Wytwarzanie i przetwórstwo polimerów

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wytwarzanie i przetwórstwo polimerów"

Transkrypt

1 Wytwarzanie i przetwórstwo polimerów PODSTAWY PROCESU UPLASTYCZNIANIA dr inż. Michał Strankowski Katedra Technologii Polimerów Wydział Chemiczny Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

2 Informacje wstępne Wykład ; s. 222, Chemia A; Obecność na wykładzie; Sprawdzanie obecności; Dwa sprawdziany kontrolne; Warunkiem zaliczenia przedmiotu jest czynny udział w wykładach oraz uzyskanie zaliczenia. 2

3 Tworzywa sztuczne Tworzywa sztuczne są materiałami, w których najistotniejszy składnik stanoią związki wielkocząsteczkowe, syntetyczne lub pochodzenia naturalnego. Oprócz związku wielkocząsteczkowego tworzywo sztuczne zawiera zwykle składniki dodatkowe, które nadają mu korzystne właściwości użytkowe. Składnikami tymi mogą być napełniacze, nośniki, zmiękczacze, pigmenty i barwniki, stabilizatory i wiele innych. Większość związków wielkocząsteczkowych jest zbudowana z wielkiej liczby powtarzających się i połączonych między sobą identycznych elementów podstawowych, nazywanych merami. Dlatego też związki wielkocząsteczkowe nazywamy polimerami (poli- wiele). 3

4 Podział związków wielkocząsteczkowych Ze względu na pochodzenie można je najogólniej podzielić na trzy podstawowe grupy: 1 - naturalne związki wielocząsteczkowe występujące w przyrodzie (celuloza, białko, kauczuk ); 2 - związki wielkocząsteczkowe otrzymywane z polimerów pochodzenia naturalnego w wyniku modyfikacji polegającej na chemicznej zmianie właściwości polimerów naturalnych; 3 - syntetyczne związki wielkocząsteczkowe wytwarzane na podstawie reakcji chemicznej ze związków małocząsteczkowych. 4

5 Klasyfikacja technologiczna Przyjmując za podstawę klasyfikacji właściwości użytkowe i technologiczne tworzyw sztucznych można je podzielić na dwie grupy: a) Elastomery są to takie tworzywa, które podczas próby rozciągania (w temperaturze pokojowej ) wykazują wydłużenie powyżej 100%. Do tej grupy zalicza się wszystkie odmiany kauczuku oraz poliizobutylen. b) Plastomery są to takie tworzywa, których wydłużenie podczas rozciągania w temperaturze pokojowej nie przekracza 100%. Pod niewielkim obciążeniem ulegają one nieznacznym odkształceniom, zaś poddawane wzrastającemu obciążeniu zaczynają odkształcać się plastycznie, a następnie ulegają mechanicznemu zniszczeniu. W grupie plastomerów wyróżnia się trzy rodzaje tworzyw: - tworzywa termoplastyczne(termoplasty), - tworzywa termoutwardzalne, - tworzywa chemoutwardzalne. 5

6 Klasyfikacja technologiczna Tworzywa termoplastyczne przechodzą każdorazowo podczas ogrzewania w stan plastyczny, natomiast po ostygnięciu twardnieją. Mogą być wielokrotnie kształtowane, a ich przetwórstwo w temperaturach podwyższonych nie prowadzi w sposób wyraźny do zmian chemicznych ani do zaniku plastyczności i zdolności do formowania. Do termoplastów zalicza się wszystkie tworzywa polimeryzacyjne, a ponadto poliamidy, poliwęglany, polisulfony i termoplastyczne pochodne celulozy. Tworzywa termoutwardzalne podczas ogrzewania początkowo miękną, lecz przetrzymane w podwyższonej temperaturze utwardzają się nieodwracalnie. W wyniku utwardzenia stają się nietopliwe i nierozpuszczalne. Mogą więc być kształtowane tylko jednokrotnie. Najważniejszymi przedstawicielami tej grupy tworzyw są fenoplasty i aminoplasty. Tworzywa chemoutwardzalne ulegają utwardzeniu już w temperaturze pokojowej pod wpływem działania specjalnych substancji zwanych utwardzaczami. Reakcja ta przebiega z większą prędkością w temperaturach podwyższonych. Najczęściej stosowanymi tworzywami chemoutwardzalnymi są żywice poliestrowe i epoksydowe. 6

7 Przetwórstwo tworzyw sztucznych Stosunkowo dynamiczny rozwój materiałów polimerowych spowodował opracowanie wielu metod przetwórstwa materiałów polimerowych. Podczas wykładu omówione zostaną metody dotyczące różnych rodzajów tworzyw sztucznych, w tym termoplastów, elastomerów oraz duroplastów. Przetwórstwo ma na celu nadanie materiałowi określonej postaci użytkowej oraz wytworzenie wyrobu, który będzie stosowany w określonych warunkach. Poprzez odpowiedni dobór parametrów technologicznych można wpływać na właściwości tworzyw sztucznych. 7

8 Podział przetwórstwa 8

9 Klasyfikacja przetwórstwa Do ważniejszych metod przetwórstwa fizyczno- chemicznego pierwszego rodzaju można zaliczyć: spajanie, porowanie, rozdzielanie cieplne, suszenie, podgrzewnie, ulepszanie fizyczne, aktywowanie i dozowanie. W przypadku metod fizyczno- chemicznych drugiego rodzaju można wśród nich wyróżnić: wytłaczanie, wtryskiwanie, prasowanie, laminowanie, odlewanie, kalandrowanie, mieszanie i zgarnianie. Natomiast ważniejsze metody przetwórstwa chemiczno- fizycznego są następujące: formowanie polimeryzacyjne, nanoszenie, klejenie, kitowanie, zamszowanie, drukowanie, metalizowanie oraz ulepszanie chemiczne. 9

10 Postawy procesu uplastyczniania Tworzywa sztuczne ze względu na swoje specyficzne właściwości znalazły zastosowanie w wielu dziedzinach przemysłu, ich ogrom zastosowań jest szczególnie zauważalny w życiu codziennym. Postęp w dziedzinie materiałów polimerowych spowodował także intensywny rozwój różnego rodzaju technik pozwalających przetwarzać tworzywa wielkocząsteczkowe, czy też nadawać im pożądane kształty. Dzięki temu możliwe jest uzyskanie materiałów w pełni funkcjonalnych i charakteryzujących się dobrymi właściwościami użytkowymi. 10

11 Postawy procesu uplastyczniania Niestety stosunkowo niewielka ilość polimerów nadaje się do bezpośredniego stosowania, dlatego też większość tworzyw wielkocząsteczkowych wymaga odpowiedniego przetworzenia. Jednym z najważniejszych zagadnień związanych z przetwórstwem tworzyw sztucznych jest uplastycznianie materiałów polimerowych. 11

12 Uplastycznianie Uplastycznianie stanowi przejście materiału na skutek ogrzewania ze stanu stałego w stan plastyczny, następnie ciekły. Uplastycznianie ma szczególne znaczenie w metodach przetwórstwa takich jak wytłaczanie czy też wtrysk. Proces uplastyczniania odbywa się w układach uplastyczniających maszyn przetwórczych, głównie wtryskarek czy też wytłaczarek. 12

13 Układ uplastyczniający Układ uplastyczniający spełnia następujące funkcje: - nagrzewanie, prowadzące do odpowiedniego przebiegu stanów fizycznych tworzywa; - - sprężanie, wytworzenie w tworzywie zadanego przebiegu zmian ciśnienia; mieszanie, które prowadzi do ujednorodnienia przetwarzanego tworzywa; - transportowanie, przemieszczanie tworzywa przez układ. 13

14 Układy uplastyczniające Stosowanych jest wiele rozwiązań konstrukcyjnych spełniających rolę układów uplastyczniających, które można podzielić na: - - układy ślimakowe, jedno lub wieloślimakowe; układy nieślimakowe, tłokowe lub też tarczowe; - układy mieszane, tłokowo- ślimakowe. 14

15 Układ uplastyczniający efekty cieplne Tworzywo w układzie uplastyczniającym nagrzewać się może wskutek ciepła doprowadzonego z grzejników Qg lub wytworzonego dzięki tarciu zewnętrznemu Qz oraz wewnętrznemu Qw tworzywa. Całkowity strumień ciepła Qc działający na tworzywo, w ujęciu ogólnym, równa się: Qc = Qg + Qz + Qw W części układu uplastyczniającego, w której tworzywo jest w stanie plastycznym lub ciekłym, Qz = O i zależność ma postać: Qc = Qg + Qw 15

16 Układ uplastyczniający efekty cieplne Przemianę tworzywa zachodzącą w układzie uplastyczniającym, podczas której spełnione są wcześniejsze zależności, przyjęto w literaturze nazywać przemianą politropową. (Przemiana politropowa to przemiana, podczas której ciepło właściwe nie ulega zmianie, co nie jest spełnione w procesie uplastyczniania) Jeśli Qg = O, to zależność Qc = Qg + Qz + Qw, przybiera postać: Qc = Qz + Qw A w odniesieniu do wymienionej części układu uplastyczniającego Qc = Qw Przemiana autotermiczna, czy też autogeniczna, jeśli spełnione są dwie powyższe zależności. 16

