Wymagania dotyczące rozwiązań architektoniczno-konstrukcyjnych budynku

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wymagania dotyczące rozwiązań architektoniczno-konstrukcyjnych budynku"

Transkrypt

1 Wymagania dotyczące rozwiązań architektoniczno-konstrukcyjnych budynku Maksymalne aktualnie obowiązujące wartości współczynników przenikania ciepła U dla ścian, stropów, stropodachów, okien i drzwi balkonowych dla budynku mieszkalnego i zamieszkania zbiorowego, budynku uŝyteczności publicznej, budynku produkcyjnego, magazynowego i gospodarczego podano w załączniku nr 2 do Rozporządzenia Ministra Infrastruktury z dnia 12 kwietnia 2002r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie (Dz.U. Nr 75, poz. 690 wraz z późniejszymi zmianami, ostatnia istotna zmiana z dnia 6 listopada 2008 r.). PoniŜej podano wymagania dla budynku mieszkalnego i zamieszkania zbiorowego. ZAŁĄCZNIK Nr 2 WYMAGANIA IZOLACYJNOŚCI CIEPLNEJ I INNE WYMAGANIA ZWIĄZANE Z OSZCZĘDNOŚCIĄ ENERGII 1. Izolacyjność cieplna przegród i podłóg na gruncie 1.1. Wartości współczynnika przenikania ciepła U ścian, stropów i stropodachów, obliczone zgodnie z Polskimi Normami dotyczącymi obliczania oporu cieplnego i współczynnika przenikania ciepła, nie mogą być większe niŝ wartości U (max) określone w tabelach: Budynek mieszkalny i zamieszkania zbiorowego Lp. Rodzaj przegrody i temperatura w pomieszczeniu Współczynnik przenikania ciepła U (max) [W/(m 2 x K)] Ściany zewnętrzne (stykające sie z powietrzem zewnętrznym, niezaleŝnie od rodzaju ściany): a) przy t i >16 o C 0,30 b) przy t i 16 o C 0,80 2 Ściany wewnętrzne pomiędzy pomieszczeniami ogrzewanymi a nieogrzewanymi, 1,00 klatkami schodowymi lub korytarzami 3 Ściany przyległe do szczelin dylatacyjnych o szerokości: a) do 5 cm, trwale zamkniętych i wypełnionych izolacja cieplna na głębokości co 1,00 najmniej 20 cm b) powyŝej 5 cm, niezaleŝnie od przyjętego sposobu zamknięcia i zaizolowania 0,70 szczeliny 4 Ściany nieogrzewanych kondygnacji podziemnych bez wymagań 5 Dachy, stropodachy i stropy pod nieogrzewanymi poddaszami lub nad przejazdami: a) przy t i > 16 o C 0,25 b) przy 8 o C < t i 16 o C 0,50 6 Stropy nad piwnicami nieogrzewanymi i zamkniętymi przestrzeniami 0,45 podpodłogowymi, podłogi na gruncie 7 Stropy nad ogrzewanymi kondygnacjami podziemnymi bez wymagań 8 8 Ściany wewnętrzne oddzielające pomieszczenie ogrzewane od nieogrzewanego 1,00 t i Temperatura obliczeniowa w pomieszczeniu zgodnie z 134 ust. 2 rozporządzenia Instalacje i urządzenia do ogrzewania budynku powinny mieć szczytową moc cieplną określoną zgodnie z Polskimi Normami dotyczącymi obliczania zapotrzebowania na ciepło pomieszczeń, a takŝe obliczania oporu cieplnego i współczynnika przenikania ciepła przegród budowlanych. 2. Do obliczania szczytowej mocy cieplnej naleŝy przyjmować temperatury obliczeniowe zewnętrzne zgodnie z Polską Normą dotyczącą obliczeniowych temperatur zewnętrznych, a temperatury obliczeniowe ogrzewanych pomieszczeń - zgodnie z poniŝszą tabelą:

2 Temperatury Przeznaczenie lub sposób wykorzystywania obliczeniowe* pomieszczeń Przykłady pomieszczeń C - nieprzeznaczone na pobyt ludzi, - przemysłowe - podczas działania ogrzewania dyŝurnego (jeŝeli magazyny bez stałej obsługi, garaŝe indywidualne, hale postojowe (bez remontów), pozwalają na to względy akumulatornie, maszynownie i technologiczne) szyby dźwigów osobowych +8 C +12 C +16 C +20 C +24 C - w których nie występują zyski ciepła, a jednorazowy pobyt osób znajdujących się w ruchu i w okryciach zewnętrznych nie przekracza 1 h, - w których występują zyski ciepła od urządzeń technologicznych, oświetlenia itp., przekraczające 25 W na 1 m 3 kubatury pomieszczenia - w których nie występują zyski ciepła, przeznaczone do stałego pobytu ludzi, znajdujących się w okryciach zewnętrznych lub wykonujących pracę fizyczną o wydatku energetycznym powyŝej 300 W, - w których występują zyski ciepła od urządzeń technologicznych, oświetlenia itp., wynoszące od 10 do 25 W na 1 m 3 kubatury pomieszczenia - w których nie występują zyski ciepła, przeznaczone na pobyt ludzi: - w okryciach zewnętrznych w pozycji siedzącej i stojącej, - bez okryć zewnętrznych, znajdujących się w ruchu lub wykonujących pracę fizyczną o wydatku energetycznym do 300 W, - w których występują zyski ciepła od urządzeń technologicznych, oświetlenia itp., nieprzekraczające 10 W na 1 m 3 kubatury pomieszczenia - przeznaczone na stały pobyt ludzi bez okryć zewnętrznych, niewykonujących w sposób ciągły pracy fizycznej - przeznaczone do rozbierania, - przeznaczone na pobyt ludzi bez odzieŝy *) Dopuszcza się przyjmowanie innych temperatur obliczeniowych dla ogrzewanych pomieszczeń niŝ jest to określone w tabeli, jeŝeli wynika to z wymagań technologicznych. klatki schodowe w budynkach mieszkalnych, hale spręŝarek, pompownie, kuźnie, hartownie, wydziały obróbki cieplnej magazyny i składy wymagające stałej obsługi, hole wejściowe, poczekalnie przy salach widowiskowych bez szatni, hale pracy fizycznej o wydatku energetycznym powyŝej 300 W, hale formierni, maszynownie chłodni, ładownie akumulatorów, hale targowe, sklepy rybne i mięsne sale widowiskowe bez szatni, ustępy publiczne, szatnie okryć zewnętrznych, hale produkcyjne, sale gimnastyczne, kuchnie indywidualne wyposaŝone w paleniska węglowe pokoje mieszkalne, przedpokoje, kuchnie indywidualne wyposaŝone w paleniska gazowe lub elektryczne, pokoje biurowe, sale posiedzeń łazienki, rozbieralnie-szatnie, umywalnie, natryskownie, hale pływalni, gabinety lekarskie z rozbieraniem pacjentów, sale niemowląt i sale dziecięce w Ŝłobkach, sale operacyjne

3 Budynek uŝyteczności publicznej Lp. Rodzaj przegrody i temperatura w pomieszczeniu U(max) [W/(m 2 x K)] Ściany zewnętrzne (stykające się z powietrzem zewnętrznym), niezaleŝnie od rodzaju ściany: a) przy t i > 16 o C 0,30 b) przy t i 16 o C 0,65 2 Ściany wewnętrzne miedzy pomieszczeniami ogrzewanymi a klatkami schodowymi lub korytarzami 3,00 3 Ściany przylegające do szczelin dylatacyjnych o szerokości: a) do 5 cm, trwale zamkniętych i wypełnionych izolacja cieplna na głębokość co 3,00 najmniej 20 cm b) powyŝej 5 cm, niezaleŝnie od przyjętego sposobu zamknięcia i zaizolowania 0,70 szczeliny 4 Ściany nieogrzewanych kondygnacji podziemnych bez wymagań 5 Dachy, stropodachy i stropy pod nieogrzewanymi poddaszami lub nad przejazdami: a) przy t i > 16 o C b) przy 8 o C < t i 16 o C 0,25 0,50 6 Stropy nad nieogrzewanymi kondygnacjami podziemnymi i zamkniętymi 0,45 przestrzeniami podpodłogowymi, posadzki na gruncie 7 Stropy nad piwnicami ogrzewanymi bez wymagań t i Temperatura obliczeniowa w pomieszczeniu zgodnie z 134 ust. 2 rozporządzenia. *) JeŜeli przy drzwiach wejściowych do budynku nie ma przedsionka, to wartość współczynnika U ściany wewnętrznej przy klatce schodowej na parterze nie powinna być większa niŝ 1,0 W/(m 2 K).

4 Budynek produkcyjny, magazynowy i gospodarczy Lp. Rodzaj przegrody i temperatura w pomieszczeniu Współczynnik przenikania ciepła U(max) [W/(m 2 x K)] Ściany zewnętrzne (stykające się z powietrzem zewnętrznym): a) przy t i > 16 o C b) przy 8 o C < t i 16 o C c) przy t i 8 o C 2 Ściany wewnętrzne i stropy międzykondygnacyjne: a) przy t i >16 o C b) przy 8 o C < t i 16 o C c) przy t i 8 o C 3 Dachy, stropodachy i stropy pod nieogrzewanymi poddaszami lub nad przejazdami: a) przy t i > 16 o C b) przy 8 o C < t i 16 o C c) przy t i 8 o C 4 Stropy nad nieogrzewanymi kondygnacjami podziemnymi i zamkniętymi przestrzeniami podpodłogowymi, posadzki na gruncie: a) przy t i > 16 o C b) przy 8 o C < t i 16 o C c)przy t i 8 o C 0,30 0,65 0,90 1,00 1,40 bez wymagań 5 Stropy nad piwnicami ogrzewanymi bez wymagań ti Temperatura obliczeniowa w pomieszczeniu zgodnie z 134 ust. 2 rozporządzenia lub określana indywidualnie w projekcie technologicznym. ti - RóŜnica temperatur obliczeniowych w pomieszczeniach. 0,25 0,50 0,70 0,80 1,20 1,50

5 1.2. Wartości współczynnika przenikania ciepła U okien, drzwi balkonowych i drzwi zewnętrznych nie mogą być większe niŝ wartości U (max) określone w tabelach: Budynek mieszkalny i zamieszkania zbiorowego Lp. Okna, drzwi balkonowe i drzwi zewnętrzne Współczynnik przenikania ciepła U(max) [W/(m 2 x K)] Okna (z wyjątkiem połaciowych), drzwi balkonowe i powierzchnie przezroczyste nieotwieralne w pomieszczeniach o t i 16 C: a) w I, II i III strefie klimatycznej 1,8 b) w IV i V strefie klimatycznej 1,7 2 a Okna połaciowe (bez względu na strefę klimatyczną) 1,8 w pomieszczeniach o t i 16 o C 3 Okna w ścianach oddzielających pomieszczenia ogrzewane od nieogrzewanych 2,6 4 Okna pomieszczeń piwnicznych i poddaszy nieogrzewanych oraz nad klatkami schodowymi nieogrzewanymi bez wymagań 5 Drzwi zewnętrzne wejściowe 2,6 4 Okna pomieszczeń piwnicznych i poddaszy nieogrzewanych oraz nad klatkami schodowymi nieogrzewanymi bez wymagań 5 Drzwi zewnętrzne wejściowe 2,6 t i Temperatura obliczeniowa w pomieszczeniu zgodnie z 134 ust. 2 rozporządzenia.

