Daniel Shechtman (ur. 1941, Tel Awiw) Nobel z chemii 2011

Wielkość: px
Rozpocząć pokaz od strony:

Download "Daniel Shechtman (ur. 1941, Tel Awiw) Nobel z chemii 2011"

Transkrypt

1 O KWAZIKRYSZTAŁACH ORAZ O ICH ODKRYWCY NIBY NAUKOWCU I NOBLIŚCIE Daniel Shechtman (ur. 1941, Tel Awiw) Nobel z chemii 2011 Nowy typ uporządkowania przestrzennego atomów w ciałach stałych Włodzimierz Salejda Instytut Fizyki PWr XV DFN Wrocław, 25 września 2012

2 Od Wielkiego Wybuchu do Fizyki Fazy Skondensowanej (Fizyki Ciała a Stałego) czyli Z CZEGO ZBUDOWANY JEST WSZECHŚWIAT? WIAT?

3 Wszechświat podstawowe dane Wiek (szacowany czas istnienia): (13, ) mld lat 4, sekund (450 mln mld sekund) czas Ŝycia 70 latka to sekund (2 mld sekund) Promień 46 mld lat świetlnych 26 4,4 10 metrów

4 Z czego zbudowany jest Wszechświat? Z cząstek i energii (pól, materii) Zawiera gwiazd

5 Z czego zbudowana jest materia zwykła 5% materii Wszechświat? Cząstki struktury i cząstki pośredniczące

6 Co jest zbudowane z leptonów i kwarków? Atomy, pierwiastki, molekuły, wirusy, bakterie, gazy, ciecze, ciała stałe

7 Budowa atomu

8 Jak atomy, jony, molekuły zapełniają przestrzeń? Jak atomy, jony, molekuły są ułoŝone w przestrzeni w gazach, cieczach i ciałach stałych? Jak doświadczalnie, za pomocą jakich narzędzi wyznaczyć połoŝenia atomów, jonów, molekuł w gazach, cieczach i ciałach stałych? Jak zobaczyć niewidoczne atomy, jony, molekuły? Jak obejść zjawisko dyfrakcji światła?

9 O KRYSTALOGRAFII I DYFRAKTOGRAMACH

10 Jakie są odległości międzyatomowe w ciele stałym? Jeden metr sześcienny Cu ma masę 8920 kg. -25 Jeden atom miedzi ma masę 10 kg. W jednym metrze sześciennym jest więc ~9 10 atomów. Na jeden atom przypada objętość ( ) ~ 10 m. Zakładając, Ŝe kaŝdy atom miedzi znajduje się w środku sześcianu o boku a, wyznaczamy a 3 ο m ~ 2 10 = 0,2nm=2A

11 Dlaczego nie widzimy atomów w ciele stałym? Rozmiar liniowy atomu jest rzędu 0,1nm, odległości między atomami kilka razy większe, długość fal świetlnych 400 nm do 700 nm, co uniemoŝliwia ze względu na dyfrakcję światła bezpośrednie obserwowanie atomów

12 Jak badać przestrzenny rozkład atomów w ciele stałym? Jakich uŝyć narzędzi i metod? Metody, narzędzia zaproponowane zostały w drugiej dekadzie XX, 100 lat temu.

13 Odkrywcy, prekursorzy badań strukturalnych kryształów za pomocą promieni X, załoŝyciele krystalografii i rentgenografii strukturalnej Max von Laue, odkrywca metody wykorzystującej promieniowanie rentgenowskie do badań struktur krystalicznych (lauegramy William Lawrence Bragg), uzasadnienie nagrody Nobla w 1914 r. "For his discovery of the diffraction of X-rays by crystals, an important step in the development of X-ray spectroscopy William Henry Bragg, ojciec Uzasadnienie nagrody Nobla w 1915 r. "For their services in the analysis of crystal structure by means of X-rays, an important step in the development of X-ray crystallography William Lawrence Bragg, syn

14 Jakich uŝyć metod i środków? Metody i narzędzia zaproponowane zostały w drugiej dekadzie XX, 100 lat temu, czego wynikiem jest krystalografia. Analiza obrazów dyfrakcyjnych otrzymywanych za pomocą: promieni X, promieniowania synchrotronowego (rentgenografia strukturalna), fal materii: elektronów (elektronografia strukturalna), neutronów (neutronografia strukturalna).

15

16 Krystalografia 100 lat badań Krystalografia, najwaŝniejsze osiągnięcia 1912: Max von Laue pierwsze doświadczenie ugięcia promieniowania X na krysztale (Nobel 1914) 1913: William H. Bragg i jego syn William L. Bragg rozwiązują struktury kilku minerałów (Nobel 1915) 1934: Arthur Lindo Patterson wyprowadza nazwaną od jego nazwiska funkcję Pattersona 1949: Dorothy Hodgkin rozwiązuje strukturę penicyliny; w 1961 strukturę witaminy B12 (Nobel 1964) 1951: Linus Pauling na podstawie obserwacji krystalograficznych i właściwości wiązań chemicznych postuluje motywy alfa-helisy i beta-kartki, jako głównych motywów w białkach (Nagroda Nobla 1954) 1953: James Watson i Francis Crick, wykorzystując wyniki pracy Rosalind Franklin, która sporządziła dokładny rentgenogram sodowej soli DNA, wyjaśniają strukturę DNA (Nobel 1962) 1956: Herbert A. Hauptman i Jerome Karle udoskonalają badanie kryształów niecentrosymetrycznych (Nobel 1985) 1958: John Kendrew rozwiązuje strukturę mioglobiny pierwsze białko rozwiązane metodami krystalografii 1959: Max Perutz rozwiązuje za pomocą krystalografii strukturę hemoglobiny (Nobel 1962) 1984: Dan Shechtman odkrywa kwazikryształy w błyskawicznie schładzanym stopie glinu i manganu (Nobel z chemii 2011) Liczba nagród noblowskich 10

17 Co jest badane? Gips, uporządkowania dalekiego zasięgu CaSO4 2H2O Monokryształ kwarcu SiO2 Polikrystaliczny kwarc, uporządkowanie lokalne

18 Co jest badane? Strzegomskie monokryształy kwarcu dymnego, SiO2

19 Co jest badane? Korund Al2O3, szafir, rubin

20 Co jest badane? Kryształy sfalerytu

21 Jak otrzymuje się dyfraktogramy?

22 Jak otrzymuje się dyfraktogramy?

23 Jak otrzymuje się dyfraktogramy?

24 Schemat stanowiska pomiarowego, dyfraktogramy

25 Przykładowe dyfraktogramy (Be3Al2(SiO3)6Fe,Cr,Mn,V,Cs)

26 Przykładowe dyfraktogramy kryształu NaCl

27 Lauegramy Beryl, oś 2-krotna Woda Beryl, dowolna orientacja ZnS, sfaleryt, oś 4-krotna NaCl, oś 4-krotna

28 Jak powstają dyfraktogramy i dlaczego?

29 O FIZYCE CIAŁA STAŁEGO

30 Atomy i stany skupienia Ruch cieplny atomów, molekuł Ciała stałe: drgania atomów, molekuł wokół połoŝeń równowagi

31 Jak atomy wypełniają przestrzeń?

32

33

34

35 Przykłady komórek elementarnych Sfaleryt, ZnS CsCl

36 Jak atomy sodu i chloru wypełniają przestrzeń w soli kamiennej? Sól kuchenna, NaCl

37 PARADYGMATY (DOGMATY) KRYSTALOGRAFII

38 Podstawy, paradygmaty krystalografii klasycznej; wnioski ugruntowane, zweryfikowane doświadczalnie przez 70 lat badań od 1912 r. do 1982 r.