17 Uplastycznianie ślimakowe Uplastycznianie ślimakowe ma szczególne znaczenie w procesach wytłaczania i wtrysku. Ślimakowy układ uplastyczniający składa się z zespołu mechanicznego, który tworzą cylinder i obracający się ślimak umieszczony w jego wnętrzu. Zespół nagrzewająco- chłodzący, w którego skład mogą wchodzić np. grzejniki, nagrzewnice, urządzenia sterujące a także urządzenia pomocnicze, np. zawory odgazowujące. 17

18 Uplastycznianie ślimakowe W cylindrze znajdują się grzejniki oraz wentylatory, natomiast urządzenia sterująco- regulujące stanowią oddzielny element. Przetwarzany materiał na początku wprowadza się do zasobnika tworzywa, po czym jest on wprowadzany do układu ślimakowego, gdzie następuje jego uplastycznianie. Uplastycznione tworzywo przechodzi dalej do narzędzia, w przypadku wytłaczania głowicy wytłaczarskiej, w przypadku wtrysku - do formy wtryskowej. 18

19 Przykładowy ślimakowy układ uplastyczniający Klasyczny ślimak posiada złożona konstrukcję i jest podzielony na następujące strefy (Rys /1. oznaczenia rysunków zgodne z poradnikiem Tworzywa Sztuczne w Praktyce, pod kierunkiem prof. Józefa Haponiuka): strefa pierwsza zasypu; strefa druga zasilania; strefa trzecia przemiany (sprężania); strefa czwarta dozowania. 19

20 Przykładowy ślimakowy układ uplastyczniający Rys /1. Typowy ślimakowy układ uplastyczniający: 1 ślimak, 2 cylinder, 3 grzejniki, 4 zasobnik tworzywa, 5 ruch przetwarzanego tworzywa, 6 ruch obrotowy ślimaka, 7 ruch postępowo- zwrotny ślimaka. 20

21 Strefy ślimakowego układu uplastyczniającego Strefa pierwsza zasypu (długość 1,5-2 D, gdzie D oznacza średnicę zewnętrzną ślimaka). Część ślimaka znajdująca się najbliżej otworu zasypowego. Strefa ta odbiera granulat lub też proszek z zasobnika tworzywa. Strefa druga zasilania (długość 4-15 D), w tej strefie w postaci granulatu jest nagrzewane, sprężane i transportowane, w tworzywie zaczynają zachodzić przemiany. Strefa trzecia przemiany (długość 5-10 D), tworzywo przechodzi w stan plastyczny lub też ciekły. Strefa czwarta dozowania (długość 5-10 D), tworzywo ostatecznie przechodzi w stan plastyczny lub ciekły, w tej strefie następuje także ujednorodnienie przetwarzanego materiału. 21

22 Charakterystyka ślimaka Rys /2. Charakterystyka klasycznego ślimaka: I strefa zasypu, II strefa zasilania, III strefa przemiany, IV strefa dozowania, L długość części roboczej, D zewnętrzna średnica, h głębokość kanału, t skok linii śrubowej, b szerokość kanału śrubowego, α - kąt pochylenia linii śrubowej, e szerokość zwoju, s grubość szczeliny. 22

23 Charakterystyczne elementy geometryczne ślimaka - stosunek L/D, długość części roboczej do średnicy zewnętrznej ślimaka; - głębokość kanału h, największa w strefie I, najmniejsza w IV; - rdzeń ślimaka, (D r = D 2h); - szerokość kanału śrubowego b, b = (t- e) cosα; - skok linii śrubowej zwoju t; - kąt pochylenia linii śrubowej - α; - stromość linii śrubowej zwoju - γ; γ = tgα = t/πd; - szerokość grzbietu zwoju e; - krotność zwojów; Wartości przedstawionych charakterystycznych elementów ślimaka są dobierane w zależności od metody oraz odmiany przetwórstwa, rodzaju przetwarzanego materiału oraz końcowych właściwości produktu. - szczelina s, pomiędzy grzbietem zwoju i powierzchnią wewnętrzną cylindra. 23

24 Ślimaki Ślimaki w układzie jednoślimakowym można podzielić na ślimaki klasyczne, które posiadają kanał ciągły wzdłuż całej długości części roboczej oraz redukcję miejscową, całkowita równą jeden lub większą. Jednak układy te stosowane są coraz rzadziej ze względu na niezadowalającą efektywność procesu zachodząca w układzie uplastyczniającym. Kolejny rodzaj ślimaków to układy niekonwencjonalne, do których można spośród wielu różnorodnych układów zaliczyć np. ślimak Maillefera, Barra, Daraya, czy Klima stanowiących podstawowe konstrukcje ślimaków zaporowych niekonwencjonalnych (Rys /3.). 24

25 Konstrukcje ślimaków Rys /3. Odmiany konstrukcyjne ślimaków niekonwencjonalnych w wyglądzie na strefę przemiany i w rozwinięciu tej strefy. a) ślimak Maillefera, b) ślimak Baara, c) ślimak Draya, d) ślimak Kima. 25

26 Ślimaki specjalne Znane są również ślimaki określane jako specjalne, które charakteryzują się specjalną konstrukcją elementów zwiększających ścinanie i mieszanie tworzywa w układzie uplastyczniającym. Elementy te mają najczęściej kształt pierścieni o różnych rowkach, bądź kształt różnych występów, które mocuje się na ślimaku (Rys /3.). Elementy intensywnego ścinania są umiejscowione najczęściej w obszarze strefy dozowania, natomiast elementy intensywnego mieszania na końcu ślimaka. Istnieje bardzo dużo rozwiązań konstrukcyjnych ślimaków. Zagadnienia dotyczące projektowania tego typu narzędzi są wciąż rozwijane. Kryteria oceny ślimaków są często złożone i niekiedy trudno jest wybrać najbardziej odpowiedni ślimak do określonego zastosowania. 26

27 Konstrukcja nowoczesnego ślimaka przeznaczonego do wytłaczania LDPE Rys /3.: 1 część robocza o kanale ciągłym, 2 element intensywnego mieszania, 3 element intensywnego ścinania, 4 końcówka ślimaka, 5 otwór do chłodzenia ślimaka. 27

28 Układy dwuślimakowe Oprócz całej gamy układów uplastyczniających jednoślimakowych, bardzo często stosowane są także ślimaki działające układzie podwójnym układzie dwuślimakowym. Układy uplastyczniające dwuślimakowe, o ślimakach jednakowej długości można podzielić ze względu na kierunek obrotu ślimaków na: współbieżne (zgodny ruch obrotowy ślimaków) oraz ślimaki przeciwbieżne (ślimaki poruszają się w przeciwnych kierunkach). Rozróżnia się jeszcze podział ze względu na zazębianie sie zwojów, na ślimaki: zazębiające się szczelnie, zazębiające się nieszczelnie oraz niezazębiające się. Dodatkowo rozróżnia się także dwa podstawowe geometryczne kształty ślimaków walcowe oraz stożkowe. 28

29 Układy dwuślimakowe Rys /3. Schematy ślimaków: a) Mapre, b) Colombo, c) Kestermann, d) Cincinnan i Krauss Maffei, e) Klasyczne ślimaki ze zmniejszaniem skoku linii śrubowej w sposób stopniowy, f) Klasyczne ślimaki ze zmniejszaniem skoku linii śrubowej w sposób ciągły. 29

30 Układy wieloślimakowe W celu zwiększenie natężenia wypływu tworzywa z układu uplastyczniającego czy też polepszenia jakości wyrobów, opracowano układy trój- i więcej ślimakowe, układy kaskadowe, planetarne i inne. Na przykład w układzie trójślimakowym często jeden ślimak (główny) posiada większa średnicę, natomiast pozostałe dwa (boczne) mniejszą i umieszczone są wzdłuż jednej osi. Z kolei układy czteroślimakowe bywają typu gwiazdy (gdy ślimak centralny ma większą średnicę) oraz typu pierścienia, gdy wszystkie ślimaki mają jednakową średnicę. 30

31 Uplastycznianie bezślimakowe Proces uplastyczniania bezślimakowego zachodzi wtedy, gdy uplastycznianie odbywa się bez udziału ślimaka. W obrębie uplastyczniania bezślimakowego można wyróżnić uplastycznianie bezślimakowe, tarciowe, pierścieniowe, wirnikowe, planetarne oraz liniowe. Do najstarszego procesu uplastyczniania należy niewątpliwie uplastycznianie tłokowe. W skład układu tłokowego wchodzi: zespół mechaniczny reprezentowany przez cylinder z końcówką oraz tłok, zespół nagrzewająco- ochładzający (grzejniki) oraz urządzenia sterująco- regulujące. 31