6 Budynek uŝyteczności publicznej Lp. Okna, drzwi balkonowe, świetliki i drzwi zewnętrzne U(max) [W/(m 2 x K)] Okna (z wyjątkiem połaciowych), drzwi balkonowe i powierzchnie przezroczyste nieotwieralne: a) przy ti > 16 C b) przy 8 C < ti 16 C c) przy ti 8 C 1,8 2,6 bez wymagań 2 Okna połaciowe i świetliki 21,7 3 Okna i drzwi balkonowe w pomieszczeniach o szczególnych wymaganiach higienicznych (pomieszczenia przeznaczone na stały pobyt ludzi w szpitalach, Ŝłobkach i przedszkolach) 1,8 4 Okna pomieszczeń piwnicznych i poddaszy nieogrzewanych oraz świetliki nad klatkami schodowymi nieogrzewanymi bez wymagań 5 Drzwi zewnętrzne wejściowe do budynków 2,6 t i - Temperatura obliczeniowa w pomieszczeniu zgodnie z 134 ust. 2 rozporządzenia. Budynek produkcyjny, magazynowy i gospodarczy Lp. Okna, świetliki, drzwi i wrota Współczynnik przenikania ciepła U(max) [W/(m 2 x K) Okna (z wyjątkiem połaciowych), drzwi balkonowe i powierzchnie przezroczyste nieotwieralne w pomieszczeniach o ti 16 o C: a) w I, II i III strefie klimatycznej b) w IV i V strefie klimatycznej 2 Okna połaciowe (bez wzglądu na strefę klimatyczną) w pomieszczeniach o t i >16 o C 1,8 3 Okna w ścianach oddzielających pomieszczenia ogrzewane od nieogrzewanych 2,6 4 Drzwi i wrota w przegrodach zewnętrznych 2,6 ti - Temperatura obliczeniowa w pomieszczeniu zgodnie z 134 ust. 2 rozporządzenia. 1,9 1,7

7 OBLICZANIE WSPÓŁCZYNNIKA PRZENIKANIA CIEPŁA U Zasady ogólne Zasady obliczania wartości współczynnika przenikania ciepła U dla przegród określa norma PN-EN ISO 6946:2008 Komponenty budowlane i elementy budynku - Opór cieplny i współczynnik przenikania ciepła - Metoda obliczania. Współczynniki przenikania ciepła dla przegród budowlanych, nie powinny przekraczać wielkości granicznych. Wielkość współczynnika przenikania ciepła U dla ścian i stropów i stropodachów naleŝy obliczać ze wzoru: 1 W U = R R R m K si se gdzie: Rsi, Rse - jednostkowe opory cieplne przejmowania ciepła, [m 2 K/W], R - jednostkowy opór przewodzenia ciepła przez przegrodę, [m2 K/W], Wielkość współczynnika przenikania ciepła U dla podłóg i ścian na gruncie naleŝy obliczać wg zasad podanych w dalszej części. Opór przejmowania i przewodzenia ciepła Opór przejmowania ciepła Obliczeniowe wartości oporów przejmowania ciepła Ri i Re, (m 2 K/W) Kierunek strumienia cieplnego w górę poziomy w dół R si 0,10 0,13 0,17 R se 0,04 0,04 0,04 Uwaga: W przypadku wewnętrznych elementów budowlanych (ścian działowych) lub elementów pomiędzy przestrzenia ogrzewaną i nieogrzewaną R se przyjmuje się o wartości R si. Opory przejmowania ciepła dla róŝnych przegród Opory przejmowania Rodzaj przegrody ciepła [m 2 *K/W] R si R se Ściana zewnętrzna 0,13 0,04 Ściana zewnętrzna zagłębiona w gruncie 0,13 - Ściana wewnętrzna pomiędzy pomieszczeniami ogrzewanymi 0,13 0,13 Ściana wewnętrzna przy pomieszczeniu nieogrzewanym 0,13 0,13 Stropodach niewentylowany 0,10 0,04 Strop pod nieogrzewanym strychem 0,10 0,10 Strop nad nieogrzewaną piwnicą 0,17 0,17 Podłoga na gruncie 0,17 -

8 Opór cieplny przestrzeni dachowych Ru, [m 2 *K/W] Charakterystyka dachu Pokrycie dachówką bez papy (folii), poszycia itp. Pokrycie arkuszowe lub dachówką z papą, poszyciem Jak wyŝej lecz z okładziną alum. lub inną niskoemisyjna Pokrycie papą na poszyciu Ru 0,06 0,2 0,3 0,3 Ru uwzględnia opór przestrzeni wentylowanej i pokrycia, nie uwzględnia oporu Rse Opór cieplny niewentylowanych warstw powietrza, [m 2 *K/W] Grubość warstwy powietrza [mm] Kierunek strumienia cieplnego w górę poziomy w dół 0,00 0,11 0,13 0,15 0,16 0,16 0,16 0,16 0,16 0,00 0,11 0,13 0,15 0,17 0,18 0,18 0,18 0,18 0,00 0,11 0,13 0,15 0,17 0,19 0,21 0,22 0,23 Uwaga: dla pośrednich wartości grubości warstwy- interpolować liniowo Mostki cieplne Występowanie i skutki mostków cieplnych Szczególnym miejscem ucieczki ciepła z pomieszczeń są mostki cieplne czyli miejsca zwiększonego przepływu ciepła z wnętrza budynku na zewnątrz. Występują dwa rodzaje mostków : konstrukcyjne, czyli miejsca, w których rozwiązania konstrukcyjne stwarzają niekorzystne warunki izolacyjności cieplnej, np. miejsca w których przerwana jest ciągłość wymaganej izolacji termicznej, ze względu na konieczność zachowania wymagań konstrukcyjnych, geometryczne wynikające z kształtu przegród zewnętrznych budynku. np. w naroŝach budynku lub na połączeniach ścian zewnętrznych z innymi przegrodami. Przykładem mostka geometrycznego jest naroŝe budynku, w którym na niewielką powierzchnię wewnętrzną przypada znacznie zwiększona powierzchnia zewnętrzna. Jest to często przyczyną pojawiającej się wilgoci w naroŝnikach pomieszczeń. W tych miejscach poŝądane jest powiększenie grubości izolacji termicznej. Mostek ciepła w naroŝniku budynku (widok w przekroju poziomym)

9 Inaczej moŝna podzielić mostki cieplne na: - liniowe występujące wzdłuŝ pewnej linii, - punktowe - spowodowane przebiciem warstwy izolacji przez szpilki, wieszaki lub kotwy łączące konstrukcyjne warstwy ściany przedzielone materiałem izolacyjnym. Najczęściej występujące mostki cieplne są następujące: a) Ściany zewnętrzne W ścianach mostki mogą występować wzdłuŝ krawędzi otworów okiennych oraz w miejscach, w których ściana zewnętrzna łączy się ze ścianą wewnętrzną. Na rysunku poniŝej przedstawiono występowanie mostków w zaleŝności od sposobu ocieplenia ściany (od wewnątrz lub od zewnątrz). mostki cieplne mostki cieplne Występowanie mostków cieplnych z zaleŝności od sposobu ocieplenia ściany W ścianach prefabrykowanych trójwarstwowych pojawiają się mostki termiczne punktowe w miejscach połączeń warstw betonowych za pomocą wieszaków i szpilek stalowych. Na rysunku poniŝej pokazano rozmieszczenie tych połączeń w przykładowej płycie z dwoma otworami okiennymi. a) szpilka b) wieszak x x x a) x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x x xx szpilka wieszak warstwa fakturowa warstwa konstrukcyjna Przykład występowania mostków punktowych w prefabrykacie wielkopłytowym betonowym: a) przekrój, b) płyta w widoku b) Stropodachy i stropy pod nieogrzewanym poddaszem Mostki cieplne występują np. w obrębie wieńców obwodowych usytuowanych w poziomie stropu. Wieńce te szczególnie w budynkach prefabrykowanych, są na ogół słabo izolowane. Brak jest równieŝ izolacji w ścianie poddasza). c) Balkony Mostek tworzy się przez połączenie płyty balkonowej i płyty stropowej

10 Mostek cieplny w płycie balkonowej częściowo zlikwidowany przez ocieplenie Uproszczona metoda w odniesieniu do strat ciepła przez przenikanie W obliczeniach strat ciepła przez przenikanie, mostki cieplne moŝna uwzględnić metodą uproszczoną. Polega ona na przyjęciu skorygowanej wartości współczynnika przenikania ciepła: 2 U kc = U k + U tb, W/m K gdzie: U kc skorygowany współczynnik przenikania ciepła elementu budynku (k), z uwzględnieniem liniowych mostków cieplnych, W/m 2 K; U k współczynnik przenikania ciepła elementu budynku (k), W/m 2 K; U tb współczynnik korekcyjny w zaleŝności od typu elementu budynku, W/m 2 K. Orientacyjne wartości współczynnika U podane są w tabelach poniŝej. Pojęcie elementu budynku tb przecinającego i nieprzecinającego izolację zostało zobrazowane poniŝej. Zaletą uproszczonej metody uwzględniania mostków cieplnych jest bezsprzecznie łatwość jej stosowania. Natomiast wadą wydaje się być tzw. gruby ołówek, poniewaŝ obliczone straty ciepła mogą w niektórych przypadkach być znacznie zawyŝone. izolacja izolacja przecinający element budynku nie przecinający element budynku Element budynku przecinający i nieprzecinający izolację.