39 Translacyjna niezmienniczość, czyli okresowość/periodyczność rozkładu przestrzennego Symetrie obrotowe (na przykładzie parkietażu/posadzki)

40 Paradygmat/kanon krystalografii klasycznej: Kryształy mogą wykazywać określone rodzaje osi symetrii kompatybilne z translacyjną niezmienniczością!!! Są to osie: 1., 2., 3., 4. i 6. krotna/rzędu

41 ODKRYCIE KWAZIKRYSZTAŁÓW

42 Autokomentarz/wspomnienia Dana Shechtmana, ze stażu w National Bureau of Standards, USA (Narodowe Biuro Standardów, ) obecnie National Institute of Standards and Technology (Narodowy Instytut Standardów i Technologii) Wywiad z Danielem Shechtmanem na YOU TUBE

43 Metallic Phase with Long-Range Orientational Order and No Translational Symmetry, D. Shechtman, I. Blech, D. Gratiasand J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984)

44

45 D. Shechtman badał elektronogramy dyfraktogramy będące obrazem dyfrakcji elektronów (fal materii) o niskiej energii metoda polega na bombardowaniu skolimowaną wiązką elektronów o energii ( ev) powierzchni i obserwacji dyfrakcji elektronów na ekranie fluorescencyjnym.

46 Lauegramy Beryl, oś 2-krotna Beryl, dowolna orientacja Faza ikosaedryczna, oś 5-krotna ZnS, sfaleryt, oś 4-krotna NaCl, oś 4-krotna

47 Diffraction Patterns of Quasicrystals (2/2) - Icosohedral quasicrystal # Źródło: lassp.cornell.edu#science #materials #diffraction #pattern #crystollograp HgMgZn

48 OPONENCI

49

50 Linus Pauling ( ) amerykański fizyk i chemik. Dwukrotny laureat Nagrody Nobla: 1954 w dziedzinie chemii za badania fundamentalnych właściwości wiązań chemicznych i ich zastosowanie do poznania struktur chemicznych 1962 pokojowa nagroda Nobla za wkład w kampanię przeciwko próbom z bronią jądrową, która przyczyniła się do zaprzestania przez USA i ZSRR przeprowadzania próbnych wybuchów jądrowych w atmosferze.

51 KRYSTALOGRAFIA WSPÓŁCZESNA

52 Stara i nowa definicja kryształu Międzynarodowa Unia Krystalografii Kryształem nazywamy fizycznie i chemicznie jednorodne i anizotropowe ciało stałe o prawidłowo (okresowo) powtarzającym się w trzech wymiarach rozmieszczeniu atomów, jonów lub cząsteczek, czyli ciało wykazujące określony tzw. translacyjny porządek dalekiego zasięgu (1956). Kryształem nazywamy ciało stałe dające dyskretny (nieciągły) obraz dyfrakcyjny (1991) Crystal: Any solid having an essentially discrete diffraction diagram To nie jest kryształ

53 International Crystallographic Union, w kwietniu 1991 r. zadeklarowała, Ŝe:

54 Kwazikryształy podstawowe właściwości Nieokresowe uporządkowanie dalekiego zasięgu atomów (ostre piki Bragga) Niekrystalograficzne symetrie obrotowe (5, 8, 12) niekompatybilne z okresowością

55 NOWA KLASYFIKACJA CIAŁ STAŁYCH

56

57 Stara krystalografia Początek rewolucji w krystalografii Krystalografia współczesna

58 SYMETRIE DYFRAKTOGRAMÓW SHECHTMANA

59 Metallic Phase with Long-Range Orientational Order and No Translational Symmetry, D. Shechtman, I. Blech, D. Gratiasand J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984)

60 Elektronogramykwaziperiodycznegostopu metalicznego Al6 Mn Metallic Phase with Long-Range Orientational Order and No Translational Symmetry, D. Shechtman, I. Blech, D. Gratiasand J.W. Cahn, Phys. Rev. Lett. 53, 1951 (1984)

61 BRYŁY PLATOŃSKIE

62 Dwudziestościan (ikosaedr) foremny 20 ścian trójkąty równoboczne 30 krawędzi, 12 wierzchołków wg Platona symbol Ŝywiołu: woda Mg-Zn-Ho` Dwunastościan (dodekaedr) foremny 12 ścian pięciokąty foremne, 30 krawędzi 20 wierzchołków wg Platona symbol Wszechświata, kosmosu

63 Bryła platońska Dwudziestościan (ikosaedr) foremny 20 ścian trójkąty równoboczne 30 krawędzi, 12 wierzchołków wg Platona symbol Ŝywiołu: woda Identyczność Elementy symetrii 12 5-krotne osi obrotu o krotne osi obrotu o krotne osi obrotu o krotne osi obrotu o 180 Środek inwersji 12 przemienna 10-krotna oś symetrii obrotu o przemienna 10-krotna oś symetrii obrotu o przemienna 6-krotna oś symetrii obrotu o płaszczyzn odbicia 120 elementów symetrii

64 Bryła platońska Dwunastościan (dodekaedr) foremny 12 ścian pięciokąty foremne 30 krawędzi, 20 wierzchołków Wg Platona symbol Wszechświat, kosmosu Wielościan foremny (bryła platońska) wielościan spełniający następujące trzy warunki: ściany są przystającymi wielokątami foremnymi, w kaŝdym wierzchołku zbiega się jednakowa liczba ścian, jest bryłą wypukłą

65 PowyŜej kryształ fluorytu Bryła platońska Ośmiościan (oktaedr) foremny 8 ścian trójkąty równoboczne 12 krawędzi, 6 wierzchołków Wg Platona Ŝywioł powietrze

66 Bryła platońska Sześcian (heksaedr) foremny 6 ścian kwadraty 12 krawędzi, 8 wierzchołków Wg Platona Ŝywioł - ziemia

67 Bryła platońska Czworościan (tetraedr) foremny 4 ściany trójkąty równoboczne 6 krawędzi, 4 wierzchołki Wg Platona Ŝywioł - ogień

68 ZASTOSOWANIA KWAZIKRYSZTAŁÓW

69 Jakie są nowe właściwości fizyczne wykazują kwazikryształów? Najbardziej twarda stal jest wytwarzana przy uŝyciu kwazikryształów!!! Najbardziej odporne na ścieranie powierzchnie są powlekane kwazikryształami!!! Kwazikryształy najgorszymi przewodnikami ciepło!!! Są najlepszymi izolatorami ciepła (osłony adiabatyczne)!!!

70 Ile jest znanych materiałów kwazikrystalicznych? Ponad 100 róŝnych stopów metalicznych, trój-, cztero- i więcej składnikowych Fizyka QCsi struktur aperiodycznych nowa dziedzina fizyki fazy skondensowanej

71 Pierwszy naturalny kwazikryształ Discovery of a Natural Quasicrystals L Bindi, P. Steinhardt, N. Yao and P. Lu, Science 324, 1306 (2009)

72 Pośrodku próbka minerału (skały wulkanicznej) zawierającego inkluzje i-al 63 Cu 24 Fe 13, patrz górny fragment rys. B objęty czerwonymi kropkami.ośrednicy 0,1 mikrometra. Dyfraktogramy wskazują na kwaziperiodyczny charakter minerału.