32 Uplastycznianie bezślimakowe Rys /1. Układ tłokowy: 1 dysza, 2 cylinder, 3 grzejnik, 4 otwór zasypowy, 5 tłok. 32

33 Układ tłokowy Zasada działania układu tłokowego jest bardzo prosta. Na skutek przewodzenia ciepła od cylindra nagrzewa się tworzywo, które będąc juz w stanie plastycznym zostaje przemieszczone pod ciśnieniem, przy użyciu tłoka, do narzędzia formującego. Metoda ta z racji swojej prostoty posiada niestety wady, a mianowicie uplastycznianie tworzywa jest dość utrudnione oraz jednorodność uplastycznionego materiału jest niska. Dlatego też tę metodę uplastyczniania stosuje się stosunkowo rzadko, na przykład gdy objętość tworzywa uplastycznianego jest niska (nie przekracza 10 cm 3 ), w przypadku otrzymywania wytworów, którym nie stawia się dużych wymagań jakościowych. 33

34 Uplastycznianie tłokowe Można stosować wtedy, gdy potrzebne jest wytworzenie bardzo wysokiego ciśnienia tworzywa do około 210 MPa, do uplastyczniania niektórych mieszanek elastomerowych. Z uwagi na specyficzne właściwości cieplne i bardzo dużą wrażliwość PTFE na działanie naprężeń ścinających i ściskających oraz małą odporność na aglomerowanie podczas ruchu granulatu, do uplastyczniania politetrafluoroetylenu może być zastosowany proces wytłaczania tłokowego. Obecnie metoda uplastyczniania tłokowego stosowana jest w przypadku niektórych wtryskarek. 34

35 Uplastycznianie mieszane Częściej stosowanym przypadkiem uplastyczniania bezślimakowego jest tak zwane uplastycznianie mieszane, czyli tłokowo- ślimakowe. Rys /2. Układ uplastyczniający ślimakowo- dwutłokowy: 1,7 tłoki, 2,8 cylindry układów tłokowych, 3 ślimak, 4 cylinder układu ślimakowego, 5 zasobnik, 6 grzejniki, 9 dysza, 10 zawór rozdzielający. 35

36 Uplastycznianie mieszane W skład tego układu wchodzi układ ślimakowy wraz z dwoma układami tłokowymi. Przerabiany materiał poddaje się wstępnie uplastycznianiu przy użyciu układu ślimakowego a następnie zostaje on przemieszczony do jednego z układów tłokowych, w którym także się uplastycznia. Podczas ciągłego ruchu ślimaka, obraca się rozdzielacz i materiał przesuwa się do kolejnego układu tłokowego. Z kolei tworzywo będące w pierwszym układzie tłokowym, zostaje przy użyciu tłoka przemieszczone przez rozdzielacz oraz końcówkę do narzędzia. Opisywany układ mieszany odznacza się stosunkowo dużym natężeniem przepływu przy stosunkowo niewielkich rozmiarach i może być zaadoptowany do wytłaczania jak i wtryskiwania. 36

37 Literatura [1] Praca zbiorowa pod red. R. Sikora, Przetwórstwo tworzyw polimerowych, podstawy logiczne, formalne, i terminologiczne, WPL, Lublin, [2] R. Sikora, Przetwórstwo tworzyw wielkocząsteczkowych, WE Zofii Dobkowskiej, Warszawa, [3] R. Sikora, Techniki wytwarzania, Przetwórstwo tworzyw sztucznych, PWN, Warszawa, [4] Saechtling, Poradnik Tworzywa sztuczne, wydanie V, WNT, Warszawa, [5] L. A. Dobrzański, Podstawy nauki o materiałach i metaloznawstwo, WNT, Warszawa, [6] B. Łączyński, Przetwórstwo tworzyw sztucznych, PWSZ, Warszawa, [7] B. Łączyński, Maszyny przetwórcze tworzyw sztucznych, PWSZ, Warszawa,

38 Literatura cd.. [8] B. Łączyński, Tworzywa sztuczne i ich przetwórstwo, PWN, Warszawa, [9] I. Hyla, Tworzywa sztuczne, własności przetwórstwo zastosowanie, PWN, Warszawa, [10] J. Kamiński, Technologia tworzyw sztucznych, przetwórstwo, WPW, Warszawa, [11] A. Smorawiński, Technologia wtrysku, WNT, Warszawa, [12] A. Smorawiński, Technologia wtrysku, wydanie II, WNT, Warszawa, [13] H. Zawistowski, Wytłaczanie tworzyw sztucznych, Plastech WPiKT, Warszawa, [14] H. Zawistowski, Technologie wtryskiwania, jakość i efektywność, Plastech WPiKT, Warszawa, [15] F. Johannaber, Wtryskarki, poradnik użytkownika, wydanie I, Plastech WPiKT, Warszawa, [16] Ch. A. Harper, Handbook of Plastics Technologies, McGraw-Hill, United States, [17] D. H. Morton-Jones, Polymer processing, Chapman & Hall, London, [18] A. Brent Strong, Plastics, Materials and Processing, Second Edition, Prentice Hall, United States,

39 KONIEC 39

Przetwórstwo tworzyw sztucznych i gumy

Przetwórstwo tworzyw sztucznych i gumy Przetwórstwo tworzyw sztucznych i gumy Lab.7. Wpływ parametrów wytłaczania na właściwości mechaniczne folii rękawowej Spis treści 1. Cel ćwiczenia i zakres pracy.. 2 2. Definicje i pojęcia podstawowe 2

Bardziej szczegółowo

KONSTRUKCJA, BUDOWA i EKSPLOATACJA UKŁADÓW UPLASTYCZNIAJĄCYCH WTRYSKAREK MGR INŻ. SZYMON ZIĘBA

KONSTRUKCJA, BUDOWA i EKSPLOATACJA UKŁADÓW UPLASTYCZNIAJĄCYCH WTRYSKAREK MGR INŻ. SZYMON ZIĘBA KONSTRUKCJA, BUDOWA i EKSPLOATACJA UKŁADÓW UPLASTYCZNIAJĄCYCH WTRYSKAREK MGR INŻ. SZYMON ZIĘBA 1 SCHEMAT WTRYSKARKI ŚLIMAKOWEJ Z KOLANOWO DŹWIGOWYM SYSTEMEM ZAMYKANIA 1 siłownik hydrauliczny napędu stołu,

Bardziej szczegółowo

PL B1 (13) B1. Ośrodek Badawczo-Rozwojowy Maszyn i Urządzeń Chemicznych METALCHEM, Toruń, PL. Joachim Stasiek, Toruń, PL

PL B1 (13) B1. Ośrodek Badawczo-Rozwojowy Maszyn i Urządzeń Chemicznych METALCHEM, Toruń, PL. Joachim Stasiek, Toruń, PL R Z E C Z P O S P O L IT A PO LSK A (12)OPIS PATENTOWY (19) PL (11) 165778 (13) B1 (21) N um er zgłoszenia: 291142 U rząd Patentow y (22) D ata zgłoszenia: 19.07.1991 R zeczypospolitej Polskiej (51) IntC

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Podstawy przetwórstwa i obróbki tworzyw

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Podstawy przetwórstwa i obróbki tworzyw KARTA PRZEDMIOTU. NAZWA PRZEDMIOTU: Podstawy przetwórstwa i obróbki tworzyw. KIERUNEK: Mechanika i Budowa Maszyn 3. POZIOM STUDIÓW: Studia pierwszego stopnia 4. ROK/ SEMESTR STUDIÓW: rok studiów I, semestr

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: INŻYNIERIA WYTWARZ. II PRZETWÓRSTWO POLIMERÓW I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z metodami C2. Nabycie przez studentów praktycznych

Bardziej szczegółowo

KONSTRUKCJA, BUDOWA I EKSPLOATACJA UKŁADÓW UPLASTYCZNIAJĄCYCH WYTŁACZAREK JEDNOŚLIMAKOWYCH. Mgr inż. Szymon Zięba Politechnika Warszawska

KONSTRUKCJA, BUDOWA I EKSPLOATACJA UKŁADÓW UPLASTYCZNIAJĄCYCH WYTŁACZAREK JEDNOŚLIMAKOWYCH. Mgr inż. Szymon Zięba Politechnika Warszawska KONSTRUKCJA, BUDOWA I EKSPLOATACJA UKŁADÓW UPLASTYCZNIAJĄCYCH WYTŁACZAREK JEDNOŚLIMAKOWYCH Mgr inż. Szymon Zięba Politechnika Warszawska Rys. 1. Schemat wytłaczarki jednoślimakowej. Podział wytłaczarek

Bardziej szczegółowo

Zgłoszenie ogłoszono: 88 09 01. Opis patentowy opublikowano: 1990 08 31. Wytłaczarka do przetwórstwa tworzyw sztucznych

Zgłoszenie ogłoszono: 88 09 01. Opis patentowy opublikowano: 1990 08 31. Wytłaczarka do przetwórstwa tworzyw sztucznych POLSKA RZECZPOSPOLITA LUDOWA OPIS PATENTOWY Patent dodatkowy do patentu nr Zgłoszono: 86 12 31 (P. 263478) 150 150 Int. Cl.4 B29C 47/38 B29B 7/42 URZĄD PATENTOWY PRL Pierwszeństwo Zgłoszenie ogłoszono:

Bardziej szczegółowo

Wytłaczarki dwuślimakowe. Porównanie jedno- i dwuślimakowych układów uplastyczniających

Wytłaczarki dwuślimakowe. Porównanie jedno- i dwuślimakowych układów uplastyczniających Wybrane problemy procesu wytłaczania tworzyw polimerowych Cz. 4. Porównanie jedno- i dwuślimakowych Duża liczba rozwiązań konstrukcyjnych wytłaczarek, głównie wytłaczarek ślimakowych świadczy o złożoności

Bardziej szczegółowo

INSTYTUT INŻYNIERII MATERIAŁOWEJ

INSTYTUT INŻYNIERII MATERIAŁOWEJ Ćwiczenie: Przetwórstwo wtryskowe tworzyw termoplastycznych 1 Cel ćwiczenia Podstawowym celem ćwiczenia jest : poznanie budowy wtryskarki ślimakowej, tłokowej, działanie poszczególnych zespołów, ustalenie

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Podstawy przetwórstwa i obróbki tworzyw

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Podstawy przetwórstwa i obróbki tworzyw KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Podstawy przetwórstwa i obróbki tworzyw 2. KIERUNEK: Mechanika i Budowa Maszyn 3. POZIOM STUDIÓW: Studia pierwszego stopnia 4. ROK/ SEMESTR STUDIÓW: rok studiów II/

Bardziej szczegółowo

PL B1. INSTYTUT INŻYNIERII MATERIAŁÓW POLIMEROWYCH I BARWNIKÓW, Toruń, PL BUP 09/06. JOACHIM STASIEK, Toruń, PL

PL B1. INSTYTUT INŻYNIERII MATERIAŁÓW POLIMEROWYCH I BARWNIKÓW, Toruń, PL BUP 09/06. JOACHIM STASIEK, Toruń, PL RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 207893 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 370874 (22) Data zgłoszenia: 25.10.2004 (51) Int.Cl. B29C 47/00 (2006.01)

Bardziej szczegółowo

P L O ITECH C N H I N KA K A WR

P L O ITECH C N H I N KA K A WR POLITECHNIKA WROCŁAWSKA Wydział Mechaniczny Tworzywa sztuczne PROJEKTOWANIE ELEMENTÓW MASZYN Literatura 1) Żuchowska D.: Polimery konstrukcyjne, WNT, Warszawa 2000. 2) Żuchowska D.: Struktura i własności

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: I KARTA PRZEDMIOTU CEL PRZEDMIOTU PODSTAWY TEORETYCZNE PRZETWÓRSTWA THEORETICAL FUNDAMENTALS OF POLYMER PROCESSING Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na

Bardziej szczegółowo

Wytłaczanie tworzyw sztucznych.

Wytłaczanie tworzyw sztucznych. 1. Wstęp.. Przez pojęcie wytłaczanie rozumie się ciągły proces otrzymania wyrobów lub półwyrobów (w postaci profilów, płyt lub folii) z tworzyw polimerowych, polegający na uplastycznieniu materiału w układzie

Bardziej szczegółowo

WYTRZYMAŁOŚĆ POŁĄCZEŃ KLEJOWYCH WYKONANYCH NA BAZIE KLEJÓW EPOKSYDOWYCH MODYFIKOWANYCH MONTMORYLONITEM

WYTRZYMAŁOŚĆ POŁĄCZEŃ KLEJOWYCH WYKONANYCH NA BAZIE KLEJÓW EPOKSYDOWYCH MODYFIKOWANYCH MONTMORYLONITEM KATARZYNA BIRUK-URBAN WYTRZYMAŁOŚĆ POŁĄCZEŃ KLEJOWYCH WYKONANYCH NA BAZIE KLEJÓW EPOKSYDOWYCH MODYFIKOWANYCH MONTMORYLONITEM 1. WPROWADZENIE W ostatnich latach można zauważyć bardzo szerokie zastosowanie

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: I KARTA PRZEDMIOTU CEL PRZEDMIOTU MASZYNY I URZĄDZENIA DO PRZETWÓRSTWA MACHINERY AND EQUIPMENT FOR POLYMER PROCESSING Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy

Bardziej szczegółowo

POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII POLIMERÓW

POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII POLIMERÓW POLITECHNIKA GDAŃSKA WYDZIAŁ CHEMICZNY KATEDRA TECHNOLOGII POLIMERÓW PRZETWÓRSTWO TWORZYW SZTUCZNYCH I GUMY Lab 8. Wyznaczanie optimum wulkanizacji mieszanek kauczukowych na reometrze Monsanto oraz analiza

Bardziej szczegółowo

Politechnika Poznańska. Zakład Mechaniki Technicznej

Politechnika Poznańska. Zakład Mechaniki Technicznej Politechnika Poznańska Zakład Mechaniki Technicznej Metoda Elementów Skończonych Lab. Temat: Analiza przepływu stopionego tworzywa sztucznego przez sitko filtra tworzywa. Ocena: Czerwiec 2010 1 Spis treści:

Bardziej szczegółowo

Opis modułu kształcenia Przetwórstwo tworzyw sztucznych

Opis modułu kształcenia Przetwórstwo tworzyw sztucznych Opis modułu kształcenia Przetwórstwo tworzyw sztucznych Nazwa podyplomowych Nazwa obszaru kształcenia, w zakresie którego są prowadzone studia podyplomowe Nazwa kierunku, z którym jest związany zakres

Bardziej szczegółowo

NARZĘDZIA DO PRZETWÓRSTWA POLIMERÓW

NARZĘDZIA DO PRZETWÓRSTWA POLIMERÓW NARZĘDZIA DO PRZETWÓRSTWA POLIMERÓW STUDIA PODYPLOMOWE MATERIAŁY i TECHNOLOGIE PRZETWÓRSTWA TWORZYW SZTUCZNYCH Zakład Przetwórstwa Polimerów Politechnika Częstochowska Dr inż. Tomasz JARUGA Z a k ł a d

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Przetwórstwo tworzyw polimerowych Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU

Bardziej szczegółowo

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu )

MATERIAŁOZNAWSTWO. dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) MATERIAŁOZNAWSTWO dr hab. inż. Joanna Hucińska Katedra Inżynierii Materiałowej Pok. 128 (budynek Żelbetu ) jhucinsk@pg.gda.pl MATERIAŁOZNAWSTWO dziedzina nauki stosowanej obejmująca badania zależności

Bardziej szczegółowo

LABORATORIUM z PRZEDMIOTU TECHNOLOGIE MATERIAŁOWE. Instrukcja laboratoryjna do ćwiczenia nr 3 Technologia kształtowania wyrobów z tworzyw sztucznych

LABORATORIUM z PRZEDMIOTU TECHNOLOGIE MATERIAŁOWE. Instrukcja laboratoryjna do ćwiczenia nr 3 Technologia kształtowania wyrobów z tworzyw sztucznych LABORATORIUM z PRZEDMIOTU TECHNOLOGIE MATERIAŁOWE Instrukcja laboratoryjna do ćwiczenia nr 3 Technologia kształtowania wyrobów z tworzyw sztucznych SPIS TREŚCI 1. Cel i zakres ćwiczenia.. 2 2. Tematyka

Bardziej szczegółowo

Opracowała: dr inż. Teresa Rucińska

Opracowała: dr inż. Teresa Rucińska www.plastem.pl http://tworzywa.com.pl www.wavin.pl Opracowała: dr inż. Teresa Rucińska Tworzywa sztuczne, to materiały oparte na wielkocząsteczkowych związkach organicznych zwanych polimerami, otrzymywanych

Bardziej szczegółowo

Tworzywa sztuczne, to materiały oparte na. zwanych polimerami, otrzymywanych drogą syntezy. chemicznej, w wyniku procesów zwanych ogólnie

Tworzywa sztuczne, to materiały oparte na. zwanych polimerami, otrzymywanych drogą syntezy. chemicznej, w wyniku procesów zwanych ogólnie www.plastem.pl http://tworzywa.com.pl www.wavin.pl Opracowała: dr inż. Teresa Rucińska Tworzywa sztuczne, to materiały oparte na wielkocząsteczkowych związkach organicznych zwanych polimerami, otrzymywanych

Bardziej szczegółowo

Wytłaczarki jednoślimakowe charakterystyka układu uplastyczniającego

Wytłaczarki jednoślimakowe charakterystyka układu uplastyczniającego Wybrane problemy procesu wytłaczania tworzyw polimerowych Cz. 3 Wytłaczarki jednoślimakowe charakterystyka układu uplastyczniającego Proces wytłaczania tworzyw sztucznych jest realizowany w wytłaczarkach,

Bardziej szczegółowo

Wytwarzanie i przetwórstwo polimerów!

Wytwarzanie i przetwórstwo polimerów! Wytwarzanie i przetwórstwo polimerów! Łączenie elementów z tworzyw sztucznych, cz.2 - spawanie dr in. Michał Strankowski Katedra Technologii Polimerów Wydział Chemiczny Publikacja współfinansowana ze środków

Bardziej szczegółowo

Wytwarzanie i przetwórstwo polimerów!

