Konkurs Matematyczny OMEGA organizowany przez Zespół Szkół Nr 1 im. Stefana Garczyńskiego w Zbąszyniu.

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Konkurs Matematyczny OMEGA organizowany przez Zespół Szkół Nr 1 im. Stefana Garczyńskiego w Zbąszyniu. http://omegamat.w.interia."

Transkrypt

1 Aleksandra Zalejko Konkurs Matematyczny OMEGA organizowany przez Zespół Szkół Nr im. Stefana Garczyńskiego w Zbąszyniu. Organizacja kolejnych edycji Konkursu Matematycznego OMEGA dla uczniów szkół gimnazjalnych jest efektem doświadczeń zdobytych w czasie dziesięcioletniej pracy w Klubie Młodych Matematyków Pitagoras. Przekonałam się, że konkursy sprzyjają aktywizacji uczniów, popularyzują matematykę, rozwijają zainteresowania matematyczne oraz ujawniają wśród uczniów talenty matematyczne. Zachętą do podjęcia trudu przygotowania się do konkursu jest określenie tematyki i rodzaju obowiązujących zadań. Istotna jest rola nauczyciela, który dopinguje do pracy, interesuje się osiągnięciami uczniów oraz służy radą i wskazówką. Wyjeżdżając wielokrotnie z moimi uczniami na konkursy miałam okazję obserwować techniczną stronę ich organizacji. Postanowiłam podzielić się moimi doświadczeniami z innymi nauczycielami poprzez zorganizowanie konkursu dla okolicznych gimnazjów. Etapy pracy nad przygotowaniem konkursu: - opracowanie zadań przygotowawczych; - opracowanie regulaminu konkursu; - rozesłanie do okolicznych gimnazjów informacji o konkursie wraz z regulaminem, drukiem karty zgłoszenia i zadaniami przygotowawczymi; - zaangażowanie uczniów naszego liceum do wykonania oprawy plastycznej konkursu i do przygotowania programu artystycznego, który obejrzą zaproszeni gimnazjaliści w czasie sprawdzania ich prac. Kolejne edycje konkursu odbyły się: maja 200 i kwietnia Trzecia edycja konkursu odbędzie się wbieżącym roku szkolnym - 28 marca Do tej pory w konkursie uczestniczyło 74 uczniów z gimnazjów. Podkreślić należy, że gimnazjaliści przy tej okazji mogli bliżej zapoznać się znaszą szkołą, a niektórzy z nich kontynuują nawet w niej naukę w Liceum Ogólnokształcącym lub Liceum Profilowanym. Najlepsi uczniowie w każdej edycji konkursu zostali nagrodzeni książkami. Przyznaje się też zawsze nagrodę zespołową dla tego gimnazjum, którego uczniowie zdobyli najwięcej punktów.

2 Zadania przygotowawcze Procenty. W zeszłym tygodniu na zajęciach kółka matematycznego było dokładnie tyle samo chłopców co dziewcząt. W tym tygodniu na kółku jest o 20% więcej niż tydzień temu, ale liczba dziewcząt stanowi tylko 45% liczby przybyłych osób. Czy w tym tygodniu przyszło więcej czy mniej dziewcząt niż tydzień temu? 2. W rodzinie Malinowskich 20% dochodów pochłaniają stałe opłaty czynsz, prąd, gaz itd. 5% pozostałych dochodów państwo Malinowscy wpłacają do banku. Jaki procent dochodów zostaje im na inne wydatki? 3. Dwaj sprzedawcy, panowie A i B, kupują pomidory u tego samego hurtownika. W sklepie pana A cena detaliczna jest o 25% wyższa od hurtowej, a w sklepie pana B o 30% wyższa od hurtowej. Pan A sprzedał 60 kg pomidorów, a pan B 20 kg. Który z nich więcej zarobił na pomidorach? O ile procent więcej? 4. Podczas zebrania Samorządu Szkolnego propozycję zorganizowania szkolnej dyskoteki poparło 7 osób, czyli więcej niż 60%, ale mniej niż 3 2 uczestników zebrania. Ile osób uczestniczyło w zebraniu? 5. Po 9 dniach podróży przez pustynię beduini zorientowali się, że wypili już 60% zapasów wody. Zostało im 48 bukłaków z wodą. O ile procent powinni zmniejszyć dzienne racje wody, jeśli ma jej wystarczyć na kolejne 8 dni? Wyrażenia algebraiczne 6. Zapisz w postaci jednomianu liczbę o5%większą od liczby o 0% mniejszej od liczby y. 7. W wyrażeniu y 2 2 2y wstaw nawiasy tak, aby niezależnie od wartości zmiennej y otrzymane wyrażenie miało wartość: a) dodatnią, b) ujemną. 8. Zapisz w postaci wyrażeń algebraicznych odpowiedzi na poniższe pytania: a) a kilometrów na godzinę ile to metrów na sekundę, b) b metrów na sekundę ile to kilometrów na godzinę? 9. Krótszy bok prostokąta ma dwa razy więcej milimetrów niż dłuższy centymetrów. Zapisz w postaci jednomianu pole tego prostokąta, gdy: a) dłuższy bok ma a centymetrów b) krótszy bok ma b milimetrów. 0. Uzasadnij, że suma trzech kolejnych liczb naturalnych jest podzielna przez 3.. Udowodnij następujące twierdzenie: Suma liczby dwucyfrowej i liczby powstałej z przestawienia cyfr tej liczby jest liczbą podzielną przez. 2. Od kwadratu dowolnej liczby dwucyfrowej n odejmujemy kwadrat liczby powstałej z przestawienia cyfr liczby n. Wykaż, że otrzymana liczba jest podzielna przez 99, a także przez sumę cyfr liczby n. 3. Resztą z dzielenia przez 7 liczby a jest liczba 3. Jaka jest reszta z dzielenia przez 7 liczby 4razywiększej od a? 4. Uzasadnij, że liczba 3 n+2 +3 n jest podzielna przez 0 dla każdej liczby naturalnej n. 2