11 Współczynnik korekcyjny U tb dla pionowych elementów budynku Liczba stropów przecinających izolację Liczba przecinanych ścian U tb kubatura przestrzeni 100 m 3, W/m 2 K kubatura przestrzeni >100m , , ,15 0,05 0 0,20 0,10 1 0,25 0,15 2 0,30 0,20 0 0,25 0,15 1 0,30 0,20 2 0,35 0,25 Współczynnik korekcyjny Element budynku U tb dla poziomych elementów budynku U tb Lekka podłoga (drewno, metal itd.) 0 CięŜka podłoga (beton, itd.) Liczba boków będących w kontakcie ze środowiskiem zewnętrznym 1 0,05 2 0,10 3 0,15 4 0,20, W/m 2 K U Współczynnik korekcyjny tb dla otworów Powierzchnia elementu budynku U tb, W/m 2 K 0-2 m 2 0,50 >2-4 m 2 0,40 >4-9 m 2 0,30 >9-20 m 2 0,20 >20m 2 0,10

12 Obliczanie strat ciepła przez grunt Uwagi ogólne Obliczanie strat ciepła przez przenikanie przez grunt zostało ujęte w normie PN EN ISO Metoda obliczania projektowego obciąŝenia cieplnego, w której podano metodę obliczania współczynnika przenikania ciepła przez podłogę na gruncie oraz przez ścianę pomieszczenia zagłębionego w gruncie. Obliczanie współczynnika przenikania ciepła przez podłogę na gruncie Współczynnik ten, oznaczany U equiv,bf dla podłóg zaleŝy: 1) od wielkości zagłębienia poniŝej terenu z, liczonego od poziomu terenu do poziomu spodu płyty podłogi, 2) od wielkości współczynnika przenikania ciepła U obliczonego dla konstrukcji podłogi, 3) od wielkości parametru B. (Uwaga: indeks f w oznaczeniu U equiv,bf oznacza podłogę ang. floor ). Parametr B określa się z zaleŝności B = A 1 P 2, m gdzie: A g - powierzchnia rozpatrywanej płyty podłogowej łącznie ze ścianami zewnętrznymi i wewnętrznymi (m 2 ). W odniesieniu do wolnostojącego budynku A g jest całkowitą powierzchnią rzutu parteru, a w odniesieniu do budynku w zabudowie szeregowej Ag jest powierzchnią rzutu parteru rozpatrywanego budynku. P obwód rozpatrywanej płyty podłogowej (m). W odniesieniu do budynku wolnostojącego P jest całkowitym obwodem budynku, a w odniesieniu do budynku w zabudowie szeregowej P odpowiada jedynie sumie długości ścian zewnętrznych oddzielających rozpatrywaną przestrzeń ogrzewaną od środowiska zewnętrznego. 15 m 7,5 m 10 m 10 m Metoda określenia parametru B Ag = 15 x10 = 150 m 2 Ag = 7,5 x 10 = 75 m 2 P = 2x15 + 2x10 = 50 m P= 2 x7,5 = 15 m B = 150 / (0,5x50) = 6 m B = 75 / (0,5 x15) =10 m Wymiar charakterystyczny podłogi B' zdefiniowany jest w normie PN-EN ISO 13370:2001 w odniesieniu do całego budynku. Natomiast zgodnie z normą PN-EN 12831:2006 wymiar ten dla poszczególnych pomieszczeń powinien być określany w jeden z następujących sposobów: dla pomieszczeń bez ścian zewnętrznych stosuje się wartość B' obliczoną dla całego budynku; dla wszystkich pomieszczeń z dobrze izolowaną podłogą (U podłogi < 0,5 W/m 2 K) równieŝ stosuje się wartość B' obliczoną dla całego budynku; dla pozostałych pomieszczeń (pomieszczenia ze ścianami zewnętrznymi oraz jednocześnie ze słabo izolowaną podłogą) wartość B' naleŝy obliczać oddzielnie dla kaŝdego pomieszczenia. NaleŜy zwrócić uwagę, Ŝe wzoru na B nie da się zastosować dla pomieszczeń bez ścian zewnętrznych, gdyŝ obwód P wynosi wówczas zero (zgodnie z powyŝszym stosuje się wtedy wartość obliczoną dla całego budynku). Dla obliczenia wartości U wyznacza się opór cieplny poszczególnych warstw z uwzględnieniem oporu przejmowania ciepła od strony wewnętrznej budynku, a pomijając opór przejmowania ciepła od strony gruntu czyli przyjmując jego wartość jako 0.

13 Na podstawie wyliczonych wartości B oraz U wyznaczenie wartości U equiv,bf dokonuje się przy pomocy poniŝszej tabeli lub nomogramów. Korzysta się z wartości które dotyczą wielkości zagłębienia w terenie oraz wielkości B i U zbliŝonych do wartości występujących w rozpatrywanym budynku, wyznaczając U equiv,bf dla pośrednich wartości metodą interpolacji liniowej. Wartości U equiv,bf podłogi ogrzewanego podziemia jako funkcja zagłębienia poniŝej poziomu terenu (Z), współczynnika przenikania ciepła podłogi (U pod [W/(m 2 *K)]) i wartości B Z B U equiv,bf m 0,0 1,5 3,0 W/ (m2*k) m Bez izolacji U pod 2,0 U pod 1,0 U pod 0,5 U pod 0,25 2 1,30 0,77 0,55 0,33 0,17 4 0,88 0,59 0,45 0,30 0,17 6 0,68 0,48 0,38 0,27 0,17 8 0,55 0,41 0,33 0,25 0, ,47 0,36 0,30 0,23 0, ,41 0,32 0,27 0,21 0, ,37 0,29 0,24 0,19 0, ,33 0,26 0,22 0,18 0, ,31 0,24 0,21 0,17 0, ,28 0,22 0,19 0,16 0,12 2 0,86 0,58 0,44 0,28 0,16 4 0,64 0,48 0,38 0,26 0,16 6 0,52 0,40 0,33 0,25 0,15 8 0,44 0,35 0,29 0,23 0, ,38 0,31 0,26 0,21 0, ,34 0,28 0,24 0,19 0, ,30 0,25 0,22 0,18 0, ,28 0,23 0,20 0,17 0, ,25 0,22 0,19 0,16 0, ,24 0,20 0,18 0,15 0,11 2 0,63 0,46 0,35 0,24 0,14 4 0,51 0,40 0,33 0,24 0,14 6 0,43 0,35 0,29 0,22 0,14 8 0,37 0,31 0,26 0,21 0, ,32 0,27 0,24 0,19 0, ,29 0,25 0,22 0,18 0, ,26 0,23 0-,20 0,17 0, ,24 0,21 0,19 0,16 0, ,22 0,20 0,18 0,15 0, ,21 0,18 0,16 0,14 0,11 Obliczanie współczynnika przenikania ciepła przez ścianę stykająca się z gruntem Współczynnik ten, oznaczany U equiv,bw dla ścian zaleŝy: 1) od wielkości zagłębienia poniŝej terenu z, 2) od wielkości współczynnika przenikania ciepła U ściany obliczonego dla konstrukcji ściany., (Uwaga: indeks w w oznaczeniu U equiv,bw oznacza ścianę ang. wall ). Dla obliczenia wartości U ściany wyznacza się opór cieplny poszczególnych warstw z uwzględnieniem oporu przejmowania ciepła od strony wewnętrznej budynku, a pomijając opór przejmowania ciepła od strony gruntu czyli przyjmując jego wartość jako 0. Na podstawie wyliczonej wartości U ściany wyznaczenie wartości U equiv,bw dokonuje się przy pomocy poniŝszej tabeli lub nomogramów. Korzysta się z wartości które dotyczą wielkości zagłębienia w terenie oraz wielkości U ściany zbliŝonych do wielkości występujących w rozpatrywanym budynku, wyznaczając U equiv,bw dla pośrednich wartości zagłębienia metodą interpolacji liniowej.

14 Wartości U equiv,bw ściany ogrzewanego podziemia w funkcji współczynnika przenikania ciepła ściany i głębokości z poniŝej terenu U ściany W/(m 2 *K) U equiv,bw W/(m 2 *K) Z=0m Z=1 m Z= 2m Z=3m 0,00 0,00 0,00 0,00 0,00 0,50 0,44 0,39 0,35 0,32 0,75 0,63 0,54 0,48 0,43 1,00 0,81 0,68 0,59 0,53 1,25 0,98 0,81 0,69 0,61 1,50 1,14 0,92 0,78 0,68 1,75 1,28 1,02 0,85 0,74 2,00 1,42 1,11 0,92 0,79 2,25 1,55 1,19 0,98 0,84 2,50 1,67 1,27 1,04 0,88 2,75 1,78 1,34 1,09 0,92 3,00 1,89 1,41 1,13 0,96 Współczynniki przenikania ciepła U dla okien Wartości obliczeniowe współczynników U dla okien, świetlików i drzwi Współczynnik przenikania ciepła U dla okien, świetlików, wrót i drzwi w przypadku, gdy znany jest ich producent, przyjmuje się wg aprobat technicznych lub norm. W przypadku istniejących obiektów, współczynnik przenikania ciepła U dla okien, świetlików, wrót i drzwi moŝna przyjąć wg wartości podanych w zał. do normy PN-EN ISO 6946 wydanie z 1999r (na zasadzie literatury technicznej). Wartości te zawiera poniŝsza tablica. Dotyczą one zwłaszcza okien starego typu, istniejących w domach oddanych do uŝytku przed 1990 r. i które nie zostały wymienione. Wartości obliczeniowe U okien, świetlików i drzwi L. p Rodzaj elementu Rodzaj ram i oszklenia 1 Krosnowe oszklone pojedynczo a) drewniane lub z tworzyw sztucznych b) metalowe 2 Jednoramowe drewniane, oszklone szyba zespoloną a) jednokomorową b) dwukomorową 3 Drewniane skrzynkowe lub ościeŝnicowe a) oszklone podwójnie b) oszklone potrójnie 4 Zespolone drewniane oszklone a) podwójnie b)potrójnie (szyba zespolona jednokomorowa i 5 Okna, drzwi balkonowe lub świetliki Grubość warstw powietrznych mm 16 min 2x7 min2x i U W/(m 2 *K) 5,1 5,6 2,6 2,3 2,0 2,6 2,0 2,6 2,0 pojedyncza) Trójkomorowe, jednoramowe z PCV, oszklone szybą zespoloną jednokomorową 16 2,6 6 Drzwi Nieocieplone, oszklone pojedynczo a) drewniane lub z tworzyw sztucznych b) metalowe - 5,1 5,6 UWAGA: wartości U odnoszą się do szyb zwykłych (bez specjalnych powłok niskoemisyjnych i gazów wypełniających innych niŝ powietrze) oraz do powierzchni obliczonych w wymiarze zewnętrznym ościeŝnic.

15 Obliczanie współczynników U dla nowych okien Wartości współczynników U dla okien, świetlików i drzwi, moŝna określić wg zasad metody uproszczonej podanych w normie PN-EN ISO Według tej normy współczynnik U dla okna oblicza się wg następującego wzoru: U w = A U g g + A U g f A + A f + l Ψ f g g w którym: A g jest polem powierzchni oszklenia, m 2 A f jest polem powierzchni ramy, m 2 U g jest współczynnikiem przenikania ciepła oszklenia, W/m 2 K. U f jest współczynnikiem przenikania ciepła ramy, W/m 2 K. l g jest całkowitym obwodem oszklenia, m Ψ g jest liniowym współczynnikiem przenikania ciepła mostka cieplnego na styku szyby z ramą okna We wzorze występują nie tylko pola i współczynniki U dla ramy okiennej i oszklenia, ale takŝe uwzględniony jest wpływ mostka cieplnego jaki tworzy się w miejscu połączenia ramy i oszklenia, wyraŝony współczynnikiem Ψ g i długością obwodu części szklonej. Wartość ta dla nowych okien jest niewielka i często się ją pomija. Producenci okien najczęściej nie podają wartości całkowitego współczynnika U w dla okna, jedynie oddzielnie U f dla ramy i U g dla szyby. Znając współczynniki przenikania dla ramy okiennej i oszklenia oraz powierzchnię ramy i oszklenia moŝna obliczyć współczynnik przenikania U w dla całego okna posługując się wzorem. Dla wybranych typowych sytuacji, znając współczynniki przenikania dla ramy okiennej i oszklenia moŝna wartość współczynnika przenikania dla okien określić z poniŝszej tabeli. Tabela ta podaje wartości współczynników U dla okien z podwójnym szkleniem, w których udział powierzchni ramy w całej powierzchni okna wynosi 30%. Współczynniki przenikania ciepła U w dla okien o podwójnym oszkleniu i 30% udziale powierzchni ramy w całej powierzchni okna Ug (szklenie) W/(m 2 K) U f (rama) W/(m 2 K) 1,0 1,4 1,8 2,2 2,6 3,0 3,4 3,8 7,0 3,3 2,7 2,8 2,9 3,1 3,2 3,4 3,5 3,6 4,4 3,1 2,6 2,7 2,8 2,9 3,1 3,2 3,3 3,5 4,3 2,9 2,4 2,5 2,7 2,8 3,0 3,1 3,2 3,3 4,1 2,7 2,3 2,4 2,5 2,6 2,8 2,9 3,1 3,2 4,0 2,5 2,2 2,3 2,4 2,6 2,7 2,8 3,0 3,1 3,9 2,3 2,1 2,2 2,3 2,4 2,6 2,7 2,8 2,9 3,8 2,1 1,9 2,0 2,2 2,3 2,4 2,6 2,7 2,8 3,6 1,9 1,8 1,9 2,0 2,1 2,3 2,4 2,5 2,7 3,5 1,7 1,6 1,8 1,9 2,0 2,2 2,3 2,4 2,5 3,3 1,5 1,5 1,6 1,7 1,9 2,0 2,1 2,3 2,4 3,2 1,3 1,4 1,5 1,6 1,7 1,9 2,0 2,1 2,2 3,1 1,1 1,2 1,3 1,5 1,6 1,7 1,9 2,0 2,1 2,9