Wytwarzanie i przetwórstwo polimerów! Wytwarzanie i przetwórstwo polimerów! Wytłaczanie tworzyw sztucznych dr in. Michał Strankowski Katedra Technologii Polimerów Wydział Chemiczny Publikacja współfinansowana ze środków Unii Europejskiej w

Bardziej szczegółowo

Nowe przyjazne dla Środowiska kompozyty polimerowe z wykorzystaniem surowców odnawialnych

Nowe przyjazne dla Środowiska kompozyty polimerowe z wykorzystaniem surowców odnawialnych GŁÓWNY INSTYTUT GÓRNICTWA Nowe przyjazne dla Środowiska kompozyty polimerowe z wykorzystaniem surowców odnawialnych Projekt realizowany w ramach Działania 1.3 PO IG, Poddziałania 1.3.1. Projekt współfinansowany

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

Programy komputerowe służące do modelowania procesów

Programy komputerowe służące do modelowania procesów Badania przy wtryskiwaniu część 2 Jacek Iwko, Roman Wróblewski, Ryszard Steller Badania porównawcze modelu z rzeczywistym zachowaniem wtryskarki W artykule przedstawiono weryfikację modelu komputerowego

Bardziej szczegółowo

Wytwarzanie i przetwórstwo polimerów

Wytwarzanie i przetwórstwo polimerów Wytwarzanie i przetwórstwo polimerów Prasowanie, kalandrowanie, odlewanie dr inż. Michał Strankowski Katedra Technologii Polimerów Wydział Chemiczny Publikacja współfinansowana ze środków Unii Europejskiej

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy moduł kierunkowy podstawowy Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: PROJEKTOWANIE PROCESÓW PRZETWÓRCZYCH Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Przetwórstwo tworzyw polimerowych Rodzaj zajęć: wykład, laboratorium

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 9

Dobór materiałów konstrukcyjnych cz. 9 Dobór materiałów konstrukcyjnych cz. 9 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Materiały na uszczelki Ashby M.F.:

Bardziej szczegółowo

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH

INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH Politechnika Śląska w Gliwicach INSTRUKCJA DO ĆWICZEŃ LABORATORYJNYCH BADANIE TWORZYW SZTUCZNYCH OZNACZENIE WŁASNOŚCI MECHANICZNYCH PRZY STATYCZNYM ROZCIĄGANIU

Bardziej szczegółowo

(19) PL (11) 1734S8 (13) B1 (12) OPIS PATENTOWY PL B1 B29C 47/38 B29C 47/60 RZECZPOSPOLITA POLSKA. (21) Numer zgłoszenia:

(19) PL (11) 1734S8 (13) B1 (12) OPIS PATENTOWY PL B1 B29C 47/38 B29C 47/60 RZECZPOSPOLITA POLSKA. (21) Numer zgłoszenia: RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 1734S8 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 300489 (22) Data zgłoszenia 24.09.1993 (51) IntCl6: B29C 47/38 B29C

Bardziej szczegółowo

Przetwórstwo polimerów i reologia polskim oraz angielskim) Polymer processing and rheology Jednostka oferująca przedmiot

Przetwórstwo polimerów i reologia polskim oraz angielskim) Polymer processing and rheology Jednostka oferująca przedmiot Nazwa pola Komentarz Nazwa (w języku Przetwórstwo polimerów i reologia polskim oraz angielskim) Polymer processing and rheology Jednostka oferująca przedmiot CBMiM PAN Liczba punktów ECTS 4 Sposób zaliczenia

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: ENERGETYKA Rodzaj przedmiotu: kierunkowy ogólny Rodzaj zajęć: wykład, laboratorium I KARTA PRZEDMIOTU CEL PRZEDMIOTU PRZEWODNIK PO PRZEDMIOCIE C1. Zapoznanie studentów z nowoczesnymi

Bardziej szczegółowo

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG

Technologie wytwarzania. Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Opracował Dr inż. Stanisław Rymkiewicz KIM WM PG Technologie wytwarzania Odlewanie Metalurgia proszków Otrzymywanie monokryształów Otrzymywanie materiałów superczystych Techniki

Bardziej szczegółowo

Podstawy Konstrukcji Maszyn. Wykład nr. 13 Przekładnie zębate

Podstawy Konstrukcji Maszyn. Wykład nr. 13 Przekładnie zębate Podstawy Konstrukcji Maszyn Wykład nr. 13 Przekładnie zębate 1. Podział PZ ze względu na kształt bryły na której wykonano zęby A. walcowe B. stożkowe i inne 2. Podział PZ ze względu na kształt linii zębów

Bardziej szczegółowo

LABORATORIUM REOLOGICZNE PODSTAWY TECHNOLOGII POLIMERÓW ĆWICZENIE NR 6 WYTŁACZANIE I OCENA CHARAKTERYSTYKI MIESZANKI KAUCZUKOWEJ

LABORATORIUM REOLOGICZNE PODSTAWY TECHNOLOGII POLIMERÓW ĆWICZENIE NR 6 WYTŁACZANIE I OCENA CHARAKTERYSTYKI MIESZANKI KAUCZUKOWEJ LABORATORIUM REOLOGICZNE PODSTAWY TECHNOLOGII POLIMERÓW ĆWICZENIE NR 6 WYTŁACZANIE I OCENA CHARAKTERYSTYKI MIESZANKI KAUCZUKOWEJ 1 1. Wstęp teoretyczny Wytłaczanie jest procesem ciągłego formowania mieszanek

Bardziej szczegółowo

Przetwórstwo tworzyw polimerowych Ćwiczenia laboratoryjne Część 1

Przetwórstwo tworzyw polimerowych Ćwiczenia laboratoryjne Część 1 Przetwórstwo tworzyw polimerowych Ćwiczenia laboratoryjne Część 1 Podręczniki Politechnika Lubelska Politechnika Lubelska Wydział Mechaniczny ul. Nadbystrzycka 36 20-618 LUBLIN Tomasz Garbacz Janusz W.

Bardziej szczegółowo

WŁAŚCIWOŚCI MECHANICZNE MIESZANIN PET/PC OTRZYMYWANYCH TECHNOLOGIĄ WTRYSKIWANIA Z WYKORZYSTANIEM MIESZALNIKA DYNAMICZNEGO

WŁAŚCIWOŚCI MECHANICZNE MIESZANIN PET/PC OTRZYMYWANYCH TECHNOLOGIĄ WTRYSKIWANIA Z WYKORZYSTANIEM MIESZALNIKA DYNAMICZNEGO KOMISJA BUDOWY MASZYN PAN ODDZIAŁ W POZNANIU Vol. 28 nr 1 Archiwum Technologii Maszyn i Automatyzacji 2008 MAREK SZOSTAK WŁAŚCIWOŚCI MECHANICZNE MIESZANIN OTRZYMYWANYCH TECHNOLOGIĄ WTRYSKIWANIA Z WYKORZYSTANIEM

Bardziej szczegółowo

ANALIZA NUMERYCZNA MES PROCESU WYTWARZANIA WYPRASKI Z UWZGLĘDNIENIEM PRZETWÓRCZYCH ODKSZTAŁCEŃ SKURCZOWYCH

ANALIZA NUMERYCZNA MES PROCESU WYTWARZANIA WYPRASKI Z UWZGLĘDNIENIEM PRZETWÓRCZYCH ODKSZTAŁCEŃ SKURCZOWYCH ANALIZA NUMERYCZNA MES PROCESU WYTWARZANIA WYPRASKI Z UWZGLĘDNIENIEM PRZETWÓRCZYCH ODKSZTAŁCEŃ SKURCZOWYCH stud. Michał Bachan, Koło Naukowe Solid Edge (KNSE), Wydział Mechaniczny, Akademia Techniczno

Bardziej szczegółowo

Sposób kształtowania plastycznego uzębień wewnętrznych kół zębatych metodą walcowania poprzecznego

Sposób kształtowania plastycznego uzębień wewnętrznych kół zębatych metodą walcowania poprzecznego Sposób kształtowania plastycznego uzębień wewnętrznych kół zębatych metodą walcowania poprzecznego Przedmiotem wynalazku jest sposób kształtowania plastycznego uzębień wewnętrznych kół zębatych metodą

Bardziej szczegółowo

NARZĘDZIA DO PRZETWÓRSTWA POLIMERÓW

NARZĘDZIA DO PRZETWÓRSTWA POLIMERÓW NARZĘDZIA DO PRZETWÓRSTWA POLIMERÓW STUDIA PODYPLOMOWE MATERIAŁY i TECHNOLOGIE PRZETWÓRSTWA TWORZYW SZTUCZNYCH Zakład Przetwórstwa Polimerów Politechnika Częstochowska Dr inż. Tomasz JARUGA Z a k ł a d

Bardziej szczegółowo

Wprowadzenie. - Napęd pneumatyczny. - Sterowanie pneumatyczne

Wprowadzenie. - Napęd pneumatyczny. - Sterowanie pneumatyczne Wprowadzenie Pneumatyka - dziedzina nauki i techniki zajmująca się prawami rządzącymi przepływem sprężonego powietrza; w powszechnym rozumieniu także technika napędu i sterowania pneumatycznego. Zastosowanie

Bardziej szczegółowo

PL B1. INSTYTUT INŻYNIERII MATERIAŁÓW POLIMEROWYCH I BARWNIKÓW, Toruń, PL BUP 10/13

PL B1. INSTYTUT INŻYNIERII MATERIAŁÓW POLIMEROWYCH I BARWNIKÓW, Toruń, PL BUP 10/13 PL 224176 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 224176 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 396897 (22) Data zgłoszenia: 07.11.2011 (51) Int.Cl.