73 Pierwszy naturalny kwazikryształ

74

75

76

77 KRYSTALOGRAFIA KWAZIKRYSZTAŁÓW

78 Jak atomy są ułoŝone w objętości kwazikryształów? Jak atomy mogą być ułoŝone na płaszczyźnie? Skonstruujemy okresowe pokrycie płaszczyzny. Zadanie łatwe! Stworzymy płaską sieć/parkietaŝ. Skonstruujemy nieokresowe pokrycie powierzchni. Zadanie trudne! Stworzymy płaską kwazisieć, parkietaŝ NIEOKRESOWY!!!

79 Pokrycie płaszczyzny za pomocą skończonej liczby figur płaskich w sposób periodyczny/okresowy i taki aby figury nie przekrywały się a pokrycie było pełne jest zadaniem banalnie prostym!

80 Sposób pierwszy TAK!

81 Sposób drugi TAK!

82 Sposób trzeci TAK!

83 Sposób czwarty TAK!

84 Sposób piąty TAK!

85 ? NIE!

86 ? NIE!

87 Jak pokryć płaszczyznę za pomocą skończonej liczby figur płaskich w sposób nieperiodycznyi taki aby figury nie przekrywały się a pokrycie było pełne?

88 Jak pokryć płaszczyznę za pomocą skończonej liczby figur płaskich w sposób nieperiodyczny i taki aby figury nie przekrywały się a pokrycie było pełne? Przykładowe próby

89 Przykłady prób. Grafiki M.C. Eschera ( ) grafiki

90 Przykłady prób. (http://parkietaze.republika.pl/index.html) Eschera Platona Archimedasa Jonhsona ParkietażPenrose'azłożony jest z rombów ułożonych tak, aby żadne sąsiednie romby nie tworzyły razem równoległoboku.

91 Do tworzenia płaskich dekoracji, artystycznego pokrywania płaszczyzn, komponowania mozaik (strapwork) używa się wielu ornamentów (ozdobników), m.in. gwiazd, wielokątów, linii, pasemek, które przeplatają się wzajemnie, a także rysunków roślin, wizerunków zwierząt i postaci.

92 Jak pokryć płaszczyznę za pomocą skończonej liczby figur płaskich w sposób nieperiodycznyi taki aby figury nie przekrywały się a pokrycie było pełne?

93 Jak pokryć płaszczyznę za pomocą skończonej liczby figur płaskich w sposób nieperiodyczny i taki aby figury nie przekrywały się a pokrycie było pełne? Do lat 60. XX w. sądzono, że płaszczyznę można pokryć tylko w sposób periodyczny! W roku 1964 Robert Berger konstruuje nieperiodycznepokrycie płaszczyzny używając różnych płaskich figur/szablonów. Zredukował do

94 Jak pokryć płaszczyznę za pomocą skończonej liczby figur płaskich w sposób nieperiodyczny i taki aby figury nie przekrywały się a pokrycie było pełne? Aperiodyczny parkiet/parkietaż Rogera Penrose a The role of aesthetics inpureand applied mathematicalresearch The Institute of Mathematics andits Applications Bulletin, Vol. 10, No. 7/8. (July 1974), pp Liczba płytek zredykowanado 4.

95

96 Przy uŝyciu powyŝszych figur moŝliwe jest periodyczne pokrycie płaszczyzny!

97 Przy uŝyciu powyŝszych figur moŝliwe jest nieperiodyczne pokrycie płaszczyzny!

98 Przy uŝyciu powyŝszych figur moŝliwe jest periodyczne i nieperiodyczne pokrycie płaszczyzny!

99 Konstrukcja Ammana Przy uŝyciu powyŝszych figur moŝliwe jest nieperiodyczne pokrycie płaszczyzny! Muszą zgadzać się wierzchołki i linie!

100 Konstrukcja Roberta Ammanna uwidacznia ukrytą symetrię aperiodycznego pokrycia

101 ParkietaŜ Penrose a jest nie tylko nieperiodycznym pokryciem. Wykazuje kwaziperiodyczne właściwości!

102 Proste wyróŝnionej rodziny są ułoŝone tak, Ŝe tworzą kwaziperiodyczną sieć Fibonacciego

103

104 Roger Penrosei parkietażwykonany (po lewej) z wykorzystaniem jego patentu (po prawej oktagonalna wersja)

105 Czy aperiodyczne pokrycia płaszczyzny znane były wcześniej?

106 Wzmianka historyczna. Struktury aperiodyczne i ascetyczny świat islamu Do tworzenia płaskich ornamentów, dekoracji, mozaik (strapwork) używa się m.in. gwiazd, wielokątów, linii i pasemek, które przeplatają się wzajemnie. W kulturze islamu, ten typ dekoracji nosi nazwę girih. Islamscy twórcy mozaik, zdobiących zewnętrzne mury budynków kultury muzułmańskiej (zakaz wiernego odtwarzania świata): meczetów, ma(e)drasów, pałaców używali 5 płytek/kafelków (tiles)

107 Mozaiki Islamu

108 Mozaiki Islamu c.d.

109 Mozaiki Islamu

110

111 pattern: wzór, deseń, wzorzec, płaski motyw, wykrój, szablon, płaska forma

112

113 NAGRODA NOBLA Z CHEMII DLA DANIELA SHECHTMANA. DLACZEGO? ODKRYCIE NOWEGO TYPU MATERIAŁÓW FIZYKA STRUKTUR APERIODYCZNYCH NOWA DZIEDZINA FFS/FCS DETERMINACJA, WIARA WE WŁASNE WYNIKI, ODKRYCIA ZŁAMANIE SYMETRII KRYSTALOGRAFICZNYCH (NATURA NIE ZNOSI PRÓśNI)

114

115 THE END 115

GEOMETRIA PRZESTRZENNA (STEREOMETRIA)

GEOMETRIA PRZESTRZENNA (STEREOMETRIA) GEOMETRIA PRZESTRZENNA (STEREOMETRIA) WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. Na początek omówimy

Bardziej szczegółowo

Wstęp. Krystalografia geometryczna

Wstęp. Krystalografia geometryczna Wstęp Przedmiot badań krystalografii. Wprowadzenie do opisu struktury kryształów. Definicja sieci Bravais go i bazy atomowej, komórki prymitywnej i elementarnej. Podstawowe typy komórek elementarnych.

