Centralność w sieciach społecznych. Radosław Michalski Social Network Group - kwiecień 2009

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Centralność w sieciach społecznych. Radosław Michalski Social Network Group - kwiecień 2009"

Transkrypt

1 Centralność w sieciach społecznych Radosław Michalski Social Network Group - kwiecień 2009

2 Agenda spotkania Pojęcie centralności Potrzeba pomiaru centralności Miary centralności degree centrality betweenness closeness Eigenvector (wektory własne) Problemy

3 Czym jest centralność Istotność członka sieci społecznej Mierzona róŝnymi miarami, w zaleŝności od celu Określenie centralności w sieciach społecznych pozwala wyłonić kluczowych uŝytkowników Centralność moŝe dotyczyć węzłów jak i całej sieci

4 Potrzeba pomiaru centralności Analiza węzłów kluczowych zatrzymanie uŝytkownika w sieci potencjalnie duŝy oddźwięk w przypadku zwiększenia nakładów w tym miejscu porównanie istotności stron Analiza sieci w przypadku sieci zdecentralizowanej brak single point of failure w przypadku sieci scentralizowanej potrzeba wprowadzenia ścieŝek alternatywnych (zaleŝy od rodzaju sieci)

5 Miary centralności Degree centality ogólnie outdegree centrality (DC) indegree centrality (prestige) Betweenness centrality Closeness centrality Eigenvector

6 Degree centrality - ogólnie Ilość połączeń danego uŝytkownika z innymi w grafach nieskierowanych Na powyŝszym rysunku - Diane

7 Outdegree centrality Dotyczy grafów skierowanych Węzeł jest bardziej istotny gdy komunikuje się z większą ilością uŝytkowników Im więcej krawędzi wychodzących, tym lepiej Przykładowa interpretacja: im większa wartość, tym bardziej towarzyska jest dana osoba

8 Indegree centrality (prestige) Dotyczy grafów skierowanych Węzeł jest bardziej istotny gdy wskazuje na niego większa ilość innych wierzchołków Im więcej wierzchołków wchodzących, tym lepiej Przykładowa interpretacja: im większa wartość, tym bardziej popularna jest dana osoba

9 Betweenness Kluczowość wierzchołka w zakresie komunikacji (przechodniość, pośredniczene) MoŜliwość wykrycia pojedyńczych miejsc awarii Wysoka wartość moŝliwa interpretacja jako punkt krytyczny dla sieci

10 Algorytm wyznaczania centralności betweennes węzła w sieci idea Istnieją wierzchołki s, t, v V Wiemy Ŝe istnieje przynajmniej jedna droga z s do t Liczymy ilość najkrótszych ścieŝek z wierzchołka z s do t, Liczymy ilość ścieŝek z s do t przechodzących przez wierzchołek v, σ ( v) σ st Suma stosunków st i daje stopień centralności c B ( v) σ st σ st = ( v) v t s σ st σ ( v) st

11 Betweenness - przykład Na poniŝszym przykładzie - Heather

12 Podejście do obliczania Ułatwienie obliczania polega na zbudowaniu tabelki z długościami i liczbą najkrótszych ścieŝek pomiędzy wszystkimi parami wierzchołków. A G C F c B ( v) X D

13 ZłoŜoność Obliczenia cb(v) wynoszą O(n²) tylko przy liczeniu wyznaczaniu centralności dla jednego wierzchołka Dla wszystkich wierzchołków złoŝoność tego algorytmu wynosi O(n³)

14 Closeness centrality Stopień bliskości Określa jak daleko / jak blisko wierzchołek ma do pozostałych wierzchołków w sieci Wysoki stopień centralności wskazuje na uŝytkowników, którzy mogą mieć dobre własności propagacji informacji (wirusów itp. takŝe...)

15 c C (v) Algorytm wyznaczania centralności wierzchołków według bliskości Policzenie wszystkich wierzchołków n Policzenie sumy wszystkich odległości od wierzchołka v do wszystkich pozostałych wierzchołków Stosunek ilości wierzchołków ich odległości od wierzchołka v c n 1 = i 1, v t d( v, C ( v) = n 1 = i 1, v t t i ) n 1 d( v, t i )

16 Closeness - przykład Na poniŝszym przykładzie Fernando i Garth

17 Eigenvector (wektory własne) Przykład web centrality która strona w sieci na zadany temat jest najistotniejsza? Nie wystarczy ilość wskazań do tej strony, ale waŝne skąd te wskazania pochodzą (wskazujący teŝ muszą być istotni, inaczej łatwo oszukać engine) Eigenvector do obliczenia pozycji strony uwzględnia pozycje stron pozostałych Przykłady: PageRank, Social Position

18 Problemy DuŜa złoŝoność obliczeniowa aproksymacja? DuŜa dynamika sieci często kłopotliwa (wymaga ponownych obliczeń w algorytmach liczących całą sieć) Konieczność doboru właściwej miary i wyciągnięcia właściwych wniosków Spoofowanie algorytmów np. PageRank

19 Pytania?

20 Źródła Musial, K., Juszczyszyn, K., Gabrys, B. and Kazienko, P., Patterns of Interactions in Complex Social Networks Based on Coloured Motifs Analysis, 15th International Conference on Neural Information Processing (ICONIP 2008), Nov 2008, Auckland, New Zealand, Wojciech Piekaj, Grzegorz Skorek, Anna Zygmunt, Jarosław Kozlak Środowisko do identyfikowania wzorców zachowań w oparciu o podejście sieci społecznych Algorytmy wyznaczania centralności w sieci, Szymon Szylko Social Network Analysis -

