Wyłady z ombinatoryi.

9 Zasada włączeń i wyłączeń 9 NiechterazT P (n).wówczas {π: π(j)j}{π: (π(j)j)}{π: π Tid}. Stądwynia,że Zatem A 1... A n (n)! (1) 1 T P (n) n (1) 1 ( ) n (1) 1 (n)! (1) 1 n!!. (1) 1 T P (n) (n)! n!! (n)! (n)! Następniezauważamy,żesumazbiorówA 1... A n sładasięztychpermutacji,tóre mają co najmniej jeden punt stały. Zatem sąd wynia, że D(A)S(A)\(A 1... A n ), D(A) n! A 1... A n n! n! n! To ończy dowód twierdzenia. (1) n! n! (1).! (1) 1 n!! (1) n!! Z powyższego twierdzenia wyprowadzimy wniose dotyczący prawdopodobieństwa wylosowania nieporządu. Przypuśćmy, że losujemy permutację ustalonego zbioru n-elementowego A i pytamy o to, jaie jest prawdopodobieństwo tego, że wylosujemy nieporząde. Zbiorem zdarzeń elementarnych Ω w tym przypadu jest zbiór S(A) wszystich permutacji zbioru A; przyjmujemy, że wylosowanie ażdej permutacji jest jednaowo prawdopodobne. Interesuje nas prawdopodobieństwo zdarzenia D(A) Ω. To prawdopodobieństwo jest równe P ( D(A) ) D(A) n! (1).! Wyłady z ombinatoryi

10 10 Wyład Zauważmy, że lim n (1) e 1,! sąd wynia, że dla dużych n rozważane prawdopodobieństwo jest w przybliżeniu równe e 1 0,367879(jużdlan9uzysujemydoładnośćprzybliżenia6cyfrpoprzecinu). 5. Uogólnienie wzoru włączeń i wyłączeń Przypuśćmy,żemamydanezbiorysończoneA 1,...,A n X,gdzieXjestustalonym zbiorem sończonym. Przyjmiemy, że j X. Korzystając z tej umowy, możemy wysłowić zasadę włączeń i wyłączeń w inny sposób. Zastanówmysię,ileelementówzbioruXnienależydożadnegozezbiorówA 1,...,A n. Otóż mamy X\(A 1... A n ) X j (1) 1 T P (n) n (1) (1) T P (n) T P (n). NiechnadalA 1,...,A n X.Przyjmiemywtedyoznaczenie: D r (X,A 1,...,A n ) { x X: {i [n]: x A i } r }, gdzie0 r n.inaczejmówiąc,d r (X,A 1,...,A n )jestzbioremtychelementówzbioru X,tórenależądozbiorówA i dladoładnierindesówi.jeślizbiorya 1,...,A n są ponumerowanebezpowtórzeń,tod r (X,A 1,...,A n )jestzbioremtychelementówzbioru X,tórenależądodoładnierzbiorówspośródA 1,...,A n.wdalszymciągu,będziemy pisaćwsrócie,żeelementzbioruxnależydodoładnierzbiorówspośróda 1,...,A n, mającnamyślito,żeistniejedoładnierindesówitaich,żetenelementnależydo zbiorua i. Poazaliśmy przed chwilą, że Tę równość można uogólnić. D 0 (X,A 1,...,A n ) (1) Wyłady z ombinatoryi T P (n). (.6)

11 Zasada włączeń i wyłączeń 11 Twierdzenie.4NiechA 1,...,A n będąsończonymipodzbioramizbiorusończonego X.Wówczasdladowolnegor0,1,...,nmamy D r (X,A 1,...,A n ) (1) r. (.7) r r T P (n) Dowód.NiechR P r (n).wyznaczymyliczbętychx X,tóremająwłasność: x wtedyitylowtedy,gdy j R. Inaczej mówiąc, wyznaczymy liczbę tych x X, tóre należą doładnie do tych zbiorów,dlatórychj R. Niech B oraz B j B j R dla j R. Naszym celem jest wyznaczenie liczby elementów zbioru (B\B j ), j R czyliobliczenied 0 (B,B i1,...,b inr ),gdzie[n]\r{i 1,...,i nr }. Ze wzoru(.6) wynia, że nr D 0 (B,B i1,...,b inr ) (1) nr nr nr nr nr r T R T [n] T P ([n]\r) T P ([n]\r) T P ([n]\r) T P ([n]\r) T P ([n]\r) T P r ([n]) R T T P ([n]) R T B j (1) ( B) (1) ( ) A i i R (1) ( ( ) A i ) i R (1) R (1) (1) r (1) T r. Wyłady z ombinatoryi

12 1 Wyład Dla ustalonego zbioru R obliczyliśmy, ile jest taich x X, tóre należą do doładnie tychzbiorów,dlatórychj R.Terazchcemyobliczyć,ilejesttaichx,tóre należądodoładnierzbiorów (doładniej:chcemyobliczyć,ilejesttaichx,dla tórych {i [n]: x A i } r).wtymcelumusimyzsumowaćotrzymaneliczbydla wszystich r-elementowych podzbiorów R zbioru[n]. Mamy zatem D r (X,A 1,...,A n ) co ończy dowód twierdzenia. R P r (n) T P r (n) T P r (n) r r T R T [n] R P r (T) (1) T r (1) T r ( ) T (1) T r r (1) r r T P (n) (1) r, r T P (n) 6. Liczba permutacji mających r puntów stałych W tym paragrafie obliczymy, ile jest permutacji zbioru n-elementowego mających doładnie r puntów stałych. Niech WszczególnościD 0 (A)D(A). D r (A) { π S(A): {i A: π(i)i} r }. Twierdzenie.5Niech A niniech0 r n.wtedy D r (A) n! nr r! (1). (.8)! Dowód. Sposób I. Wybieramy najpierw zbiór r puntów stałych permutacji, a następnie permutujemy pozostałe elementy ta, by nie utworzyć nowego puntu stałego; inaczej mówiąc permutacja pozostałych elementów jest nieporządiem. Stąd wynia wzór D r (A) ( ) n D nr r n! r! (nr)! (nr)! nr (1)! n! nr r! (1).! SposóbII.Korzystamyztwierdzenia.4.DefiniujemyzbioryA 1,...,A n wnastępujący sposób: {π S(A): π(j)j} Wyłady z ombinatoryi

13 Zasada włączeń i wyłączeń 13 dlaj 1,...,n.Tajawdowodzietwierdzenia.3stwierdzamy,żedlaT [n] zachodzirówność (n)! Z twierdzenia.4 otrzymujemy teraz D r (A) D r (S(A),A 1,...,A n ) (1) r r r T P (n) (1) r r r (n)! ( ) n (1) r (n)! r (1) r r r r n! (1) r r! r r r n! r! (1) r (1) r r (1) r n! nr (1) r! 1!, co ończy dowód twierdzenia. 7. Średnia liczba puntów stałych n!! (n)! (n)!! r! (r)! n!! n! r! (r)! 1 (r)! T P (n) Niech A n. Przypuśćmy, że wybieramy losowo jedną permutację ze zbioru S(A). Oznaczmyprzezp r prawdopodobieństwotego,żewylosowanapermutacjabędziemiała doładnie r puntów stałych. Z twierdzenia.5 wynia, że p r D r(a) n! r! 1 nr (1) 1!. Niech zmienna losowa X będzie oreślona wzorem X(π) {j A: π(j)j}. Wyłady z ombinatoryi

14 14 Wyład Zatem X(π) jest liczbą puntów stałych permutacji π. W tym paragrafie obliczymy wartość średnią zmiennej X. Z definicji wartości średniej mamy Mamy zatem E(X) r p r r0 r1 Korzystamy teraz ze wzoru E(X) r p r. r0 r p r r1 r1 nr 1 (1) (r1)! 1 n! nr r 1 (1) r! 1! nr r1 (1) (r1)!!. Mamy zatem nr j a r, a r,jr. r1 j1r1 E(X) nr r1 j j1r1 j j1r1 j1 j1r0 n1 j0 (1) j j! (1) n (r1)!! j j1r1 (1) jr (r1)! (jr)! (1) jr (j1)! n (j1)! (r1)! (jr)! (1) jr (j1)! (1) jr1 (j1)! ( ) j1 r1 j (1) r r0 Korzystamy teraz z równości Stąd ostatecznie ( ) j1 r j (1) r r0 j. r j1 j1r0 j1 j j1r1 (1) jr1 (j1)! (1) jr (j1)! r0 ( ) j1 r (j1)! (r1)! (jr)! (1) j1 j1 ( ) (1) (j1)! r j1 r { j 1 jeślij0, r 0 jeślij>0. E(X) n1 j0 (1) j j! j (1) r r0 ( j ) (1)0 r 0! 1. Wyłady z ombinatoryi