16 Wartości obliczeniowe właściwości fizycznych, komponentów i materiałów wg normy PN-91/B ( na zasadzie literatury technicznej).

17

18 Wartości obliczeniowe oporu cieplnego i współczynnika przenikania ciepła Uo (ko) wybranych przegród o budowie niejednorodnej wg normy PN-91/B ( na zasadzie literatury technicznej).

19

20 Wartości liniowego współczynnika przenikania ciepła dla wybranych przypadków przy zastosowaniu wymiarów zewnętrznych. Wg normy PN-EN ISO poniŝej W przypadku kaŝdego typu mostka cieplnego i połoŝenia zasadniczej warstwy izolacyjnej pokazano ogólny szkic detalu oraz trzy wartości Ψ: - Ψ i opartego na wymiarach wewnętrznych, - Ψ oi opartego na całkowitych wymiarach wewnętrznych, - Ψ e opartego na wymiarach zewnętrznych.

21 NaroŜa: Ściany wewnętrzne: Stropy: Dachy:

22 Podłogi na gruncie: Podłogi podwieszone:

23 Otwory okienne:

Obliczanie zapotrzebowania na ciepło zgodnie z normą PN-EN ISO 12831. Mgr inż. Zenon Spik

Obliczanie zapotrzebowania na ciepło zgodnie z normą PN-EN ISO 12831. Mgr inż. Zenon Spik Obliczanie zapotrzebowania na ciepło zgodnie z normą PN-EN ISO 12831 Mgr inż. Zenon Spik Oznaczenia Nowością, która pojawia się w normie PN-EN ISO 12831 są nowe oznaczenia podstawowych wielkości fizycznych:

Bardziej szczegółowo

gdzie: Tabela 2.3.Opór cieplny niewentylowanych warstw powietrza, [m 2 *K/W] Grubość warstwy powietrza [mm]

gdzie: Tabela 2.3.Opór cieplny niewentylowanych warstw powietrza, [m 2 *K/W] Grubość warstwy powietrza [mm] OBLICZANIE WSPÓŁCZYNNIKA PRZENIKANIA CIEPŁA U Zasady ogólne Zasady obliczania wartości współczynnika przenikania ciepła U dla przegród określa norma PN-EN ISO 94:00 Komponenty budowlane i elementy budynku

Bardziej szczegółowo

OCENA OCHRONY CIEPLNEJ

OCENA OCHRONY CIEPLNEJ OCENA OCHRONY CIEPLNEJ 26. W jakich jednostkach oblicza się opór R? a) (m 2 *K) / W b) kwh/m 2 c) kw/m 2 27. Jaka jest zależność pomiędzy współczynnikiem przewodzenia ciepła λ, grubością warstwy materiału

Bardziej szczegółowo

Dziennik Ustaw 31 Poz WYMAGANIA IZOLACYJNOŚCI CIEPLNEJ I INNE WYMAGANIA ZWIĄZANE Z OSZCZĘDNOŚCIĄ ENERGII

Dziennik Ustaw 31 Poz WYMAGANIA IZOLACYJNOŚCI CIEPLNEJ I INNE WYMAGANIA ZWIĄZANE Z OSZCZĘDNOŚCIĄ ENERGII Dziennik Ustaw 31 Poz. 2285 Załącznik nr 2 WYMAGANIA IZOLACYJNOŚCI CIEPLNEJ I INNE WYMAGANIA ZWIĄZANE Z OSZCZĘDNOŚCIĄ ENERGII 1. Izolacyjność cieplna przegród 1.1. Wartości współczynnika przenikania ciepła

Bardziej szczegółowo

Dz.U ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i

Dz.U ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i Dz.U.02.75.690 ROZPORZĄDZENIE MINISTRA INFRASTRUKTURY z dnia 12 kwietnia 2002 r. w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie. (Dz. U. z dnia 15 czerwca 2002 r.)

Bardziej szczegółowo

PRZENIKANIE = PRZEJMOWANIE = Wymiana ciepła złożona. przewodzenie + przejmowanie ciepła + promieniowanie. konwekcja + przewodzenie

PRZENIKANIE = PRZEJMOWANIE = Wymiana ciepła złożona. przewodzenie + przejmowanie ciepła + promieniowanie. konwekcja + przewodzenie Ogrzewnictwo W 3 1. PRZEWODZENIE - przenoszenie energii wewnątrz materiału przegrody, 2. UNOSZENIE (konwekcja) - poszczególne cząstki ciała, w którym przenosi się ciepło, zmieniają swoje położenie. - wymuszona

Bardziej szczegółowo

BUDYNKI WYMIANA CIEPŁA

BUDYNKI WYMIANA CIEPŁA BUDYNKI WYMIANA CIEPŁA Współczynnik przenikania ciepła (p. 1.1 i 3.1 ćwiczenia projektowego) Rozkład temperatury w zadanej przegrodzie (p. 1.2 ćwiczenia projektowego) Współczynnik przenikania ciepła ściany

Bardziej szczegółowo

Ekspercka propozycja zmiany Działu X oraz Załącznika nr 2, uwzględniająca wariantowość proponowanych rozwiązań. Dział X

Ekspercka propozycja zmiany Działu X oraz Załącznika nr 2, uwzględniająca wariantowość proponowanych rozwiązań. Dział X Załącznik do pisma z dnia 2 listopada 2012 r. Ekspercka propozycja zmiany Działu X oraz Załącznika nr 2, uwzględniająca wariantowość proponowanych rozwiązań Dział X Oszczędność energii i izolacyjność cieplna

Bardziej szczegółowo

Kierunek strumienia ciepła ciepła, [(m 2 K)/W] Pionowy w górę Poziomy Pionowy w dół

Kierunek strumienia ciepła ciepła, [(m 2 K)/W] Pionowy w górę Poziomy Pionowy w dół Obliczanie współczynnia przeniania ciepła przez przegrody budowlane wg PN-EN ISO 6946:008 omponenty budowlane i elementy budynu Opór cieplny i współczynni przeniania ciepła Metoda obliczania A. PZEGODY

Bardziej szczegółowo

Tabela 1. Aktualne wymagania wartości U(max) wg WT dla budynków mieszkalnych i zamieszkania zbiorowego. od 1 stycznia 2017 r.

Tabela 1. Aktualne wymagania wartości U(max) wg WT dla budynków mieszkalnych i zamieszkania zbiorowego. od 1 stycznia 2017 r. Przykłady obliczenia wartości współczynników przenikania ciepła U C 1. Ściana zewnętrzna dwuwarstwowa 2. Ściana wewnętrzna między piwnicą ogrzewaną a nieogrzewaną 3. Połać dachowa (przegroda niejednorodna)

Bardziej szczegółowo

Materiały edukacyjne dla doradców Na podstawie projektu gotowego z kolekcji Muratora M03a Moje Miejsce. i audytorów energetycznych

Materiały edukacyjne dla doradców Na podstawie projektu gotowego z kolekcji Muratora M03a Moje Miejsce. i audytorów energetycznych Optymalizacja energetyczna budynków Świadectwo energetycznej Fizyka budowli dla z BuildDesk. domu jednorodzinnego. Instrukcja krok po kroku Materiały edukacyjne dla doradców Na podstawie projektu gotowego

Bardziej szczegółowo

Materiały edukacyjne dla doradców Na podstawie projektu gotowego z kolekcji Muratora M03a Moje Miejsce. i audytorów energetycznych

Materiały edukacyjne dla doradców Na podstawie projektu gotowego z kolekcji Muratora M03a Moje Miejsce. i audytorów energetycznych Optymalizacja energetyczna budynków Świadectwo energetycznej Fizyka budowli dla z BuildDesk. domu jednorodzinnego. Instrukcja krok po kroku Materiały edukacyjne dla doradców Na podstawie projektu gotowego

Bardziej szczegółowo

Ochrona cieplna Michał Kowalski Wydział Górnictwa i Geoinżynierii Katedra Geomechaniki, Budownictwa i Geotechniki

Ochrona cieplna Michał Kowalski Wydział Górnictwa i Geoinżynierii Katedra Geomechaniki, Budownictwa i Geotechniki Ochrona cieplna Michał Kowalski Wydział Górnictwa i Geoinżynierii Katedra Geomechaniki, Budownictwa i Geotechniki Izolacyjność cieplna przegród budynek mieszkalny i zamieszkania zbiorowego Lp. 1 2 Rodzaj

Bardziej szczegółowo

Posadzka parteru beton 10 cm, podłoga drewniana 1,5 cm na legarach 6 cm. Ściany fundamentowe. beton 25 cm

Posadzka parteru beton 10 cm, podłoga drewniana 1,5 cm na legarach 6 cm. Ściany fundamentowe. beton 25 cm OPIS OBIEKTU: Budynek wykonany w technologii tradycyjnej. Ściany zewnętrzne z cegły pełnej i bloczków gazobetonu z izolacyjną przerwą powietrzną ok. 3 cm między materiałami. Od środka tynk cementowo -

Bardziej szczegółowo

R = 0,2 / 0,04 = 5 [m 2 K/W]

R = 0,2 / 0,04 = 5 [m 2 K/W] ZADANIA (PRZYKŁADY OBLICZENIOWE) z komentarzem 1. Oblicz wartość oporu cieplnego R warstwy jednorodnej wykonanej z materiału o współczynniku przewodzenia ciepła = 0,04 W/mK i grubości d = 20 cm (bez współczynników

Bardziej szczegółowo

tynk gipsowy 1,5cm bloczek YTONG 24cm, odmiana 400 styropian 12cm tynk cienkowarstwowy 0,5cm

tynk gipsowy 1,5cm bloczek YTONG 24cm, odmiana 400 styropian 12cm tynk cienkowarstwowy 0,5cm Ściana zewnętrzna stykająca się z powietrzem zewnętrznym ściana dwuwarstwowa (ti>16 C) w budynku jednorodzinnym tynk gipsowy 1,5cm bloczek YTONG 24cm, odmiana 400 styropian 12cm tynk cienkowarstwowy 0,5cm

Bardziej szczegółowo

Warunki techniczne. do poprawy?