3 5. Wykaż, żedananierówność jest prawdziwa dla każdej liczby rzeczywistej x: a) x 2 +2x+ 0 b) x 2 4x+5>0 Równania, układy równań 6. Dla jakich całkowitych wartości a rozwiązanie równania ax + = 6 jest liczbą całkowitą? 7. 4 lata temu byłem 4 razy młodszy od mamy, a 0 lat temu byłem od niej młodszy 0 razy. Ile lat ma autor wypowiedzi? 8. Podaj wzór pozwalający obliczyć wysokość trójkąta równobocznego, gdy znamy jego pole P i obwód L. 9. Ile kilogramów roztworu 80 % należy zmieszać z 40 kg roztworu 60 %, aby otrzymać roztwór 70 %? 20. W pewnej grupie uczniów średnia wieku wynosi lat. Najstarszy z nich ma 7 lat, a średnia wieku wszystkich pozostałych wynosi 0 lat. Ilu uczniów liczy ta grupa? 2. Suma pewnych dwu liczb dodatnich jest dwa razy większa od ich różnicy. Ile wynosi stosunek większej z tych liczb do mniejszej? 22. Różnica kwadratów dwóch liczb naturalnych wynosi 23. Jakie to liczby? Funkcje 23. Narysuj wykres funkcji, która wszystkim liczbom rzeczywistym dodatnim przyporządkowuje wartość, wszystkim liczbom ujemnym wartość, a liczbie 0 wartość Dane są funkcje y = x + 2 i y = 2x 3. Oblicz, dla jakiego argumentu x wartości tych 2 funkcji są równe? 25. Podaj wzór dowolnej funkcji liniowej, której wykres leżywnastępujących ćwiartkach układu współrzędnych: a)i,ii,iii b)ii,iii,iv c)i,iii,iv d)i,ii,iv. 26. Funkcja określona jest następująco: x+... dla... x y= { 2x dla... x> Oblicz wartości tej funkcji dla x = 0, x = i x = 2. Narysuj wykres tej funkcji. Podaj jej miejsca zerowe. Dla jakich argumentów wartości funkcji są dodatnie? 27. Oblicz pole figury ograniczonej wykresami funkcji: y = 2x 3, y = -x 3 i y = Punkty A = (0,-4), B = (-3,5), C = (m.,-) leżą na jednej prostej. Oblicz wartość m. Figury geometryczne 29. Dwa boki trójkąta prostokątnego mają długości 0cm i 20cm. Jaką długość może mieć trzeci bok? 30. Ramię trójkąta równoramiennego ma długość 29 cm, a wysokość poprowadzona do podstawy ma długość 2 cm. Jaka jest długość promienia okręgu wpisanego w ten trójkąt? 3. Oblicz jaką długość ma promień okręgu wpisanego w trójkąt prostokątny o bokach długości 3,4, Jaką wysokość ma romb o przekątnych długości 2cm i 6cm? 33. Kwadrat i trójkąt równoboczny mają taki sam obwód. Która z figur ma większe pole? 3

4 34. W kwadrat o boku 20cm wpisano okrąg. W okrąg ten wpisano kwadrat, w który z kolei wpisano okrąg itd. Jakie długości mają promienie kolejnych trzech okręgów? 35. Każdy bok kwadratu jest średnicą koła. Wspólna część tych kół tworzy wewnątrz kwadratu rozetę czterolistną. Oblicz obwód i pole tej rozety, jeżeli bok kwadratu ma długość 6cm. 36. Krawędź sześcianu ma długość 6 cm. Oblicz pole tego przekroju, który jest: a) kwadratem b) największym możliwym prostokątem. Zadania z I edycji Konkursu Matematycznego Omega Czas rozwiązywania: 90 minut.. Po ogłoszeniu sezonowej obniżki cen Piotr i Marek kupili buty, za które zapłacili 20 złotych korzystając z łącznej obniżki o 30%. Cena butów Piotra została obniżona o 25%, a Marka o 40 %. Ile kosztowały buty Piotra i Marka przed obniżką i po obniżce? 2. Węgiel z kopalni A pozostawia po spaleniu 5% popiołu, a węgiel z kopalni B pozostawia 20% popiołu. Ile procent popiołu pozostawia po spaleniu mieszanka węgla, w której stosunek węgla z kopalni A do węgla z kopalni B jest równy 2:3? 3. Z liczby dwucyfrowej a utworzono dwie liczby: pierwszą przez dopisanie cyfry na początku, drugą przez dopisanie cyfry na końcu. Uzasadnij, że iloczyn otrzymanych liczb pomniejszony o liczbę a jest podzielny przez Wykaż, że liczba jest podzielna przez Na kole opisany jest trójkąt równoboczny i w to samo koło wpisany jest trójkąt równoboczny. Różnica boków tych trójkątów wynosi 2. Oblicz promień tego koła. 6. Oblicz pole figury zacieniowanej na rysunku wiedząc, że promienie okręgów o środkach A,O,D są równe długości boku sześciokąta foremnego ABCDEF. AB =a 4

5 Zadania z II edycji Konkursu Matematycznego Omega Czas rozwiązywania: 90 minut.. Cena biletu na mecz piłki nożnej wynosiła 60 złotych. Gdy cenę obniżono okazało się, że na mecz przychodzi o 50% widzów więcej, a dochód uzyskany ze sprzedaży biletów na jeden mecz wzrósł o 25%. O ile obniżono cenę biletu? 2. Jeżeli cyfrę dziesiątek pewnej liczby dwucyfrowej zwiększymy o 4, a jej cyfrę jedności zmniejszymy o 2 to otrzymamy liczbę mniejszą od 86. Jeśli zaś cyfrę dziesiątek tej liczby zmniejszymy o 2, a cyfrę jedności powiększymy o, to otrzymamy liczbę większą od 27. Jaka to liczba? 3. Rozważ trójkąt ABO, gdzie A i B są punktami przecięcia prostej o równaniu y = 2x 8 odpowiednio z osiami OX i OY, a punkt O jest początkiem układu współrzędnych. Dla jakiej wartości współczynnika a, prosta y = ax dzieli ten trójkąt na dwa trójkąty o równych polach? 4. Na jednym kole opisano kwadrat, a na drugim trójkąt równoboczny. Jaki jest stosunek pól tych kół, jeśli pole kwadratu równe jest polu trójkąta? 5. Pień drzewa o długości 3 m rozpiłowano na dwie części w taki sposób, że jedna z nich ma trzy razy więcej centymetrów niż druga decymetrów. Jaka jest długość każdej części? 5

SPRAWDZIANY Z MATEMATYKI

SPRAWDZIANY Z MATEMATYKI SPRAWDZIANY Z MATEMATYKI dla klasy III gimnazjum dostosowane do programu Matematyka z Plusem opracowała mgr Marzena Mazur LICZBY I WYRAŻENIA ALGEBRAICZNE Grupa I Zad.1. Zapisz w jak najprostszej postaci

Bardziej szczegółowo

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI

MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI MATERIAŁY DIAGNOSTYCZNE Z MATEMATYKI LUTY 01 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz zawiera strony (zadania 1 ).. Arkusz zawiera 4 zadania zamknięte i 9

Bardziej szczegółowo

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA

BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-PRZYRODNICZA BADANIE UMIEJĘTNOŚCI UCZNIÓW W TRZECIEJ KLASIE GIMNAZJUM CZĘŚĆ MATEMATYCZNO-RZYRODNICZA MATEMATYKA TEST 4 Zadanie 1 Dane są punkty A = ( 1, 1) oraz B = (3, 2). Jaką długość ma odcinek AB? Wybierz odpowiedź

Bardziej szczegółowo

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź.