Bardziej szczegółowo

TECHNOLOGIA MASZYN. Wykład dr inż. A. Kampa

TECHNOLOGIA MASZYN. Wykład dr inż. A. Kampa TECHNOLOGIA MASZYN Wykład dr inż. A. Kampa Technologia - nauka o procesach wytwarzania lub przetwarzania, półwyrobów i wyrobów. - technologia maszyn, obejmuje metody kształtowania materiałów, połączone

Bardziej szczegółowo

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 1

Wprowadzenie do Techniki. Materiały pomocnicze do projektowania z przedmiotu: Ćwiczenie nr 1 Materiały pomocnicze do projektowania z przedmiotu: Wprowadzenie do Techniki Ćwiczenie nr 1 Opracował: dr inż. Andrzej J. Zmysłowski Katedra Podstaw Systemów Technicznych Wydział Organizacji i Zarządzania

Bardziej szczegółowo

Podstawy Technik Wytwarzania PTW - laboratorium. Ćwiczenie 1. Instrukcja laboratoryjna

Podstawy Technik Wytwarzania PTW - laboratorium. Ćwiczenie 1. Instrukcja laboratoryjna PTW - laboratorium Ćwiczenie 1 Formowanie wtryskowe termoplastycznych tworzyw sztucznych Instrukcja laboratoryjna Człowiek - najlepsza inwestycja Projekt współfinansowany przez Unię Europejską w ramach

Bardziej szczegółowo

PRACA DYPLOMOWA W BUDOWIE WKŁADEK FORMUJĄCYCH. Tomasz Kamiński. Temat: ŻYWICE EPOKSYDOWE. dr inż. Leszek Nakonieczny

PRACA DYPLOMOWA W BUDOWIE WKŁADEK FORMUJĄCYCH. Tomasz Kamiński. Temat: ŻYWICE EPOKSYDOWE. dr inż. Leszek Nakonieczny Politechnika Wrocławska - Wydział Mechaniczny Instytut Technologii Maszyn i Automatyzacji PRACA DYPLOMOWA Tomasz Kamiński Temat: ŻYWICE EPOKSYDOWE W BUDOWIE WKŁADEK FORMUJĄCYCH Promotor: dr inż. Leszek

Bardziej szczegółowo

Temat 1 (2 godziny): Próba statyczna rozciągania metali

Temat 1 (2 godziny): Próba statyczna rozciągania metali Temat 1 (2 godziny): Próba statyczna rozciągania metali 1.1. Wstęp Próba statyczna rozciągania jest podstawowym rodzajem badania metali, mających zastosowanie w technice i pozwala na określenie własności

Bardziej szczegółowo

Lekcja 6. Rodzaje sprężarek. Parametry siłowników

Lekcja 6. Rodzaje sprężarek. Parametry siłowników Lekcja 6. Rodzaje sprężarek. Parametry siłowników Sprężarki wyporowe (tłokowe) Sprężarka, w której sprężanie odbywa sięcyklicznie w zarżniętej przestrzeni zwanej komorąsprężania. Na skutek działania napędu

Bardziej szczegółowo

Plastech 2013, Serock 11-12.04.2013r. Optymalna produkcja na wtryskarkach

Plastech 2013, Serock 11-12.04.2013r. Optymalna produkcja na wtryskarkach Plastech 2013, Serock 11-12.04.2013r Optymalna produkcja na wtryskarkach Czynniki wpływające na jakość wyprasek i efektywność produkcji Wiedza i umiejętności System jakości wtryskarka I peryferia wyrób

Bardziej szczegółowo

Struktura materiałów. Zakres tematyczny. Politechnika Rzeszowska - Materiały lotnicze - I LD / dr inż. Maciej Motyka.

Struktura materiałów. Zakres tematyczny. Politechnika Rzeszowska - Materiały lotnicze - I LD / dr inż. Maciej Motyka. STRUKTURA, KLASYFIKACJA I OGÓLNA CHARAKTERYSTYKA MATERIAŁÓW INŻYNIERSKICH Zakres tematyczny y 1 Struktura materiałów MATERIAŁAMI (inżynierskimi) nazywa się skondensowane (stałe) substancje, których właściwości

Bardziej szczegółowo

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 20/14. TOMASZ JACHOWICZ, Lubin, PL JANUSZ W. SIKORA, Dys, PL

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 20/14. TOMASZ JACHOWICZ, Lubin, PL JANUSZ W. SIKORA, Dys, PL PL 220496 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 220496 (13) B1 (21) Numer zgłoszenia: 403245 (51) Int.Cl. B29B 9/00 (2006.01) B29C 47/12 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

Teoria a praktyka. Poradnik przetwórcy tworzyw sztucznych. Komputerowa symulacja procesu uplastyczniania. polimerów podczas wtryskiwania to nie

Teoria a praktyka. Poradnik przetwórcy tworzyw sztucznych. Komputerowa symulacja procesu uplastyczniania. polimerów podczas wtryskiwania to nie Komputerowa symulacja procesu uplastyczniania polimerów podczas wtryskiwania Cz. 2 Teoria a praktyka Opracowanie modelu symulacyjnego procesu uplastyczniania polimerów podczas wtryskiwania to nie wszystko.

Bardziej szczegółowo

RóŜnica temperatur wynosi 20 st.c. Ile wynosi ta róŝnica wyraŝona w K (st. Kelwina)? A. 273 B. -20 C. 293 D. 20

RóŜnica temperatur wynosi 20 st.c. Ile wynosi ta róŝnica wyraŝona w K (st. Kelwina)? A. 273 B. -20 C. 293 D. 20 RóŜnica temperatur wynosi 20 st.c. Ile wynosi ta róŝnica wyraŝona w K (st. Kelwina)? A. 273 B. -20 C. 293 D. 20 Czy racjonalne jest ocenianie właściwości uŝytkowych materiałów przez badania przy obciąŝeniu

Bardziej szczegółowo

PL 216311 B1. Sposób kształtowania plastycznego uzębień wewnętrznych kół zębatych metodą walcowania poprzecznego. POLITECHNIKA LUBELSKA, Lublin, PL

PL 216311 B1. Sposób kształtowania plastycznego uzębień wewnętrznych kół zębatych metodą walcowania poprzecznego. POLITECHNIKA LUBELSKA, Lublin, PL PL 216311 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 216311 (13) B1 (21) Numer zgłoszenia: 392273 (51) Int.Cl. B23P 15/14 (2006.01) B21D 53/28 (2006.01) Urząd Patentowy Rzeczypospolitej

Bardziej szczegółowo

LABORATORIUM NAUKI O MATERIAŁACH

LABORATORIUM NAUKI O MATERIAŁACH Imię i Nazwisko Grupa dziekańska Indeks Ocena (kol.wejściowe) Ocena (sprawozdanie)........................................................... Ćwiczenie: MISW2 Podpis prowadzącego Politechnika Łódzka Wydział

Bardziej szczegółowo

Wytłaczanie z rozdmuchiwaniem do formy

Wytłaczanie z rozdmuchiwaniem do formy Wytłaczanie z rozdmuchiwaniem do formy Schemat procesu wytłaczania z rozdmuchiwaniem butelek z tworzyw sztucznych bez komory pośredniej A - wytłaczanie rury za pomocą głowicy krzyżowej, B - zamknięcie

Bardziej szczegółowo

KARTA INFORMACYJNA. Linia do wytłaczania profili z WPC. Zamak Mercator SJZ-65/132-DXT240-XQY240. Warszawa, dnia r.

KARTA INFORMACYJNA. Linia do wytłaczania profili z WPC. Zamak Mercator SJZ-65/132-DXT240-XQY240. Warszawa, dnia r. OPINIA TECHNICZNA NR 2313/BK/03/2017 KARTA INFORMACYJNA Linia do wytłaczania profili z WPC Zamak Mercator SJZ-65/132-DXT240-XQY240 Wykonał: mgr inż. Bartłomiej Kosma Certyfikowany Rzeczoznawca Lista Min.

Bardziej szczegółowo

PLASTINVENT, Ossa Hotel, 05/10/2012

PLASTINVENT, Ossa Hotel, 05/10/2012 PLASTINVENT, Ossa Hotel, 05/10/2012 Niekonwencjonalne metody wtryskiwania Przemysław POSTAWA, dr inż. Politechnika Częstochowska Zakład Przetwórstwa Polimerów Instytut Technologii Mechanicznych 1 3 2 5

Bardziej szczegółowo

UJEDNORODNIANIE TWORZYWA W PROCESIE WYTŁACZANIA. Emil Sasimowski

UJEDNORODNIANIE TWORZYWA W PROCESIE WYTŁACZANIA. Emil Sasimowski Teka Kom. ud. Ekspl. Masz. Elektrotech. ud. OL PN, 2008, 159 164 UJEDNORODNINIE TWORZYW W PROCESIE WYTŁCZNI Emil Sasimowski Katedra Procesów Polimerowych, Politechnika Lubelska, ul. Nadbystrzycka 36, 20-618

Bardziej szczegółowo

(12) OPIS PATENTOWY (19)PL (11) (13) B1

(12) OPIS PATENTOWY (19)PL (11) (13) B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19)PL (11)160312 (13) B1 (21) Numer zgłoszenia: 280556 (51) IntCl5: Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia: 04.07.1989 F16H 57/12 (54)

Bardziej szczegółowo

PL B1. Marco Systemanalyse und Entwicklung GmbH, Dachau, DE , DE, BUP 12/08. MARTIN REUTER, Dachau, DE

PL B1. Marco Systemanalyse und Entwicklung GmbH, Dachau, DE , DE, BUP 12/08. MARTIN REUTER, Dachau, DE PL 212995 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 212995 (13) B1 (21) Numer zgłoszenia: 383948 (51) Int.Cl. E21D 23/16 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: 1. Ma podstawową wiedzę w zakresie podstaw chemii oraz fizyki.

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: 1. Ma podstawową wiedzę w zakresie podstaw chemii oraz fizyki. KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Materiały polimerowe 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: pierwszego stopnia 4. ROK/ SEMESTR STUDIÓW: rok I / semestr 2 5. LICZBA PUNKTÓW ECTS:

Bardziej szczegółowo

MATERIAŁOZNAWSTWO. Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204

MATERIAŁOZNAWSTWO. Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204 MATERIAŁOZNAWSTWO Prof. dr hab. inż. Andrzej Zieliński Katedra Inżynierii Materiałowej Pok. 204 PODRĘCZNIKI Leszek A. Dobrzański: Podstawy nauki o materiałach i metaloznawstwo K. Prowans: Materiałoznawstwo

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: KOMPUTEROWE WSPOMAGANIE PROCESÓW PRZETWÓRSTWA Kierunek: Mechanika i Budowa Maszyn Rodzaj przedmiotu: obowiązkowy na specjalności: Przetwórstwo tworzyw polimerowych Rodzaj zajęć: wykład,

Bardziej szczegółowo

Ich właściwości zmieniające się w szerokim zakresie w zależności od składu chemicznego (rys) i technologii wytwarzania wyrobu.

Ich właściwości zmieniające się w szerokim zakresie w zależności od składu chemicznego (rys) i technologii wytwarzania wyrobu. STOPY ŻELAZA Ich właściwości zmieniające się w szerokim zakresie w zależności od składu chemicznego (rys) i technologii wytwarzania wyrobu. Ze względu na bardzo dużą ilość stopów żelaza z węglem dla ułatwienia

Bardziej szczegółowo

Nauka o Materiałach dr hab. inż. Mirosław Bućko, prof. AGH B-8, p. 1.13, tel

Nauka o Materiałach dr hab. inż. Mirosław Bućko, prof. AGH B-8, p. 1.13, tel Nauka o Materiałach dr hab. inż. Mirosław Bućko, prof. AGH B-8, p. 1.13, tel. 12 617 3572 www.kcimo.pl, bucko@agh.edu.pl Plan wykładów Monokryształy, Materiały amorficzne i szkła, Polikryształy budowa,

Bardziej szczegółowo

Kaolin stosowany jest, obok kredy, talku czy krzemionki

Kaolin stosowany jest, obok kredy, talku czy krzemionki Wielokrotne wytłaczanie kompozytu LDPE/kaolin Adriana Brożyna, Jacek Iwko, Rafał Mrzygłód W pracy zaprezentowano wyniki pomiarów właściwości mechanicznych i reologicznych oraz analizę energetyczną procesu

Bardziej szczegółowo

Tworzywa sztuczne, to materiały oparte na. wielkocząsteczkowych związkach organicznych. zwanych polimerami, otrzymywanych drogą syntezy

Tworzywa sztuczne, to materiały oparte na. wielkocząsteczkowych związkach organicznych. zwanych polimerami, otrzymywanych drogą syntezy Tworzywa sztuczne, to materiały oparte na wielkocząsteczkowych związkach organicznych www.plastem.pl http://tworzywa.com.pl www.wavin.pl zwanych polimerami, otrzymywanych drogą syntezy chemicznej, w wyniku

Bardziej szczegółowo

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 06/15

PL B1. POLITECHNIKA LUBELSKA, Lublin, PL BUP 06/15 PL 221264 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 221264 (13) B1 (21) Numer zgłoszenia: 405298 (51) Int.Cl. B23F 1/08 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej (22) Data zgłoszenia:

Bardziej szczegółowo

Temat: Układy pneumatyczno - hydrauliczne

Temat: Układy pneumatyczno - hydrauliczne Copyright by: Krzysztof Serafin. Brzesko 2007 Na podstawie skryptu 1220 AGH Temat: Układy pneumatyczno - hydrauliczne 1. Siłownik z zabudowanym blokiem sterującym Ten ruch wahadłowy tłoka siłownika jest

Bardziej szczegółowo

GŁOWICE WYTŁACZARSKIE DO PROFILI MGR INŻ. SZYMON ZIĘBA

GŁOWICE WYTŁACZARSKIE DO PROFILI MGR INŻ. SZYMON ZIĘBA GŁOWICE WYTŁACZARSKIE DO PROFILI MGR INŻ. SZYMON ZIĘBA KONSTRUKCJA GŁOWIC DO PROFILI Konstrukcja profili: profile rurowe stała grubość ścianki i stały promień, profile komorowe, profile komorowe z otwartymi

Bardziej szczegółowo

PROTECT 320 Karta Techniczna LT Karta techniczna PROTECT 320 Podkład akrylowy WŁAŚCIWOŚCI

PROTECT 320 Karta Techniczna LT Karta techniczna PROTECT 320 Podkład akrylowy WŁAŚCIWOŚCI Karta techniczna Podkład akrylowy WŁAŚCIWOŚCI PODKŁAD AKRYLOWY szybki podkład wypełniający na bazie żywic akrylowych. Charakteryzuje się znacznie mniejszą tendencją do zaklejania papieru, szczególnie przy

Bardziej szczegółowo

Dobór materiałów konstrukcyjnych cz. 12

Dobór materiałów konstrukcyjnych cz. 12 Dobór materiałów konstrukcyjnych cz. 12 dr inż. Hanna Smoleńska Katedra Inżynierii Materiałowej i Spajania Wydział Mechaniczny, Politechnika Gdańska Materiały edukacyjne Przewodność i dyfuzyjność cieplna

Bardziej szczegółowo

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH

PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Mechanika i wytrzymałość materiałów - instrukcja do ćwiczenia laboratoryjnego: Wprowadzenie PEŁZANIE WYBRANYCH ELEMENTÓW KONSTRUKCYJNYCH Opracowała: mgr inż. Magdalena Bartkowiak-Jowsa Reologia jest nauką,

Bardziej szczegółowo

Kompandowanie mieszanek gumowych na wytłaczarkach dwuślimakowych współbieżnych

Kompandowanie mieszanek gumowych na wytłaczarkach dwuślimakowych współbieżnych Kompandowanie mieszanek gumowych na wytłaczarkach dwuślimakowych współbieżnych IX Kongres Gumy i Kauczuków w Polsce 23.06.2016 Warszawa Dr. Alessandro GALLO 2/29 Spis treści 1. Prezentacja firmy MARIS

Bardziej szczegółowo

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 08/ WUP 09/17

PL B1. AKADEMIA GÓRNICZO-HUTNICZA IM. STANISŁAWA STASZICA W KRAKOWIE, Kraków, PL BUP 08/ WUP 09/17 PL 226776 B1 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 226776 (13) B1 (21) Numer zgłoszenia: 409761 (51) Int.Cl. F16F 1/02 (2006.01) F16F 1/46 (2006.01) Urząd Patentowy Rzeczypospolitej Polskiej

Bardziej szczegółowo

WPŁYW CECH KONSTRUKCYJNYCH ŚLIMAKÓW NA DEGRADACJĘ TWORZYWA W PROCESIE WYTŁACZANIA DWUŚLIMAKOWEGO. Andrzej Stasiek

WPŁYW CECH KONSTRUKCYJNYCH ŚLIMAKÓW NA DEGRADACJĘ TWORZYWA W PROCESIE WYTŁACZANIA DWUŚLIMAKOWEGO. Andrzej Stasiek Teka Kom. Bud. Ekspl. Masz. Elektrotech. Bud. OL PAN, 2008, 171 175 WPŁYW CECH KONSTRUKCYJNYCH ŚLIMAKÓW NA DEGRADACJĘ TWORZYWA W PROCESIE WYTŁACZANIA DWUŚLIMAKOWEGO Andrzej Stasiek Instytut Inżynierii

Bardziej szczegółowo

Temat ćwiczenia. Pomiary otworów na przykładzie tulei cylindrowej

Temat ćwiczenia. Pomiary otworów na przykładzie tulei cylindrowej POLITECHNIKA ŚLĄSKA W YDZIAŁ TRANSPORTU Temat ćwiczenia Pomiary otworów na przykładzie tulei cylindrowej I Cel ćwiczenia Zapoznanie się z metodami pomiaru otworów na przykładzie pomiaru zuŝycia gładzi

Bardziej szczegółowo

Poliamid (Ertalon, Tarnamid)

Poliamid (Ertalon, Tarnamid) Poliamid (Ertalon, Tarnamid) POLIAMID WYTŁACZANY PA6-E Pół krystaliczny, niemodyfikowany polimer, który jest bardzo termoplastyczny to poliamid wytłaczany PA6-E (poliamid ekstrudowany PA6). Bardzo łatwo

Bardziej szczegółowo

Dążąc do optimum. Poradnik przetwórcy tworzyw sztucznych. polimerów podczas wtryskiwania Cz. 1

Dążąc do optimum. Poradnik przetwórcy tworzyw sztucznych. polimerów podczas wtryskiwania Cz. 1 Do podstawowych zadań przetwórstwa należy nie tylko właściwe przygotowanie kompozycji polimerowych oraz wytworzenie z nich wyrobów użytkowych o pożądanych cechach eksploatacyjnych, lecz także wykonanie

Bardziej szczegółowo

Rok akademicki: 2016/2017 Kod: CIM s Punkty ECTS: 2. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2016/2017 Kod: CIM s Punkty ECTS: 2. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Technologia Rok akademicki: 2016/2017 Kod: CIM-1-707-s Punkty ECTS: 2 Wydział: Inżynierii Materiałowej i Ceramiki Kierunek: Inżynieria Materiałowa Specjalność: - Poziom studiów: Studia I

Bardziej szczegółowo

Oddziaływanie wirnika

Oddziaływanie wirnika Oddziaływanie wirnika W każdej maszynie prądu stałego, pracującej jako prądnica lub silnik, może wystąpić taki szczególny stan pracy, że prąd wirnika jest równy zeru. Jedynym przepływem jest wówczas przepływ

Bardziej szczegółowo

BUDOWA I TESTOWANIE UKŁADÓW ELEKTROPNEUMATYKI

BUDOWA I TESTOWANIE UKŁADÓW ELEKTROPNEUMATYKI INSTYTUT OBRABIAREK I TECHNOLOGII BUDOWY MASZYN POLITECHNIKI ŁÓDZKIEJ ĆWICZENIE NR P-3 BUDOWA I TESTOWANIE UKŁADÓW ELEKTROPNEUMATYKI Koncepcja i opracowanie: dr hab. inż. Witold Pawłowski dr inż. Michał

Bardziej szczegółowo

PL B1. INSTYTUT CHEMII PRZEMYSŁOWEJ IM. PROF. IGNACEGO MOŚCICKIEGO, Warszawa, PL BUP 10/10

PL B1. INSTYTUT CHEMII PRZEMYSŁOWEJ IM. PROF. IGNACEGO MOŚCICKIEGO, Warszawa, PL BUP 10/10 RZECZPOSPOLITA POLSKA (12) OPIS PATENTOWY (19) PL (11) 211051 (13) B1 Urząd Patentowy Rzeczypospolitej Polskiej (21) Numer zgłoszenia: 386455 (22) Data zgłoszenia: 05.11.2008 (51) Int.Cl. C08L 23/00 (2006.01)

Bardziej szczegółowo

Karta Techniczna Spectral UNDER 385 Dwuskładnikowy podkład epoksydowy PRODUKTY POWIĄZANE

Karta Techniczna Spectral UNDER 385 Dwuskładnikowy podkład epoksydowy PRODUKTY POWIĄZANE UNDER 385 Dwuskładnikowy podkład epoksydowy UNDER 385 H 6985 PLAST 825 EXTRA 745 PRODUKTY POWIĄZANE Podkład epoksydowy Utwardzacz Dodatek zwiększający przyczepność do tworzyw sztucznych Barwnik do podkładu

Bardziej szczegółowo

ności od kinematyki zazębie

ności od kinematyki zazębie Klasyfikacja przekładni zębatych z w zależno ności od kinematyki zazębie bień PRZEKŁADNIE ZĘBATE CZOŁOWE ŚRUBOWE WALCOWE (równoległe) STOŻKOWE (kątowe) HIPERBOIDALNE ŚLIMAKOWE o zebach prostych o zębach

Bardziej szczegółowo

ężyste) Połą łączenia podatne (spręż Charakterystyka elementów podatnych Charakterystyka sprężyn Klasyfikacja sprężyn Elementy gumowe

ężyste) Połą łączenia podatne (spręż Charakterystyka elementów podatnych Charakterystyka sprężyn Klasyfikacja sprężyn Elementy gumowe Połą łączenia podatne (spręż ężyste) Charakterystyka elementów podatnych Charakterystyka sprężyn Klasyfikacja sprężyn Elementy gumowe Połączenia podatne części maszynowych dokonuje się za pomocą łączników

Bardziej szczegółowo

(1) (13) B3 (12)OPIS PATENTOWY (19) PL PL B (54) Hydrauliczna maszyna robocza z obrotowym tłokiem

(1) (13) B3 (12)OPIS PATENTOWY (19) PL PL B (54) Hydrauliczna maszyna robocza z obrotowym tłokiem R Z E C Z PO SPO L IT A POLSKA U rząd Patentowy Rzeczypospolitej Polskiej (12)OPIS PATENTOWY (19) PL (21) Numer zgłoszenia: 306609 (22) Data zgłoszenia: 30.12.1994 (61) Patent dodatkowy do patentu: 168490

Bardziej szczegółowo

UPLASTYCZNIANIE W PROCESACH PRZETWÓRSTWA TWORZYW POLIMEROWYCH MELTING IN POLYMER PROCESSING

UPLASTYCZNIANIE W PROCESACH PRZETWÓRSTWA TWORZYW POLIMEROWYCH MELTING IN POLYMER PROCESSING KRZYSZTOF WILCZYŃSKI, ADRIAN LEWANDOWSKI, KRZYSZTOF J. WILCZYŃSKI * UPLASTYCZNIANIE W PROCESACH PRZETWÓRSTWA TWORZYW POLIMEROWYCH MELTING IN POLYMER PROCESSING S t r e s z c z e n i e A b s t r a c t Przedstawiono

Bardziej szczegółowo

Rok akademicki: 2015/2016 Kod: RBM-2-406-KW-n Punkty ECTS: 2. Poziom studiów: Studia II stopnia Forma i tryb studiów: Niestacjonarne

Rok akademicki: 2015/2016 Kod: RBM-2-406-KW-n Punkty ECTS: 2. Poziom studiów: Studia II stopnia Forma i tryb studiów: Niestacjonarne Nazwa modułu: Technologie i urządzenia przetwórstwa tworzyw sztucznych Rok akademicki: 2015/2016 Kod: RBM-2-406-KW-n Punkty ECTS: 2 Wydział: Inżynierii Mechanicznej i Robotyki Kierunek: Mechanika i Budowa

Bardziej szczegółowo

Instytut Politechniczny Zakład Inżynierii Mechanicznej i Transportu. Małgorzata Kastelik, mgr (mkastelik@pwsz.pila.pl)

Instytut Politechniczny Zakład Inżynierii Mechanicznej i Transportu. Małgorzata Kastelik, mgr (mkastelik@pwsz.pila.pl) Załącznik nr 1 do PROCEDURY 1.11. WYKONANIE YLABUU DO PRZEDMIOTU UJĘTEGO W PROGRAMIE KZTAŁCENIA w Państwowej Wyższej zkole Zawodowej im. tanisława taszica w Pile Kod przedmiotu: PLPILA02-IPMIBM-I-5d6-2012IP-

Bardziej szczegółowo

Tomasz P. Olejnik, Michał Głogowski Politechnika Łódzka

Tomasz P. Olejnik, Michał Głogowski Politechnika Łódzka Tomasz P. Olejnik, Michał Głogowski Politechnika Łódzka Agenda Wprowadzenie do problemu gospodarki energetycznej Teza Alternatywne (unikatowe) podejście Opis rozwiązania Postęp techniczny w przemyśle cukrowniczym,

Bardziej szczegółowo

Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji

Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Obieg Ackeret Kellera i lewobieżny obieg Philipsa (Stirlinga) podstawy teoretyczne i techniczne możliwości realizacji Monika Litwińska Inżynieria Mechaniczno-Medyczna GDAŃSKA 2012 1. Obieg termodynamiczny

Bardziej szczegółowo