Bardziej szczegółowo

Światło ma podwójną naturę:

Światło ma podwójną naturę: Światło ma podwójną naturę: przejawia własności fal i cząstek W. C. Roentgen ( Nobel 1901) Istnieje ciągłe przejście pomiędzy tymi własnościami wzdłuż spektrum fal elektromagnetycznych Dla niskich częstości

Bardziej szczegółowo

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH

STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH STEREOMETRIA CZYLI GEOMETRIA W 3 WYMIARACH Stereometria jest działem geometrii, którego przedmiotem badań są bryły przestrzenne oraz ich właściwości. WZAJEMNE POŁOŻENIE PROSTYCH W PRZESTRZENI 2 proste

Bardziej szczegółowo

STRUKTURA CIAŁA STAŁEGO

STRUKTURA CIAŁA STAŁEGO STRUKTURA CIAŁA STAŁEGO Podział ciał stałych Ciała - bezpostaciowe (amorficzne) Szkła, żywice, tłuszcze, niektóre proszki. Nie wykazują żadnych regularnych płaszczyzn ograniczających, nie można w nich

Bardziej szczegółowo

MAZOWIECKI PROGRAM STYPENDIALNY DLA UCZNIÓW SZCZEGÓLNIE UZDOLNIONYCH NAJLEPSZA INWESTYCJA W CZŁOWIEKA 2016/2017

MAZOWIECKI PROGRAM STYPENDIALNY DLA UCZNIÓW SZCZEGÓLNIE UZDOLNIONYCH NAJLEPSZA INWESTYCJA W CZŁOWIEKA 2016/2017 MAZOWIECKI PROGRAM STYPENDIALNY DLA UCZNIÓW SZCZEGÓLNIE UZDOLNIONYCH NAJLEPSZA INWESTYCJA W CZŁOWIEKA 2016/2017 Nr z wniosku ID: 3313 Tytuł projektu edukacyjnego: Jakie bryły przestrzenne spotykamy na

Bardziej szczegółowo

Stereometria bryły. Wielościany. Wielościany foremne

Stereometria bryły. Wielościany. Wielościany foremne Stereometria bryły Stereometria - geometria przestrzeni trójwymiarowej. Przedmiotem jej badań są własności brył oraz przekształcenia izometryczne i afiniczne przestrzeni. Przyjęte oznaczenia: - Pole powierzchni

Bardziej szczegółowo

Z przestrzeni na płaszczyznę

Z przestrzeni na płaszczyznę Z przestrzeni na płaszczyznę Wstęp W naszej pracy zajęłyśmy się nietypowymi parkietażami. Zwykle parkietaże związane są z wielokątami i innymi figurami płaskimi. Postanowiłyśmy zbadać jakie parkietaże

Bardziej szczegółowo

Wykład 5. Komórka elementarna. Sieci Bravais go

Wykład 5. Komórka elementarna. Sieci Bravais go Wykład 5 Komórka elementarna Sieci Bravais go Doskonały kryształ składa się z atomów jonów, cząsteczek) uporządkowanych w sieci krystalicznej opisanej przez trzy podstawowe wektory translacji a, b, c,

Bardziej szczegółowo

Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów.

Graniastosłupy mają dwie podstawy, a ich ściany boczne mają kształt prostokątów. GRANIASTOSŁUPY I OSTROSŁUPY Bryły czyli figury przestrzenne dzielimy na: graniastosłupy ostrosłupy bryły obrotowe Graniastosłupy i ostrosłupy nazywamy wielościanami Graniastosłupy mają dwie podstawy, a

Bardziej szczegółowo

ELEMENTY I OPERACJE SYMETRII Symbol Element symetrii Operacja symetrii

ELEMENTY I OPERACJE SYMETRII Symbol Element symetrii Operacja symetrii ELEMENTY I OPERACJE SYMETRII Symbol Element symetrii Operacja symetrii C n oś symetrii n-krotna (oś główna - oś o obrót wokół osi symetrii o kąt równy 360 0 /n najwyższej krotności) σ płaszczyzna symetrii

Bardziej szczegółowo

Elementy symetrii. obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii.

Elementy symetrii. obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii. ELEMENTY SYMETRII Element symetrii obiekt geometryczny taki jak linia, płaszczyzna lub punkt, względem którego dokonuje się operacji symetrii. ELEMENTY SYMETRII Elementy symetrii PŁASZZYZNA peracje symetrii

Bardziej szczegółowo

Tradycyjny podział stanów skupienia: fazy skondensowane

Tradycyjny podział stanów skupienia: fazy skondensowane Tradycyjny podział stanów skupienia: o o o stały (ciało stałe) zachowuje objętość i kształt ciekły (ciecz) zachowuje objętość, łatwo zmienia kształt gazowy (gaz) łatwo zmienia objętość i kształt lód woda

Bardziej szczegółowo

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami.

Ciała stałe. Ciała krystaliczne. Ciała amorficzne. Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. Ciała stałe Ciała krystaliczne Ciała amorficzne Bardzo często mamy do czynienia z ciałami polikrystalicznymi, rzadko monokryształami. r T = Kryształy rosną przez regularne powtarzanie się identycznych

Bardziej szczegółowo

Układy krystalograficzne

Układy krystalograficzne Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Układy krystalograficzne Cel ćwiczenia: kształtowanie umiejętności wyboru komórki elementarnej i przyporządkowywania

Bardziej szczegółowo

Dan Shechtman - Nagroda Nobla za odkrycie

Dan Shechtman - Nagroda Nobla za odkrycie Dan Shechtman - Nagroda Nobla za odkrycie kwazikryształów Janusz Wolny AGH Kraków Plan: 1. Fascynująca historia 2. Ciąg Fibonacciego 1D 3. Struktury Penrose a 2D 4. Analiza wielowymiarowa 5. Średnia komórka

Bardziej szczegółowo

Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go

Uniwersytet Śląski Instytut Chemii Zakład Krystalografii. Laboratorium z Krystalografii. 2 godz. Komórki Bravais go Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Komórki Bravais go Cel ćwiczenia: kształtowanie umiejętności: przyporządkowywania komórek translacyjnych Bravais

Bardziej szczegółowo

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne

Promieniowanie rentgenowskie. Podstawowe pojęcia krystalograficzne Promieniowanie rentgenowskie Podstawowe pojęcia krystalograficzne Krystalografia - podstawowe pojęcia Komórka elementarna (zasadnicza): najmniejszy, charakterystyczny fragment sieci przestrzennej (lub

Bardziej szczegółowo

Wykład II Sieć krystaliczna

Wykład II Sieć krystaliczna Wykład II Sieć krystaliczna Podstawowe definicje Wiele z pośród ciał stałych ma budowę krystaliczną. To znaczy, Ŝe atomy z których się składają ułoŝone są w określonym porządku. Porządek ten daje się stosunkowo

Bardziej szczegółowo

Tytuł. Autor. Dział. Innowacyjne cele edukacyjne. Czas. Przebieg. Etap 1 - Wprowadzenie z rysem historycznym i dyskusją

Tytuł. Autor. Dział. Innowacyjne cele edukacyjne. Czas. Przebieg. Etap 1 - Wprowadzenie z rysem historycznym i dyskusją Tytuł Kto nie zna geometrii, niech tu nie wchodzi czyli geometria brył platońskich Autor Dariusz Kulma Dział Bryły Innowacyjne cele edukacyjne Uczeń zapoznaje się z kolejnymi wielościanami foremnymi. Czas

Bardziej szczegółowo

Regulamin I gminnego konkursu odkrywamy ŚWIAT - KRYSZTAŁY

Regulamin I gminnego konkursu odkrywamy ŚWIAT - KRYSZTAŁY Regulamin I gminnego konkursu odkrywamy ŚWIAT - KRYSZTAŁY I. Organizatorem konkursu jest Zespół Szkół Nr 1 w Bieczu. II. Cele konkursu: a) wzbudzenie wśród naszych Gimnazjalistów zainteresowania substancjami

Bardziej szczegółowo

ROZDZIAŁ I. Symetria budowy kryształów

ROZDZIAŁ I. Symetria budowy kryształów ROZDZIAŁ I Symetria budowy kryształów I Ciała krystaliczne i amorficzne Każda substancja ciekła z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe Jednakże proces

Bardziej szczegółowo

Wielościany gwiaździste

Wielościany gwiaździste ul. Konarskiego 2, 30-049 Kraków tel. 12 633 13 83 lub 12 633 02 47 Wielościany gwiaździste Arkadiusz Biel Julia Strumińska Historia odkrywania wielościanów. Wielościany foremne były znane już w antyku;

Bardziej szczegółowo

Metody badań monokryształów metoda Lauego

Metody badań monokryształów metoda Lauego Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii

Bardziej szczegółowo

Bezpośredni opiekunowie laboratorium: Prof. dr hab. Marek Szafrański. Prof. dr hab. Maciej Kozak, dr Marceli Kaczmarski.