Warunki techniczne. do poprawy? Warunki techniczne. do poprawy? Jerzy ŻURAWSKI Dolnośląska Agencja Energii i Środowiska Stowarzyszenie Agencji Poszanowania Energii - SAPE Zrzeszenie Audytorów Energetycznych - ZAE jurek@cieplej.pl Warunki

Bardziej szczegółowo

PN-B-02025:2001. temperaturze powietrza wewnętrznego =20 o C, mnożnikach stałych we wzorach,

PN-B-02025:2001. temperaturze powietrza wewnętrznego =20 o C, mnożnikach stałych we wzorach, PN-B-02025:2001 Uproszczony sposób obliczania wskaźnika sezonowego zapotrzebowania na ciepło do ogrzewania budynków ZAŁOŻENIA: - cała ogrzewana przestrzeń budynku stanowi jedną strefę o eksploatacyjnej

Bardziej szczegółowo

Wyznaczanie izolacyjności cieplnej dachów w świetle obowiązujących polskich norm i przepisów prawa budowlanego

Wyznaczanie izolacyjności cieplnej dachów w świetle obowiązujących polskich norm i przepisów prawa budowlanego Wyznaczanie izolacyjności cieplnej dachów w świetle obowiązujących polskich norm i przepisów prawa budowlanego ozporządzenie Ministra Infrastruktury w sprawie warunków, jakim powinny odpowiadać budynki

Bardziej szczegółowo

Materiały do ćwiczeń z ogrzewnictwa 4. PRZYKŁAD OBLICZANIA ZAPOTRZEBOWANIA NA MOC CIEPLNĄ. Pokój. Pokój t i = +20 o C Kub = m 3

Materiały do ćwiczeń z ogrzewnictwa 4. PRZYKŁAD OBLICZANIA ZAPOTRZEBOWANIA NA MOC CIEPLNĄ. Pokój. Pokój t i = +20 o C Kub = m 3 4. PRZYKŁAD OBLICZANIA ZAPOTRZEBOWANIA NA MOC CIEPLNĄ PRZYKŁAD 1 Obliczyć zapotrzebowanie na moc cieplną dla pomieszczeń budynku przedstawionego na rys.1. Dane wyjściowe: budynek mieszkalny 4 kondygnacyjny

Bardziej szczegółowo

2. PRZYKŁAD OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPłA U

2. PRZYKŁAD OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPłA U . PRZYKŁAD OBLICZANIA SPÓŁCZYNNIKA PRZENIKANIA CIEPłA PRZYKŁAD Obliczyć współczynnik przenikania ciepła dla ścian wewnętrznych o budowie przedstawionej na rysunkach. 3 4 5 3 4 5.5 38.5 [cm] Rys.. Ściana

Bardziej szczegółowo

Projekt termomodernizacji istniejącego budynku jednorodzinnego d kątem zmniejszenia zapotrzebowania na ciepło do ogrzewania

Projekt termomodernizacji istniejącego budynku jednorodzinnego d kątem zmniejszenia zapotrzebowania na ciepło do ogrzewania Projekt termomodernizacji istniejącego budynku jednorodzinnego d kątem zmniejszenia zapotrzebowania na ciepło do ogrzewania nż. Elżbieta Rudczyk-Malijewska Zakres opracowania Przegląd literatury dotyczącej

Bardziej szczegółowo

Posadzki z tworzyw sztucznych i drewna.

Posadzki z tworzyw sztucznych i drewna. Posadzki z tworzyw sztucznych i drewna. dr inż. Barbara Ksit barbara.ksit@put.poznan.pl Na podstawie materiałów źródłowych dostępnych na portalach internetowych oraz wybranych informacji autorskich Schemat

Bardziej szczegółowo

Załącznik nr 2. Wymagania izolacyjności cieplnej i inne wymagania związane z oszczędnością energii

Załącznik nr 2. Wymagania izolacyjności cieplnej i inne wymagania związane z oszczędnością energii Lp. Miejsce powołania normy Numer normy PN-B-02171:1988 Tytuł normy (zakres powołania) Ocena wpływu drgań na ludzi w budynkach 68 326 ust. 5 PN-EN ISO 354:2005 Akustyka Pomiar pochłaniania dźwięku w komorze

Bardziej szczegółowo

Mostki cieplne wpływ mostków na izolacyjność ścian w budynkach

Mostki cieplne wpływ mostków na izolacyjność ścian w budynkach Mostki cieplne wpływ mostków na izolacyjność ścian w budynkach 2 SCHÖCK ISOKORB NOŚNY ELEMENT TERMOIZOLACYJNY KXT50-CV35-H200 l eq = 0,119 [W/m*K] Pręt sił poprzecznych stal nierdzewna λ = 15 W/(m*K) Pręt

Bardziej szczegółowo

PRZEPŁYW CIEPŁA PRZEZ PRZEGRODY BUDOWLANE

PRZEPŁYW CIEPŁA PRZEZ PRZEGRODY BUDOWLANE PRZEPŁYW CIEPŁA PRZEZ PRZEGRODY BUDOWLANE dr inż. Andrzej Dzięgielewski 1 OZNACZENIA I SYMBOLE Q - ciepło, energia, J, kwh, (kcal) Q - moc cieplna, strumień ciepła, J/s, W (kw), (Gcal/h) OZNACZENIA I SYMBOLE

Bardziej szczegółowo

Materiały edukacyjne dla doradców Na podstawie projektu gotowego z kolekcji Muratora M03a Moje Miejsce. i audytorów energetycznych

Materiały edukacyjne dla doradców Na podstawie projektu gotowego z kolekcji Muratora M03a Moje Miejsce. i audytorów energetycznych Świadectwo energetycznej Fizyka budowli dla z BuildDesk. domu jednorodzinnego. Instrukcja krok po kroku Materiały edukacyjne dla doradców Na podstawie projektu gotowego z kolekcji Muratora M03a Moje Miejsce

Bardziej szczegółowo

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU MIESZKALNEGO JEDNORODZINNEGO "TK20"

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU MIESZKALNEGO JEDNORODZINNEGO TK20 Kraków, dn. 19.02.2013 r. PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU MIESZKALNEGO JEDNORODZINNEGO "TK20" 1. DANE OGÓLNE Budynek jednorodzinny, mieszkalny, parterowy z poddaszem użytkowym, wolno

Bardziej szczegółowo

Termomodernizacja a mostki cieplne w budownictwie

Termomodernizacja a mostki cieplne w budownictwie Termomodernizacja a mostki cieplne w budownictwie Data wprowadzenia: 07.06.2018 r. Złącza budowlane, nazywane także mostkami cieplnymi (termicznymi) powstają w wyniku połączenia przegród budynku jako naruszenie

Bardziej szczegółowo

Przenikanie ciepła obliczanie współczynników przenikania ciepła skrót wiadomości

Przenikanie ciepła obliczanie współczynników przenikania ciepła skrót wiadomości obliczanie współczynników przenikania ciepła skrót wiadomości 10.09.2013 Systemy energetyki odnawialnej 1 Definicja ciepła Ciepło jest to forma energii przekazywana między dwoma układami (lub układem i

Bardziej szczegółowo

mib.gov.pl mib.gov.pl Stan przepisów dot. projektowania budynków. Zamierzenia i kierunek dalszych prac legislacyjnych mib.gov.pl

mib.gov.pl mib.gov.pl Stan przepisów dot. projektowania budynków. Zamierzenia i kierunek dalszych prac legislacyjnych mib.gov.pl mib.gov.pl mib.gov.pl Stan przepisów dot. projektowania budynków. Zamierzenia mib.gov.pl i kierunek dalszych Tomasz Gałązka Departament Budownictwa Prawo krajowe Prawo europejskie Krajowe dokumenty strategiczne

Bardziej szczegółowo

Warszawa, dnia 13 sierpnia 2013 r. Poz. 926 ROZPORZĄDZENIE MINISTRA TRANSPORTU, BUDOWNICTWA I GOSPODARKI MORSKIEJ 1) z dnia 5 lipca 2013 r.

Warszawa, dnia 13 sierpnia 2013 r. Poz. 926 ROZPORZĄDZENIE MINISTRA TRANSPORTU, BUDOWNICTWA I GOSPODARKI MORSKIEJ 1) z dnia 5 lipca 2013 r. DZIENNIK USTAW RZECZYPOSPOLITEJ POLSKIEJ Warszawa, dnia 3 sierpnia 203 r. Poz. 926 ROZPORZĄDZENIE MINISTRA TRANSPORTU, BUDOWNICTWA I GOSPODARKI MORSKIEJ ) z dnia 5 lipca 203 r. zmieniające rozporządzenie

Bardziej szczegółowo

Wymaganie do spełnienia przez budynek energooszczędny: Obliczenia i sposób ich prezentacji w projekcie jest analogiczny do pkt 3!!!

Wymaganie do spełnienia przez budynek energooszczędny: Obliczenia i sposób ich prezentacji w projekcie jest analogiczny do pkt 3!!! 4. Sporządzenie świadectwa energetycznego w Excelu dla zmodyfikowanego budynku, poprzez wprowadzenie jednej lub kilku wymienionych zmian, w celu uzyskania standardu budynku energooszczędnego, tj. spełniającego

Bardziej szczegółowo

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU MIESZKALNEGO JEDNORODZINNEGO "TK-109"

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU MIESZKALNEGO JEDNORODZINNEGO TK-109 Kraków, dn. 18.03.2013 r. PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA BUDYNKU MIESZKALNEGO JEDNORODZINNEGO "TK109" 1. DANE OGÓLNE Budynek jednorodzinny, mieszkalny, parterowy, wolno stojący, bez podpiwniczenia.

Bardziej szczegółowo

Obliczenia kontrolne izolacyjności cieplnej ścian.

Obliczenia kontrolne izolacyjności cieplnej ścian. Projekt: EKSPERTYZA BUDOWLANA BUDYNKU MIESZKALNEGO-Wrocław ul. Szczytnicka 29 Strona 1 Załącznik Nr.. Obliczenia kontrolne izolacyjności cieplnej ścian. Temat: EKSPERTYZA BUDOWLANA BUDYNKU MIESZKALNEGO

Bardziej szczegółowo

IZOLACYJNOŚĆ TERMICZNA STOLARKI BUDOWLANEJ

IZOLACYJNOŚĆ TERMICZNA STOLARKI BUDOWLANEJ IZOLACYJNOŚĆ TERMICZNA STOLARKI BUDOWLANEJ Założenia do oceny w oparciu o energię użytkową Ocena energetyczna stolarki budowlanej w różnych krajach dotyczy energii użytkowej EU Bilans dla stolarki w budynkach

Bardziej szczegółowo

Ćwiczenie projektowe z przedmiotu FIZYKA BUDOWLI

Ćwiczenie projektowe z przedmiotu FIZYKA BUDOWLI Ćwiczenie projektowe z przedmiotu FIZYKA BUDOLI 1. spółczynnik przenikania ciepła U k dla ściany wewnętrznej dzielącej wiatrołap od innych pomieszczeń ogrzewanych Przyjęto: Opór przejmowania ciepła po

Bardziej szczegółowo

Podstawy projektowania cieplnego budynków

Podstawy projektowania cieplnego budynków Politechnika Gdańsk Wydział Inżynierii Lądowej i Środowiska Podstawy projektowania cieplnego budynków Zadanie projektowe Budownictwo Ogólne, sem. IV, studia zaoczne ETAP I Współczynnik przenikania ciepła

Bardziej szczegółowo

A N E K S DO PROJEKTU BUDOWLANO - WYKONAWCZEGO

A N E K S DO PROJEKTU BUDOWLANO - WYKONAWCZEGO A N E K S DO PROJEKTU BUDOWLANO - WYKONAWCZEGO OPRACOWANIE: Termomodernizacja budynku mieszkalnego Wielorodzinnego przy ulicy Zdobywców Wału Pomorskiego 6 w Złocieńcu OCIEPLENIE STROPODACHU OBIEKT BUDOWLANY:

Bardziej szczegółowo

PROJEKT TERMOMODERNIZACJI BUDYNKU ZAKRES I OCZEKIWANE REZULTATY PLANOWANYCH DZIAŁAŃ, ANALIZA UWARUNKOWAŃ I OGRANICZEŃ

PROJEKT TERMOMODERNIZACJI BUDYNKU ZAKRES I OCZEKIWANE REZULTATY PLANOWANYCH DZIAŁAŃ, ANALIZA UWARUNKOWAŃ I OGRANICZEŃ MAŁOPOLSKA AKADEMIA SAMORZĄDOWA DOBRA TERMOMODERNIZACJA W PRAKTYCE PROJEKT TERMOMODERNIZACJI BUDYNKU ZAKRES I OCZEKIWANE REZULTATY PLANOWANYCH DZIAŁAŃ, ANALIZA UWARUNKOWAŃ I OGRANICZEŃ autor: mgr inż.

Bardziej szczegółowo

Efektywna Energetycznie Stolarka Okienna. pasywnej w Budzowie. dr arch. Agnieszka Cena Soroko Dolnośląska Agencja Energii i Środowiska

Efektywna Energetycznie Stolarka Okienna. pasywnej w Budzowie. dr arch. Agnieszka Cena Soroko Dolnośląska Agencja Energii i Środowiska Efektywna Energetycznie Stolarka Okienna na przykładzie szkoły pasywnej w Budzowie dr arch. Agnieszka Cena Soroko Dolnośląska Agencja Energii i Środowiska ZADANIA PRZEGRÓD PRZEŹROCZYSTYCH Przegrody przeźroczyste

Bardziej szczegółowo

Materiały edukacyjne dla doradców Na podstawie projektu gotowego z kolekcji Muratora M03a Moje Miejsce. i audytorów energetycznych

Materiały edukacyjne dla doradców Na podstawie projektu gotowego z kolekcji Muratora M03a Moje Miejsce. i audytorów energetycznych Optymalizacja energetyczna budynków Świadectwo energetycznej Fizyka budowli dla z BuildDesk. domu jednorodzinnego. Instrukcja krok po kroku Materiały edukacyjne dla doradców Na podstawie projektu gotowego

Bardziej szczegółowo

MOSTKI TERMICZNE. mostki termiczne a energochłonność budynku. Karolina Kurtz dr inż., arch.

MOSTKI TERMICZNE. mostki termiczne a energochłonność budynku. Karolina Kurtz dr inż., arch. MOSTKI TERMICZNE Karolina Kurtz dr inż., arch. ZACHODNIOPOMORSKI UNIWERSYTET TECHNOLOGICZNY W SZCZECINIE WYDZIAŁ BUDOWNICTWA I ARCHITEKTURY KATEDRA DRÓG, MOSTÓW I MATERIAŁÓW BUDOWLANYCH 1 mostki termiczne

Bardziej szczegółowo

COLORE budynek energooszczędny

COLORE budynek energooszczędny Analiza zużycia energii cieplnej budynku COLOE przy ul. Karmelkowej we Wrocławiu na tle budynku referencyjnego (wg WT 2008) Zgodnie z obowiązującymi aktami prawnymi (Prawo Budowlane (Dz.U. nr 191 z 18.10.2007,

Bardziej szczegółowo

Przegrody przezroczyste a jakość energetyczna budynku - Energooszczędne okno PVC. Jacek Kowalczyk Menedżer ds. Współpracy z Architektami

Przegrody przezroczyste a jakość energetyczna budynku - Energooszczędne okno PVC. Jacek Kowalczyk Menedżer ds. Współpracy z Architektami Przegrody przezroczyste a jakość energetyczna budynku - Energooszczędne okno PVC Jacek Kowalczyk Menedżer ds. Współpracy z Architektami Winergetic Premium Passive Czym jest dzisiejsze okno? Funkcje jakie

Bardziej szczegółowo

Co nowego w CERTO. nieogrzewanych (zgodnie z PN-EN ISO 13789:2008)

Co nowego w CERTO. nieogrzewanych (zgodnie z PN-EN ISO 13789:2008) Do najwaŝniejszych zmian w CERTO v4.2 naleŝą: 1. Obliczanie współczynników redukcyjnych b tr przyległych stref nieogrzewanych (zgodnie z PN-EN ISO 13789:2008) 2. Estymator współczynnika przenikania ciepła

Bardziej szczegółowo

Optymalizacja energetyczna okien nowych i wymienianych

Optymalizacja energetyczna okien nowych i wymienianych Optymalizacja energetyczna okien nowych i wymienianych Część 2 Szyby, profile, ramki dystansowe Kontynuując temat optymalizacji energetycznej okien przypomnę podstawowy wzór do obliczanie współczynnika

Bardziej szczegółowo

CHARAKTERYSTYKA ENERGETYCZNA

CHARAKTERYSTYKA ENERGETYCZNA CHARAKTERYSTYKA ENERGETYCZNA ELEMENTÓW BUDYNKU PRZEGRODY NIEPRZEŹROCZYSTE: ŚCAINY, DACH,. PRZEGRODY PRZEŹROCZYSTE : SZYBY, OKNA WENTYLACAJ ENERGOOSZCZĘDNA MIEJSCOWA EFEKTYWNE ŹRÓDŁA ENERGII ODNAWIALNE

Bardziej szczegółowo

ROZPORZĄDZENIE MINISTRA TRANSPORTU, BUDOWNICTWA I GOSPODARKI MORSKIEJ 1

ROZPORZĄDZENIE MINISTRA TRANSPORTU, BUDOWNICTWA I GOSPODARKI MORSKIEJ 1 Zm.: rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie. Dz.U.203.926 z dnia 203.08.3 Status: Akt jednorazowy Wersja od: 3 sierpnia 203 r. ROZPORZĄDZENIE

Bardziej szczegółowo

ANALIZA OSZCZĘDNOŚCI ENERGII CIEPLNEJ W BUDOWNICTWIE MIESZKANIOWYM JEDNORODZINNYM

ANALIZA OSZCZĘDNOŚCI ENERGII CIEPLNEJ W BUDOWNICTWIE MIESZKANIOWYM JEDNORODZINNYM Budownictwo o zoptymalizowanym potencjale energetycznym 1(13) 2014, s. 9-14 Izabela ADAMCZYK-KRÓLAK Politechnika Częstochowska ANALIZA OSZCZĘDNOŚCI ENERGII CIEPLNEJ W BUDOWNICTWIE MIESZKANIOWYM JEDNORODZINNYM

Bardziej szczegółowo

Projektowana charakterystyka energetyczna budynku

Projektowana charakterystyka energetyczna budynku Projektowana charakterystyka energetyczna budynku Projekt: ul. Wyspiańskiego 2 57-300 Kłodzko Właściciel budynku: powiat kłodzki Data opracowania: marzec 2016 Charakterystyka energetyczna budynku: ul.

Bardziej szczegółowo

3. PRZYKŁAD OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPŁA U

3. PRZYKŁAD OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPŁA U 3. PRZYKŁAD OBLICZANIA SPÓŁCZYNNIKA PRZENIKANIA CIEPŁA U PRZYKŁAD Obliczyć współczynnik przenikania ciepła U dla ścian wewnętrznych o budowie przedstawionej na rysunkach. 3 4 5 3 4 5.5 38.5 [cm] Rys..

Bardziej szczegółowo

3. PRZYKŁAD OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPłA U

3. PRZYKŁAD OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPłA U 3. PRZYKŁAD OBLICZANIA SPÓŁCZYNNIKA PRZENIKANIA CIEPłA U PRZYKŁAD Obliczyć współczynnik przenikania ciepła U dla ścian wewnętrznych o budowie przedstawionej na rysunkach. 3 4 5 3 4 5.5 38.5 [cm] Rys..

Bardziej szczegółowo

OPIS TECHNICZNY do projektu termomodernizacji stropodachu

OPIS TECHNICZNY do projektu termomodernizacji stropodachu OPIS TECHNICZNY do projektu termomodernizacji stropodachu I. Dane ogólne 1.1. Obiekt : Szkoła Podstawowa w Długiem Gm. Koluszki 1.2. Lokalizacja : Długie Gm. Koluszki dz. Nr 235/4 1.3. Inwestor : Urząd

Bardziej szczegółowo

3. PRZYKŁAD OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPłA U

3. PRZYKŁAD OBLICZANIA WSPÓŁCZYNNIKA PRZENIKANIA CIEPłA U 3. PRZYKŁAD OBLICZANIA SPÓŁCZYNNIKA PRZENIKANIA CIEPłA U PRZYKŁAD Obliczyć współczynnik przenikania ciepła U dla ścian wewnętrznych o budowie przedstawionej na rysunkach. 3 4 5 3 4 5.5 38.5 [cm] Rys..

Bardziej szczegółowo

Dane pliku Nazwa pliku: : Ustronie-etapI.ISB. Data utworzenia: : 2006-05-13. Data ostatniej modyfikacji: : 2006-08-05. Liczba pomieszczeń: : 70

Dane pliku Nazwa pliku: : Ustronie-etapI.ISB. Data utworzenia: : 2006-05-13. Data ostatniej modyfikacji: : 2006-08-05. Liczba pomieszczeń: : 70 Dane pliku Nazwa pliku: : Ustronie-etapI.ISB Data utworzenia: : 2006-05-13 Data ostatniej modyfikacji: : 2006-08-05 Liczba pomieszczeń: : 70 Liczba kondygnacji/mieszkań/stref: : 2 / 2 / 0 Całkowita liczba

Bardziej szczegółowo

PRZYKŁAD OBLICZANIA CAŁKOWITEJ PROJEKTOWEJ STRATY CIEPŁA I PROJEKTOWEGO OBCIĄŻENIA CIEPLNEGO

PRZYKŁAD OBLICZANIA CAŁKOWITEJ PROJEKTOWEJ STRATY CIEPŁA I PROJEKTOWEGO OBCIĄŻENIA CIEPLNEGO PRZYKŁAD OBLICZANIA CAŁKOWITEJ PROJEKTOWEJ STRATY CIEPŁA I PROJEKTOWEGO OBCIĄŻENIA CIEPLNEGO Obliczyć całkowitą projektową stratę ciepła i projektowe obciążenie cieplne dla pomieszczeń budynku przedstawionego

Bardziej szczegółowo

Wyniki - Ogólne. Podstawowe informacje: Nazwa projektu: Szpital w Suchej Beskidzkiej - Budynek Główny stan istniejący Miejscowość:

Wyniki - Ogólne. Podstawowe informacje: Nazwa projektu: Szpital w Suchej Beskidzkiej - Budynek Główny stan istniejący Miejscowość: Wyniki - Ogólne Podstawowe informacje: Nazwa projektu: Szpital w Suchej Beskidzkiej - Budynek Główny stan istniejący Miejscowość: Sucha Beskidzka Adres: ul. Szpitalna 22 Projektant: mgr inŝ. Agnieszka

Bardziej szczegółowo

Politechnika Poznańska Zakład Budownictwa Ogólnego Obliczanie przegród z warstwami powietrznymi

Politechnika Poznańska Zakład Budownictwa Ogólnego Obliczanie przegród z warstwami powietrznymi Obliczanie przegród z warstwami powietrznymi Wykonał: Rafał Kamiński Prowadząca: dr inż. Barbara Ksit MUR SZCZELINOWY Mur szczelinowy składa się z dwóch warstw wymurowanych w odległości 5-15 cm od siebie

Bardziej szczegółowo

Obliczenie rocznego zapotrzebowania na energię użytkową na potrzeby ogrzewania i wentylacji oraz wskaźnika EUco

Obliczenie rocznego zapotrzebowania na energię użytkową na potrzeby ogrzewania i wentylacji oraz wskaźnika EUco Obliczenie rocznego zapotrzebowania na energię użytkową na potrzeby ogrzewania i wentylacji oraz wskaźnika EUco 1. Całkowity współczynnik przenoszenia ciepła przez przenikanie Obliczany jest na podstawie

Bardziej szczegółowo

ISOVER DACH PŁASKI Omówienie rozwiązań REVIT

ISOVER DACH PŁASKI Omówienie rozwiązań REVIT ISOVER DACH PŁASKI Omówienie rozwiązań REVIT Rozwiązania dachu płaskiego z izolacją termiczną z wełny mineralnej ISOVER zostały podzielone na dwie grupy i zestawione w pliku ISOVER_Dach płaski. Plik zawiera

Bardziej szczegółowo

H-Block Izolacyjna Płyta Konstrukcyjna Spis treści

H-Block Izolacyjna Płyta Konstrukcyjna Spis treści H-Block H-Block Izolacyjna Płyta Konstrukcyjna Spis treści Idea produktu... 3 Warianty płyty H-Block... 4 Zastosowanie Izolacyjnych Płyt Konstrukcyjnych H-Block... 5 H-Block plus... 6 Zastosowanie Izolacyjnych

Bardziej szczegółowo

Osoba sporządzająca świadectwo zobowiązana jest

Osoba sporządzająca świadectwo zobowiązana jest Osoba sporządzająca świadectwo zobowiązana jest 1. Przechowywać świadectwo przez 10 lat 2. Wykonywać czynności związane ze sporządzaniem świadectw charakterystyki energetycznej z należytą starannością

Bardziej szczegółowo

wojewódzkim inspektorem sanitarnym, odpowiednio do przedmiotu tej ekspertyzy. ;

wojewódzkim inspektorem sanitarnym, odpowiednio do przedmiotu tej ekspertyzy. ; Rozporządzenie Ministra Infrastruktury 1) z dnia 6 listopada 2008 r. zmieniające rozporządzenie w sprawie warunków technicznych, jakim powinny odpowiadać budynki i ich usytuowanie 2) Na podstawie art.

Bardziej szczegółowo

Wynik obliczeń dla przegrody: Dach bez ocieplenia

Wynik obliczeń dla przegrody: Dach bez ocieplenia Wynik obliczeń dla przegrody: Dach bez ocieplenia Opis przegrody Nazwa przegrody Typ przegrody Dach bez ocieplenia Strop nad ostatnią kondygnacją Warstwy (w kierunku środowiska zewnętrznego) Materiał λ

Bardziej szczegółowo

BUDOWNICTWO I KONSTRUKCJE INŻYNIERSKIE. dr inż. Monika Siewczyńska

BUDOWNICTWO I KONSTRUKCJE INŻYNIERSKIE. dr inż. Monika Siewczyńska BUDOWNICTWO I KONSTRUKCJE INŻYNIERSKIE dr inż. Monika Siewczyńska Wymagania Warunków Technicznych Obliczanie współczynników przenikania ciepła - projekt ściana dach drewniany podłoga na gruncie Plan wykładów

Bardziej szczegółowo

Metodyka wykonywania obmiarów i zebrania danych dla sporządzenia audytu

Metodyka wykonywania obmiarów i zebrania danych dla sporządzenia audytu Metodyka wykonywania obmiarów i zebrania danych dla sporządzenia audytu 1. Wykonać zdjęcia zaczynając od lewego rogu dowolnej ściany i przesuwając się w prawo. Po kaŝdym zdjęciu ogólnym ściany wykonać

Bardziej szczegółowo

Fizyka cieplna budowli w praktyce : obliczenia cieplno-wilgotnościowe / Andrzej Dylla. Warszawa, cop Spis treści. Wykaz ważniejszych oznaczeń

Fizyka cieplna budowli w praktyce : obliczenia cieplno-wilgotnościowe / Andrzej Dylla. Warszawa, cop Spis treści. Wykaz ważniejszych oznaczeń Fizyka cieplna budowli w praktyce : obliczenia cieplno-wilgotnościowe / Andrzej Dylla. Warszawa, cop. 2015 Spis treści Wykaz ważniejszych oznaczeń Przedmowa XIII XVII 1. Procedury obliczeń cieplno-wilgotnościowych

Bardziej szczegółowo

2. Izolacja termiczna wełną mineralną ISOVER

2. Izolacja termiczna wełną mineralną ISOVER 2. Izolacja termiczna wełną mineralną ISOVER wstęp Każdy właściciel chciałby uniknąć strat ciepła związanych z ogrzewaniem budynku w porze zimowej. Nie wystarczy tylko zaizolować dach czy też ściany, ale

Bardziej szczegółowo

Załącznik 2. Wymagania izolacyjności cieplnej i inne wymagania związane z oszczędnością energii

Załącznik 2. Wymagania izolacyjności cieplnej i inne wymagania związane z oszczędnością energii Załącznik 2. Wymagania izolacyjności cieplnej i inne wymagania związane z oszczędnością energii ważne 1 stycznia 2014 r. Pstawa prawna: DzU poz. 926 z dnia 13.08.2013 r. [Rozporządzenie Ministra Transportu,

Bardziej szczegółowo

Podkład podokienny "ISOBLAT"

Podkład podokienny ISOBLAT Mobilne Laboratorium Techniki Budowlanej Sp. z o. o. ul. Jana Kasprowicza 21 lok. 2, 58-300 Wałbrzych ul. Wrocławska 142 B, 58-306 Wałbrzych (Stacjonarna działalność techniczna) Typy wyrobów: Przekroje

Bardziej szczegółowo

ZAWARTOŚĆ OPRACOWANIA:

ZAWARTOŚĆ OPRACOWANIA: ZAWARTOŚĆ OPRACOWANIA: 1. Uprawnienia budowlane autorów opracowania; 2. Część opisowa: Opis techniczny elementów konstrukcyjnych budynku szkoły podstawowej; 3. Część graficzna: Rysunki konstrukcyjne budynku

Bardziej szczegółowo

PROPOZYCJA METODY OKREŚLANIA IZOLACYJNOŚCI CIEPLNEJ OKNA PODWÓJNEGO. 1. Wprowadzenie

PROPOZYCJA METODY OKREŚLANIA IZOLACYJNOŚCI CIEPLNEJ OKNA PODWÓJNEGO. 1. Wprowadzenie Robert GERYŁO 1 Jarosław AWKSIENTJK 2 PROPOZYCJA METOY OKREŚLANIA IZOLACYJNOŚCI CIEPLNEJ OKNA POWÓJNEGO 1. Wprowadzenie W budynkach o bardzo niskim zapotrzebowaniu na ciepło do orzewania powinny być stosowane

Bardziej szczegółowo

OBLICZENIA CIEPLNO-WILGOTNOŚCIOWE DOCIEPLENIE PRZEGRÓD ZEWNĘTRZNYCH BUDYNKU OŚRODKA REHABILITACJI I OPIEKI PSYCHIATRYCZEJ W RACŁAWICACH ŚLĄSKICH

OBLICZENIA CIEPLNO-WILGOTNOŚCIOWE DOCIEPLENIE PRZEGRÓD ZEWNĘTRZNYCH BUDYNKU OŚRODKA REHABILITACJI I OPIEKI PSYCHIATRYCZEJ W RACŁAWICACH ŚLĄSKICH Projekt: Docieplenie budynku ORiOP Strona 1 OBLICZENIA CIEPLNO-WILGOTNOŚCIOWE DOCIEPLENIE PRZEGRÓD ZEWNĘTRZNYCH BUDYNKU OŚRODKA REHABILITACJI I OPIEKI PSYCHIATRYCZEJ W RACŁAWICACH ŚLĄSKICH Temat: PROJEKT

Bardziej szczegółowo

plansze dydaktyczne ANEKS Energooszczędność w budownictwie oraz wskazówki projektowania i wykonawstwa termoizolacji przegród

plansze dydaktyczne ANEKS Energooszczędność w budownictwie oraz wskazówki projektowania i wykonawstwa termoizolacji przegród WYŻSZA SZKOŁA EKOLOGII I ZARZĄDZANIA Wydział Architektury 00-792 Warszawa, ul. Olszewska 12 Kajetan Woźniak BUDOWNICTWO OGÓLNE plansze dydaktyczne ANEKS Energooszczędność w budownictwie oraz wskazówki

Bardziej szczegółowo

Optymalizacja energetyczna okien nowych i wymienianych Część 1

Optymalizacja energetyczna okien nowych i wymienianych Część 1 Optymalizacja energetyczna okien nowych i wymienianych Część 1 Co roku wymienia się w Polsce miliony okien nowe okna mają być cieplejsze i powinny zmniejszać zużycie energii potrzebnej na ogrzanie mieszkań.