Algorytmy wyznaczania centralności w sieci Szymon Szylko

Algorytmy wyznaczania centralności w sieci Szymon Szylko Algorytmy wyznaczania centralności w sieci Szymon Szylko Zakład systemów Informacyjnych Wrocław 10.01.2008 Agenda prezentacji Cechy sieci Algorytmy grafowe Badanie centralności Algorytmy wyznaczania centralności

Bardziej szczegółowo

Wprowadzenie do analizy sieci społecznych

Wprowadzenie do analizy sieci społecznych Wprowadzenie do analizy sieci społecznych Mikołaj Morzy Agnieszka Ławrynowicz Instytut Informatyki Poznań, rok akademicki 2010/2011 (c) Mikołaj Morzy, Agnieszka Ławrynowicz, Instytut Informatyki Politechniki

Bardziej szczegółowo

Badania w sieciach złożonych

Badania w sieciach złożonych Badania w sieciach złożonych Grant WCSS nr 177, sprawozdanie za rok 2012 Kierownik grantu dr. hab. inż. Przemysław Kazienko mgr inż. Radosław Michalski Instytut Informatyki Politechniki Wrocławskiej Obszar

Bardziej szczegółowo

Definicja pochodnej cząstkowej

Definicja pochodnej cząstkowej 1 z 8 gdzie punkt wewnętrzny Definicja pochodnej cząstkowej JeŜeli iloraz ma granicę dla to granicę tę nazywamy pochodną cząstkową funkcji względem w punkcie. Oznaczenia: Pochodną cząstkową funkcji względem

Bardziej szczegółowo

Algorytmy analizy skupień / Sławomir Wierzchoń, Mieczysław Kłopotek. wyd. 1, 1. dodr. (PWN). Warszawa, Spis treści

Algorytmy analizy skupień / Sławomir Wierzchoń, Mieczysław Kłopotek. wyd. 1, 1. dodr. (PWN). Warszawa, Spis treści Algorytmy analizy skupień / Sławomir Wierzchoń, Mieczysław Kłopotek. wyd. 1, 1. dodr. (PWN). Warszawa, 2017 Spis treści Lista ważniejszych oznaczeń 5 Przedmowa 7 1. Analiza skupień 19 1.1. Formalizacja

Bardziej szczegółowo

sieci społecznych metodą analizy - future work...

sieci społecznych metodą analizy - future work... Badanie cech lokalnej topologii sieci społecznych metodą analizy motywów sieciowych - perspetktywy... - zastosowania... - future work... Krzysztof Juszczyszyn Krzysztof Juszczyszyn www.iit.pwr.wroc.pl/~krzysiek

Bardziej szczegółowo

Detekcja motywów w złożonych strukturach sieciowych perspektywy zastosowań Krzysztof Juszczyszyn

Detekcja motywów w złożonych strukturach sieciowych perspektywy zastosowań Krzysztof Juszczyszyn Detekcja motywów w złożonych strukturach sieciowych perspektywy zastosowań Krzysztof Juszczyszyn Instytut Informatyki Technicznej PWr MOTYWY SIECIOWE -NETWORK MOTIFS 1. Co to jest? 2. Jak mierzyć? 3. Gdzie

Bardziej szczegółowo

A=8; B=9; C=6. Min. Czas trwania Tgr. Wykonanie schematu pracy urządzenia w zespole

A=8; B=9; C=6. Min. Czas trwania Tgr. Wykonanie schematu pracy urządzenia w zespole 1. Cel projektu Zapoznanie się z moŝliwością wspomagania przedsięwzięć związanych z organizacyjno- technicznym przygotowaniem prototypu wyrobu. ZłoŜoność tego typu zagadnień, wymaga stosowania metod wspomagających,

Bardziej szczegółowo

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga;

Najprostsze modele sieci z rekurencją. sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Sieci Hopfielda Najprostsze modele sieci z rekurencją sieci Hopfielda; sieci uczone regułą Hebba; sieć Hamminga; Modele bardziej złoŝone: RTRN (Real Time Recurrent Network), przetwarzająca sygnały w czasie

Bardziej szczegółowo

Sieci Społeczne i Analiza Sieci. P. Kazienko and K. Musial Instytut Informatyki Stosowanej, Politechnika Wrocławska Wrocław, 25 Października 2007

Sieci Społeczne i Analiza Sieci. P. Kazienko and K. Musial Instytut Informatyki Stosowanej, Politechnika Wrocławska Wrocław, 25 Października 2007 Sieci Społeczne i Analiza Sieci P. Kazienko and K. Musial Instytut Informatyki Stosowanej, Politechnika Wrocławska Wrocław, 25 Października 2007 Agenda Kilka słów o naszej grupie Dlaczego warto zająć się

Bardziej szczegółowo

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów

Reprezentacje grafów nieskierowanych Reprezentacje grafów skierowanych. Wykład 2. Reprezentacja komputerowa grafów Wykład 2. Reprezentacja komputerowa grafów 1 / 69 Macierz incydencji Niech graf G będzie grafem nieskierowanym bez pętli o n wierzchołkach (x 1, x 2,..., x n) i m krawędziach (e 1, e 2,..., e m). 2 / 69

Bardziej szczegółowo

Agnieszka Nowak Brzezińska

Agnieszka Nowak Brzezińska Agnieszka Nowak Brzezińska jeden z algorytmów regresji nieparametrycznej używanych w statystyce do prognozowania wartości pewnej zmiennej losowej. Może również byd używany do klasyfikacji. - Założenia

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Dane w postaci grafów Przykład: social network 3 Przykład: media network 4 Przykład: information network

Bardziej szczegółowo

GEOMETRIA ANALITYCZNA. Poziom podstawowy

GEOMETRIA ANALITYCZNA. Poziom podstawowy GEOMETRIA ANALITYCZNA Poziom podstawowy Zadanie (4 pkt.) Dana jest prosta k opisana równaniem ogólnym x + y 6. a) napisz równanie prostej k w postaci kierunkowej. b) podaj współczynnik kierunkowy prostej

Bardziej szczegółowo

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV

Klasyfikatory: k-nn oraz naiwny Bayesa. Agnieszka Nowak Brzezińska Wykład IV Klasyfikatory: k-nn oraz naiwny Bayesa Agnieszka Nowak Brzezińska Wykład IV Naiwny klasyfikator Bayesa Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną

Bardziej szczegółowo

Ćwiczenie 3 ANALIZA SIECI SPOŁECZNYCH (SNA) W SIECI

Ćwiczenie 3 ANALIZA SIECI SPOŁECZNYCH (SNA) W SIECI Geografia Internetu Prowadzący: Krzysztof Janc Ćwiczenie 3 ANALIZA SIECI SPOŁECZNYCH (SNA) W SIECI N ZAKŁAD ZAGOSPODAROWANIA PRZESTRZENNEGO I STYTUT GEOGRAFII I ROZWOJU REGIONALNEGO U. WR. Zakład Zagospodarowania

Bardziej szczegółowo

Środowisko do identyfikowania wzorców zachowań w oparciu o podejście sieci społecznych

Środowisko do identyfikowania wzorców zachowań w oparciu o podejście sieci społecznych Środowisko do identyfikowania wzorców zachowań w oparciu o podejście sieci społecznych Wojciech Piekaj 1, Grzegorz Skorek 1, Anna Zygmunt 1, Jarosław Koźlak 1 Streszczenie: Artykuł opisuje zastosowanie

Bardziej szczegółowo

Michał Kozielski Łukasz Warchał. Instytut Informatyki, Politechnika Śląska

Michał Kozielski Łukasz Warchał. Instytut Informatyki, Politechnika Śląska Michał Kozielski Łukasz Warchał Instytut Informatyki, Politechnika Śląska Algorytm DBSCAN Algorytm OPTICS Analiza gęstego sąsiedztwa w grafie Wstępne eksperymenty Podsumowanie Algorytm DBSCAN Analiza gęstości

Bardziej szczegółowo

Geometria analityczna

Geometria analityczna Geometria analityczna Paweł Mleczko Teoria Informacja (o prostej). postać ogólna prostej: Ax + By + C = 0, A + B 0, postać kanoniczna (kierunkowa) prostej: y = ax + b. Współczynnik a nazywamy współczynnikiem

Bardziej szczegółowo

LEĆ FMEA FMEA ZAMIAST. Analiza FMEA. Tomasz Greber tomasz@greber.com.pl. Opracował: Tomasz Greber (www.greber.com.pl)

LEĆ FMEA FMEA ZAMIAST. Analiza FMEA. Tomasz Greber tomasz@greber.com.pl. Opracował: Tomasz Greber (www.greber.com.pl) Tomasz Greber tomasz@greber.com.pl MYŚLE LEĆ ZAMIAST PŁACIĆ 1 Dlaczego? Konkurencja Przepisy Normy (ISO 9000, TS 16949 ) Wymagania klientów Koszty niezgodności 1 10 100 1000 Projektowanie Początek produkcji

Bardziej szczegółowo

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt.

P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. P r a w d o p o d o b i eństwo Lekcja 1 Temat: Lekcja organizacyjna. Program. Kontrakt. Lekcja 2 Temat: Podstawowe pojęcia związane z prawdopodobieństwem. Str. 10-21 1. Doświadczenie losowe jest to doświadczenie,

Bardziej szczegółowo

USTALANIE WARTOŚCI NOMINALNYCH W POMIARACH TOROMIERZAMI ELEKTRONICZNYMI

USTALANIE WARTOŚCI NOMINALNYCH W POMIARACH TOROMIERZAMI ELEKTRONICZNYMI Dr inŝ. Zbigniew Kędra Politechnika Gdańska USTALANIE WARTOŚCI NOMINALNYCH W POMIARACH TOROMIERZAMI ELEKTRONICZNYMI SPIS TREŚCI 1. Wstęp. Podstawy teoretyczne metody 3. Przykład zastosowania proponowanej

Bardziej szczegółowo

Załącznik nr 8. do Studium Wykonalności projektu Sieć Szerokopasmowa Polski Wschodniej województwo podkarpackie

Załącznik nr 8. do Studium Wykonalności projektu Sieć Szerokopasmowa Polski Wschodniej województwo podkarpackie MINISTERSTWO ROZWOJU REGIONALNEGO Załącznik nr 8 do Studium Wykonalności projektu Sieć Szerokopasmowa Polski Wschodniej Instrukcja obliczania wskaźnika pokrycia. Strona 2 z 24 Studium Wykonalności projektu

Bardziej szczegółowo

Ranking wyników na bazie linków

Ranking wyników na bazie linków Eksploracja zasobów internetowych Wykład 4 Ranking wyników na bazie linków mgr inż. Maciej Kopczyński Białystok 2014 Wstęp Poznane do tej pory mechanizmy sortowania istotności zwróconych wyników bazowały

Bardziej szczegółowo

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą

WYMAGANIE EDUKACYJNE Z MATEMATYKI W KLASIE II GIMNAZJUM. dopuszczającą dostateczną dobrą bardzo dobrą celującą 1. Statystyka odczytać informacje z tabeli odczytać informacje z diagramu 2. Mnożenie i dzielenie potęg o tych samych podstawach 3. Mnożenie i dzielenie potęg o tych samych wykładnikach 4. Potęga o wykładniku

Bardziej szczegółowo

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta

Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta Algorytm wstecznej propagacji błędów dla sieci RBF Michał Bereta www.michalbereta.pl Sieci radialne zawsze posiadają jedną warstwę ukrytą, która składa się z neuronów radialnych. Warstwa wyjściowa składa

Bardziej szczegółowo

Analiza sieci przedsiębiorstw z wykorzystaniem metody SNA

Analiza sieci przedsiębiorstw z wykorzystaniem metody SNA Analiza sieci przedsiębiorstw z wykorzystaniem metody SNA Arkadiusz Kawa, Uniwersytet Ekonomiczny w Poznaniu Słowa kluczowe: sieć przedsiębiorstw, analiza sieci społecznych, SNA, system złożony Streszczenie.