15 Zasada włączeń i wyłączeń 15 Średnią liczbę puntów stałych permutacji można obliczyć znacznie prościej, orzystając z następującej własności wartości średniej zmiennych losowych: E(X 1...X n )E(X 1 )...E(X n ). ZdefiniujmyteraznzmiennychlosowychX 1,...,X n : { 1 jeśliπ(i)i, X i (π) 0 jeśliπ(i) i. Nietrudnozauważyć,żewtedyXX 1...X n,gdziexjestzmiennąlosowązdefiniowanąwyżej.następniełatwoobliczyć,żee(x i )P(X1) 1 n.stąddostajemy E(X)E(X 1 )...E(X n )n 1 n Problem par małżeńsich W tym paragrafie rozwiążemy następujący problem pochodzący od Lucasa(le problème des ménages). Dany jest orągły stół, woół tórego mamy posadzić na numerowanych miejscach n par małżeńsich w tai sposób, by panie i panowie siedzieli naprzemian i by żadnapaniniesiedziałaoboswojegomęża.lucaspytałoto,nailesposobówmożemy te osoby posadzić woół stołu z zachowaniem podanych reguł. Popatrzmy najpierw na przyład.otoorągłystółz1miejscami(awięctutajn6): Przede wszystim widzimy, że panie muszą zająć albo miejca parzyste, albo nieparzyste. Ponumerujmy więc oddzielnie liczbami od 1 do 6 miejsca parzyste i nieparzyste: Wyłady z ombinatoryi

16 16 Wyład Najpierw posadzimy panie. Ich miejsca możemy wybrać na n! sposobów: musimy zdecydować, czy wybieramy miejsca parzyste, czy nieparzyste, a następnie na wybranych miejscachmamyn!możliwościposadzenianpań.ponumerujmypanie:k 1,K,...,K n, przyczymprzyjmujemy,żepanik i siedzinamiejscui.dlaustaleniauwagiprzypuśćmy, że panie posdziliśmy na miejscach parzystych, czyli białych na rysunu drugim. Ponumerujmynastępniepanów:M 1,M,...,M n,przyczymzaładamy,żepanm i jest mężempanik i.przyładowysposóbposadzenianpanówwidzimynanastępnymrysunu: K 6 M 4 M K K 1 M 1 5 M 5 K 4 4 M 4 3 K 3 Widzimy, że usadzenie panów jest zgodne z wymaganiami, jeśli spełnione są następujące waruni: panm 1 niesiedzinażadnymzmiejsc1i, panm niesiedzinażadnymzmiejsci3, panm 3 niesiedzinażadnymzmiejsc3i4, panm 4 niesiedzinażadnymzmiejsc4i5, panm 5 niesiedzinażadnymzmiejsc5i6, panm 6 niesiedzinażadnymzmiejsc6i1. Ogólnie dla n par waruni te możemy sformułować w trzech puntach: żadenzpanówm i (dlai1,...,n)niemożesiedziećnamiejscui, żadenzpanówm i (dlai1,...,n1)niemożesiedziećnamiejscui1, panm n niemożesiedziećnamiejscu1, Niechterazπ(i)oznaczanumermiejsca,natórymsiedzipanM i.naszymcelemjest znalezienie liczby µ(n) permutacji π S([n]), spełniających następujące waruni: 1)π(i) idlai1,...,n, )π(i) i1dlai1,...,n1, 3)π(n) 1. Liczba M(n) wszystich możliwych sposobów posadzenia n par małżeńsich będzie równa M(n) n! µ(n). (.9) 3 M 6 Wyłady z ombinatoryi K

17 Zasada włączeń i wyłączeń 17 Definiujemy n zbiorów: Wówczas A i1 {π S([n]): π(i)i} dlai1,...,n, A i {π S([n]): π(i)i1} dlai1,...,n1, A n {π S([n]): π(n)1}. µ(n) S([n])\(A 1... A n ) D 0 (S([n]),A 1,...,A n ) (1) T P (n) NiechT P (n).chcemyobliczyć. Zauważmy, że, wtedy i tylo wtedy, gdy spełniony jest co najmniej jeden z trzech warunów: 1)i1,i Tdlapewnegoi1,...,n, )i,i1 Tdlapewnegoi1,...,n1, 3)1,n T. Przypuśćmy bowiem, że π orazspełnionyjestwarunepierwszydlapewnegoi.wtedyπ A i1 A i,czyli π(i)iorazπ(i)i1,cojestniemożliwe.podobnie,jeślispełnionyjestwarune drugidlapewnegoi,toπ A i A i1,czyliπ(i)i1orazπ(i1)i1. Totażejestniemożliwe.Wreszcie,jeśli1,n T,toπ A 1 A n,czyliπ(1)1 orazπ(n)1,cotażejestniemożliwe.naodwrót,jeśliżadenztychtrzechwarunów niejestspełniony,czyliwzbiorzet niewystępujądwieolejneliczby(liczbyni1 tratujemy tu jao liczby olejne), to w permutacji π mamy ustalone wartości. Taie permutacjeistniejąijestich(n)!.zauważmy,żewtedyoczywiście n. Wprowadźmy na użyte tego dowodu następujące oznaczenia. Oznaczmy przez g(n, ) liczbętaichzbiorówb P (n),że: a)jeślii B,toi1 Bdlai1,...,n1, b)jeślin B,to1 B. Oznaczmynastępnieprzezh(n,)liczbęzbiorówB P (n)spełniającychtylopowyższy warune a): a)jeślii B,toi1 Bdlai1,...,n1, Wyłady z ombinatoryi

18 18 Wyład Wtedy µ(n) (1) (n)! g(n,). (.10) Naszym celem jest zatem obliczenie g(n, ). Lemat.6.h(n,) ( ) n1. Dowód. Sposób I. Mamy policzyć, ile jest -elementowych podzbiorów zbioru[n] nie zawierających dwóch olejnych liczb. Każdy -elementowy podzbiór zbioru[n] jest zbiorem wartości doładnie jednej funcji rosnącej f :[] [n]. Warune, że ten podzbiór nie zawiera dwóch olejnych liczb jest równoważny następującej własności funcjif: f(i1)f(i) dlai1,,...,n1. ( ) Dladowolnejfuncjif:[] [n]definiujemyfuncjęg:[] [n1]wzorem dlai1,,...,.mamyzatem g(i)f(i)i1 g(1)f(1), g()f()1, g(3)f(3), g(1)f(1)(), gf(1). Nietrudno zauważyć, że funcja f spełnia warune( ) wtedy i tylo wtedy, gdy funcja gjestrosnąca.zatemfuncjif:[] [n]spełniającychwarune( )jesttyle,ilefuncji rosnącychg:[] [n1],awięc ( ) n1. SposóbII.Rozumowaniebędziemyilustrowaćprzyładem,wtórymn13i4. Narysujmywjednejliniinółecze. Tworząonen1(wnaszymprzyładzien110)wolnychmiejsc:jednoprzed wszystimi ółeczami, n 1 miejsc między olejnymi ółeczami i jedno na ońcu, zawszystimiółeczami.ztychn1miejscwybierzmymiejsc(wnaszym przyładzie będzie to miejsce pierwsze, miejsce między trzecim i czwartym ółiem, miejsce między siódmym i ósmym ółiem oraz miejsce między ósmym i dziewiątym ółiem) i wstawmy w nie czarne óła: Mamy razem n ółe, w tym czarnych. Sposób wstawiania gwarantuje, że żadne dwa czarne óła nie będą stały obo siebie. Tai ciąg ółe oduje podzbiór zbioru[n]: {i [n]: nai-tymmiejscustoiczarneóło}. Wyłady z ombinatoryi