Bardziej szczegółowo

CHARAKTERYSTYKA CIEPLNA BUDYNKU. NAZWA OBIEKTU: Gminny Ośrodek Kultury ADRES: Nawojowa 333, KOD, MIEJSCOWOŚĆ: , Nawojowa

CHARAKTERYSTYKA CIEPLNA BUDYNKU. NAZWA OBIEKTU: Gminny Ośrodek Kultury ADRES: Nawojowa 333, KOD, MIEJSCOWOŚĆ: , Nawojowa 1 CHARAKTERYSTYKA CIEPLNA BUDYNKU NAZWA OBIEKTU: Gminny Ośrodek Kultury ADRES: Nawojowa 333, KOD, MIEJSCOWOŚĆ: 33-335, Nawojowa NAZWA INWESTORA: Gminny Ośrodek Kultury ADRES: Nawojowa 333, KOD, MIEJSCOWOŚĆ:

Bardziej szczegółowo

charakterystyka termiczna okien

charakterystyka termiczna okien charakterystyka termiczna okien Karolina Kurtz dr inż., arch. izolacyjność termiczna okien wymaania Rozorządzenie Ministra Inrastruktury z dnia.04.00 r. w srawie warunków technicznych, jakim owinny odowiadać

Bardziej szczegółowo

WYROK W IMIENIU RZECZPOSPOLITEJ POLSKIEJ

WYROK W IMIENIU RZECZPOSPOLITEJ POLSKIEJ WYROK W IMIENIU RZECZPOSPOLITEJ POLSKIEJ W 2011 pierwszy raz w historii polskiego sądownictwa z powodu wadliwie sporządzonej charakterystyki energetycznej budynku sąd uchylił zaskarżoną decyzję pozwolenia

Bardziej szczegółowo

PROJEKT DOCIEPLENIA BUDYNKU BIUROWEGO. 48-100 Głubczyce, ul. Sobieskiego 14/9

PROJEKT DOCIEPLENIA BUDYNKU BIUROWEGO. 48-100 Głubczyce, ul. Sobieskiego 14/9 Projekt: Starostwo Prudnik Strona 1 Temat: PROJEKT DOCIEPLENIA BUDYNKU BIUROWEGO Obiekt: BUDYNEK BIUROWY Adres: 48-370 Prudnik ul. Kościuszki 76 Jednostka proj.: Projektowanie i Nadzór Budowlany inż. Artur

Bardziej szczegółowo

ENERGOCHŁONNOŚĆ BUDYNKÓW EDUKACYJNYCH I ICH IZOLACYJNOŚĆ CIEPLNA W ŚWIETLE AKTUALNYCH WYMAGAŃ

ENERGOCHŁONNOŚĆ BUDYNKÓW EDUKACYJNYCH I ICH IZOLACYJNOŚĆ CIEPLNA W ŚWIETLE AKTUALNYCH WYMAGAŃ Budownictwo o zoptymalizowanym potencjale energetycznym 1(15) 2015, s. 101-108 Anna LIS Politechnika Częstochowska ENERGOCHŁONNOŚĆ BUDYNKÓW EDUKACYJNYCH I ICH IZOLACYJNOŚĆ CIEPLNA W ŚWIETLE AKTUALNYCH

Bardziej szczegółowo

Domy energooszczędne. Podręcznik dobrych praktyk. przygotowany na podstawie opracowania KRAJOWEJ AGENCJI POSZANOWANIA ENERGII S.A.

Domy energooszczędne. Podręcznik dobrych praktyk. przygotowany na podstawie opracowania KRAJOWEJ AGENCJI POSZANOWANIA ENERGII S.A. Domy energooszczędne Podręcznik dobrych praktyk przygotowany na podstawie opracowania KRAJOWEJ AGENCJI POSZANOWANIA ENERGII S.A. Listopad 2012 Spis treści 1. WSTĘP... 3 2. OKREŚLENIE WYTYCZNYCH DOTYCZĄCYCH

Bardziej szczegółowo

Poprawa efektywności energetycznej i ekonomicznej na przykładzie zakładu metalurgicznego

Poprawa efektywności energetycznej i ekonomicznej na przykładzie zakładu metalurgicznego Poprawa efektywności energetycznej i ekonomicznej na przykładzie zakładu metalurgicznego Krzysztof Szymański k.szymanski@cieplej.pl Dolnośląska Agencja Energii i Środowiska Dane geometryczne budynku Użytkowa

Bardziej szczegółowo

Wysokość okapu ok. 6,70 Od strony południowo-zachodniej na pierwszym piętrze znajdują się balkony żelbetowe z barierkami stalowymi. Obiekt został wykonany w konstrukcji murowanej tradycyjnej. Rozwiązania

Bardziej szczegółowo

SPRAWOZDANIE Z BADANIA

SPRAWOZDANIE Z BADANIA SPRAWOZDANIE Z BADANIA Tłumaczenie z języka niemieckiego. Miarodajna jest niemiecka wersja oryginalna Wnioskodawca: HELLA Sonnen- und Wetterschutztechnik GmbH A-9913 Abfaltersbach Nr. 125 Treść wniosku:

Bardziej szczegółowo

Efektywność energetyczna szansą na modernizację i rozwój polskiej gospodarki

Efektywność energetyczna szansą na modernizację i rozwój polskiej gospodarki Efektywność energetyczna szansą na modernizację i rozwój polskiej gospodarki Efektywność energetyczna w budownictwie a wdrażanie dyrektyw Tomasz Gałązka Ministerstwo Transportu, Budownictwa i Gospodarki

Bardziej szczegółowo

Oznaczenie budynku lub części budynku... Miejscowość...Ulica i nr domu...

Oznaczenie budynku lub części budynku... Miejscowość...Ulica i nr domu... Załącznik nr 1 Projektowana charakterystyka energetyczna budynku /zgodnie z 329 ust. 1 pkt 1 rozporządzenia Ministra Infrastruktury z dnia 12 kwietnia 2002 r. w spawie warunków technicznych, jakim powinny

Bardziej szczegółowo

Karty mostków cieplnych

Karty mostków cieplnych Karty mostków cieplnych Wybrane rozwiązania redukujące wpływ mostków na efektywność energetyczną budynku 0.. -0. -. -. -. 8 8. 8.8. -. -8..-. 7.9-9. 8.8 Wprowadzenie Projektowanie przegród z zastosowaniem

Bardziej szczegółowo

Świadectwo energetyczne przykładowego budynku wielorodzinnego z częścią handlowo - usługową

Świadectwo energetyczne przykładowego budynku wielorodzinnego z częścią handlowo - usługową - dodatkowe instrukcje Świadectwo energetyczne przykładowego budynku wielorodzinnego z częścią handlowo - usługową Przykładowy budynek Budynek wielorodzinny w zabudowie szeregowej (plomba). Parter przeznaczony

Bardziej szczegółowo

NARODOWY FUNDUSZ OCHRONY ŚRODOWISKA I GOSPODARKI WODNEJ

NARODOWY FUNDUSZ OCHRONY ŚRODOWISKA I GOSPODARKI WODNEJ Załącznik nr 1.1. Załącznik nr 13 do Regulaminu Konkursu nr 1 /POIiŚ/ 9.3/ 2008 Program Operacyjny Infrastruktura i Środowisko 2007-2013 RAMOWY KATALOG KOSZTÓW/WYDATKÓW KWALIFIKOWANYCH Priorytet IX. Infrastruktura

Bardziej szczegółowo

1. Metoda uproszczona obliczania rocznego zapotrzebowania na energię pierwotną dla ogrzewania i wentylacji budynków mieszkalnych

1. Metoda uproszczona obliczania rocznego zapotrzebowania na energię pierwotną dla ogrzewania i wentylacji budynków mieszkalnych 1. Metoda uproszczona obliczania rocznego zapotrzebowania na energię pierwotną dla ogrzewania i wentylacji budynków mieszkalnych Metoda ma zastosowanie dla budynków istniejących nie poddanych termomodernizacji,

Bardziej szczegółowo

IV. OBLICZENIE ZAPOTRZEBOWANIA NA CIEPŁO BUDYNKU WG PN EN 832:2001

IV. OBLICZENIE ZAPOTRZEBOWANIA NA CIEPŁO BUDYNKU WG PN EN 832:2001 1 OBLICZENIE ZAPOTRZEBOWANIA NA CIEPŁO BUDYNKU WG PN EN 832:2001 IV. OBLICZENIE ZAPOTRZEBOWANIA NA CIEPŁO BUDYNKU WG PN EN 832:2001 W normie tej podobnie jak w PN-B-02025 musimy podzielid najpierw budynek

Bardziej szczegółowo

10.4 / Przenikalność cieplna

10.4 / Przenikalność cieplna szyby zespolone może być określona za pomocą wartości tabelarycznych. Wyniki powinny być wyrażone zgodnie z EN ISO 717-1. Wartości izolacyjności akustycznej Rw 39 db lub Rw + Ctr 35 db powinny być określone

Bardziej szczegółowo

PRZEBUDOWA II ETAP - ADAPTACJA DZIENNEGO DOMU POMOCY SPOŁECZNEJ NR.4 PROJEKT TERMOIZOLACJI PRZEGRÓD BUDOWLANYCH DZIENNY DOM POMOCY SPOŁECZNEJ NR.

PRZEBUDOWA II ETAP - ADAPTACJA DZIENNEGO DOMU POMOCY SPOŁECZNEJ NR.4 PROJEKT TERMOIZOLACJI PRZEGRÓD BUDOWLANYCH DZIENNY DOM POMOCY SPOŁECZNEJ NR. Projekt: DDPS NR.4 - TERMOZOLACJA PRZEGRÓD Strona 1 PRZEBUDOWA II ETAP - ADAPTACJA DZIENNEGO DOMU POMOCY SPOŁECZNEJ NR.4 Temat: PROJEKT TERMOIZOLACJI PRZEGRÓD BUDOWLANYCH Obiekt: DZIENNY DOM POMOCY SPOŁECZNEJ

Bardziej szczegółowo

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA

PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA PROJEKTOWANA CHARAKTERYSTYKA ENERGETYCZNA dla budynku mieszkalnego Grabowskiego 5 w Lidzbarku Warmińskim Budynek oceniany: Nazwa obiektu Budynek mieszkalny wielorodzinny Zdjęcie budynku Adres obiektu -00

Bardziej szczegółowo

INWENTARYZACJA ARCHITEKTONICZNO-BUDOWLANA BUDYNKU UŻYTECZNOŚCI PUBLICZNEJ

INWENTARYZACJA ARCHITEKTONICZNO-BUDOWLANA BUDYNKU UŻYTECZNOŚCI PUBLICZNEJ INWENTARYZACJA ARCHITEKTONICZNO-BUDOWLANA BUDYNKU UŻYTECZNOŚCI PUBLICZNEJ Budynek Zespołu Szkół w Chrząstawie Wielkiej ul. Wrocławska 19 55-003 Czernica Zamawiający: Gmina Czernica ul. Kolejowa 3 55-003

Bardziej szczegółowo

1.00 15.00 3.750 Suma oporów ΣRi = 3.815 λ [W/(m K)]

1.00 15.00 3.750 Suma oporów ΣRi = 3.815 λ [W/(m K)] Element: spółczynniki przegród Strona 1 Przegroda 1 - Sufit podwieszany Zestawienie materiałów Nr Nazwa materiału 1 ełna mineralna 2 Płyta gipsowa ognioodporna λ 0.040 0.230 µ d R 1.00 15.00 3.750 1.00

Bardziej szczegółowo