Bardziej szczegółowo

Spis treści. I. Czym jest Indeks Haseł 3 II. Wyszukiwanie hasła 4. 1) Alfabetyczna lista haseł 4 2) Wyszukiwarka haseł 4 3) Grupy haseł 6

Spis treści. I. Czym jest Indeks Haseł 3 II. Wyszukiwanie hasła 4. 1) Alfabetyczna lista haseł 4 2) Wyszukiwarka haseł 4 3) Grupy haseł 6 Spis treści I. Czym jest Indeks Haseł 3 II. Wyszukiwanie hasła 4 1) Alfabetyczna lista haseł 4 2) Wyszukiwarka haseł 4 3) Grupy haseł 6 III. Dokumenty powiązane z wybranym hasłem 7 IV. Moje hasła 10 1)

Bardziej szczegółowo

Tranzytywność struktur modularnych

Tranzytywność struktur modularnych Tranzytywność struktur modularnych Rola, cele i problemy aplikacji w ramach inżynierii wiedzy i kognitywistyki Adam Fedyniuk Abstrakt: Zastosowanie struktury modularnej w ramach róznych rozwiązań tak inżynieryjnych

Bardziej szczegółowo

Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych

Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych Rachunek prawdopodobieństwa projekt Ilustracja metody Monte Carlo obliczania całek oznaczonych Autorzy: Marta Rotkiel, Anna Konik, Bartłomiej Parowicz, Robert Rudak, Piotr Otręba Spis treści: Wstęp Cel

Bardziej szczegółowo

I Liceum Ogólnokształcące w Warszawie

I Liceum Ogólnokształcące w Warszawie I Liceum Ogólnokształcące w Warszawie Imię i Nazwisko Klasa Nauczyciel PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY Liczba punktów Wynik procentowy Informacje dla ucznia 1 Sprawdź, czy zestaw

Bardziej szczegółowo

Matura próbna 2014 z matematyki-poziom podstawowy

Matura próbna 2014 z matematyki-poziom podstawowy Matura próbna 2014 z matematyki-poziom podstawowy Klucz odpowiedzi do zadań zamkniętych zad 1 2 3 4 5 6 7 8 9 10 11 12 odp A C C C A A B B C B D A 13 14 15 16 17 18 19 20 21 22 23 24 25 C C A B A D C B

Bardziej szczegółowo

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR)

{( ) ( ) ( ) ( )( ) ( )( ) ( RRR) .. KLASYCZNA DEFINICJA PRAWDOPODOBIEŃSTWA Klasyczna definicja prawdopodobieństwa JeŜeli jest skończonym zbiorem zdarzeń elementarnych jednakowo prawdopodobnych i A, to liczbę A nazywamy prawdopodobieństwem

Bardziej szczegółowo

Wykład 3. Opis struktury zbiorowości. 1. Parametry opisu rozkładu badanej cechy. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle.

Wykład 3. Opis struktury zbiorowości. 1. Parametry opisu rozkładu badanej cechy. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle. Wykład 3. Opis struktury zbiorowości 1. Parametry opisu rozkładu badanej cechy. 2. Miary połoŝenia rozkładu. 3. Średnia arytmetyczna. 4. Dominanta. 5. Kwantyle. W praktycznych zastosowaniach bardzo często

Bardziej szczegółowo

9. Podstawowe narzędzia matematyczne analiz przestrzennych

9. Podstawowe narzędzia matematyczne analiz przestrzennych Waldemar Izdebski - Wykłady z przedmiotu SIT 75 9. odstawowe narzędzia matematyczne analiz przestrzennych Niniejszy rozdział służy ogólnemu przedstawieniu metod matematycznych wykorzystywanych w zagadnieniu

Bardziej szczegółowo

Kolokwium ze statystyki matematycznej

Kolokwium ze statystyki matematycznej Kolokwium ze statystyki matematycznej 28.05.2011 Zadanie 1 Niech X będzie zmienną losową z rozkładu o gęstości dla, gdzie 0 jest nieznanym parametrem. Na podstawie pojedynczej obserwacji weryfikujemy hipotezę

Bardziej szczegółowo

Niepewność metody FMEA. Wprowadzenie 2005-12-28

Niepewność metody FMEA. Wprowadzenie 2005-12-28 5-1-8 Niepewność metody FMEA Wprowadzenie Doskonalenie produkcji metodą kolejnych kroków odbywa się na drodze analizowania przyczyn niedociągnięć, znajdowania miejsc powstawania wad, oceny ich skutków,

Bardziej szczegółowo

Planowanie produkcji poligraficznej

Planowanie produkcji poligraficznej Planowanie produkcji poligraficznej Pierwszą fazą planowania technologicznego i technicznego produkcji jest sporządzenie schematów blokowych obrazujących kolejne procesy wykonania produktu poligraficznego.