19 Zasada włączeń i wyłączeń 19 W naszym przyładzie jest to zbiór{1, 5, 10, 1}. Zauważmy wreszcie, że czarne óła możemywstawićna ( ) n1 sposobów,coończydowódlematu. ) Lemat.7.g(n,) n (n n. Dowód.ZliczamyzbioryB P (n)spełniającewarunia)ib). NajpierwzajmiemysiętaimizbioramiB,że1 B.Wtedy Borazn B. PonadtozbiórB\{1} P 1 ({3,...,n1})spełniawarunea).Stądwynia,że istniejeh(n3,1)taichzbiorówb. ZajmijmysięnastępnietaimizbioramiB,że1 B.WtedyzbiórB P ({,...,n}) spełniawarunea).istniejezatemh(n1,)taichzbiorówb.zatem c.b.d.o. g(n,)h(n3,1)h(n1,) ( ) ( ) n1 n 1 n ( ) ( ) n n n n ( ) n, Twierdzenie.8. Liczba sposobów posadzenia n par małżeńsich przy orągłym stole jest równa M(n) n! (1) ( ) n n (n)! (.11) n Dowód. Z równości(.9) i(.10) wynia, że liczba sposobów posadzenia n par małżeńsich przy orągłym stole jest równa M(n) n! µ(n) n! Korzystając z lematu.7 otrzymujemy c.b.d.o. (1) (n)! g(n,). M(n) n! (1) ( ) n n (n)!, n 9. Sumy potęg liczb naturalnych Przypomnijmy z wyładu 1 oznaczenie S (n) j 1...n, j1 Wyłady z ombinatoryi

20 0 Wyład gdzien, 1.Zwyładu1wiemy,że S 0 (n)n, ( ) n1 S 1 (n) n(n1), S (n) 4 1 ( ) n n(n1)(n1), 3 6 ( ) n1 S 3 (n) S 1 (n) n (n1). 4 Wyprowadzimy teraz pewien wzór ogólny. Będzie to wzór reurencyjny, pozwalający obliczyćs (n),jeślisąznanewszyties j (n)dlaj<. Twierdzenie.9.Jeślin, 1,to n (1) j1 S j (n). (.1) j j1 Zanim udowodnimy to twierdzenie, przyjrzymy się jego początowym przypadom i poażemy,jazniegomożnaotrzymaćwzorynas (n)dla 3.Oczywiście S 0 (n)1 0...n 0 n. Teraz,orzystającztwierdzenia.9dlamamy n (1) j1 S j (n) S 1 (n) j 1 j1 sąd otrzymujemy czyli Następnie,dla3mamy n 3 3 ( 3 (1) j1 j j1 S 1 (n)n nn(n1), ) S 3j (n) 3S (n)3 n(n1) sąd dostajemy S 1 (n) n(n1). n, 3S (n)n 3 3 n(n1) n3 3n 3nn) n(n1)(n1), 3 S (n) 1 S 0 (n)s 1 (n)n, 3 S 1 (n) n n3 3n(n1)n n(n 3n1) Wyłady z ombinatoryi 3 S 0 (n) 3

21 Zasada włączeń i wyłączeń 1 czyli Wreszciedlan4mamy sąd wynia, że czyli n 4 4 ( 4 (1) j1 j j1 4 1 S 3 (n) S (n) n(n1)(n1). 6 ) S 4j (n) 4 S (n) 4 S 1 (n) 3 4 S 0 (n) 4 4S (n)6 n(n1)(n1) 4 n(n1) 3 n 6 4S 3 (n)n(n1)(n1)n(n1)n, 4S 3 (n)n 4 n(n1)(n1)n(n1)n n (n 3 (n1)(n1)(n1)1 ) n ((n 3 1)(n1)(n1) ) n ((n1)(n n1)(n1)(n1) ) n(n1)(n n1n1)n(n1)(n n) n (n1), Udowodnimy teraz twierdzenie.9. Dowód. Weźmy zbiór S 3 (n) n (n1). 4 X[n] {(x 1,...,x ): x 1,...,x [n]}. Wtedyoczywiście X n.definiujemyteraznastępującepodzbioryzbiorux: A m {(x 1,...,x ) X: i(x i x m )} dlam1,...,.inaczejmówiąc,dozbiorua m należąteciągi,wtórychnajwięszy wyraz znajduje się na m-tym miejscu. Oczywiście ciągi mające najwięszy wyraz na ilumiejscach,należądoilutaichzbiorówa m.naprzyład,jeślin5i7,to (1,3,4,,5,4,) A 5 oraz(1,3,4,,1,4,) A 3 A 6.Ogólnie,niechT P j,gdzie 1 j.wtedy m T A m n {(x 1,...,x ) X: m T(x m l)oraz m []\T(x m l)}. l1 Wyłady z ombinatoryi

22 Wyład Zauważmy następnie, że oraz zbiory {(x 1,...,x ) X: m T(x m l)oraz m []\T(x m l)} l j {(x 1,...,x ) X: m T(x m l)oraz m []\T(x m l)} dla różnych l są rozłączne. Zatem Wreszcie m T n l j S j (n). l1 XA 1... A, a więc z zasady włączeń i wyłączeń otrzymujemy czyli c.b.d.o. 10. Dwie tożsamości X (1) j1 j1 T P j (1) j1 j1 j1 n T P j m T A m S j (n) (1) j1 S j (n), j (1) j1 S j (n), j j1 Rozważania tego paragrafu będą w zasadzie powtórzeniem rozważań z paragrafu 3. Zajmiemy się funcjami f:[n] [m] i będziemy chcieli policzyć funcje f spełniające dlapewnegowarune[] R f.definiujemyzbiorya 1,...,A wnastępującysposób: {f [m] [n] : j R f } dlaj1,...,.korzystajączewzoruwłączeńiwyłączeń,podobniejawparagrafie 3, otrzymujemy A 1... A (1) j1 j1 ( (1) j1 j j1 T P j i T A i (1) j1 ) (mj) n. j1 Wyłady z ombinatoryi T P j (mj) n

23 Zasada włączeń i wyłączeń 3 Funcje,tórenasinteresują,tworzązbiór[m] [n] \(A 1... A ).Zatemliczbataich funcji jest równa m n (1) j1 (mj) n j j1 (1) j (mj) n. j Wszczególności,jeślinorazm n,toistniejen!taichfuncji.zatem j0 Zdefiniujmy teraz wielomian W(x) wzorem j0 ( ) n (1) j (mj) n n! dlam n. (.13) j W(x) ( ) n (1) (x) n. Jest to wielomian stopnia co najwyżej n. Z tożsamości(.13) wynia jedna, że tę samą wartość n! przyjmuje on w niesończenie wielu puntach: W(m)n! dlam n. Stąd wynia, że ten wielomian jest wielomianem stałym, czyli ( ) n (1) (x) n n! (.14) Z rozumowaniem, tóre przeprowadziliśmy, pozwalającym przejść od tożsamości udowodnionej dla liczb naturalnych do równości wielomianów, spotamy się jeszcze w następnych wyładach. 11. Nierówności Bonferroniego Udowodnimy teraz dwie nierówności, zwane nierównościami Bonferroniego. Oto one: r A 1... A n (1) 1 (.15) oraz A 1... A n r1 T P (n) (1) 1 T P (n). (.16) Powtarzamy drugi dowód zasady włączeń i wyłączeń polegający na przeglądaniu olejnych sładniów sumy stojącej po prawej stronie nierówności i rysowaniu przy ażdym elemencieiloczynu znaupluslubminuswzależnościodtego,czyliczba Wyłady z ombinatoryi