Bezpośredni opiekunowie laboratorium: Prof. dr hab. Marek Szafrański. Prof. dr hab. Maciej Kozak, dr Marceli Kaczmarski. Bezpośredni opiekunowie laboratorium: Prof. dr hab. Marek Szafrański Prof. dr hab. Maciej Kozak, dr Marceli Kaczmarski. Ćwiczenia w tym laboratorium polegają na analizie obrazu dyfrakcyjnego promieni rentgenowskich.

Bardziej szczegółowo

SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI prowadzonego w ramach projektu Uczeń OnLine

SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI prowadzonego w ramach projektu Uczeń OnLine SCENARIUSZ ZAJĘĆ KOŁA NAUKOWEGO z MATEMATYKI prowadzonego w ramach projektu Uczeń OnLine 1. Autor: Anna Wołoszyn 2. Grupa docelowa: Klasa 2 Gimnazjum 3. Liczba godzin: 2 4. Temat zajęć: Geometria brył

Bardziej szczegółowo

Zastosowanie teorii grup. Grupy symetrii w fizyce i chemii.

Zastosowanie teorii grup. Grupy symetrii w fizyce i chemii. Zastosowanie teorii grup Grupy symetrii w fizyce i chemii Katarzyna Kolonko Streszczenie Usystematyzowanie grup punktowych, omówienie ich na przykładzie molekuł Przedstawienie wkładu teorii grup w badanie

Bardziej szczegółowo

STRUKTURA MATERIAŁÓW

STRUKTURA MATERIAŁÓW STRUKTURA MATERIAŁÓW ELEMENTY STRUKTURY MATERIAŁÓW 1. Wiązania miedzy atomami 2. Układ atomów w przestrzeni 3. Mikrostruktura 4. Makrostruktura 1. WIĄZANIA MIĘDZY ATOMAMI Siły oddziaływania między atomami

Bardziej szczegółowo

Podstawy krystalochemii pierwiastki

Podstawy krystalochemii pierwiastki Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii Podstawy krystalochemii pierwiastki Cel ćwiczenia: określenie pełnej charakterystyki wybranych struktur pierwiastków

Bardziej szczegółowo

Właściwości kryształów

Właściwości kryształów Właściwości kryształów Związek pomiędzy właściwościami, strukturą, defektami struktury i wiązaniami chemicznymi Skład i struktura Skład materiału wpływa na wszystko, ale głównie na: właściwości fizyczne

Bardziej szczegółowo

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3)

Pytania do spr / Własności figur (płaskich i przestrzennych) (waga: 0,5 lub 0,3) Pytania zamknięte / TEST : Wybierz 1 odp prawidłową. 1. Punkt: A) jest aksjomatem in. pewnikiem; B) nie jest aksjomatem, bo można go zdefiniować. 2. Prosta: A) to zbiór punktów; B) to zbiór punktów współliniowych.

Bardziej szczegółowo

Kwazikryształy - struktura atomowa, obraz dyfrakcyjny i modelowanie

Kwazikryształy - struktura atomowa, obraz dyfrakcyjny i modelowanie Kwazikryształy - struktura atomowa, obraz dyfrakcyjny i modelowanie Radosław Strzałka Katedra Fizyki Materii Skondensowanej Wydział Fizyki i Informatyki Stosowanej AGH w Krakowie Seminarium Wydziałowe,

Bardziej szczegółowo

Nagrody Nobla z dziedziny fizyki ciała. Natalia Marczak Fizyka Stosowana, semestr VII

Nagrody Nobla z dziedziny fizyki ciała. Natalia Marczak Fizyka Stosowana, semestr VII Nagrody Nobla z dziedziny fizyki ciała stałego Natalia Marczak Fizyka Stosowana, semestr VII Zaczęł ęło o się od Alfred Bernhard Nobel (1833 1896) Nadprzewodnictwo Kamerlingh-Onnes Heike (1853-1926) 1926)

Bardziej szczegółowo

Krystalografia. Dyfrakcja

Krystalografia. Dyfrakcja Krystalografia Dyfrakcja Podstawowe zagadnienia Rodzaje promieniowania używane w dyfrakcyjnych metodach badań struktur krystalicznych, ich źródła Fizyczne podstawy i warunki dyfrakcji Równania dyfrakcji:

Bardziej szczegółowo

Metody badań monokryształów metoda Lauego

Metody badań monokryształów metoda Lauego Uniwersytet Śląski Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40 006 Katowice, Tel. 0323591627 e-mail: joanna_palion@poczta.fm opracowanie: mgr Joanna Palion Gazda Laboratorium z Krystalografii

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka

PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6. Rok szkolny 2012/2013. Tamara Kostencka PRZEDMIOTOWY SYSTEM OCENIANIA- MATEMATYKA KLASA 6 Rok szkolny 2012/2013 Tamara Kostencka 1 LICZBY NA CO DZIEŃ LICZBY NATURALNE I UŁAMKI Wymagania programowe dla klasy VI szkoły podstawowej DZIAŁ WYMAGANIA

Bardziej szczegółowo

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej

Monochromatyzacja promieniowania molibdenowej lampy rentgenowskiej Uniwersytet Śląski Instytut Chemii Zakładu Krystalografii ul. Bankowa 14, pok. 133, 40 006 Katowice tel. (032)359 1503, e-mail: izajen@wp.pl, opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Krystalografia. Wykład VIII

Krystalografia. Wykład VIII Krystalografia Wykład VIII Plan wykładu Otrzymywanie i właściwow ciwości promieni rentgenowskich Sieć odwrotna Warunki dyfrakcji promieniowania rentgenowskiego 2 NajwaŜniejsze daty w analizie strukturalnej

Bardziej szczegółowo

Krystalografia. Dyfrakcja na monokryształach. Analiza dyfraktogramów

Krystalografia. Dyfrakcja na monokryształach. Analiza dyfraktogramów Krystalografia Dyfrakcja na monokryształach. Analiza dyfraktogramów Wyznaczanie struktury Pomiar obrazów dyfrakcyjnych Stworzenie modelu niezdeformowanej sieci odwrotnej refleksów Wybór komórki elementarnej

Bardziej szczegółowo

Wykład 1. Symetria Budowy Kryształów

Wykład 1. Symetria Budowy Kryształów Wykład Symetria Budowy Kryształów Ciała krystaliczne i amorficzne Każda substancja ciekła (z wyjątkiem helu) podczas oziębiania traci swoje własności ciekłe i przechodzi w ciało stałe. Jednakże proces