Bardziej szczegółowo

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM

HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM ZASTOSOWANIE SIECI NEURONOWYCH W SYSTEMACH AKTYWNEJ REDUKCJI HAŁASU Z UWZGLĘDNIENIEM ZJAWISK O CHARAKTERZE NIELINIOWYM WPROWADZENIE Zwalczanie hałasu przy pomocy metod aktywnych redukcji hałasu polega

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejkę z kodem szkoły dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-R1A1P-052 POZIOM ROZSZERZONY Czas pracy 150 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 15

Bardziej szczegółowo

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY

MATEMATYKA DYSKRETNA - MATERIAŁY DO WYKŁADU GRAFY ERIAŁY DO WYKŁADU GRAFY Graf nieskierowany Grafem nieskierowanym nazywamy parę G = (V, E), gdzie V jest pewnym zbiorem skończonym (zwanym zbiorem wierzchołków grafu G), natomiast E jest zbiorem nieuporządkowanych

Bardziej szczegółowo

BADANIE DIAGNOSTYCZNE W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA

BADANIE DIAGNOSTYCZNE W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA BADANIE DIAGNOSTYCZNE W KLASIE TRZECIEJ GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA MATEMATYKA Zadanie 1. Uczeń przeczytał w ciągu tygodnia ksiąŝkę liczącą 420 stron. Dzień Liczba przeczytanych stron Czas

Bardziej szczegółowo

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń.

51. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. Matematyka lekcja 5 5. Wykorzystywanie sumy, iloczynu i różnicy zdarzeń do obliczania prawdopodobieństw zdarzeń. I. rzypomnij sobie:. Jak rysujemy drzewo stochastyczne i przy jego pomocy obliczamy prawdopodobieństwo

Bardziej szczegółowo

Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów

Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów Podstawowe pojęcia dotyczące drzew Podstawowe pojęcia dotyczące grafów Przykłady drzew i grafów Drzewa: Drzewo (ang. tree) jest strukturą danych zbudowaną z elementów, które nazywamy węzłami (ang. node).

Bardziej szczegółowo

ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ. Joanna Bryndza

ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ. Joanna Bryndza ANALIZA HIERARCHICZNA PROBLEMU W SZACOWANIU RYZYKA PROJEKTU INFORMATYCZNEGO METODĄ PUNKTOWĄ Joanna Bryndza Wprowadzenie Jednym z kluczowych problemów w szacowaniu poziomu ryzyka przedsięwzięcia informatycznego

Bardziej szczegółowo

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach:

PODSTAWY > Figury płaskie (1) KĄTY. Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: PODSTAWY > Figury płaskie (1) KĄTY Kąt składa się z ramion i wierzchołka. Jego wielkość jest mierzona w stopniach: Kąt możemy opisać wpisując w łuk jego miarę (gdy jest znana). Gdy nie znamy miary kąta,

Bardziej szczegółowo

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH

FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH FUNKCJA LINIOWA, RÓWNANIA I UKŁADY RÓWNAŃ LINIOWYCH PROPORCJONALNOŚĆ PROSTA Proporcjonalnością prostą nazywamy zależność między dwoma wielkościami zmiennymi x i y, określoną wzorem: y = a x Gdzie a jest

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH

WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE II W PUBLICZNYM GIMNAZJUM NR 2 W ZESPOLE SZKÓŁ W RUDKACH Marzena Zbrożyna DOPUSZCZAJĄCY: Uczeń potrafi: odczytać informacje z tabeli odczytać informacje z diagramu

Bardziej szczegółowo

Agnieszka Nowak Brzezińska Wykład III

Agnieszka Nowak Brzezińska Wykład III Agnieszka Nowak Brzezińska Wykład III Naiwny klasyfikator bayesowski jest prostym probabilistycznym klasyfikatorem. Zakłada się wzajemną niezależność zmiennych niezależnych (tu naiwność) Bardziej opisowe

Bardziej szczegółowo

Tematy próbnego pisemnego egzaminu dojrzałości z matematyki

Tematy próbnego pisemnego egzaminu dojrzałości z matematyki Tematy próbnego pisemnego egzaminu dojrzałości z matematyki Zadanie Rozwiąż nierówność: [ +log 0, ( x- )] + [ +log 0, ( x- )] + [ +log 0, ( x- )] ++ + [ + log 0, ( x- )] Zadanie Odcinek AB, gdzie A = (,

Bardziej szczegółowo

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI

WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI WYZNACZANIE NIEPEWNOŚCI POMIARU METODAMI SYMULACYJNYMI Stefan WÓJTOWICZ, Katarzyna BIERNAT ZAKŁAD METROLOGII I BADAŃ NIENISZCZĄCYCH INSTYTUT ELEKTROTECHNIKI ul. Pożaryskiego 8, 04-703 Warszawa tel. (0)

Bardziej szczegółowo

Case study: Mobilny serwis WWW dla Kolporter

Case study: Mobilny serwis WWW dla Kolporter Case study: Mobilny serwis WWW dla Kolporter Sklep internetowy Kolporter.pl oferuje swoim Klientom blisko 100 000 produktów w tym: ksiąŝki, muzykę, film i gry. Kolporter postanowił stworzyć nowy kanał

Bardziej szczegółowo

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych.

Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka hydrologiczna i prawdopodobieństwo zjawisk hydrologicznych. Statystyka zajmuje się prawidłowościami zaistniałych zdarzeń. Teoria prawdopodobieństwa dotyczy przewidywania, jak często mogą zajść

Bardziej szczegółowo

POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY PODSTAWOWY NR 2 KSWP 2 WARTOŚCI INNE NIś WARTOŚĆ RYNKOWA

POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY PODSTAWOWY NR 2 KSWP 2 WARTOŚCI INNE NIś WARTOŚĆ RYNKOWA 1. Wprowadzenie POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY PODSTAWOWY NR 2 KSWP 2 WARTOŚCI INNE NIś WARTOŚĆ RYNKOWA 1.1. Celem niniejszego standardu jest przedstawienie definicji wartości

Bardziej szczegółowo

Symulacyjne metody wyceny opcji amerykańskich

Symulacyjne metody wyceny opcji amerykańskich Metody wyceny Piotr Małecki promotor: dr hab. Rafał Weron Instytut Matematyki i Informatyki Politechniki Wrocławskiej Wrocław, 0 lipca 009 Metody wyceny Drzewko S 0 S t S t S 3 t S t St St 3 S t St St

Bardziej szczegółowo

Podstawy działań na wektorach - dodawanie

Podstawy działań na wektorach - dodawanie Podstawy działań na wektorach - dodawanie Metody dodawania wektorów można podzielić na graficzne i analityczne (rachunkowe). 1. Graficzne (rysunkowe) dodawanie dwóch wektorów. Założenia: dane są dwa wektory

Bardziej szczegółowo

Techniki grupowania danych w środowisku Matlab

Techniki grupowania danych w środowisku Matlab Techniki grupowania danych w środowisku Matlab 1. Normalizacja danych. Jedne z metod normalizacji: = = ma ( y =, rσ ( = ( ma ( = min = (1 + e, min ( = σ wartość średnia, r współczynnik, σ odchylenie standardowe

Bardziej szczegółowo

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera.

Opis ćwiczenia. Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego Henry ego Katera. ĆWICZENIE WYZNACZANIE PRZYSPIESZENIA ZIEMSKIEGO ZA POMOCĄ WAHADŁA REWERSYJNEGO Opis ćwiczenia Cel ćwiczenia Poznanie budowy i zrozumienie istoty pomiaru przyspieszenia ziemskiego za pomocą wahadła rewersyjnego

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)

Bardziej szczegółowo

Tematy: zadania tematyczne

Tematy: zadania tematyczne Tematy: zadania tematyczne 1. Ciągi liczbowe zadania typu udowodnij 1) Udowodnij, Ŝe jeŝeli liczby,, tworzą ciąg arytmetyczny ), to liczby,, takŝe tworzą ciąg arytmetyczny. 2) Ciąg jest ciągiem geometrycznym.

Bardziej szczegółowo

5c. Sieci i przepływy

5c. Sieci i przepływy 5c. Sieci i przepływy Grzegorz Kosiorowski Uniwersytet Ekonomiczny w Krakowie zima 2016/2017 rzegorz Kosiorowski (Uniwersytet Ekonomiczny w Krakowie) 5c. Sieci i przepływy zima 2016/2017 1 / 40 1 Definicje

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe czytać teksty w stylu matematycznym wykorzystywać słownictwo wprowadzane przy okazji

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji.

1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. 1. Znajdowanie miejsca zerowego funkcji metodą bisekcji. Matematyczna funkcja f ma być określona w programie w oddzielnej funkcji języka C (tak, aby moŝna było łatwo ją zmieniać). Przykładowa funkcja to:

Bardziej szczegółowo

Zastosowanie wartości własnych macierzy

Zastosowanie wartości własnych macierzy Uniwersytet Warszawski 15 maja 2008 Agenda Postawienie problemu 1 Postawienie problemu Motywacja Jak zbudować wyszukiwarkę? Dlaczego to nie jest takie trywialne? Możliwe rozwiazania Model 2 3 4 Motywacja

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej INSTRUKCJA DO ĆWICZENIA: BADANIE BATERII SŁONECZNYCH W ZALEśNOŚCI OD NATĘśENIA

Bardziej szczegółowo

Indywidualne projektowanie konstrukcji nawierzchni dzięki metodzie mechanistyczno - empirycznej Dawid Siemieński Pracownia InŜynierska KLOTOIDA

Indywidualne projektowanie konstrukcji nawierzchni dzięki metodzie mechanistyczno - empirycznej Dawid Siemieński Pracownia InŜynierska KLOTOIDA Indywidualne projektowanie konstrukcji nawierzchni dzięki metodzie mechanistyczno - empirycznej Dawid Siemieński Pracownia InŜynierska KLOTOIDA Zakopane 4-6 lutego 2009r. 1 Projektowanie konstrukcji nawierzchni

Bardziej szczegółowo

ZESTAW POPRAWNYCH ODPOWIEDZI DO ARKUSZA - ETAP WOJEWÓDZKI

ZESTAW POPRAWNYCH ODPOWIEDZI DO ARKUSZA - ETAP WOJEWÓDZKI Konkursy w województwie podkarpackim w roku szkolnym 202/203 ZESTAW POPRAWNYCH ODPOWIEDZI Numer zadania Zadania otwarte schemat oceniania: DO ARKUSZA - ETAP WOJEWÓDZKI Poprawna odpowiedź L. punktów. A

Bardziej szczegółowo

IV.3.b. Potrafisz samodzielnie dokonać podstawowej konfiguracji sieci komputerowej

IV.3.b. Potrafisz samodzielnie dokonać podstawowej konfiguracji sieci komputerowej IV.3.b. Potrafisz samodzielnie dokonać podstawowej konfiguracji sieci komputerowej Co warto wiedzieć o łączeniu komputerów w sieci? Spójrz na rysunek IV.3p, który przedstawia właściwości Połączeń lokalnych,

Bardziej szczegółowo

10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta,

10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta, 10. Elementy kombinatoryki geometrycznej: suma kątów wielokąta, liczba przekątnych wielokąta, porównywanie pól wielokątów w oparciu o proste zależności geometryczne jak np. przystawanie i zawieranie, rozpoznawanie

Bardziej szczegółowo

Praca klasowa nr 2 - figury geometryczne (klasa 6)

Praca klasowa nr 2 - figury geometryczne (klasa 6) Praca klasowa nr 2 - figury geometryczne (klasa 6) MARIUSZ WRÓBLEWSKI IMIĘ I NAZWISKO: KLASA: GRUPA A 1. Dany jest równoległobok ABCD. Narysuj za pomocą linijki i ekierki odcinek BF prostopadły do odcinka

Bardziej szczegółowo

Instalacja programu Ozon.

Instalacja programu Ozon. Instalacja programu Ozon. Przykładowa topologia sieci w której moŝe pracować program Ozon: Jak widać na powyŝszym obrazku baza danych zainstalowana jest na jednym komputerze, który określany jest mianem

Bardziej szczegółowo

Osiągnięcia ponadprzedmiotowe

Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Osiągnięcia ponadprzedmiotowe Umiejętności konieczne i podstawowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJACE WYKRACZAJĄCE czytać teksty w stylu

Bardziej szczegółowo

Tryb i sposób powoływania i odwoływania członków zespołu interdyscyplinarnego. oraz szczegółowe warunki jego funkcjonowania w Gminie Pilchowice

Tryb i sposób powoływania i odwoływania członków zespołu interdyscyplinarnego. oraz szczegółowe warunki jego funkcjonowania w Gminie Pilchowice Załącznik do Uchwały Nr... Rady Gminy Pilchowice z dnia... Tryb i sposób powoływania i odwoływania członków zespołu interdyscyplinarnego oraz szczegółowe warunki jego funkcjonowania w Gminie Pilchowice

Bardziej szczegółowo

Próbne arkusze z matematyki. Odpowiedzi. Wydawnictwo Tales

Próbne arkusze z matematyki. Odpowiedzi. Wydawnictwo Tales Próbne arkusze z matematyki Odpowiedzi Wydawnictwo Tales KARTOTEKA TESTU NR 1 1. B II 1.5) 2.3) 2. B II 12.3) 3. C II 12.3) 4. A I 2.1) 2.3) 2.11) 5. 1F II 12.9) 6. B2 II 3.5) 7. D I 4.12) 5.2) 8. B II

Bardziej szczegółowo

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe

Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Wykład 6 Centralne Twierdzenie Graniczne. Rozkłady wielowymiarowe Nierówność Czebyszewa Niech X będzie zmienną losową o skończonej wariancji V ar(x). Wtedy wartość oczekiwana E(X) też jest skończona i

Bardziej szczegółowo

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ).

Działanie algorytmu oparte jest na minimalizacji funkcji celu jako suma funkcji kosztu ( ) oraz funkcji heurystycznej ( ). Algorytm A* Opracowanie: Joanna Raczyńska 1.Wstęp Algorytm A* jest heurystycznym algorytmem służącym do znajdowania najkrótszej ścieżki w grafie. Jest to algorytm zupełny i optymalny, co oznacza, że zawsze

Bardziej szczegółowo

Sposoby analizy i interpretacji statystyk strony WWW.

Sposoby analizy i interpretacji statystyk strony WWW. Sposoby analizy i interpretacji statystyk strony WWW. Jak oceniać sprzedaŝ przez WWW? Grzegorz Skiera, Łukasz PraŜmowski grzegorz.skiera@cyberstudio.pl lukasz.prazmowski@cyberstudio.pl O czym powiemy?

Bardziej szczegółowo

program dla opracowujących wnioski o dotacje

program dla opracowujących wnioski o dotacje EKOEFEKT program dla opracowujących wnioski o dotacje 1. Podstawowe informacje EKOEFEKT to program komputerowy do wykonywania obliczeń efektu ekologicznego dla działań w zakresie: modernizacji źródła ciepła,

Bardziej szczegółowo

Jarosław Wróblewski Matematyka dla Myślących, 2008/09

Jarosław Wróblewski Matematyka dla Myślących, 2008/09 9. Funkcje trygonometryczne. Elementy geometrii: twierdzenie Pitagorasa i twierdzenie cosinusów, twierdzenie o kącie wpisanym i środkowym, okrąg wpisany i opisany na wielokącie, wielokąty foremne (dokończenie).

Bardziej szczegółowo

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV

Algorytmy grafowe. Wykład 1 Podstawy teorii grafów Reprezentacje grafów. Tomasz Tyksiński CDV Algorytmy grafowe Wykład 1 Podstawy teorii grafów Reprezentacje grafów Tomasz Tyksiński CDV Rozkład materiału 1. Podstawowe pojęcia teorii grafów, reprezentacje komputerowe grafów 2. Przeszukiwanie grafów

Bardziej szczegółowo

FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie

FUNKCJA KWADRATOWA. Wykresem funkcji kwadratowej jest parabola o wierzchołku w punkcie W = (p, q), gdzie Funkcja kwadratowa jest to funkcja postaci y = ax 2 + bx + c, wyrażenie ax 2 + bx + c nazywamy trójmianem kwadratowym, gdzie x, a, oraz a, b, c - współczynniki liczbowe trójmianu kwadratowego. ó ó Wykresem

Bardziej szczegółowo

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum

Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum Przedmiotowe zasady oceniania i wymagania edukacyjne z matematyki dla klasy drugiej gimnazjum I. POTĘGI I PIERWIASTKI oblicza wartości potęg o wykładnikach całkowitych liczb różnych od zera zapisuje liczbę

Bardziej szczegółowo

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki

Porównanie algorytmów wyszukiwania najkrótszych ścieżek międz. grafu. Daniel Golubiewski. 22 listopada Instytut Informatyki Porównanie algorytmów wyszukiwania najkrótszych ścieżek między wierzchołkami grafu. Instytut Informatyki 22 listopada 2015 Algorytm DFS w głąb Algorytm przejścia/przeszukiwania w głąb (ang. Depth First

Bardziej szczegółowo

Łukasz Wojciechowski. Ukryta Myszka - próba dotarcia do rzeczywistych powodów ludzkich decyzji

Łukasz Wojciechowski. Ukryta Myszka - próba dotarcia do rzeczywistych powodów ludzkich decyzji Łukasz Wojciechowski Ukryta Myszka - próba dotarcia do rzeczywistych powodów ludzkich decyzji świadomość i nieświadomość świadomość procesy kontrolowane / jawne nieświadomość procesy automatyczne/ autonomiczne

Bardziej szczegółowo

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami

Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami Równoległy algorytm wyznaczania bloków dla cyklicznego problemu przepływowego z przezbrojeniami dr inż. Mariusz Uchroński Wrocławskie Centrum Sieciowo-Superkomputerowe Agenda Cykliczny problem przepływowy

Bardziej szczegółowo

Problemy zabezpieczeń transmisji pakietów TCP/IP w sieciach komputerowych

Problemy zabezpieczeń transmisji pakietów TCP/IP w sieciach komputerowych Problemy zabezpieczeń transmisji pakietów TCP/IP w sieciach komputerowych 1 Cel pracy Jako podstawowe załoŝenie określiłem zapoznanie się z narzędziem Microsoft Network Monitor i za jego pomocą przechwycenie

Bardziej szczegółowo

Sieci komputerowe. Wykład 8: Wyszukiwarki internetowe. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski

Sieci komputerowe. Wykład 8: Wyszukiwarki internetowe. Marcin Bieńkowski. Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe Wykład 8: Wyszukiwarki internetowe Marcin Bieńkowski Instytut Informatyki Uniwersytet Wrocławski Sieci komputerowe (II UWr) Wykład 8 1 / 37 czyli jak znaleźć igłę w sieci Sieci komputerowe

Bardziej szczegółowo

WYZNACZANIE WYSOKOŚCI Z WYKORZYSTANIEM NIWELACJI SATELITARNEJ

WYZNACZANIE WYSOKOŚCI Z WYKORZYSTANIEM NIWELACJI SATELITARNEJ WYZNACZANIE WYSOKOŚCI Z WYKORZYSTANIEM NIWELACJI SATELITARNEJ Karol DAWIDOWICZ Jacek LAMPARSKI Krzysztof ŚWIĄTEK Instytut Geodezji UWM w Olsztynie XX Jubileuszowa Jesienna Szkoła Geodezji, 16-18.09.2007

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo

Teoria automatów i języków formalnych. Określenie relacji

Teoria automatów i języków formalnych. Określenie relacji Relacje Teoria automatów i języków formalnych Dr inŝ. Janusz ajewski Katedra Informatyki Określenie relacji: Określenie relacji Relacja R jest zbiorem par uporządkowanych, czyli podzbiorem iloczynu kartezjańskiego

Bardziej szczegółowo

V.1.e. Potrafisz samodzielnie zestawiać połączenie za pomocą programu Dial-Up Networking

V.1.e. Potrafisz samodzielnie zestawiać połączenie za pomocą programu Dial-Up Networking V.1.e. Potrafisz samodzielnie zestawiać połączenie za pomocą programu Dial-Up Networking Przypomnijmy Umiejętność zestawienia połączenia typu Dial-Up moŝe się przydać na przykład w sytuacji awarii sieci

Bardziej szczegółowo

Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy:

Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: Zadanie 1. Oblicz prawdopodobieństwo, że rzucając dwiema kostkami do gry otrzymamy: a) sumę oczek równą 6, b) iloczyn oczek równy 6, c) sumę oczek mniejszą niż 11, d) iloczyn oczek będący liczbą parzystą,

Bardziej szczegółowo

POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY PODSTAWOWY NR 2 KSWP 2 WARTOŚCI INNE NIś WARTOŚĆ RYNKOWA

POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY PODSTAWOWY NR 2 KSWP 2 WARTOŚCI INNE NIś WARTOŚĆ RYNKOWA POWSZECHNE KRAJOWE ZASADY WYCENY (PKZW) KRAJOWY STANDARD WYCENY PODSTAWOWY NR 2 KSWP 2 WARTOŚCI INNE NIś WARTOŚĆ RYNKOWA 1. WPROWADZENIE... 2 2. ZAKRES STOSOWANIA STANDARDU... 3 3. DEFINICJE WARTOŚCI NIERYNKOWYCH

Bardziej szczegółowo

SCENARIUSZ LEKCJI Z MATEMATYKI. opracowała Hanna Szmyt

SCENARIUSZ LEKCJI Z MATEMATYKI. opracowała Hanna Szmyt SCENARIUSZ LEKCJI Z MATEMATYKI opracowała Hanna Szmyt Temat: Zadania optymalizacyjne dotyczące funkcji kwadratowej. 1. Cele główne: pokazanie zastosowań własności funkcji kwadratowe w zadaniach optymalizacyjnych,

Bardziej szczegółowo

Funkcja kwadratowa. f(x) = ax 2 + bx + c,

Funkcja kwadratowa. f(x) = ax 2 + bx + c, Funkcja kwadratowa. Funkcją kwadratową nazywamy funkcję f : R R określoną wzorem gdzie a, b, c R, a 0. f(x) = ax 2 + bx + c, Szczególnym przypadkiem funkcji kwadratowej jest funkcja f(x) = ax 2, a R \

Bardziej szczegółowo

RUTERY. Dr inŝ. Małgorzata Langer

RUTERY. Dr inŝ. Małgorzata Langer RUTERY Dr inŝ. Małgorzata Langer Co to jest ruter (router)? Urządzenie, które jest węzłem komunikacyjnym Pracuje w trzeciej warstwie OSI Obsługuje wymianę pakietów pomiędzy róŝnymi (o róŝnych maskach)

Bardziej szczegółowo

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2

Wykład 16. P 2 (x 2, y 2 ) P 1 (x 1, y 1 ) OX. Odległość tych punktów wyraża się wzorem: P 1 P 2 = (x 1 x 2 ) 2 + (y 1 y 2 ) 2 Wykład 16 Geometria analityczna Przegląd wiadomości z geometrii analitycznej na płaszczyźnie rtokartezjański układ współrzędnych powstaje przez ustalenie punktu początkowego zwanego początkiem układu współrzędnych

Bardziej szczegółowo