24 4 Wyład występujewsumiezeznaiemplusczyminus.inaczejmówiąc,jeślizbiórtmanieparzystą liczbę elementów, to rysujemy zna plus; jeśli zaś zbiór T ma parzystą liczbę elementów, to rysujemy zna minus. Ta ja w poprzednim dowodzie zauważamy, że prawa strona równości(.3) jest różnicą między liczbą plusów i liczbą minusów. Musimy zatem oszacować różnicę między liczbą plusówiminusównarysowanychprzyażdymelemenciesumyzbiorówa 1... A n. Zajmiemy się najpierw nierównością(.15). Mamy teraz poazać, że przy ażdym elemenciesumyzbiorówa 1... A n narysowaliśmyconajwyżejojedenpluswięcej.niech x A 1... A n.tajapoprzednio,niech M{j: x }. Inaczejmówiąc,x wtedyitylowtedy,gdyj M.Oznaczmym M ;oczywiście m>0.niechterazt P (n)ipopatrzmynazbiór ;jesttojedenzezbiorów występującychpoprawejstronierówności(.3).jeślit\m,tooczywiściemamy x.przypuśćmyzatem,żet M.Wtedyprzyelemenciexrysowaliśmyzna plus lub minus, w zależności od parzystości : plus dla nieparzystych, minus dla parzystych.dladanegoliczbataichzbiorówt jestrówna ( m ).Liczbyplusów i minusów narysowanych przy x są zatem równe liczba plusów liczba minusów r. r, 1 sąd dostajemy r ( m liczba plusów liczba minusów (1) 1 ). Tym razem orzystamy z równości(1.7)(przypominamy, że m > 0): r (1) ( m ) 1 (1) r r ( m1 Mamyterazdwiemożliwości.Jeślim1<r,czylim r(tzn.elementxnależydo conajwyżejrzbiorów ),totajapoprzednio liczbaplusówliczbaminusów0. r ). Jeślizaśm>r,to 1 1 r Wyłady z ombinatoryi

25 Zasada włączeń i wyłączeń 5 sąd wynia, że czyli Zatem r 0 r r (1) 1, (1) 0. r (1) 1 (1) 0. Stąd wynia, że przy elemencie x narysowaliśmy co najwyżej tyle plusów, ile minusów. ZatemdlaażdegoelementuxsumyA 1... A n wobuprzypadachnarysowaliśmyco najwyżej o jeden plus więcej, co dowodzi nierówności(.15). Dowód nierówności(.16) jest analogiczny i pozostawimy go jao ćwiczenie. Zpowyższegodowoduwynia,żejeśliażdyelementsumyA 1... A n należydoco najwyżejrzbiorów,tonierówność(.15)stajesięrównością.jeślinatomiastistnieje conajmniejjedenelementnależącydowięcejniżrzbiorów,tonierówność(.15) jestostra.podobniejestznierównością(.16).jeśliażdyelementsumya 1... A n należydoconajwyżejr1zbiorów,tomamyrówność;wprzeciwnymprzypadu nierówność jest ostra. Wyłady z ombinatoryi

26 6 Wyład Spis tożsamości ombinatorycznych A B A B A B (.1) A B C A B C A B A C B C A B C. (.) A 1... A n (1) 1 T P (n). (.3) m {f A B : fjest na } (1) (m) n. (.4) (1) D(A) n!. (.5)! D 0 (X,A 1,...,A n ) (1). (.6) D r (X,A 1,...,A n ) µ(n) T P (n) (1) r r r D r (A) n! nr r! T P (n). (.7) (1). (.8)! M(n) n! µ(n). (.9) (1) (n)! g(n,). (.10) M(n) n! (1) ( ) n n (n)! (.11) n n (1) j1 S j (n). (.1) j j1 ( ) n (1) j (mj) n n! dlam n. (.13) j j0 ( ) n (1) (x) n n! (.14) A 1... A n A 1... A n m m1 (1) 1 T P (n) (1) 1 T P (n). (.15). (.16) Wyłady z ombinatoryi

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM

TEORIA OBWODÓW I SYGNAŁÓW LABORATORIUM EORI OBWODÓW I SYGNŁÓW LBORORIUM KDEMI MORSK Katedra eleomuniacji Morsiej Ćwiczenie nr 2: eoria obwodów i sygnałów laboratorium ĆWICZENIE 2 BDNIE WIDM SYGNŁÓW OKRESOWYCH. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy

A i A j lub A j A i. Operator γ : 2 X 2 X jest ciągły gdy 3. Wyład 7: Inducja i reursja struturalna. Termy i podstawianie termów. Dla uninięcia nieporozumień notacyjnych wprowadzimy rozróżnienie między funcjami i operatorami. Operatorem γ w zbiorze X jest funcja

Bardziej szczegółowo

Równania rekurencyjne 1 RÓWNANIA REKURENCYJNE

Równania rekurencyjne 1 RÓWNANIA REKURENCYJNE Równania reurencyjne 1 RÓWNANIA REKURENCYJNE 1 Ciągi arytmetyczne i geometryczne Z najprostszymi równaniami reurencyjnymi zetnęliśmy się już w szole Zacznijmy od przypomnienia definicji ciągu arytmetycznego

Bardziej szczegółowo

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi.

Grupy. Permutacje 1. (G2) istnieje element jednostkowy (lub neutralny), tzn. taki element e G, że dla dowolnego a G zachodzi. Grupy. Permutacje 1 1 Definicja grupy Niech G będzie zbiorem. Działaniem na zbiorze G nazywamy odwzorowanie (oznaczane, jak mnożenie, przez ) przyporządkowujące każdej parze uporządkowanej (a, b) G G element

Bardziej szczegółowo

Podstawowe techniki zliczania obiektów kombinatorycznych. Szufladkowa zasada Dirichleta, Zasada włączeń i wyłączeń.

Podstawowe techniki zliczania obiektów kombinatorycznych. Szufladkowa zasada Dirichleta, Zasada włączeń i wyłączeń. Materiały dydatyczne Mateatya Dysretna (Wyład 5 Podstawowe technii zliczania obietów obinatorycznych. Szufladowa zasada Dirichleta, Zasada włączeń i wyłączeń. Szufladowa Zasada Dirichleta. Jest rzeczą

Bardziej szczegółowo

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1

W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 W. Guzicki Zadanie IV z Informatora Maturalnego poziom rozszerzony 1 Zadanie IV. Dany jest prostokątny arkusz kartony o długości 80 cm i szerokości 50 cm. W czterech rogach tego arkusza wycięto kwadratowe

Bardziej szczegółowo

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl

Luty 2001 Algorytmy (7) 2000/2001 s-rg@siwy.il.pw.edu.pl System dziesiętny 7 * 10 4 + 3 * 10 3 + 0 * 10 2 + 5 *10 1 + 1 * 10 0 = 73051 Liczba 10 w tym zapisie nazywa się podstawą systemu liczenia. Jeśli liczba 73051 byłaby zapisana w systemie ósemkowym, co powinniśmy

Bardziej szczegółowo

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ

ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ LISTA ZADAŃ 1 1 Napisać w formie rozwiniętej następujące wyrażenia: 4 (a 2 + b +1 =0 5 a i b j =1 n a i b j =1 n =0 (a nb 4 3 (! + ib i=3 =1 2 Wyorzystując twierdzenie o

Bardziej szczegółowo

Kody Huffmana oraz entropia przestrzeni produktowej. Zuzanna Kalicińska. 1 maja 2004

Kody Huffmana oraz entropia przestrzeni produktowej. Zuzanna Kalicińska. 1 maja 2004 Kody uffmana oraz entroia rzestrzeni rodutowej Zuzanna Kalicińsa maja 4 Otymalny od bezrefisowy Definicja. Kod nad alfabetem { 0, }, w tórym rerezentacja żadnego znau nie jest refisem rerezentacji innego

Bardziej szczegółowo

Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe

Kombinatoryka. Jerzy Rutkowski. Teoria. P n = n!. (1) Zadania obowiązkowe Kombinatoryka Jerzy Rutkowski 2. Elementy kombinatoryki 2.1. Permutacje Definicja 1. Niech n N. Permutacją n-elementowego zbioru A nazywamy dowolną funkcję różnowartościową f : {1,..., n} A. Innymi słowy:

Bardziej szczegółowo

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej

Schemat rekursji. 1 Schemat rekursji dla funkcji jednej zmiennej Schemat rekursji 1 Schemat rekursji dla funkcji jednej zmiennej Dla dowolnej liczby naturalnej a i dowolnej funkcji h: N 2 N istnieje dokładnie jedna funkcja f: N N spełniająca następujące warunki: f(0)

Bardziej szczegółowo

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07)

Wykład 9. Fizyka 1 (Informatyka - EEIiA 2006/07) Wyład 9 Fizya 1 (Informatya - EEIiA 006/07) 9 11 006 c Mariusz Krasińsi 006 Spis treści 1 Ruch drgający. Dlaczego właśnie harmoniczny? 1 Drgania harmoniczne proste 1.1 Zależność między wychyleniem, prędością