Bardziej szczegółowo

Laboratorium inżynierii materiałowej LIM

Laboratorium inżynierii materiałowej LIM Laboratorium inżynierii materiałowej LIM wybrane zagadnienia fizyki ciała stałego czyli skrót skróconego skrótu dr hab. inż.. Ryszard Pawlak, P prof. PŁP Fizyka Ciała Stałego I. Wstęp Związki Fizyki Ciała

Bardziej szczegółowo

Wykłady z Fizyki. Ciało Stałe

Wykłady z Fizyki. Ciało Stałe Wykłady z Fizyki 11 Zbigniew Osiak Ciało Stałe OZ ACZE IA B notka biograficzna C ciekawostka D propozycja wykonania doświadczenia H informacja dotycząca historii fizyki I adres strony internetowej K komentarz

Bardziej szczegółowo

Niezwykły Świat Krystalografii

Niezwykły Świat Krystalografii Niezwykły Świat Krystalografii Dr Małgorzata Domagała Katedra Chemii Teoretycznej i Strukturalnej UŁ 1 Krystalografia - termin pochodzi od greckich słów κρύσταλλος krystallos lód, oraz γράφω grapho piszę

Bardziej szczegółowo

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE

WIĄZANIA. Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE WIĄZANIA Co sprawia, że ciała stałe istnieją i są stabilne? PRZYCIĄGANIE ODPYCHANIE Przyciąganie Wynika z elektrostatycznego oddziaływania między elektronami a dodatnimi jądrami atomowymi. Może to być

Bardziej szczegółowo

Wiązania chemiczne. Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych. 5 typów wiązań

Wiązania chemiczne. Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych. 5 typów wiązań Wiązania chemiczne Związek klasyfikacji ciał krystalicznych z charakterem wiązań atomowych 5 typów wiązań wodorowe A - H - A, jonowe ( np. KCl ) molekularne (pomiędzy atomami gazów szlachetnych i małymi

Bardziej szczegółowo

Geometria. Rodzaje i własności figur geometrycznych:

Geometria. Rodzaje i własności figur geometrycznych: Geometria Jest jednym z działów matematyki, którego przedmiotem jest badanie figur geometrycznych i zależności między nimi. Figury geometryczne na płaszczyźnie noszą nazwę figur płaskich, w przestrzeni

Bardziej szczegółowo

Siatki i sklejanie wielościanów Praca konkursowa Matematyka dla Młodych

Siatki i sklejanie wielościanów Praca konkursowa Matematyka dla Młodych Siatki i sklejanie wielościanów Praca konkursowa Matematyka dla Młodych Miłosz Tresenberg Zespół Szkół w Kleszczewie ul. Poznańska 2, 3-005 Kleszczewo klasa 3GB Spis treści Rozdział 1. Wstęp... 3 Rozdział

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna. Struktura krystaliczna

S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna. Struktura krystaliczna S. Baran - Podstawy fizyki materii skondensowanej Struktura krystaliczna Struktura krystaliczna Kwarc (SiO2) (źródło: Wikipedia) Piryt (FeS2) (źródło: Wikipedia) Halit/Sól kamienna (NaCl) (źródło: Wikipedia)

Bardziej szczegółowo

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej?

1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? Tematy opisowe 1. Od czego i w jaki sposób zależy szybkość reakcji chemicznej? 2. Omów pomiar potencjału na granicy faz elektroda/roztwór elektrolitu. Podaj przykład, omów skale potencjału i elektrody

Bardziej szczegółowo

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Matematyka z plusem dla szkoły ponadgimnazjalnej. ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy) Program nauczania: Matematyka z plusem, Liczba godzin nauki w tygodniu: 3 Planowana liczba godzin w ciągu roku: 72 ZAŁOŻENIA DO PLANU RALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III (zakres podstawowy)

Bardziej szczegółowo

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3

PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 DEFINICJE PLANIMETRIA CZYLI GEOMETRIA PŁASZCZYZNY CZ. 3 Czworokąt to wielokąt o 4 bokach i 4 kątach. Przekątną czworokąta nazywamy odcinek łączący przeciwległe wierzchołki. Wysokością czworokąta nazywamy

Bardziej szczegółowo

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY)

PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) PLAN REALIZACJI MATERIAŁU NAUCZANIA MATEMATYKI W KLASIE III WRAZ Z PLANEM WYNIKOWYM (ZAKRES PODSTAWOWY) Kategorie celów nauczania: A zapamiętanie wiadomości, B rozumienie wiadomości, C stosowanie wiadomości

Bardziej szczegółowo

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY

WŁASNOŚCI CIAŁ STAŁYCH I CIECZY WŁASNOŚCI CIAŁ STAŁYCH I CIECZY Polimery Sieć krystaliczna Napięcie powierzchniowe Dyfuzja 2 BUDOWA CIAŁ STAŁYCH Ciała krystaliczne (kryształy): monokryształy, polikryształy Ciała amorficzne (bezpostaciowe)

Bardziej szczegółowo

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM

KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM KRYTERIA OCEN Z MATEMATYKI DLA UCZNIÓW KL. II GIMNAZJUM POTĘGI I PIERWIASTKI - pojęcie potęgi o wykładniku naturalnym; - wzór na mnożenie i dzielenie potęg o tych samych podstawach; - wzór na potęgowanie

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje ułamki dziesiętne zna kolejność

Bardziej szczegółowo

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej.

Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE. Rozwiązania. Wartość bezwzględna jest odległością na osi liczbowej. Arkusz maturalny nr 2 poziom podstawowy ZADANIA ZAMKNIĘTE Rozwiązania Zadanie 1 Wartość bezwzględna jest odległością na osi liczbowej. Stop Istnieje wzajemnie jednoznaczne przyporządkowanie między punktami

Bardziej szczegółowo

PYTANIA TEORETYCZNE Z MATEMATYKI

PYTANIA TEORETYCZNE Z MATEMATYKI Zbiory liczbowe: 1. Wymień znane Ci zbiory liczbowe. 2. Co to są liczby rzeczywiste? 3. Co to są liczby naturalne? 4. Co to są liczby całkowite? 5. Co to są liczby wymierne? 6. Co to są liczby niewymierne?

Bardziej szczegółowo

Elementy teorii powierzchni metali

Elementy teorii powierzchni metali prof. dr hab. Adam Kiejna Elementy teorii powierzchni metali Wykład 2 v.16 Sieci płaskie i struktura powierzchni 1 Typy sieci dwuwymiarowych (płaskich) Przecinając monokryształ wzdłuż jednej z płaszczyzn

Bardziej szczegółowo

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych

S. Baran - Podstawy fizyki materii skondensowanej Wiązania chemiczne w ciałach stałych. Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych Wiązania chemiczne w ciałach stałych typ kowalencyjne jonowe metaliczne Van der Waalsa wodorowe siła* silne silne silne pochodzenie uwspólnienie e- (pary e-) przez

Bardziej szczegółowo

1. Elementy (abstrakcyjnej) teorii grup

1. Elementy (abstrakcyjnej) teorii grup 1. Elementy (abstrakcyjnej) teorii grup Grupy symetrii def. Grupy Zbiór (skończony lub nieskończony) elementów {g} tworzy grupę gdy: - zdefiniowana operacja mnożenia (złożenia) g 1 g 2 = g 3 є G - (g 1