Arkusz maturalny treningowy nr 7. W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Czas pracy: 170 minut Liczba punktów do uzyskania: 50 Arkusz maturalny treningowy nr 7 W zadaniach 1. do 20. wybierz i zaznacz na karcie odpowiedzi poprawną odpowiedź. Zadanie 1. (0-1) Wyrażenie (-8x 3

Bardziej szczegółowo

NUMER IDENTYFIKATORA:

NUMER IDENTYFIKATORA: Społeczne Liceum Ogólnokształcące z Maturą Międzynarodową im. Ingmara Bergmana IB WORLD SCHOOL 53 ul. Raszyńska, 0-06 Warszawa, tel./fax 668 54 5 www.ib.bednarska.edu.pl / e-mail: liceum.ib@rasz.edu.pl

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY

EGZAMIN MATURALNY Z MATEMATYKI CZERWIEC 2012 POZIOM PODSTAWOWY. Czas pracy: 170 minut. Liczba punktów do uzyskania: 50 WPISUJE ZDAJĄCY Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. Układ graficzny CKE 010 KOD WPISUJE ZDAJĄCY PESEL Miejsce na naklejkę z kodem dysleksja EGZAMIN

Bardziej szczegółowo

Próbna Nowa Matura z WSiP Październik 2014 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy

Próbna Nowa Matura z WSiP Październik 2014 Egzamin maturalny z matematyki dla klasy 3 Poziom podstawowy Wypełnia uczeń Numer PESEL Kod ucznia Próbna Nowa Matura z WSiP Październik 0 Egzamin maturalny z matematyki dla klasy Poziom podstawowy Informacje dla ucznia. Sprawdź, czy zestaw egzaminacyjny zawiera

Bardziej szczegółowo

ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied.

ZADANIA ZAMKNI TE. W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. 2 Przyk adowy arkusz egzaminacyjny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 20. wybierz i zaznacz na karcie odpowiedzi jedn poprawn odpowied. Zadanie 1. (1 pkt) Pole powierzchni ca kowitej sze

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2013/2014 KOD UCZNIA Etap: Data: Czas pracy: rejonowy 8 stycznia 2014 r. 120 minut Informacje dla

Bardziej szczegółowo

XIII KONKURS MATEMATYCZNY

XIII KONKURS MATEMATYCZNY XIII KONKURS MTMTYZNY L UZNIÓW SZKÓŁ POSTWOWYH organizowany przez XIII Liceum Ogólnokształcace w Szczecinie FINŁ - 19 lutego 2013 Test poniższy zawiera 25 zadań. Za poprawne rozwiązanie każdego zadania

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI MARZEC ROK 013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron.. W zadaniach od

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY DATA: 9

Bardziej szczegółowo

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe.

14.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. Matematyka 4/ 4.Rozwiązywanie zadań tekstowych wykorzystujących równania i nierówności kwadratowe. I. Przypomnij sobie:. Wiadomości z poprzedniej lekcji... Że przy rozwiązywaniu zadań tekstowych wykorzystujących

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA

ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA Miejsce na identyfikację szkoły ARKUSZ PRÓBNEJ MATURY Z OPERONEM MATEMATYKA POZIOM PODSTAWOWY LISTOPAD 014 Czas pracy: 170 minut Instrukcja dla zdającego 1. Sprawdź, czy arkusz egzaminacyjny zawiera 1

Bardziej szczegółowo

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied.

Egzamin maturalny z matematyki Poziom podstawowy ZADANIA ZAMKNI TE. W zadaniach od 1. do 25. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Egzamin maturalny z matematyki ZADANIA ZAMKNI TE W zadaniach od 1. do 5. wybierz i zaznacz na karcie odpowiedzi poprawn odpowied. Zadanie 1. (1 pkt) Cen nart obni ono o 0%, a po miesi cu now cen obni ono

Bardziej szczegółowo

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013

Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 Wojewódzki Konkurs Przedmiotowy z Matematyki dla uczniów gimnazjów województwa śląskiego w roku szkolnym 2012/2013 KOD UCZNIA Etap: Data: Czas pracy: wojewódzki 4 marca 2013 r. 120 minut Informacje dla

Bardziej szczegółowo

Czas pracy 170 minut

Czas pracy 170 minut ORGANIZATOR WSPÓŁORGANIZATOR PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI DLA UCZNIÓW LICEUM MARZEC ROK 015 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron..

Bardziej szczegółowo

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI

ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI ARKUSZ PRÓBNEJ MATURY ZESTAW ĆWICZENIOWY Z MATEMATYKI Styczeń 2013 POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla piszącego 1. Sprawdź, czy arkusz zawiera 16 stron. 2. W zadaniach od 1. do 25. są

Bardziej szczegółowo

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI

ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 51. ( pkt) Rozwi równanie 3 x 1. 1 x Zadanie 5. ( pkt) x 3y 5 Rozwi uk ad równa. x y 3 Zadanie 53. ( pkt) Rozwi nierówno x 6x 7 0. ZADANIA OTWARTE KRÓTKIEJ ODPOWIEDZI Zadanie 54. ( pkt) 3 Rozwi

Bardziej szczegółowo

'()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+

'()(*+,-./01(23/*4*567/8/23/*98:)2(!./+)012+3$%-4#4$5012#-4#4-6017%*,4.!#$!#%&!!!#$%&#'()%*+,-+ '()(*+,-./01(23/*4*567/8/23/*98:)2(!."/+)012+3$%-4#"4"$5012#-4#"4-6017%*,4.!"#$!"#%&"!!!"#$%&"#'()%*+,-+ Ucze interpretuje i tworzy teksty o charakterze matematycznym, u ywa j zyka matematycznego do opisu

Bardziej szczegółowo

Zadania. SiOD Cwiczenie 1 ;

Zadania. SiOD Cwiczenie 1 ; 1. Niech A będzie zbiorem liczb naturalnych podzielnych przez 6 B zbiorem liczb naturalnych podzielnych przez 2 C będzie zbiorem liczb naturalnych podzielnych przez 5 Wyznaczyć zbiory A B, A C, C B, A

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Arkusz zawiera informacje prawnie chronione do momentu rozpoczęcia egzaminu. MMA 016 KOD UZUPEŁNIA ZDAJĄCY PESEL miejsce na naklejkę dyskalkulia dysleksja EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY

Bardziej szczegółowo

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1

Temat: Funkcje. Własności ogólne. A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Temat: Funkcje. Własności ogólne A n n a R a j f u r a, M a t e m a t y k a s e m e s t r 1, W S Z i M w S o c h a c z e w i e 1 Kody kolorów: pojęcie zwraca uwagę * materiał nieobowiązkowy A n n a R a

Bardziej szczegółowo

MATEMATYKA. 1 Podstawowe informacje dotyczące zadań. 2 Zasady poprawnego zapisu odpowiedzi TEST DYDAKTYCZNY

MATEMATYKA. 1 Podstawowe informacje dotyczące zadań. 2 Zasady poprawnego zapisu odpowiedzi TEST DYDAKTYCZNY MATEMATYKA Poziom wyższy TEST DYDAKTYCZNY Maksymalna ilość punktów: 50 Próg zaliczenia: 33 % 1 Podstawowe informacje dotyczące zadań Test dydaktyczny zawiera 23 zadania. Czas pracy oznaczono w kartach

Bardziej szczegółowo

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo.

Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia prostopadłościennego za pomocą arkusza kalkulacyjngo. Konspekt lekcji Przedmiot: Informatyka Typ szkoły: Gimnazjum Klasa: II Nr programu nauczania: DKW-4014-87/99 Czas trwania zajęć: 90min Temat: Co to jest optymalizacja? Maksymalizacja objętości naczynia

Bardziej szczegółowo

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6

KLASA 3 GIMNAZJUM. 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1. 2. System dziesiątkowy 2-4. 3. System rzymski 5-6 KLASA 3 GIMNAZJUM TEMAT LICZBA GODZIN LEKCYJNYCH 1. LICZBY I WYRAŻENIA ALGEBRAICZNE (26 h) 1. Lekcja organizacyjna 1 2. System dziesiątkowy 2-4 WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ Z XII 2008 R.

Bardziej szczegółowo

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego

Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów województwa wielkopolskiego Kod ucznia Data urodzenia ucznia Dzień miesiąc rok Wojewódzki Konkurs Matematyczny dla uczniów gimnazjów ETAP SZKOLNY Rok szkolny 2012/2013 Instrukcja dla ucznia 1. Sprawdź, czy test zawiera 12 stron.

Bardziej szczegółowo

Umowa nr.. /. Klient. *Niepotrzebne skreślić

Umowa nr.. /. Klient. *Niepotrzebne skreślić Umowa nr.. /. zawarta dnia w, pomiędzy: Piotr Kubala prowadzącym działalność gospodarczą pod firmą Piotr Kubala JSK Edukacja, 41-219 Sosnowiec, ul. Kielecka 31/6, wpisanym do CEIDG, NIP: 644 273 13 18,

Bardziej szczegółowo

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu.

Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. pobrano z www.sqlmedia.pl Uk ad graficzny CKE 00 KOD Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. WPISUJE ZDAJ CY PESEL Miejsce na naklejk

Bardziej szczegółowo

nie zdałeś naszej próbnej matury z matematyki?

nie zdałeś naszej próbnej matury z matematyki? Szanowny Maturzysto, nie zdałeś naszej próbnej matury z matematyki? To prawie niemożliwe, ale jeżeli jednak tak, to Pewnie sądzisz, że przyczyna tkwi w bardzo trudnym arkuszu! Zobaczmy, jak to wygląda

Bardziej szczegółowo

LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP III

LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP III LIGA MATEMATYCZNO-FIZYCZNA DLA KLAS I ETAP III Zad Podstawy trójkąta i równoległoboku mają tę samą długość Wysokość trójkąta jest równa 0 cm Jaką długość ma wysokość równoległoboku, jeżeli eli pola obu

Bardziej szczegółowo

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu.

MATEMATYKA 4 INSTYTUT MEDICUS FUNKCJA KWADRATOWA. Kurs przygotowawczy na studia medyczne. Rok szkolny 2010/2011. tel. 0501 38 39 55 www.medicus.edu. INSTYTUT MEDICUS Kurs przygotowawczy na studia medyczne Rok szkolny 00/0 tel. 050 38 39 55 www.medicus.edu.pl MATEMATYKA 4 FUNKCJA KWADRATOWA Funkcją kwadratową lub trójmianem kwadratowym nazywamy funkcję

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Instrukcja dla zdającego (poziom rozszerzony) Czas pracy 120 minut 1. Proszę sprawdzić, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak

Bardziej szczegółowo

pobrano z (A1) Czas GRUDZIE

pobrano z  (A1) Czas GRUDZIE EGZAMIN MATURALNY OD ROKU SZKOLNEGO 014/015 MATEMATYKA POZIOM ROZSZERZONY PRZYK ADOWY ZESTAW ZADA (A1) W czasie trwania egzaminu zdaj cy mo e korzysta z zestawu wzorów matematycznych, linijki i cyrkla

Bardziej szczegółowo

Konkurs matematyczny dla uczniów szkół podstawowych rok szkolny 2015/2016 III stopień - wojewódzki Kryteria oceniania Suma punktów = 25.

Konkurs matematyczny dla uczniów szkół podstawowych rok szkolny 2015/2016 III stopień - wojewódzki Kryteria oceniania Suma punktów = 25. Gimnazjum nr 26 w Gdańsku im. Jana III Sobieskiego ul. R. Traugutta 92 sekretariat@gim26.gda.pl 80-226 Gdańsk www.gim26.gda.pl tel. 58-341-02-33 fax 58-344-05-02 Konkurs matematyczny dla uczniów szkół

Bardziej szczegółowo

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych

ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych PRZYKŁADOWY ARKUSZ EGZAMINACYJNY POZIOM PODSTAWOWY ROZWIĄZANIA ZADAŃ Zestaw P3 Odpowiedzi do zadań zamkniętych Numer zadania 1 3 4 5 6 7 8 9 10 11 1 13 14 15 16 17 18 19 0 Odpowiedź A B B C C D C B B C

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII

PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII dysleksja PRÓBNY EGZAMIN MATURALNY Z FIZYKI I ASTRONOMII Instrukcja dla zdaj cego (poziom rozszerzony) Czas pracy 120 minut 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 8 stron. Ewentualny brak

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI DLA KLAS IV VI Kryteria ocen 1. Wymagania edukacyjne na poszczególne oceny: Ocenę celującą otrzymuje uczeń, który: Posiadł wiedzę i umiejętności obejmujące pełny

Bardziej szczegółowo

Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk

Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk Marzena Kococik Olga Kuśmierczyk Szkoła Podstawowa im. Marii Konopnickiej w Krzemieniewicach Regulamin szkolnego konkursu matematycznego dla uczniów klasy II i III: Mały Matematyk Konkursy wyzwalają aktywność

Bardziej szczegółowo

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego

Projekt współfinansowany przez Unię Europejską w ramach Europejskiego Funduszu Społecznego Zadanie PP-ZT-1. Rolnik sprzedał na targowisku pewną ilość kilogramów jabłek za 75 złotych. Tę samą kwotę pieniędzy rolnik uzyskałby ze sprzedaży tych jabłek, gdyby sprzedał ich o 5 kilogramów więcej i

Bardziej szczegółowo

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI

PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem dysleksja PRÓBNY EGZAMIN MATURALNY Z MATEMATYKI Czas pracy 10 minut Instrukcja dla zdaj cego 1. Prosz sprawdzi, czy arkusz egzaminacyjny zawiera 9 stron. Ewentualny brak nale

Bardziej szczegółowo

Kurs z matematyki - zadania

Kurs z matematyki - zadania Kurs z matematyki - zadania Miara łukowa kąta Zadanie Miary kątów wyrażone w stopniach zapisać w radianach: a) 0, b) 80, c) 90, d), e) 0, f) 0, g) 0, h), i) 0, j) 70, k), l) 80, m) 080, n), o) 0 Zadanie

Bardziej szczegółowo

Sprawozdanie z Walnego Zgromadzenia Akcjonariuszy spółki z portfela Allianz Polska OFE

Sprawozdanie z Walnego Zgromadzenia Akcjonariuszy spółki z portfela Allianz Polska OFE Warszawa, 6 maja 2016 roku Sprawozdanie z Walnego Zgromadzenia Akcjonariuszy spółki z portfela Allianz Polska OFE SPÓŁKA: Kruk S.A. DATA W: 9 maja 2016 roku (godz. 14.00) MIEJSCE W: Hotel Polonia Palace,

Bardziej szczegółowo

14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY

14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY 14P2 POWTÓRKA FIKCYJNY EGZAMIN MATURALNYZ FIZYKI I ASTRONOMII - II POZIOM PODSTAWOWY Ruch jednostajny po okręgu Pole grawitacyjne Rozwiązania zadań należy zapisać w wyznaczonych miejscach pod treścią zadania

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas pracy 120 minut Instrukcja

Bardziej szczegółowo

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie:

Matematyka z plusemdla szkoły ponadgimnazjalnej WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM. KATEGORIA B Uczeń rozumie: WYMAGANIA EDUKACYJNE Z MATEMATYKI W KLASIE TRZECIEJ LICEUM POZIOMY WYMAGAŃ EDUKACYJNYCH: K - konieczny ocena dopuszczająca P - podstawowy ocena dostateczna (dst.) R - rozszerzający ocena dobra (db.) D

Bardziej szczegółowo

REGULAMIN MIEJSKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW KLAS II SZKÓŁ PODSTAWOWYCH MAŁY MATEMATYK ROK SZKOLNY 2015/2016

REGULAMIN MIEJSKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW KLAS II SZKÓŁ PODSTAWOWYCH MAŁY MATEMATYK ROK SZKOLNY 2015/2016 Miasto Piła REGULAMIN MIEJSKIEGO KONKURSU MATEMATYCZNEGO DLA UCZNIÓW KLAS II SZKÓŁ PODSTAWOWYCH MAŁY MATEMATYK ROK SZKOLNY 2015/2016 Wydział Oświaty w Pile przy współpracy Zespołu Szkół nr 2 w Pile ogłasza

Bardziej szczegółowo

Cena lodówki wraz z 7% podatkiem VAT wynosi 1337 zł 50 gr. Oblicz ile wynosi podatek VAT.

Cena lodówki wraz z 7% podatkiem VAT wynosi 1337 zł 50 gr. Oblicz ile wynosi podatek VAT. www.zadania.info NAJWIEKSZY INTERNETOWY ZBIÓR ZADAŃ Z MATEMATYKI ZADANIE 1 Cenę płaszcza zimowego obniżono wiosna o 15% i wówczas cena wynosiła 510 zł. Oblicz cenę płaszcza przed obniżka. ZADANIE 2 Ksiażka

Bardziej szczegółowo

Część matematyczna sprawdzian 2013 r.

Część matematyczna sprawdzian 2013 r. Część matematyczna sprawdzian 2013 r. 1. Szyfr zabezpieczający zamek jest liczbą czterocyfrową podzielną przez 9. Trzy cyfry szyfru są już ustawione. Brakującą cyfrą jest A. 5 B. 2 C. 0 D. 9 4 2? 7 2.

Bardziej szczegółowo

INSTRUKCJE WEJŚCIA I WYJŚCIA

INSTRUKCJE WEJŚCIA I WYJŚCIA INSTRUKCJE WEJŚCIA I WYJŚCIA Zadanie nr 1 Napisz algorytm za pomocą a i schematów blokowych. Algorytm ma wczytywać z klawiatury wartości dwóch liczb, obliczać sumę tych liczb i wyświetlać jej wartość na

Bardziej szczegółowo

TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna)

TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna) SCENARIUSZ ZAJĘĆ Z MATEMATYKI DLA KLASY III GIMNAZJUM AUTOR : HANNA MARCINKOWSKA TEMAT : Sprawdź sam siebie powtórzenie materiału (ewaluacja całoroczna) Szkoła z klasą 2.0 Zastosowanie technologii informacyjnej

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja MMA-R1_1P-07 EGZAMIN MATURALNY Z MATEMATYKI POZIOM ROZSZERZONY MAJ ROK 007 Czas pracy 180 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI pobrano z www.sqlmedia.pl ARKUSZ ZAWIERA INFORMACJE PRAWNIE CHRONIONE DO MOMENTU ROZPOCZ CIA EGZAMINU! Miejsce na naklejk MMA-P1_1P-092 EGZAMIN MATURALNY Z MATEMATYKI POZIOM PODSTAWOWY MAJ ROK 2009 Czas

Bardziej szczegółowo

PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 PODSTAWY METROLOGII ĆWICZENIE 4 PRZETWORNIKI AC/CA Międzywydziałowa Szkoła Inżynierii Biomedycznej 29/2 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!

Bardziej szczegółowo

KURS GEOMETRIA ANALITYCZNA

KURS GEOMETRIA ANALITYCZNA KURS GEOMETRIA ANALITYCZNA Lekcja 1 Działania na wektorach bez układu współrzędnych. ZADANIE DOMOWE www.etrapez.pl Strona 1 Część 1: TEST Zaznacz poprawną odpowiedź (tylko jedna jest prawdziwa). Pytanie

Bardziej szczegółowo

I. POSTANOWIENIE OGÓLNE

I. POSTANOWIENIE OGÓLNE Załącznik do Zarządzenia Nr 26/2015 Rektora UKSW z dnia 1 lipca 2015 r. REGULAMIN ZWIĘKSZENIA STYPENDIUM DOKTORANCKIEGO Z DOTACJI PODMIOTOWEJ NA DOFINANSOWANIE ZADAŃ PROJAKOŚCIOWYCH NA UNIWERSYTETCIE KARDYNAŁA

Bardziej szczegółowo

Wymagania na poszczególne oceny klasa 4

Wymagania na poszczególne oceny klasa 4 Wymagania na poszczególne oceny klasa 4 a) Wymagania konieczne (na ocenę dopuszczającą) obejmują wiadomości i umiejętności umożliwiające uczniowi dalszą naukę, bez których uczeń nie jest w stanie zrozumieć

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

OGÓLNODOSTĘPNE IFORMACJE O WYNIKACH EGZAMINÓW I EFEKTYWNOŚCI NAUCZANIA W GIMNAZJACH przykłady ich wykorzystania i interpretowania

OGÓLNODOSTĘPNE IFORMACJE O WYNIKACH EGZAMINÓW I EFEKTYWNOŚCI NAUCZANIA W GIMNAZJACH przykłady ich wykorzystania i interpretowania Teresa Kutajczyk, WBiA OKE w Gdańsku Okręgowa Komisja Egzaminacyjna w Gdańsku OGÓLNODOSTĘPNE IFORMACJE O WYNIKACH EGZAMINÓW I EFEKTYWNOŚCI NAUCZANIA W GIMNAZJACH przykłady ich wykorzystania i interpretowania

Bardziej szczegółowo

WYKRESY FUNKCJI NA CO DZIEŃ

WYKRESY FUNKCJI NA CO DZIEŃ TEMAT NUMERU 13 Adam Wojaczek WYKRESY FUNKCJI NA CO DZIEŃ W zreformowanych szkołach ponadgimnazjalnych kładziemy szczególny nacisk na praktyczne zastosowania matematyki. I bardzo dobrze! (Szkoda tylko,

Bardziej szczegółowo

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI

PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI PRZYK ADOWY ARKUSZ EGZAMINACYJNY Z MATEMATYKI Zestaw P POZIOM PODSTAWOWY Czas pracy 170 minut Instrukcja dla pisz cego 1. Sprawd, czy arkusz zawiera 17 stron.. W zadaniach od 1. do 0. s podane 4 odpowiedzi:

Bardziej szczegółowo

Spis treści. Dokument pochodzi ze strony www.gwo.pl LICZBY NATURALNE I UŁAMKI

Spis treści. Dokument pochodzi ze strony www.gwo.pl LICZBY NATURALNE I UŁAMKI Spis treści LICZBY NATURALNE I UŁAMKI Działania na liczbach naturalnych i ułamkach dziesiętnych... 3 Potęgowanie liczb.. 8 Przykłady pierwiastków 12 Działania na ułamkach zwykłych... 13 Ułamki zwykłe i

Bardziej szczegółowo

Międzyszkolny Konkurs Matematyczny. dla klasy trzeciej

Międzyszkolny Konkurs Matematyczny. dla klasy trzeciej Międzyszkolny Konkurs Matematyczny dla klasy trzeciej Cele konkursu : - rozwijanie zainteresowań matematycznych u dzieci w młodszym wieku szkolnym; - wdrażanie do logicznego myślenia; - zwiększanie efektywności

Bardziej szczegółowo

Czy zdążyłbyś w czasie, w jakim potrzebuje światło słoneczne, aby dotrzeć do Saturna, oglądnąć polski hit kinowy: Nad życie Anny Pluteckiej-Mesjasz?

Czy zdążyłbyś w czasie, w jakim potrzebuje światło słoneczne, aby dotrzeć do Saturna, oglądnąć polski hit kinowy: Nad życie Anny Pluteckiej-Mesjasz? ZADANIE 1. (4pkt./12min.) Czy zdążyłbyś w czasie, w jakim potrzebuje światło słoneczne, aby dotrzeć do Saturna, oglądnąć polski hit kinowy: Nad życie Anny Pluteckiej-Mesjasz? 1. Wszelkie potrzebne dane

Bardziej szczegółowo

Ćwiczenie: "Ruch harmoniczny i fale"

Ćwiczenie: Ruch harmoniczny i fale Ćwiczenie: "Ruch harmoniczny i fale" Opracowane w ramach projektu: "Wirtualne Laboratoria Fizyczne nowoczesną metodą nauczania realizowanego przez Warszawską Wyższą Szkołę Informatyki. Zakres ćwiczenia:

Bardziej szczegółowo

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2.

Od redakcji. Symbolem oznaczono zadania wykraczające poza zakres materiału omówionego w podręczniku Fizyka z plusem cz. 2. Od redakcji Niniejszy zbiór zadań powstał z myślą o tych wszystkich, dla których rozwiązanie zadania z fizyki nie polega wyłącznie na mechanicznym przekształceniu wzorów i podstawieniu do nich danych.

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z MATEMATYKI W KLASACH IV-VI obowiązujące od roku 2015/16 I. Kryteria oceny semestralnej i końcowej dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń,

Bardziej szczegółowo

KONKURSY MATEMATYCZNE. Treść zadań

KONKURSY MATEMATYCZNE. Treść zadań KONKURSY MATEMATYCZNE Treść zadań Wskazówka: w każdym zadaniu należy wskazać JEDNĄ dobrą odpowiedź. Zadanie 1 Wlewamy 1000 litrów wody do rurki w najwyższym punkcie systemu rurek jak na rysunku. Zakładamy,

Bardziej szczegółowo

UMOWA O ŚWIADCZENIU USŁUG W PUNKCIE PRZEDSZKOLNYM TĘCZOWA KRAINA. Zawarta dnia..w Cieszynie pomiędzy

UMOWA O ŚWIADCZENIU USŁUG W PUNKCIE PRZEDSZKOLNYM TĘCZOWA KRAINA. Zawarta dnia..w Cieszynie pomiędzy UMOWA O ŚWIADCZENIU USŁUG W PUNKCIE PRZEDSZKOLNYM TĘCZOWA KRAINA Zawarta dnia..w Cieszynie pomiędzy.właścicielką Punktu Przedszkolnego Tęczowa Kraina w Cieszynie przy ulicy Hallera 145 A, a Panem/Panią......

Bardziej szczegółowo

Uchwała Nr.. /.../.. Rady Miasta Nowego Sącza z dnia.. listopada 2011 roku

Uchwała Nr.. /.../.. Rady Miasta Nowego Sącza z dnia.. listopada 2011 roku Projekt Uchwała Nr / / Rady Miasta Nowego Sącza z dnia listopada 2011 roku w sprawie określenia wysokości stawek podatku od środków transportowych Na podstawie art 18 ust 2 pkt 8 i art 40 ust 1 ustawy

Bardziej szczegółowo

K P K P R K P R D K P R D W

K P K P R K P R D K P R D W KLASA III TECHNIKUM POZIOM PODSTAWOWY I ROZSZERZONY PROPOZYCJA POZIOMÓW WYMAGAŃ Wyróżnione zostały następujące wymagania programowe: konieczne (K), podstawowe (P), rozszerzające (R), dopełniające (D) i

Bardziej szczegółowo

INSTRUMEWNTY FINANSOWE umożliwiające pomoc rolnikom w usuwaniu skutków niekorzystnych zjawisk atmosferycznych

INSTRUMEWNTY FINANSOWE umożliwiające pomoc rolnikom w usuwaniu skutków niekorzystnych zjawisk atmosferycznych INSTRUMEWNTY FINANSOWE umożliwiające pomoc rolnikom w usuwaniu skutków niekorzystnych zjawisk atmosferycznych Aleksandra Szelągowska Ministerstwo Rolnictwa i Rozwoju Wsi Rozporządzenie Rady Ministrów z

Bardziej szczegółowo

UCHWAŁA Nr XIX/170/2012 RADY MIEJSKIEJ w KOZIENICACH z dnia 29 marca 2012 r.

UCHWAŁA Nr XIX/170/2012 RADY MIEJSKIEJ w KOZIENICACH z dnia 29 marca 2012 r. UCHWAŁA Nr XIX/170/2012 RADY MIEJSKIEJ w KOZIENICACH z dnia 29 marca 2012 r. w sprawie zasad udzielania stypendiów o charakterze motywującym ze środków Gminy Kozienice. Na podstawie art. 18 ust. 2 pkt

Bardziej szczegółowo

PAKIET MathCad - Część III

PAKIET MathCad - Część III Opracowanie: Anna Kluźniak / Jadwiga Matla Ćw3.mcd 1/12 Katedra Informatyki Stosowanej - Studium Podstaw Informatyki PAKIET MathCad - Część III RÓWNANIA I UKŁADY RÓWNAŃ 1. Równania z jedną niewiadomą MathCad

Bardziej szczegółowo

XIX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2010/2011

XIX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2010/2011 XIX edycja Międzynarodowego Konkursu Matematycznego PIKOMAT rok szkolny 2010/2011 Etap III Klasa IV Z 24 patyczków jednakowej długości ułożono 9 małych kwadratów tworzących jeden duży kwadrat 3 3. Ile

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ

WYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ WYMAGANIA EDUKACYJNE SPOSOBY SPRAWDZANIA POSTĘPÓW UCZNIÓW WARUNKI I TRYB UZYSKANIA WYŻSZEJ NIŻ PRZEWIDYWANA OCENY ŚRÓDROCZNEJ I ROCZNEJ Anna Gutt- Kołodziej ZASADY OCENIANIA Z MATEMATYKI Podczas pracy

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. pobrano z

EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014 POZIOM ROZSZERZONY. Czas pracy: 180 minut. Liczba punktów do uzyskania: 50. pobrano z Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2013 WPISUJE ZDAJ CY KOD PESEL Miejsce na naklejk z kodem dysleksja EGZAMIN MATURALNY Z MATEMATYKI MAJ 2014

Bardziej szczegółowo

Załącznik Nr 2 do Regulaminu Konkursu na działania informacyjno- promocyjne dla przedsiębiorców z terenu Gminy Boguchwała

Załącznik Nr 2 do Regulaminu Konkursu na działania informacyjno- promocyjne dla przedsiębiorców z terenu Gminy Boguchwała Załącznik Nr 2 do Regulaminu Konkursu na działania informacyjno- promocyjne dla przedsiębiorców z terenu Gminy Boguchwała WZÓR UMOWA O DOFINANSOWANIE PROJEKTU W RAMACH PROGRAMU DOTACYJNEGO DLA PRZEDSIĘBIORCÓW

Bardziej szczegółowo

Regulamin wynajmu lokali użytkowych. Międzyzakładowej Górniczej Spółdzielni Mieszkaniowej w Jaworznie tekst jednolity

Regulamin wynajmu lokali użytkowych. Międzyzakładowej Górniczej Spółdzielni Mieszkaniowej w Jaworznie tekst jednolity Regulamin wynajmu lokali użytkowych Międzyzakładowej Górniczej Spółdzielni Mieszkaniowej w Jaworznie tekst jednolity Podstawa prawna: 48 i 92 ust.1 pkt 1.1 Statutu Sp-ni. I. Postanowienia ogólne. 1. Lokale

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122,

Analiza wyników egzaminu gimnazjalnego. Test matematyczno-przyrodniczy matematyka. Test GM-M1-122, Analiza wyników egzaminu gimnazjalnego Test matematyczno-przyrodniczy Test GM-M1-122, Zestaw zadań z zakresu matematyki posłużył w dniu 25 kwietnia 2012 r. do sprawdzenia, u uczniów kończących trzecią

Bardziej szczegółowo

,,Nie bój się matematyki - Program zajęć wyrównawczych z matematyki dla uczniów klas VI Szkoły Podst. nr 5 w Nowym Dworze Maz.

,,Nie bój się matematyki - Program zajęć wyrównawczych z matematyki dla uczniów klas VI Szkoły Podst. nr 5 w Nowym Dworze Maz. 1,,Nie bój się matematyki - Program zajęć wyrównawczych z matematyki dla uczniów klas VI Szkoły Podst. nr 5 w Nowym Dworze Maz. Wstęp Program zajęć wyrównawczych został napisany z myślą o uczniach klas

Bardziej szczegółowo

MATEMATYKA POZIOM PODSTAWOWY PRZYK ADOWY ZESTAW ZADA NR 1. Miejsce na naklejk z kodem szko y OKE ÓD CKE MARZEC ROK Czas pracy 120 minut

MATEMATYKA POZIOM PODSTAWOWY PRZYK ADOWY ZESTAW ZADA NR 1. Miejsce na naklejk z kodem szko y OKE ÓD CKE MARZEC ROK Czas pracy 120 minut Miejsce na naklejk z kodem szko y OKE ÓD CKE MATEMATYKA POZIOM PODSTAWOWY MARZEC ROK 2008 PRZYK ADOWY ZESTAW ZADA NR 1 Czas pracy 120 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny

Bardziej szczegółowo

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. PESEL

Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. PESEL Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 0 KOD UCZNIA UZUPE NIA ZESPÓ NADZORUJ CY PESEL miejsce na naklejk z kodem

Bardziej szczegółowo

U C H W A Ł A NR XIX/81/2008. Rady Gminy Ostrowite z dnia 21 maja 2008 roku. u c h w a l a s ię:

U C H W A Ł A NR XIX/81/2008. Rady Gminy Ostrowite z dnia 21 maja 2008 roku. u c h w a l a s ię: U C H W A Ł A NR XIX/81/2008 Rady Gminy Ostrowite z dnia 21 maja 2008 roku w sprawie regulaminu udzielania pomocy materialnej o charakterze socjalnym dla uczniów. Na podstawie art. 90f. ustawy z dnia 7

Bardziej szczegółowo

Kurs wyrównawczy dla kandydatów i studentów UTP

Kurs wyrównawczy dla kandydatów i studentów UTP Kurs wyrównawczy dla kandydatów i studentów UTP Część III Funkcja wymierna, potęgowa, logarytmiczna i wykładnicza Magdalena Alama-Bućko Ewa Fabińska Alfred Witkowski Grażyna Zachwieja Uniwersytet Technologiczno

Bardziej szczegółowo

EGZAMIN MATURALNY Z MATEMATYKI

EGZAMIN MATURALNY Z MATEMATYKI Miejsce na naklejk z kodem szko y dysleksja EGZAMIN MATURALNY Z MATEMATYKI MMA-P1A1P-061 POZIOM PODSTAWOWY Czas pracy 10 minut Instrukcja dla zdaj cego 1. Sprawd, czy arkusz egzaminacyjny zawiera 1 stron.

Bardziej szczegółowo

Zadania zamknięte. A) 3 pierwiastki B) 1 pierwiastek C) 4 pierwiastki D) 2 pierwiastki. C) a 4 = 2 3

Zadania zamknięte. A) 3 pierwiastki B) 1 pierwiastek C) 4 pierwiastki D) 2 pierwiastki. C) a 4 = 2 3 Zadania zamknięte ZADANIE 1 (1 PKT) Równanie x2 3x+2 = 0 ma: x 2 4 A) 3 pierwiastki B) 1 pierwiastek C) 4 pierwiastki D) 2 pierwiastki ZADANIE 2 (1 PKT) Liczba b jest 3 razy większa od liczby a. Wtedy

Bardziej szczegółowo

TERMIN ODDAWANIA PRAC 29 LUTEGO KLASA IV ZESTAW 3

TERMIN ODDAWANIA PRAC 29 LUTEGO KLASA IV ZESTAW 3 KLASA IV Pierwszy autobus odjeżdża z przystanku o godzinie 5.30, a następne autobusy odjeżdżają z tego przystanku co 45 minut. Janek przyszedł na przystanek o godzinie 14.22. o ile minut przyszedł za późno

Bardziej szczegółowo

UCHWAŁA NR XLVIII/307/2014 RADY MIASTA LUBOŃ. z dnia 9 września 2014 r.

UCHWAŁA NR XLVIII/307/2014 RADY MIASTA LUBOŃ. z dnia 9 września 2014 r. UCHWAŁA NR XLVIII/307/2014 RADY MIASTA LUBOŃ z dnia 9 września 2014 r. w sprawie: trybu udzielania i rozliczania dotacji dla szkół i przedszkoli niepublicznych oraz publicznych prowadzonych przez inny

Bardziej szczegółowo

REGULAMIN REKRUTACJI UCZNIÓW/SŁUCHACZY DO ZESPOŁU SZKÓŁ TECHNICZNYCH I OGÓLNOKSZTAŁCĄCYCH IM. KAZIMIERZA WIELKIEGO W BUSKU-ZDROJU

REGULAMIN REKRUTACJI UCZNIÓW/SŁUCHACZY DO ZESPOŁU SZKÓŁ TECHNICZNYCH I OGÓLNOKSZTAŁCĄCYCH IM. KAZIMIERZA WIELKIEGO W BUSKU-ZDROJU do Statutu ZSTiO REGULAMIN REKRUTACJI UCZNIÓW/SŁUCHACZY DO ZESPOŁU SZKÓŁ TECHNICZNYCH I OGÓLNOKSZTAŁCĄCYCH IM. KAZIMIERZA WIELKIEGO W BUSKU-ZDROJU 2 Wstęp Zasady rekrutacji uczniów regulują: - Rozporządzenie

Bardziej szczegółowo

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc

PRAWA ZACHOWANIA. Podstawowe terminy. Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc PRAWA ZACHOWANIA Podstawowe terminy Cia a tworz ce uk ad mechaniczny oddzia ywuj mi dzy sob i z cia ami nie nale cymi do uk adu za pomoc a) si wewn trznych - si dzia aj cych na dane cia o ze strony innych

Bardziej szczegółowo

Wrocław, dnia 14 grudnia 2015 r. Poz. 5734 UCHWAŁA NR XVI/96/15 RADY MIEJSKIEJ W BOGUSZOWIE-GORCACH. z dnia 30 listopada 2015 r.

Wrocław, dnia 14 grudnia 2015 r. Poz. 5734 UCHWAŁA NR XVI/96/15 RADY MIEJSKIEJ W BOGUSZOWIE-GORCACH. z dnia 30 listopada 2015 r. DZIENNIK URZĘDOWY WOJEWÓDZTWA DOLNOŚLĄSKIEGO Wrocław, dnia 14 grudnia 2015 r. Poz. 5734 UCHWAŁA NR XVI/96/15 RADY MIEJSKIEJ W BOGUSZOWIE-GORCACH z dnia 30 listopada 2015 r. w sprawie ustalenia trybu udzielania

Bardziej szczegółowo

Podatek przemysłowy (lokalny podatek od działalności usługowowytwórczej) 2015-12-17 16:02:07

Podatek przemysłowy (lokalny podatek od działalności usługowowytwórczej) 2015-12-17 16:02:07 Podatek przemysłowy (lokalny podatek od działalności usługowowytwórczej) 2015-12-17 16:02:07 2 Podatek przemysłowy (lokalny podatek od działalności usługowo-wytwórczej) Podatek przemysłowy (lokalny podatek

Bardziej szczegółowo

Ogólna charakterystyka kontraktów terminowych

Ogólna charakterystyka kontraktów terminowych Jesteś tu: Bossa.pl Kurs giełdowy - Część 10 Ogólna charakterystyka kontraktów terminowych Kontrakt terminowy jest umową pomiędzy dwiema stronami, z których jedna zobowiązuje się do nabycia a druga do

Bardziej szczegółowo

KOD UCZNIA PESEL EGZAMIN. jedna. zadaniach. 5. W niektórych. Czas pracy: do. 135 minut T N. miejsce. Powodzeni GM-M7-132. z kodem. egzaminu.

KOD UCZNIA PESEL EGZAMIN. jedna. zadaniach. 5. W niektórych. Czas pracy: do. 135 minut T N. miejsce. Powodzeni GM-M7-132. z kodem. egzaminu. Centralna Komisja Egzaminacyjna Arkusz zawiera informacje prawnie chronione do momentu rozpocz cia egzaminu. Uk ad graficzny CKE 2011 UZUPE NIA ZESPÓ NADZORUJ CY KOD UCZNIA PESEL miejsce na naklejk z kodem

Bardziej szczegółowo

Wyznaczanie współczynnika sprężystości sprężyn i ich układów

Wyznaczanie współczynnika sprężystości sprężyn i ich układów Ćwiczenie 63 Wyznaczanie współczynnika sprężystości sprężyn i ich układów 63.1. Zasada ćwiczenia W ćwiczeniu określa się współczynnik sprężystości pojedynczych sprężyn i ich układów, mierząc wydłużenie

Bardziej szczegółowo

Objaśnienia do Wieloletniej Prognozy Finansowej na lata 2011-2017

Objaśnienia do Wieloletniej Prognozy Finansowej na lata 2011-2017 Załącznik Nr 2 do uchwały Nr V/33/11 Rady Gminy Wilczyn z dnia 21 lutego 2011 r. w sprawie uchwalenia Wieloletniej Prognozy Finansowej na lata 2011-2017 Objaśnienia do Wieloletniej Prognozy Finansowej

Bardziej szczegółowo

Matematyka test dla uczniów klas piątych

Matematyka test dla uczniów klas piątych Matematyka test dla uczniów klas piątych szkół podstawowych w roku szkolnym 2011/2012 Etap szkolny (60 minut) Dysleksja [suma punktów] Imię i nazwisko... kl.5... Wśród uczniów klas piątych przeprowadzono

Bardziej szczegółowo

Zagadnienia do egzaminu ustnego z matematyki dla Uzupełniającego Liceum Ogólnokształcącego dla Dorosłych - III semestr

Zagadnienia do egzaminu ustnego z matematyki dla Uzupełniającego Liceum Ogólnokształcącego dla Dorosłych - III semestr Zagadnienia do egzaminu ustnego z matematyki dla Uzupełniającego Liceum Ogólnokształcącego dla Dorosłych - III semestr I. Wyrażenia wymierne: funkcja wymierna - Dziedzina wyrażenia wymiernego. - Skarcenie

Bardziej szczegółowo

ZESPÓŁ SZKÓŁ NR 1 IM. MIKOŁAJA KOPERNIKA W KOSZALINIE Regulamin naboru na rok szkolny 2015/2016

ZESPÓŁ SZKÓŁ NR 1 IM. MIKOŁAJA KOPERNIKA W KOSZALINIE Regulamin naboru na rok szkolny 2015/2016 ZESPÓŁ SZKÓŁ NR 1 IM. MIKOŁAJA KOPERNIKA W KOSZALINIE Regulamin naboru na rok szkolny 2015/2016 Nabór do szkoły odbywać się będzie metodą elektroniczną według wspólnych zasad dla wszystkich szkół ponadgimnazjalnych

Bardziej szczegółowo