Bardziej szczegółowo

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski

Notatki z Analizy Matematycznej 2. Jacek M. Jędrzejewski Notatki z Analizy Matematycznej 2 Jacek M. Jędrzejewski Definicja 3.1. Niech (a n ) n=1 będzie ciągiem liczbowym. Dla każdej liczby naturalnej dodatniej n utwórzmy S n nazywamy n-tą sumą częściową. ROZDZIAŁ

Bardziej szczegółowo

Układy równań i nierówności liniowych

Układy równań i nierówności liniowych Układy równań i nierówności liniowych Wiesław Krakowiak 1 grudnia 2010 1 Układy równań liniowych DEFINICJA 11 Układem równań m liniowych o n niewiadomych X 1,, X n, nazywamy układ postaci: a 11 X 1 + +

Bardziej szczegółowo

Matematyka Dyskretna Zestaw 2

Matematyka Dyskretna Zestaw 2 Materiały dydaktyczne Matematyka Dyskretna (Zestaw ) Matematyka Dyskretna Zestaw 1. Wykazać, że nie istnieje liczba naturalna, która przy dzieleniu przez 18 daje resztę 13, a przy dzieleniu przez 1 daje

Bardziej szczegółowo

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone

Rozdział 4. Ciągi nieskończone. 4.1 Ciągi nieskończone Rozdział 4 Ciągi nieskończone W rozdziale tym wprowadzimy pojęcie granicy ciągu. Dalej rozszerzymy to pojęcie na przypadek dowolnych funkcji. Jak zauważyliśmy we wstępie jest to najważniejsze pojęcie analizy

Bardziej szczegółowo

Twierdzenie spektralne

Twierdzenie spektralne Twierdzenie spektralne Algebrę ograniczonych funkcji borelowskich na K R będziemy oznaczać przez B (K). Spektralnym rozkładem jedności w przestrzeni Hilberta H nazywamy odwzorowanie, które każdemu zbiorowi

Bardziej szczegółowo

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE

13. 13. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE Część 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3. 3. BELKI CIĄGŁE STATYCZNIE NIEWYZNACZALNE 3.. Metoda trzech momentów Rozwiązanie wieloprzęsłowych bele statycznie niewyznaczalnych można ułatwić w znaczącym

Bardziej szczegółowo

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII.

WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. ĆWICZENIE 3. WAHADŁO SPRĘŻYNOWE. POMIAR POLA ELIPSY ENERGII. 1. Oscylator harmoniczny. Wprowadzenie Oscylatorem harmonicznym nazywamy punt materialny, na tóry,działa siła sierowana do pewnego centrum,

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Zbiór zadań kolekcjonowanych w ciągu semestralnego kursu Matematyka dyskretna prof. dr hab. M. Morayne dla studentów informatyki magisterskiej WPPT PWr wiosna-lato 2005 UWAGA: Zadania

Bardziej szczegółowo

Kombinatoryka i rachunek prawdopodobieństwa

Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Kombinatoryka i rachunek prawdopodobieństwa Jerzy Rutkowski 2. Elementy kombinatoryki 2.. Permutacje Teoria Definicja. Niech n N. Permutacją n-elementowego zbioru

Bardziej szczegółowo

Colloquium 3, Grupa A

Colloquium 3, Grupa A Colloquium 3, Grupa A 1. Z zasobów obliczeniowych pewnego serwera orzysta dwóch użytowniów. Każdy z nich wysyła do serwera zawsze trzy programy naraz. Użytowni czea, aż serwer wyona obliczenia dotyczące

Bardziej szczegółowo

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ).

( ) ( ) Przykład: Z trzech danych elementów: a, b, c, można utworzyć trzy następujące 2-elementowe kombinacje: ( ) ( ) ( ). KOMBINATORYKA Kombinatoryka zajmuje się wyznaczaniem liczby elementów zbiorów skończonych utworzonych zgodnie z określonymi zasadami. Do podstawowych pojęć kombinatorycznych należą: PERMUTACJE Silnia.

Bardziej szczegółowo

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI

Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Maria Romanowska UDOWODNIJ, ŻE... PRZYKŁADOWE ZADANIA MATURALNE Z MATEMATYKI Matematyka dla liceum ogólnokształcącego i technikum w zakresie podstawowym i rozszerzonym Z E S Z Y T M E T O D Y C Z N Y Miejski

Bardziej szczegółowo

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ

Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki. Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ Andrzej Wiśniewski Logika I Materiały do wykładu dla studentów kognitywistyki Wykład 10. Twierdzenie o pełności systemu aksjomatycznego KRZ 1 Tezy KRZ Pewien system aksjomatyczny KRZ został przedstawiony

Bardziej szczegółowo

Pomiary napięć przemiennych

Pomiary napięć przemiennych LABORAORIUM Z MEROLOGII Ćwiczenie 7 Pomiary napięć przemiennych . Cel ćwiczenia Celem ćwiczenia jest poznanie sposobów pomiarów wielości charaterystycznych i współczynniów, stosowanych do opisu oresowych

Bardziej szczegółowo

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska

Probabilistyczne podstawy statystyki matematycznej. Dr inż. Małgorzata Michalcewicz-Kaniowska Probabilistyczne podstawy statystyki matematycznej Dr inż. Małgorzata Michalcewicz-Kaniowska 1 Zdarzenia losowe, algebra zdarzeń Do podstawowych pojęć w rachunku prawdopodobieństwa zaliczamy: doświadczenie

Bardziej szczegółowo

0 + 0 = 0, = 1, = 1, = 0.

0 + 0 = 0, = 1, = 1, = 0. 5 Kody liniowe Jak już wiemy, w celu przesłania zakodowanego tekstu dzielimy go na bloki i do każdego z bloków dodajemy tak zwane bity sprawdzające. Bity te są w ścisłej zależności z bitami informacyjnymi,

Bardziej szczegółowo

Kombinatoryka. Reguła dodawania. Reguła dodawania

Kombinatoryka. Reguła dodawania. Reguła dodawania Kombinatoryka Dział matematyki, który zajmuje się obliczaniem liczebności zbiorów bądź długości ciągów, które łączą w określony sposób elementy należące do skończonego zbioru (teoria zliczania). W jakich

Bardziej szczegółowo

Internetowe Ko³o M a t e m a t yc z n e

Internetowe Ko³o M a t e m a t yc z n e Internetowe Ko³o M a t e m a t yc z n e Stowarzyszenie na rzecz Edukacji Matematycznej Zestaw 1 szkice rozwiązań zadań 1 W wierszu zapisano kolejno 2010 liczb Pierwsza zapisana liczba jest równa 7 oraz

Bardziej szczegółowo

Rozkłady statystyk z próby

Rozkłady statystyk z próby Rozkłady statystyk z próby Rozkłady statystyk z próby Przypuśćmy, że wykonujemy serię doświadczeń polegających na 4 krotnym rzucie symetryczną kostką do gry, obserwując liczbę wyrzuconych oczek Nr kolejny

Bardziej szczegółowo

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2

STATYSTYKA. Rafał Kucharski. Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 STATYSTYKA Rafał Kucharski Uniwersytet Ekonomiczny w Katowicach 2015/16 ROND, Finanse i Rachunkowość, rok 2 Wybrane litery alfabetu greckiego α alfa β beta Γ γ gamma δ delta ɛ, ε epsilon η eta Θ θ theta

Bardziej szczegółowo

Matematyka Dyskretna Rozgrzewka I test semestr letni 2012/2013

Matematyka Dyskretna Rozgrzewka I test semestr letni 2012/2013 Matematyka Dyskretna Rozgrzewka I test semestr letni 2012/2013 Zadanie 1. Dla n naturalnego mamy zdanie: Jeżeli n jest liczbą pierwszą, to n jest równa 2 lub jest liczbą nieparzystą. Możemy je zapisać

Bardziej szczegółowo

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska)

Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Elementy rachunku prawdopodobieństwa (M. Skośkiewicz, A. Siejka, K. Walczak, A. Szpakowska) Twierdzenie (o mnożeniu) Podstawowe pojęcia i wzory kombinatoryczne. Niech,, będą zbiorami mającymi odpowiednio,,

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Wzory skróconego mnożenia w zadaniach olimpijskich

Wzory skróconego mnożenia w zadaniach olimpijskich Wzory skróconego mnożenia w zadaniach olimpijskich Jacek Dymel 17.10.008 Bardzo często uczniowie wyrażają taką opinię, że do rozwiązywania zadań olimpijskich niezbędna jest znajomość wielu skomplikowanych

Bardziej szczegółowo

(U.3) Podstawy formalizmu mechaniki kwantowej

(U.3) Podstawy formalizmu mechaniki kwantowej 3.10.2004 24. (U.3) Podstawy formalizmu mechanii wantowej 33 Rozdział 24 (U.3) Podstawy formalizmu mechanii wantowej 24.1 Wartości oczeiwane i dyspersje dla stanu superponowanego 24.1.1 Założenia wstępne

Bardziej szczegółowo

3 k a 2k + 3 k b 2k = φ((a k ) k=1 ) + φ((b k) k=1 ). a 2k p 3 q (1 3 q ) 1 (a k ) k=1 p,

3 k a 2k + 3 k b 2k = φ((a k ) k=1 ) + φ((b k) k=1 ). a 2k p 3 q (1 3 q ) 1 (a k ) k=1 p, Zadanie 1. Sprawdzić, czy formuła φa ) ) = 3 a 2 zadaje funcjonał liniowy na l p dla p [1, ] i na c, jeśli ta, to czy zadaje funcjonał ciągły, i jeśli ta, policzyć normę. Dowód. Sprawdzam liniowość: φλa

Bardziej szczegółowo

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE

PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE PROCENTY, PROPORCJE, WYRAŻENIA POTEGOWE ORAZ ŚREDNIE 1. Procenty i proporcje DEFINICJA 1. Jeden procent (1%) pewnej liczby a to setna część tej liczby, tórą oznacza się: 1% a, przy czym 1% a = 1 p a, zaś

Bardziej szczegółowo

Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym

Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym Plan wynikowy lasa III Technikum ekonomiczne. ształcenie ogólne w zakresie rozszerzonym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania

Bardziej szczegółowo

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami.

A i. i=1. i=1. i=1. i=1. W dalszej części skryptu będziemy mieli najczęściej do czynienia z miarami określonymi na rodzinach, które są σ - algebrami. M. Beśka, Wstęp do teorii miary, rozdz. 3 25 3 Miara 3.1 Definicja miary i jej podstawowe własności Niech X będzie niepustym zbiorem, a A 2 X niepustą rodziną podzbiorów. Wtedy dowolne odwzorowanie : A

Bardziej szczegółowo

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji

Macierze - obliczanie wyznacznika macierzy z użyciem permutacji Macierze - obliczanie wyznacznika macierzy z użyciem permutacji I LO im. F. Ceynowy w Świeciu Radosław Rudnicki joix@mat.uni.torun.pl 17.03.2009 r. Typeset by FoilTEX Streszczenie Celem wykładu jest wprowadzenie

Bardziej szczegółowo

Przykładowe rozwiązania

Przykładowe rozwiązania Przykładowe rozwiązania (E. Ludwikowska, M. Zygora, M. Walkowiak) Zadanie 1. Rozwiąż równanie: w przedziale. ( ) ( ) ( )( ) ( ) ( ) ( ) Uwzględniając, że x otrzymujemy lub lub lub. Zadanie. Dany jest czworokąt

Bardziej szczegółowo

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym

Przykładowe rozwiązania zadań. Próbnej Matury 2014 z matematyki na poziomie rozszerzonym Zadania rozwiązali: Przykładowe rozwiązania zadań Próbnej Matury 014 z matematyki na poziomie rozszerzonym Małgorzata Zygora-nauczyciel matematyki w II Liceum Ogólnokształcącym w Inowrocławiu Mariusz Walkowiak-nauczyciel

Bardziej szczegółowo

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych

Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Wzory Viete a i ich zastosowanie do uk ladów równań wielomianów symetrycznych dwóch i trzech zmiennych Pawe l Józiak 007-- Poje cia wste pne Wielomianem zmiennej rzeczywistej t nazywamy funkcje postaci:

Bardziej szczegółowo

a 1, a 2, a 3,..., a n,...

a 1, a 2, a 3,..., a n,... III. Ciągi liczbowe. 1. Definicja ciągu liczbowego. Definicja 1.1. Ciągiem liczbowym nazywamy funkcję a : N R odwzorowującą zbiór liczb naturalnych N w zbiór liczb rzeczywistych R i oznaczamy przez {a

Bardziej szczegółowo

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria

Zajęcia nr 1 (1h) Dwumian Newtona. Indukcja. Zajęcia nr 2 i 3 (4h) Trygonometria Technologia Chemiczna 008/09 Zajęcia wyrównawcze. Pokazać, że: ( )( ) n k k l = ( n l )( n l k l Zajęcia nr (h) Dwumian Newtona. Indukcja. ). Rozwiązać ( ) ( równanie: ) n n a) = 0 b) 3 ( ) n 3. Znaleźć

Bardziej szczegółowo

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy

PLAN WYKŁADU OPTYMALIZACJA GLOBALNA ALGORYTM MRÓWKOWY (ANT SYSTEM) ALGORYTM MRÓWKOWY. Algorytm mrówkowy PLAN WYKŁADU Algorytm mrówowy OPTYMALIZACJA GLOBALNA Wyład 8 dr inż. Agniesza Bołtuć (ANT SYSTEM) Inspiracja: Zachowanie mrówe podczas poszuiwania żywności, Zachowanie to polega na tym, że jeśli do żywności

Bardziej szczegółowo

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012

1. Liczby zespolone. Jacek Jędrzejewski 2011/2012 1. Liczby zespolone Jacek Jędrzejewski 2011/2012 Spis treści 1 Liczby zespolone 2 1.1 Definicja liczby zespolonej.................... 2 1.2 Postać kanoniczna liczby zespolonej............... 1. Postać

Bardziej szczegółowo

Podstawowe własności grafów. Wykład 3. Własności grafów

Podstawowe własności grafów. Wykład 3. Własności grafów Wykład 3. Własności grafów 1 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2). 2 / 87 Suma grafów Niech będą dane grafy proste G 1 = (V 1, E 1) oraz G 2 = (V 2, E 2).

Bardziej szczegółowo

LXIII Olimpiada Matematyczna

LXIII Olimpiada Matematyczna 1 Zadanie 1. LXIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia drugiego 17 lutego 2012 r. (pierwszy dzień zawodów) Rozwiązać w liczbach rzeczywistych a, b, c, d układ równań a

Bardziej szczegółowo

Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi

Wykład 3. Miara zewnętrzna. Definicja 3.1 (miary zewnętrznej) Funkcję µ przyporządkowującą każdemu podzbiorowi Wykład 3 Miara zewnętrzna Definicja 3.1 (miary zewnętrznej Funkcję przyporządkowującą każdemu podzbiorowi A danej przestrzeni X liczbę (A [0, + ] (a więc określoną na rodzinie wszystkich podzbiorów przestrzeni

Bardziej szczegółowo

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale

KURS WSPOMAGAJĄCY PRZYGOTOWANIA DO MATURY Z MATEMATYKI ZDAJ MATMĘ NA MAKSA. przyjmuje wartości większe od funkcji dokładnie w przedziale Zestaw nr 1 Poziom Rozszerzony Zad.1. (1p) Liczby oraz, są jednocześnie ujemne wtedy i tylko wtedy, gdy A. B. C. D. Zad.2. (1p) Funkcja przyjmuje wartości większe od funkcji dokładnie w przedziale. Wtedy

Bardziej szczegółowo

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe

Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe Rachunek prawdopodobieństwa Rozdział 4. Zmienne losowe 4.0. Rozkłady zmiennych losowych, dystrybuanta. Katarzyna Rybarczyk-Krzywdzińska semestr zimowy 2016/2017 Wprowadzenie Przykład 1 Bolek, Lolek i Tola

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15

Matematyka dyskretna. Andrzej Łachwa, UJ, A/15 Matematyka dyskretna Andrzej Łachwa, UJ, 2015 andrzej.lachwa@uj.edu.pl 10A/15 Permutacje Permutacja zbioru skończonego X to bijekcja z X w X. Zbiór permutacji zbioru oznaczamy przez, a permutacje małymi

Bardziej szczegółowo

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze

Wyznaczenie prędkości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Podstawy analizy wypadów drogowych Instrucja do ćwiczenia 1 Wyznaczenie prędości pojazdu na podstawie długości śladów hamowania pozostawionych na drodze Spis treści 1. CEL ĆWICZENIA... 3. WPROWADZENIE...

Bardziej szczegółowo

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.

2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d. 2. Liczby pierwsze i złożone, jednoznaczność rozkładu na czynniki pierwsze, największy wspólny dzielnik, najmniejsza wspólna wielokrotność. (c.d.) 10 października 2009 r. 20. Która liczba jest większa,

Bardziej szczegółowo

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y.

FUNKCJE LICZBOWE. Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. FUNKCJE LICZBOWE Na zbiorze X określona jest funkcja f : X Y gdy dowolnemu punktowi x X przyporządkowany jest punkt f(x) Y. Innymi słowy f X Y = {(x, y) : x X oraz y Y }, o ile (x, y) f oraz (x, z) f pociąga

Bardziej szczegółowo

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH

MODYFIKACJA KOSZTOWA ALGORYTMU JOHNSONA DO SZEREGOWANIA ZADAŃ BUDOWLANYCH MODYFICJ OSZTOW LGORYTMU JOHNSON DO SZEREGOWNI ZDŃ UDOWLNYCH Michał RZEMIŃSI, Paweł NOW a a Wydział Inżynierii Lądowej, Załad Inżynierii Producji i Zarządzania w udownictwie, ul. rmii Ludowej 6, -67 Warszawa

Bardziej szczegółowo

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna

Bardziej szczegółowo

Zadania z analizy matematycznej - sem. I Liczby i funkcje

Zadania z analizy matematycznej - sem. I Liczby i funkcje Zadania z analizy matematycznej - sem. I Liczby i funkcje Definicja 1. Mówimy że: liczba m Z jest dzielnikiem liczby n Z gdy istnieje l Z takie że n = l m. Zapisujemy to symbolem m n; liczba m Z jest wspólnym

Bardziej szczegółowo

dr inż. Ryszard Rębowski 1 WPROWADZENIE

dr inż. Ryszard Rębowski 1 WPROWADZENIE dr inż. Ryszard Rębowski 1 WPROWADZENIE Zarządzanie i Inżynieria Produkcji studia stacjonarne Konspekt do wykładu z Matematyki 1 1 Postać trygonometryczna liczby zespolonej zastosowania i przykłady 1 Wprowadzenie

Bardziej szczegółowo

Działanie grupy na zbiorze

Działanie grupy na zbiorze Działanie grupy na zbiorze Definicja 0.1 Niech (G, ) będzie dowolną grupą oraz X niepustym zbiorem, to odwzorowanie : G X X nazywamy działaniem grupy G na zbiorze X jeślinastępujące warunki są spełnione:

Bardziej szczegółowo

JAO - lematy o pompowaniu dla jezykow bezkontekstowy

JAO - lematy o pompowaniu dla jezykow bezkontekstowy JAO - lematy o pompowaniu dla jezykow bezkontekstowych Postać normalna Chomsky ego Gramatyka G ze zbiorem nieterminali N i zbiorem terminali T jest w postaci normalnej Chomsky ego wtw gdy każda produkcja

Bardziej szczegółowo

W. Krysicki, L.Włodarski, Analiza matematyczna w zadaniach cz. 1 i cz. 2. Pomocnicze symbole. Spójniki logiczne: Symbole kwantyfikatorów:

W. Krysicki, L.Włodarski, Analiza matematyczna w zadaniach cz. 1 i cz. 2. Pomocnicze symbole. Spójniki logiczne: Symbole kwantyfikatorów: dr Urszula Konieczna-Spychała Instytut Matematyki i Fizyki UTP imif.utp.edu.pl Literatura: M. Lassak, Matematyka dla studiów technicznych. M. Gewert, Z. Skoczylas, Analiza matematyczna 1. M. Gewert, Z.

Bardziej szczegółowo

III. ZMIENNE LOSOWE JEDNOWYMIAROWE

III. ZMIENNE LOSOWE JEDNOWYMIAROWE III. ZMIENNE LOSOWE JEDNOWYMIAROWE.. Zmienna losowa i pojęcie rozkładu prawdopodobieństwa W dotychczas rozpatrywanych przykładach każdemu zdarzeniu była przyporządkowana odpowiednia wartość liczbowa. Ta

Bardziej szczegółowo

jednoznacznie wyznaczają wymiary wszystkich reprezentacji grup punktowych, a związki ortogonalności jednoznacznie wyznaczają ich charaktery

jednoznacznie wyznaczają wymiary wszystkich reprezentacji grup punktowych, a związki ortogonalności jednoznacznie wyznaczają ich charaktery Reprezentacje grup puntowych związi pomiędzy h i n a jednoznacznie wyznaczają wymiary wszystich reprezentacji grup puntowych, a związi ortogonalności jednoznacznie wyznaczają ich charatery oznaczenia:

Bardziej szczegółowo

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d)

Zadanie 2. Obliczyć rangę dowolnego elementu zbioru uporządkowanego N 0 N 0, gdy porządek jest zdefiniowany następująco: (a, b) (c, d) (a c b d) Matemaryka dyskretna - zadania Zadanie 1. Opisać zbiór wszystkich elementów rangi k zbioru uporządkowanego X dla każdej liczby naturalnej k, gdy X jest rodziną podzbiorów zbioru skończonego Y. Elementem

Bardziej szczegółowo

Definicja i własności wartości bezwzględnej.

Definicja i własności wartości bezwzględnej. Równania i nierówności z wartością bezwzględną. Rozwiązywanie układów dwóch (trzech) równań z dwiema (trzema) niewiadomymi. Układy równań liniowych z parametrem, analiza rozwiązań. Definicja i własności

Bardziej szczegółowo

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013

Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 2013 Notatki przygotowawcze dotyczące inwersji na warsztaty O geometrii nieeuklidesowej hiperbolicznej Wrocław, grudzień 013 3.4.1 Inwersja względem okręgu. Inwersja względem okręgu jest przekształceniem płaszczyzny

Bardziej szczegółowo

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA

WYŻSZA SZKOŁA INFORMATYKI STOSOWANEJ I ZARZĄDZANIA ZBIORY Z POWTÓRZENIAMI W zbiorze z powtórzeniami ten sam element może występować kilkakrotnie. Liczbę wystąpień nazywamy krotnością tego elementu w zbiorze X = { x,..., x n } - zbiór k,..., k n - krotności

Bardziej szczegółowo

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0

Równania różnicowe. Dodatkowo umawiamy się, że powyższy iloczyn po pustym zbiorze indeksów, czyli na przykład 0 Równania różnicowe 1 Wiadomości wstępne Umówmy się, że na czas tego wykładu zrezygnujemy z oznaczania n-tego wyrazu ciągu symbolem typu x n, y n itp Zamiast tego pisać będziemy x (n), y (n) itp Ponadto

Bardziej szczegółowo

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15

II WYKŁAD STATYSTYKA. 12/03/2014 B8 sala 0.10B Godz. 15:15 II WYKŁAD STATYSTYKA 12/03/2014 B8 sala 0.10B Godz. 15:15 WYKŁAD 2 Rachunek prawdopodobieństwa zdarzenia elementarne zdarzenia losowe zmienna losowa skokowa i ciągła prawdopodobieństwo i gęstość prawdopodobieństwa

Bardziej szczegółowo

Nierówności. dla początkujących olimpijczyków. Aleksander Kubica Tomasz Szymczyk

Nierówności. dla początkujących olimpijczyków. Aleksander Kubica Tomasz Szymczyk STOWARZYSZENIE NA RZECZ EDUKACJI MATEMATYCZNEJ KOMITET GŁÓWNY OLIMPIADY MATEMATYCZNEJ GIMNAZJALISTÓW Nierówności dla początkujących olimpijczyków Aleksander Kubica Tomasz Szymczyk wwwomgedupl Warszawa

Bardziej szczegółowo

Prognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1

Prognozowanie notowań pakietów akcji poprzez ortogonalizację szeregów czasowych 1 Prognozowanie notowań paietów acji poprzez ortogonalizację szeregów czasowych Andrzej Kasprzyci. WSĘP Dynamię rynu finansowego opisuje się indesami agregatowymi: cen, ilości i wartości. Indes giełdowy

Bardziej szczegółowo

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału.

koszt kapitału D/S L dźwignia finansowa σ EBIT zysku operacyjnego EBIT firmy. Firmy Modele struktury kapitału Rys. 8.3. Krzywa kosztów kapitału. Modele strutury apitału oszt apitału Optymalna strutura apitału dźwignia finansowa / Rys. 8.3. Krzywa osztów apitału. Założenia wspólne modeli MM Modigliani i Miller w swoich rozważaniach ograniczyli się

Bardziej szczegółowo

LVIII Olimpiada Matematyczna

LVIII Olimpiada Matematyczna Zadanie 1. LVIII Olimpiada Matematyczna Rozwiązania zadań konkursowych zawodów stopnia pierwszego (11 września 2006 r. 4 grudnia 2006 r.) Rozwiązać w liczbach rzeczywistych x, y, z układ równań x 2 +2yz

Bardziej szczegółowo

O dwóch metodach rozwiązywania zadań

O dwóch metodach rozwiązywania zadań O dwóch metodach rozwiązywania zadań Wojciech Guzicki Wiele zadań matematycznych można rozwiązać za pomocą podobnych metod. W tym wykładzie zostaną omówione dwie metody rozwiązywania zadań. Pierwsza z

Bardziej szczegółowo

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji

Analiza kongruencji. Kongruencje Wykład 3. Analiza kongruencji Kongruencje Wykład 3 Kongruencje algebraiczne Kongruencje jak już podkreślaliśmy mają własności analogiczne do równań algebraicznych. Zajmijmy się więc problemem znajdowania pierwiastka równania algebraicznego

Bardziej szczegółowo

W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule.

W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule. W grze uczestniczy dwóch graczy: G 1 i G 2. Z urny, w której jest b kul białych i c czarnych, losuje się w grze (jednocześnie) dwie kule. Jeśli obie wylosowane kule są tego samego koloru to zwycięża G

Bardziej szczegółowo

4,5. Dyskretne zmienne losowe (17.03; 31.03)

4,5. Dyskretne zmienne losowe (17.03; 31.03) 4,5. Dyskretne zmienne losowe (17.03; 31.03) Definicja 1 Zmienna losowa nazywamy dyskretna (skokowa), jeśli zbiór jej wartości x 1, x 2,..., można ustawić w ciag. Zmienna losowa X, która przyjmuje wszystkie

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna wykład 1: Indukcja i zależności rekurencyjne Gniewomir Sarbicki Literatura Kenneth A. Ross, Charles R. B. Wright Matematyka Dyskretna PWN 005 J. Jaworski, Z. Palka, J. Szymański Matematyka

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY

Rozwiązania zadań. Arkusz maturalny z matematyki nr 1 POZIOM PODSTAWOWY Rozwiązania zadań Arkusz maturalny z matematyki nr POZIOM PODSTAWOWY Zadanie (pkt) Sposób I Skoro liczba jest środkiem przedziału, więc odległość punktu x od zapisujemy przy pomocy wartości bezwzględnej.

Bardziej szczegółowo

METODY PROBABILISTYCZNE I STATYSTYKA

METODY PROBABILISTYCZNE I STATYSTYKA Andrzej Marciniak METODY PROBABILISTYCZNE I STATYSTYKA Wykłady dla studentów kierunku informatyka Państwowej Wyższej Szkoły Zawodowej w Kaliszu Wykłady są przeznaczone wyłącznie do indywidualnego użytku

Bardziej szczegółowo

WYRAŻENIA ALGEBRAICZNE

WYRAŻENIA ALGEBRAICZNE WYRAŻENIA ALGEBRAICZNE Wyrażeniem algebraicznym nazywamy wyrażenie zbudowane z liczb, liter, nawiasów oraz znaków działań, na przykład: Symbole literowe występujące w wyrażeniu algebraicznym nazywamy zmiennymi.

Bardziej szczegółowo

Matematyka dyskretna

Matematyka dyskretna Matematyka dyskretna Wykład 6: Ciała skończone i kongruencje Gniewomir Sarbicki 24 lutego 2015 Relacja przystawania Definicja: Mówimy, że liczby a, b Z przystają modulo m (co oznaczamy jako a = b (mod

Bardziej szczegółowo

Wielomiany. dr Tadeusz Werbiński. Teoria

Wielomiany. dr Tadeusz Werbiński. Teoria Wielomiany dr Tadeusz Werbiński Teoria Na początku przypomnimy kilka szkolnych definicji i twierdzeń dotyczących wielomianów. Autorzy podręczników szkolnych podają różne definicje wielomianu - dla jednych

Bardziej szczegółowo

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO.

8. TRYGONOMETRIA FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. WYKŁAD 6 1 8. TRYGONOMETRIA. 8.1. FUNKCJE TRYGONOMETRYCZNE KĄTA OSTREGO. SINUSEM kąta nazywamy stosunek przyprostokątnej leżącej naprzeciw kąta do przeciwprostokątnej w trójkącie prostokątnym : =. COSINUSEM

Bardziej szczegółowo

Matematyka Dyskretna, informatyka, 2008/2009, W. Broniowski

Matematyka Dyskretna, informatyka, 2008/2009, W. Broniowski Matematya Dysretna, informatya, 2008/2009, W. Broniowsi Zestaw 2 z częściowymi odpowiedziami (ja toś nie chce, niech nie patrzy! Kombinatorya i rachune prawdopodobieństwa. Z pomocą wzoru Stirlinga dla

Bardziej szczegółowo

KURS PRAWDOPODOBIEŃSTWO

KURS PRAWDOPODOBIEŃSTWO KURS PRAWDOPODOBIEŃSTWO Lekcja 3 Definicja prawdopodobieństwa Kołmogorowa. Prawdopodobieństwa warunkowe i niezależne. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko

Bardziej szczegółowo

O MACIERZACH I UKŁADACH RÓWNAŃ

O MACIERZACH I UKŁADACH RÓWNAŃ O MACIERZACH I UKŁADACH RÓWNAŃ Problem Jak rozwiązać podany układ równań? 2x + 5y 8z = 8 4x + 3y z = 2x + 3y 5z = 7 x + 8y 7z = Definicja Równanie postaci a x + a 2 x 2 + + a n x n = b gdzie a, a 2, a

Bardziej szczegółowo

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury

Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wg programu nauczania Matematyka Prosto do matury STEREOMETRIA Wymagania edukacyjne z matematyki - klasa III (poziom rozszerzony) wskazać płaszczyzny równoległe i prostopadłe do danej płaszczyzny wskazać proste równoległe i prostopadłe do danej płaszczyzny

Bardziej szczegółowo

Matematyka dyskretna. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl. Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia)

Matematyka dyskretna. Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl. Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia) Matematyka dyskretna Andrzej Łachwa, UJ, 2013 andrzej.lachwa@uj.edu.pl Przykłady zadań egzaminacyjnych (do liczenia lub dowodzenia) 1. Ile układów kart w pokerze to Dwie pary? Dwie pary to układ 5 kart

Bardziej szczegółowo

Elementy logiki (4 godz.)

Elementy logiki (4 godz.) Elementy logiki (4 godz.) Spójniki zdaniotwórcze, prawa de Morgana. Wyrażenie implikacji za pomocą alternatywy i negacji, zaprzeczenie implikacji. Prawo kontrapozycji. Podstawowe prawa rachunku zdań. Uczestnik

Bardziej szczegółowo

Plan wynikowy klasa 3

Plan wynikowy klasa 3 Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10

System BCD z κ. Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna. Semestr letni 2009/10 System BCD z κ Adam Slaski na podstawie wykładów, notatek i uwag Pawła Urzyczyna Semestr letni 2009/10 Rozważamy system BCD ze stałą typową κ i aksjomatami ω κ κ i κ ω κ. W pierwszej części tej notatki

Bardziej szczegółowo