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA I GIMNAZJUM Małgorzata Janik DOPUSZCZAJĄCY DOSTATECZNY DOBRY BARDZO DOBRY LICZBY I DZIAŁANIA zna pojęcie liczby naturalnej, całkowitej, wymiernej. rozumie rozszerzenie

Bardziej szczegółowo

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016

Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 Kryteria oceniania z matematyki w klasie pierwszej w roku szkolnym 2015/2016 1) Liczby - zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane, - zapisuje ułamek zwykły w postaci ułamka

Bardziej szczegółowo

Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI

Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI Wymagania edukacyjne dla klasy VI z matematyki. Opracowane na podstawie programu nauczania Matematyka z plusem LICZBY NATURALNE I UŁAMKI Ocena dopuszczająca: - nazwy działań - algorytm mnożenia i dzielenia

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1

Katalog wymagań programowych na poszczególne stopnie szkolne klasa 1 Matematyka Liczy się matematyka Klasa klasa Rozdział. Liczby zamienia liczby dziesiętne skończone na ułamki zwykłe i liczby mieszane zapisuje ułamek zwykły w postaci ułamka dziesiętnego skończonego porównuje

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Ćwiczenie 13 : Dyfrakcja wiązki elektronów na I. Zagadnienia do opracowania. 1. Dualizm korpuskularno falowy

Bardziej szczegółowo

Justyna Skut pod kierunkiem mgr Jolanty Cyboń - Turowskiej

Justyna Skut pod kierunkiem mgr Jolanty Cyboń - Turowskiej Justyna Skut pod kierunkiem mgr Jolanty Cyboń - Turowskiej 1 arkietaż jest powtarzającym się obrazem złoŝonym z wielokątów foremnych wypełniającym całą dostępną przestrzeń. Wielokąty układają się koło

Bardziej szczegółowo

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia

1. FUNKCJE DZIAŁ Z PODRĘCZNIKA L.P. NaCoBeZu kryteria sukcesu w języku ucznia L.P. DZIAŁ Z PODRĘCZNIKA 1. FUNKCJE 2. POTĘGI I PIERWIASTKI NaCoBeZu kryteria sukcesu w języku ucznia 1. Wiem, co to jest układ współrzędnych, potrafię nazwać osie układu. 2. Rysuję układ współrzędnych

Bardziej szczegółowo

Prof. dr hab. Marian Surowiec Uniwersytet Śląski. Gdańsk 2012

Prof. dr hab. Marian Surowiec Uniwersytet Śląski. Gdańsk 2012 NAJNOWSZE TRENDY W INŻYNIERII MATERIAŁOWEJ KWAZIKRYSZTAŁY WYKŁAD DLA STUDENTÓW POLITECHNIKI GDAŃSKIEJ KIERUNEK: INŻYNIERIA MATERIAŁOWE Prof. dr hab. Marian Surowiec Uniwersytet Śląski Gdańsk 2012 Publikacja

Bardziej szczegółowo

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h) Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby

Bardziej szczegółowo

Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych

Laboratorium z Krystalografii specjalizacja: Fizykochemia związków nieorganicznych Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 133, 40-006 Katowice tel. 0323591197, e-mail: izajen@wp.pl opracowanie: dr Izabela Jendrzejewska Laboratorium z Krystalografii

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z. matematyki. dla uczniów klasy IIIa i IIIb. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy IIIa i IIIb Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ 1. FUNKCJE (11h) Uczeń: poda definicję funkcji (2)

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum

Wymagania edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum edukacyjne niezbędne do uzyskania poszczególnych ocen śródrocznych i rocznych ocen klasyfikacyjnych z matematyki klasa 1 gimnazjum Semestr I Stopień Rozdział 1. Liczby Zamienia liczby dziesiętne na ułamki

Bardziej szczegółowo

Wymagania edukacyjne z matematyki

Wymagania edukacyjne z matematyki Wymagania edukacyjne z matematyki Poziom podstawowy Klasa IIIb r.szk. 2014/2015 PLANIMETRIA(1) rozróżnia trójkąty: ostrokątne, prostokątne, rozwartokątne stosuje twierdzenie o sumie miar kątów w trójkącie

Bardziej szczegółowo

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ. Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego STRUKTURA STOPÓW UKŁADY RÓWNOWAGI FAZOWEJ Publikacja współfinansowana ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Wykresy układów równowagi faz stopowych Ilustrują skład fazowy

Bardziej szczegółowo

SPIS TREŚCI ««*» ( # * *»»

SPIS TREŚCI ««*» ( # * *»» ««*» ( # * *»» CZĘŚĆ I. POJĘCIA PODSTAWOWE 1. Co to jest fizyka? 11 2. Wielkości fizyczne 11 3. Prawa fizyki 17 4. Teorie fizyki 19 5. Układ jednostek SI 20 6. Stałe fizyczne 20 CZĘŚĆ II. MECHANIKA 7.

Bardziej szczegółowo

Rodzina i pas płaszczyzn sieciowych

Rodzina i pas płaszczyzn sieciowych Uniwersytet Śląski Instytut Chemii Zakład Krystalografii Laboratorium z Krystalografii 2 godz. Rodzina i pas płaszczyzn sieciowych Cel ćwiczenia: kształtowanie umiejętności posługiwania się modelami komórek

Bardziej szczegółowo

Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego

Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Projekt ROZWÓJ PRZEZ KOMPETENCJE jest współfinansowany przez Unię Europejską w ramach środków Europejskiego Funduszu Społecznego Program Operacyjny Kapitał Ludzki 2007-2013 CZŁOWIEK NAJLEPSZA INWESTYCJA

Bardziej szczegółowo

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne

I semestr WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI. Wymagania na ocenę dopuszczającą. Dział programu: Liczby naturalne WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA VI Wymagania na ocenę dopuszczającą I semestr Dział programu: Liczby naturalne Oblicza różnice czasu proste Wymienia jednostki opisujące prędkość, drogę, czas. Rozwiązuje

Bardziej szczegółowo

w najprostszych przypadkach, np. dla trójkątów równobocznych

w najprostszych przypadkach, np. dla trójkątów równobocznych MATEMATYKA - klasa 3 gimnazjum kryteria ocen według treści nauczania (Przyjmuje się, że jednym z warunków koniecznych uzyskania danej oceny jest spełnienie wszystkich wymagań na oceny niższe.) Dział programu

Bardziej szczegółowo

PIEZOELEKTRYKI I PIROELEKTRYKI. Krajewski Krzysztof

PIEZOELEKTRYKI I PIROELEKTRYKI. Krajewski Krzysztof PIEZOELEKTRYKI I PIROELEKTRYKI Krajewski Krzysztof Zjawisko piezoelektryczne Zjawisko zachodzące w niektórych materiałach krystalicznych, polegające na powstawaniu ładunku elektrycznego na powierzchniach

Bardziej szczegółowo

12. WYBRANE METODY STOSOWANE W ANALIZACH GEOCHEMICZNYCH. Atomowa spektroskopia absorpcyjna

12. WYBRANE METODY STOSOWANE W ANALIZACH GEOCHEMICZNYCH. Atomowa spektroskopia absorpcyjna 12. WYBRANE METODY TOOWANE W ANALIZACH EOCHEMICZNYCH Atomowa spektroskopia absorpcyjna (AA - atomic absorption spectroscopy) Atomowa spektroskopia absorpcyjna jest bardzo czułą metodą analityczną umożliwiającą

Bardziej szczegółowo

Czym się różni ciecz od ciała stałego?

Czym się różni ciecz od ciała stałego? Szkła Czym się różni ciecz od ciała stałego? gęstość Czy szkło to ciecz czy ciało stałe? Szkło powstaje w procesie chłodzenia cieczy. Czy szkło to ciecz przechłodzona? kryształ szkło ciecz przechłodzona

Bardziej szczegółowo

Wewnętrzna budowa materii

Wewnętrzna budowa materii Atom i układ okresowy Wewnętrzna budowa materii Atom jest zbudowany z jądra atomowego oraz krążących wokół niego elektronów. Na jądro atomowe składają się protony oraz neutrony, zwane wspólnie nukleonami.

Bardziej szczegółowo

Plan wynikowy klasa 3

Plan wynikowy klasa 3 Plan wynikowy klasa 3 Przedmiot: matematyka Klasa 3 liceum (technikum) Rok szkolny:........................ Nauczyciel:........................ zakres podstawowy: 28 tyg. 3 h = 84 h (78 h + 6 h do dyspozycji

Bardziej szczegółowo

STRUKTURA KRYSZTAŁÓW

STRUKTURA KRYSZTAŁÓW STRUKTURA KRYSZTAŁÓW Skala wielkości spotykanych w krystalografii: Średnica atomu wodoru: 10 Rozmiar komórki elementarnej: od kilku do kilkudziesięciu Å o D = 1*10 m = 1A 1 Struktura = sieć + baza atomowa

Bardziej szczegółowo

ORIGAMI Z opornym papierem zmierz się i TY!

ORIGAMI Z opornym papierem zmierz się i TY! Najłatwiej przemawia do nas to co możemy zobaczyć, dotknąć, spróbować samodzielnie wykonać. Każdy sukces cieszy bardziej jak można się nim pochwalić. ORIGAMI Z opornym papierem zmierz się i TY! 1 Co to

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016

Wymagania na poszczególne oceny szkolne z matematyki. dla uczniów klasy Ia i Ib. Gimnazjum im. Jana Pawła II w Mętowie. w roku szkolnym 2015/2016 Wymagania na poszczególne oceny szkolne z matematyki dla uczniów klasy Ia i Ib Gimnazjum im. Jana Pawła II w Mętowie w roku szkolnym 2015/2016 DZIAŁ I: LICZBY zaznacza na osi liczbowej punkty odpowiadające

Bardziej szczegółowo

Fizyka 2. Janusz Andrzejewski

Fizyka 2. Janusz Andrzejewski Fizyka 2 wykład 13 Janusz Andrzejewski Scaledlugości Janusz Andrzejewski 2 Scaledługości Simple molecules

Bardziej szczegółowo

Laboratorium z Krystalografii. 2 godz.

Laboratorium z Krystalografii. 2 godz. Uniwersytet Śląski - Instytut Chemii Zakład Krystalografii ul. Bankowa 14, pok. 132, 40-006 Katowice tel. 0323591627, e-mail: ewa.malicka@us.edu.pl opracowanie: dr Ewa Malicka Laboratorium z Krystalografii

Bardziej szczegółowo

DELTOŚCIANY RÓŻNE KONSTRUKCJE

DELTOŚCIANY RÓŻNE KONSTRUKCJE MINILAND, S.A. 2004 2 4 6 7 9 14 16 17 22 23 23 WIELOKĄTY MOZAIKI WIELOŚCIANY WIELOŚCIANY FOREMNE BRYŁY PLATOŃSKIE WIELOŚCIANY PÓŁFOREMNE GRANIASTOSŁUPY ANTYGRANIASTOSŁUPY OSTOSŁUPY WIELOŚCIANY GWIAŹDZISTE

Bardziej szczegółowo

Metoda DSH. Dyfraktometria rentgenowska. 2. Dyfraktometr rentgenowski: - budowa anie - zastosowanie

Metoda DSH. Dyfraktometria rentgenowska. 2. Dyfraktometr rentgenowski: - budowa anie - zastosowanie Metoda DSH. Dyfraktometria rentgenowska 1. Teoria Braggów-Wulfa 2. Dyfraktometr rentgenowski: - budowa - działanie anie - zastosowanie Promieniowanie elektromagnetyczne radiowe mikrofale IR UV/VIS X γ

Bardziej szczegółowo

DYFRAKTOMETRIA RENTGENOWSKA W BADANIACH NIENISZCZĄCYCH - NOWE NORMY EUROPEJSKIE

DYFRAKTOMETRIA RENTGENOWSKA W BADANIACH NIENISZCZĄCYCH - NOWE NORMY EUROPEJSKIE Sławomir Mackiewicz IPPT PAN DYFRAKTOMETRIA RENTGENOWSKA W BADANIACH NIENISZCZĄCYCH - NOWE NORMY EUROPEJSKIE 1. Wstęp Dyfraktometria rentgenowska jest techniką badawczą znaną i szeroko stosowaną w dziedzinie

Bardziej szczegółowo

Planimetria 1 12 godz.

Planimetria 1 12 godz. Planimetria 1 1 godz. Funkcje trygonometryczne kąta ostrego 1 definicje funkcji trygonometrycznych kąta ostrego wartości funkcji trygonometrycznych kątów 30º, 45º, 60º Trygonometria zastosowania Rozwiązywanie

Bardziej szczegółowo

Konkurs Matematyczny dla uczniów gimnazjów województwa lubuskiego 19 stycznia 2011 r. zawody II stopnia (rejonowe)

Konkurs Matematyczny dla uczniów gimnazjów województwa lubuskiego 19 stycznia 2011 r. zawody II stopnia (rejonowe) Kod ucznia:... Ilość punktów:... Konkurs Matematyczny dla uczniów gimnazjów województwa lubuskiego 9 stycznia 20 r. zawody II stopnia (rejonowe) Witamy Cię na drugim etapie Konkursu Matematycznego. Przed

Bardziej szczegółowo

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne

ZAKRES PODSTAWOWY CZĘŚĆ II. Wyrażenia wymierne CZĘŚĆ II ZAKRES PODSTAWOWY Wyrażenia wymierne Temat: Wielomiany-przypomnienie i poszerzenie wiadomości. (2 godz.) znać i rozumieć pojęcie jednomianu (2) znać i rozumieć pojęcie wielomianu stopnia n (2)

Bardziej szczegółowo

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM

WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM WYMAGANIA NA POSZCZEGÓLNE STOPNIE KLASA I GIMNAZJUM OCENA DOPUSZCZAJĄCA pojęcie liczby naturalnej, całkowitej, wymiernej, pojęcia: rozwinięcie dziesiętne skończone, nieskończone, okres, algorytm zaokrąglania

Bardziej szczegółowo

b) Obliczyć pole trójkąta o bokach a, b, c. Dla kolejnych a, b, c równych:

b) Obliczyć pole trójkąta o bokach a, b, c. Dla kolejnych a, b, c równych: Zadanie 1. a) Czworościan foremny. Oblicz: powierzchni wielościanu b) Obliczyć pole trójkąta o bokach a, b, c. Dla kolejnych a, b, c równych: a b c 3 4 5 4 5 6 5 6 7 6 7 8 7 8 9 8 9 10 9 10 11 10 11 12

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo