4. Ubezpieczenie Życiowe

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "4. Ubezpieczenie Życiowe"

Transkrypt

1 4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego w zależności od aktualnego wieku (oraz innych czynników). 3. Pozostałe koszty (administracja, podatki itp.) Rozważamy tylko pierwsze dwa rodzaje czynników i określamy tak zwaną składkę netto. 1 / 38

2 Tabelka Umieralności Rozkład czasu do śmierci jest oszacowany za pomocą tabelek umerialności. Tabelki te są oparte na próbę jednostek urodzonych w danym okresie czasu, czyli na tak zwanej kohorcie. Najbardziej przydatna informacja w tych tabelkach jest intensywność zgonów w wieku t (jednostką czasu jest zwykle rok). Intensywność zgonów w wieku t równa się prawdopodobieństwu tego że osoba umiera przed wiekiem t + 1 przy warunku że jeszcze żyje w wieku t. 2 / 38

3 Tabelka Umieralności Niech N t będzie liczbą osób w kohorcie, które jeszcze żyją w wieku t. Wtedy liczba osób, która umiera przed wiekiem t + 1 przy warunku że jeszcze żyją w wieku t wynosi M t, gdzie M t = N t N t+1 Dzieląc przez liczbę osób jeszcze żyjących w wieku t, otrzymujemy estymator intensywności zgonów w wieku t. m t = N t N t+1 N t. Przeżywalność w wieku t, s t, wyraża się wzorem s t = 1 m t. 3 / 38

4 Tabelka Umieralności Wiek Rozmiar kohorty Liczba zgonów Intensywność zgonów = 0, = 0, = 0, = 0, = 0, = 0, / 38

5 Tabelka Umieralności Estymator prawdopodobieństwa tego że osoba przeżyje do wieku t + k przy warunku że żyje do wieku t, σ t,t+k, równa się proporcji osób, które przeżyją do wieku t, które przeżyją do wieku t + k. Więc σ t,t+k = N t+k N t. Wynika z tego że prawdopodobieństwo zgonu między wiekami t a t + k wynosi µ t,t+k, gdzie µ t,t+k = 1 σ t,t+k. 5 / 38

6 Tabelka Umieralności Należy zauważyć że obecnie intensywności zgonów są niższe niż w przeszłości, więc estymatory oparte na tabelkach umieralności ogólnie przeszacują intensywności zgonów aktualnych kohort. Wynika z tego że opdowiednie składki też są przeszacowane. Firmy ubezpieczeniowe często biorą pod uwagę trendy w intensywnościach zgonów aby oszacować intensywności zgonów aktualnej kohorty (nie rozważamy tych metod tutaj). Należy zauważyć że gdy firma ubezpiecza osoby dopiero po badaniach medycznych, wtedy intensywność zgonów u nowoubezpieczonych jest niższa niż u tych, którzy się ubezpieczyli jakiś czas temu. 6 / 38

7 Składka jednorazowa Rozważamy polisę, przy której firma wypłaci daną kwotę nominalną po śmierci ubezpieczonego, o ile umrze w danym okresie czsasu. Cena netto takiej polisy równa się kwocie, którą należy od razu zainwestować żeby pokrywać oczekiwane koszty wypłaty w wypadku śmierci ubezpieczonego. Zakładamy że termin składki jest na początku roku, a wypłata zajdzie pod koniec roku śmierci. Z powodu awersji do ryzyka, firma ubezpieczeniowa zakłada że stopa procentowa będzie dosyć niska. Gdy stopa ta jest wyższa, firma zyksuje. 7 / 38

8 Ubezpieczenie na jeden rok Zakładamy że osoba jest w wieku t, kwota do wypłacenia po śmierci ubezpieczonego wynosi K a stopa procentowa jest 100R%. Odpowiednia składka, P jest K P = Km t 1 + R. Należy zauważyć że 1+R jest kwota, którą należy od razu zainwestować aby pokryć wypłatę w wypadku śmierci, a m t jest prawdopodobieństwem śmierci. 8 / 38

9 Przykład 4.1 Zakładamy że osoba w wieku 40 chce się ubezpieczyć na rok. Wypłata w wypadku śmierci ma być $ Roczna stopa procentowa jest 4% a intensywność zgonów należy oszacować za pomocą tablicy umeralności (zob. powyżej). Wyznaczyć odpowiednią składkę jednorazową. 9 / 38

10 Przykład / 38

11 Jednorazowa składka na dłuższy okres czasu Zakładamy że ubezpieczony jest w wieku t, wtedy prawdopodobieństwo tego że umrze w i-tym roku polisy, p i (i 2) wyraża się p i = σ t,t+i 1 m t+i 1. Uwaga: Wynika to z faktu że gdy ubezpieczony umiera w i-tym roku polisy (czyli między wiekami t + i 1 a t + i), osoba ta musi przeżyć do wieku t + i 1 a umrzeć w ciągu następnego roku. Zakładamy że prawdopodobieństwo zgonu w pierwszym roku polisy, p 1, równa się m t. 11 / 38

12 Jednorazowa składka na dłuższy okres czasu Zakładamy że ubezpieczony jest w wieku t, suma wypłacona w wypadku śmierci wynosi K i stopa procentowa jest 100R%. Polisa ma trwać k lat. Odpowiednia składka jest sumą k składowych, V 1, V 1,..., V k, gdzie V i = Kp i (1 + R) i. Uwaga: Należy zauważyć że V i jest częścią składki, która pokrywa oczekiwane koszty wynikające z możliwości śmierci w i-tym roku polisy. 12 / 38

13 Przykład 4.2 Zakładamy że osoba w wieku 40 chce ubezpieczenie życiowe na nastęne 5 lat. Wypłata w wypadku śmierci wynosi $ Roczna stopa procentowa wynosi 4% i należy oszacować intensywność zgonów za pomocą tabeli podanej powyżej. Wyznaczyć i) prawdopodobieństwo śmierci w każdym roku polisy ii) odpowiednią składkę jednorazową. 13 / 38

14 Przykład / 38

15 Przykład / 38

16 Przykład / 38

17 Przykład / 38

18 Przykład / 38

19 Składka przy jednostajnej intensywności zgonów W niektórych przypadkach można założyć że intensywność zgonów w trakcie polisy jest stała. Zakładamy że roczna intensywność zgonów (czyli prawdopobieństwo tego że ktoś umrze przed wiekiem t + 1 lat przy warunku że jeszcze żyje w wieku t lat) wynosi λ. Wynika z tego że prawdopodobieństwo tego że osoba umrze w i-tym roku polisy jest p i = (1 λ) i 1 λ. Odpowiednia kwota do inwestycji w tym wypadku wynosi K (1+R) i. Pierwszy wyraz określa prawdopodobieństwo że osoba przeżyje pierwsze i 1 lat, drugi jest prawdopodobieństwem tego że osoba wtedy umiera w i-tym roku polisy. 19 / 38

20 Składka przy jednostajnej intensywności zgonów W tym wypadku, składka jednorazowa wyraża się następującym wzorem: k p i K k (1 λ) i 1 λk P = (1 + R) i = (1 + R) i Więc i=1 P = λk 1 λ k i=1 i=1 ( ) 1 λ i 1 + R 20 / 38

21 Składka przy jednostajnej intensywności zgonów Jest to szereg geometryczny, gdzie pierwszy element, c, spełnia c = λk 1+R. Iloraz r spełnia r = 1 λ 1+R, a liczba elementów w sumie wynosi k. Wynika z tego że P = λk 1 + R 1 r k 1 r, 21 / 38

22 Przykład 4.3 Wyznaczyć odpowiednią składkę jednorazową dla polisy z przykładu 4.2 przy założeniu że intensywność zgonów jest stała w okresie polisy i wynosi / 38

23 Przykład / 38

24 Przykład / 38

25 Mieszane polisy Można zdefiniować polisy, które określają wypłaty w wypadku śmierci lub przejścia na emeryturę w wieku T. W tym wypadku, z założenia intensywność zgonów (wypłat) w wieku T 1 wynosi 1, skoro gdy ubezpieczony przeżyje do wieku T 1 wypłata zawsze zajdzie w wieku T. Dla wygody, zakładamy że aż do emerytury intensywność zgonów jest stała. 25 / 38

26 Mieszane polisy Zakładamy że ubezpieczony ma przejść na emeryturę za T lat. Wypłata zajdzie za T lat wtedy i tylko wtedy gdy ubezpieczony przeżyje pierwsze T 1 lat polisy. W tym wypadku, inwestycja wstępna, która pokrywa tę wypłatę K (1+R) T i prawdopodobieństwo tego zdarzenia wynosi (1 λ) T 1. W pozostałych wypadkach, prawdopodobieństwo wypłaty w i-tym roku jest p i = (1 λ) i 1 λ, i = 1, 2,... T 1, a odpowiednia inwestycja wynosi (tak jak w poprzednim modelu). K (1+R) i 26 / 38

27 Mieszane polisy Więc składka jednorazowa za taką polisę wynosi P = gdzie r = 1 λ 1+R. λk 1 + R 1 r T 1 K(1 λ)t r (1 + R) T, Pierwsza składowa pokrywa koszty ubezpeczenia życiowego. Druga składka pokrywa wypłatę przy przejściu na emeryturę. 27 / 38

28 Przykład 4.4 Osoba w wieku 40 lat chce kupić polisę, która gwarantuje kwotę $ po śmierci ubezpieczonego lub przy przejściu na emeryturę (w wieku 65 lat). Zakładając że intensywność zgonów wynosi a stopa procentowa jest 3%, wyznaczyć odpowiednią składkę jednorazową. 28 / 38

29 Przykład / 38

30 Przykład / 38

31 Składki bieżące Tutaj, zakładamy że ubezpieczenie ma trwać T lat, intensywność zgonów jest stała i wynosi λ i stopa procentowa jest 100R%. Składki się płaci na początku roku. Wypłata po śmierci ubezpieczonego wynosi K i zajdzie pod koniec roku. Skoro założenie są niezbyt realne, wzór określający odpowiednią składkę jest zbyt prosty, ale metoda ta ilustruje ogólne podejście do tego problemu. 31 / 38

32 Podstawowe Równanie Ubezpieczenia Życiowego Podstawowe równanie ubezpieczenia życiowego jest postaci Oczekiwana wartość aktualna składek = Oczekiwana wartość aktualna wypłaty. Oczekiwana wartość aktualna wypłaty przy tych żałożeniach już została wprowadzona powyżej. V C = T i=1 p i K (1 + R) i = λk 1 + R ( ) 1 r k, 1 r gdzie p i jest prawdopodobieństwem śmierci w roku i oraz r = 1 λ 1+R. 32 / 38

33 Podstawowe Równanie Ubezpieczenia Życiowego Składka P się płaci na początku każdego roku dopóki ubezpieczony żyje (aż do roku T ). Ubezpieczony jeszcze żyje na początku roku i z prawdopodbieństwem (1 λ) i 1 (prawdopodobieństwo tego że przeżyje pierwsze i 1 lat). Aktualna wartość składki spłaconej na początku roku i wynosi P (1+R) i / 38

34 Podstawowe Równanie Ubezpieczenia Życiowego Wynika z tego że aktualna wartość sumy składek wynosi V P = T P i=1 ( 1 λ 1 + R ) ( ) i 1 1 r k = P. 1 r Z podstawowego równania ubezpieczenia życiowego V P = V C P = λk 1 + R. 34 / 38

35 Podstawowe Równanie Ubezpieczenia Życiowego Jest to równe składce jednorazowej w przypadku ubezpieczenia jednorocznego gdy λ = m t. Ma to sens, bo gdy składki są bieżące przy stałej umieralności jest to rodzaj ciągu polis jednakowych. W rzeczywistości składki są stałe, ale intensywność zgonów ogólnie rośnie wraz z wiekiem. Składka wyznaczona w ten sposób jest na początku większa niż ta odpowiadająca intensywności zgonów na początku. W późniejszych latach składka jest mniejsza niż by wynikało z tego wzoru. 35 / 38

36 Przykład 4.5 Wyznaczyć odpowiednią składkę roczną gdy intensywność zgonów wynosi, stopa procentowa jest 5% i polisa ma wypłacić $ po śmierci ubezpeczonego. 36 / 38

37 Przykład / 38

38 Przykład / 38

4. Ubezpieczenie Życiowe

4. Ubezpieczenie Życiowe 4. Ubezpieczenie Życiowe Składka ubezpieczeniowa musi brać pod uwagę następujące czynniki: 1. Kwotę wypłaconą przy śmierci ubezpieczonego oraz jej wartość aktualną. 2. Rozkład czasu do śmierci ubezpieczonego

Bardziej szczegółowo

2.1 Wartość Aktualna Renty Stałej

2.1 Wartość Aktualna Renty Stałej 2.1 Wartość Aktualna Renty Stałej Zakładamy że dana osoba ma dostać kwotę o stałej wartości nominalnej x przez N okresów (zwykle miesięcznie lub rocznie), np. stała renta/emerytura. Zakładamy że pierwsza

Bardziej szczegółowo

5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej

5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej 5.1 Stopa Inflacji - Dyskonto odpowiadające sile nabywczej Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych

Bardziej szczegółowo

Stopa Inflacji. W oparciu o zbiór składający się z n towarów, stopa inflacji wyraża się wzorem. n 100w k p k. , p k

Stopa Inflacji. W oparciu o zbiór składający się z n towarów, stopa inflacji wyraża się wzorem. n 100w k p k. , p k 2.1 Stopa Inflacji Stopa inflacji, i, mierzy jak szybko ceny się zmieniają jako zmianę procentową w skali rocznej. Oblicza się ją za pomocą średniej ważonej cząstkowych stóp inflacji, gdzie cząstkowa stopa

Bardziej szczegółowo

3.1 Analiza zysków i strat

3.1 Analiza zysków i strat 3.1 Analiza zysków i strat Zakładamy że firma decyduje czy ma wdrożyć nowy produkt lub projekt. Firma musi rozważyć czy przyszłe zyski (dyskontowane w czasie) z tego projektu są większe niż koszty poniesione

Bardziej szczegółowo

LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r.

LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r.

LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r. Komisja Egzaminacyjna dla Aktuariuszy LXXV Egzamin dla Aktuariuszy z 5 grudnia 2016 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

3.1 Analiza zysków i strat

3.1 Analiza zysków i strat 3.1 Analiza zysków i strat Zakładamy że firma decyduje czy ma wdrożyć nowy produkt lub projekt. Firma musi rozważyć czy przyszłe zyski (dyskontowane w czasie) z tego projektu są większe niż koszty podniesione.

Bardziej szczegółowo

LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LIV Egzamin dla Aktuariuszy z 4 października 2010 r.

LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Komisja Egzaminacyjna dla Aktuariuszy LIV Egzamin dla Aktuariuszy z 4 października 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:...klucz odpowiedzi... Czas egzaminu:

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych r.

Matematyka ubezpieczeń życiowych r. 1. W danej populacji intensywność śmiertelności zmienia się skokowo w rocznicę narodzin i jest stała aż do następnych urodzin. Jaka jest oczekiwana liczba osób z kohorty miliona 60-latków, które umrą po

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych r.

Matematyka ubezpieczeń życiowych r. . W populacji, w której śmiertelnością rządzi prawo de Moivre a z wiekiem granicznym ω = 50, dzieckiem jest się do wieku d. W wieku d rozpoczyna się pracę i pracuje się do wieku p.w wieku p przechodzi

Bardziej szczegółowo

LXX Egzamin dla Aktuariuszy z 23 marca 2015 r.

LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza

1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza 1. Oblicz prawdopodobieństwo zdarzenia, że noworodek wybrany z populacji, w której śmiertelnością rządzi prawo Gompertza x µ x = 06e. dożyje wieku największej śmiertelności (tzn. takiego wieku, w którym

Bardziej szczegółowo

LXV Egzamin dla Aktuariuszy z 30 września 2013 r.

LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXV Egzamin dla Aktuariuszy z 30 września 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r.

XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVIII Egzamin dla Aktuariuszy z 20 marca 2006 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

1. Ubezpieczenia życiowe

1. Ubezpieczenia życiowe 1. Ubezpieczenia życiowe Przy ubezpieczeniach życiowych mamy do czynienia z jednorazową wypłatą sumy ubezpieczenia. Moment jej wypłaty i wielkość wypłaty może być funkcją zmiennej losowej T a więc czas

Bardziej szczegółowo

Matematyka ubezpieczeń życiowych 17 marca 2008 r.

Matematyka ubezpieczeń życiowych 17 marca 2008 r. 1. Niech oznacza przeciętne dalsze trwanie życia w ciągu najbliższego roku obliczone przy założeniu hipotezy interpolacyjnej o stałym natężeniu wymierania między wiekami całkowitymi. Podobnie niech oznacza

Bardziej szczegółowo

Elementy teorii przeżywalności

Elementy teorii przeżywalności Elementy teorii przeżywalności Zadanie 1.1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 8 lat 2. P-two, że noworodek umrze nie później niż w wieku 3 lat 3. P-two, że noworodek

Bardziej szczegółowo

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I

Matematyka finansowa 26.05.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Przyjmijmy

Bardziej szczegółowo

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

1. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: =

1. Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: = . Niech g(t) oznacza gęstość wymierania, od momentu narodzin, pewnej populacji mężczyzn. Demografowie zauważyli, że po drobnej modyfikacji: ~ 0,9g( t) 0 t < 50 g ( t) =,2 g( t) 50 t. opisuje ona śmiertelność

Bardziej szczegółowo

1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci

1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci 1. Pięciu osobników pochodzi z populacji, w której pojedyncze życie podlega ryzyku śmierci + t µ + t A + B 2. Wyznacz prawdopodobieństwo, że z grupy tej nikt nie umrze w ciągu najbliższych 5 lat, jeśli

Bardziej szczegółowo

= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1

= µ. Niech ponadto. M( s) oznacza funkcję tworzącą momenty. zmiennej T( x), dla pewnego wieku x, w populacji A. Wówczas e x wyraża się wzorem: 1 1. W populacji B natężenie wymierania µ ( B ) x jest większe od natężenia wymierania ( A) µ x w populacji A, jednostajnie o µ > 0, dla każdego wieku x tzn. ( B) ( A) µ µ x = µ. Niech ponadto x M( s) oznacza

Bardziej szczegółowo

3 Ubezpieczenia na życie

3 Ubezpieczenia na życie 3 Ubezpieczenia na życie O ile nie jest powiedziane inaczej, w poniższych zadaniach zakładamy HJP. 3.1. Zadania 7.1-7.26 z Miśkiewicz-Nawrocka, Zeug-Żebro, Zbiór zadań z matematyki finansowej. 3.2. Mając

Bardziej szczegółowo

XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r.

XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy z 17 stycznia 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r.

LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r. Komisja Egzaminacyjna dla Aktuariuszy LXVIII Egzamin dla Aktuariuszy z 29 września 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.

LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXXII Egzamin dla Aktuariuszy z 28 września 2015 r.

LXXII Egzamin dla Aktuariuszy z 28 września 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXXII Egzamin dla Aktuariuszy z 28 września 2015 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LX Egzamin dla Aktuariuszy z 28 maja 2012 r.

LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa, 28

Bardziej szczegółowo

LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r.

LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r. Komisja Egzaminacyjna dla Aktuariuszy LXXIV Egzamin dla Aktuariuszy z 23 maja 2016 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r.

XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Komisja Egzaminacyjna dla Aktuariuszy XLIV Egzamin dla Aktuariuszy z 3 grudnia 2007 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

7. Podatki Podstawowe pojęcia

7. Podatki Podstawowe pojęcia 7. Podatki - 7.1 Podstawowe pojęcia Podatki są poddzielone na dwie kategorie: 1. Bezpośrednie - nałożone bezpośrednio na dochód z pracy. 2. Pośrednie - nałożone na wydatki, np. na różne towary. 1 / 35

Bardziej szczegółowo

XLIII Egzamin dla Aktuariuszy z 8 października 2007 r.

XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Komisja Egzaminacyjna dla Aktuariuszy XLIII Egzamin dla Aktuariuszy z 8 października 2007 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r.

LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r.

LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Komisja Egzaminacyjna dla Aktuariuszy LXVII Egzamin dla Aktuariuszy z 26 maja 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r.

XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVI Egzamin dla Aktuariuszy z 10 października 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

8. Podejmowanie Decyzji przy Niepewności

8. Podejmowanie Decyzji przy Niepewności 8. Podejmowanie Decyzji przy Niepewności Wcześniej, losowość (niepewność) nie była brana pod uwagę (poza przypadkiem ubezpieczenia życiowego). Na przykład, aby brać pod uwagę ryzyko że pożyczka nie zostanie

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy. XXXIX Egzamin dla Aktuariuszy z 5 czerwca 2006 r. Część I. Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXIX Egzamin dla Aktuariuszy z 5 czerwca 006 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Inwestor dokonuje

Bardziej szczegółowo

LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r.

LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXXIII Egzamin dla Aktuariuszy z 7 marca 2016 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH

MODELE MATEMATYCZNE W UBEZPIECZENIACH MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 4: UBEZPIECZENIA NA ŻYCIE Ubezpieczenie na życie jest to kontrakt (zwany polisą), w którym ubezpieczony zobowiązuje się do opłacenia składki (jednorazowo lub

Bardziej szczegółowo

LIX Egzamin dla Aktuariuszy z 12 marca 2012 r.

LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LIX Egzamin dla Aktuariuszy z 12 marca 2012 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE

MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE MODELE MATEMATYCZNE W UBEZPIECZENIACH WYKŁAD 5: RENTY ŻYCIOWE Rentą życiową nazywamy ciąg płatności który ustaje w chwili śmierci pewnej osoby (zwykle ubezpieczonego) Mówiąc o rencie życiowej nie zaznaczamy

Bardziej szczegółowo

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r.

LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Komisja Egzaminacyjna dla Aktuariuszy LIII Egzamin dla Aktuariuszy z 31 maja 2010 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:. Czas egzaminu: 100 minut Warszawa, 31

Bardziej szczegółowo

1 Elementy teorii przeżywalności

1 Elementy teorii przeżywalności 1 Elementy teorii przeżywalności Zadanie 1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 80 lat 2. P-two, że noworodek umrze nie później niż w wieku 30 lat 3. P-two, że noworodek

Bardziej szczegółowo

1 Elementy teorii przeżywalności

1 Elementy teorii przeżywalności 1 Elementy teorii przeżywalności Zadanie 1 Zapisz 1. Prawdopodobieństwo, że noworodek umrze nie później niż w wieku 80 lat 2. P-two, że noworodek umrze nie później niż w wieku 30 lat 3. P-two, że noworodek

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych 6.04.2009 r.

Matematyka ubezpieczeń majątkowych 6.04.2009 r. Matematyka ubezpieczeń majątkowych 6.04.009 r. Zadanie. Niech N oznacza liczbę szkód zaszłych w ciągu roku z pewnego ubezpieczenia z czego: M to liczba szkód zgłoszonych przed końcem tego roku K to liczba

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXI Egzamin dla Aktuariuszy z 1 października 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy LXX Egzamin dla Aktuariuszy z 23 marca 2015 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Rozważmy

Bardziej szczegółowo

UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ

UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ UBEZPIECZENIE NA ŻYCIE Z LOSOWĄ STOPĄ PROCENTOWĄ Krzysztof Janas Michał Krzeszowiec Koło Nauk Aktuarialnych Politechniki Łódzkiej Warszawa, 09-11.06.2008 r. Plan Założenia wstępne: Teoria oprocentowania

Bardziej szczegółowo

Matematyka ubezpieczeń na życie Life Insurance Mathematics. Matematyka Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W E, 2C

Matematyka ubezpieczeń na życie Life Insurance Mathematics. Matematyka Poziom kwalifikacji: II stopnia. Liczba godzin/tydzień: 2W E, 2C Nazwa przedmiotu: Kierunek: Rodzaj przedmiotu: przedmiot obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: wykład, ćwiczenia Matematyka ubezpieczeń na życie Life Insurance

Bardziej szczegółowo

XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r.

XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 2005 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 00 minut Warszawa, 6

Bardziej szczegółowo

MODELOWANIE STRUKTURY PROBABILISTYCZNEJ UBEZPIECZEŃ ŻYCIOWYCH Z OPCJĄ ADBS JOANNA DĘBICKA 1, BEATA ZMYŚLONA 2

MODELOWANIE STRUKTURY PROBABILISTYCZNEJ UBEZPIECZEŃ ŻYCIOWYCH Z OPCJĄ ADBS JOANNA DĘBICKA 1, BEATA ZMYŚLONA 2 JOANNA DĘBICKA 1, BEATA ZMYŚLONA 2 MODELOWANIE STRUKTURY PROBABILISTYCZNEJ UBEZPIECZEŃ ŻYCIOWYCH Z OPCJĄ ADBS X OGÓLNOPOLSKA KONFERENCJA AKTUARIALNA ZAGADNIENIA AKTUARIALNE TEORIA I PRAKTYKA WARSZAWA,

Bardziej szczegółowo

9 Funkcje Użyteczności

9 Funkcje Użyteczności 9 Funkcje Użyteczności Niech u(x) oznacza użyteczność wynikającą z posiadania x jednostek pewnego dobra. Z założenia, 0 jest punktem referencyjnym, czyli u(0) = 0. Należy to zinterpretować jako użyteczność

Bardziej szczegółowo

11. Gry Macierzowe - Strategie Czyste i Mieszane

11. Gry Macierzowe - Strategie Czyste i Mieszane 11. Gry Macierzowe - Strategie Czyste i Mieszane W grze z doskonałą informacją, gracz nie powinien wybrać akcję w sposób losowy (o ile wypłaty z różnych decyzji nie są sobie równe). Z drugiej strony, gdy

Bardziej szczegółowo

Aktuariat i matematyka finansowa. Metody kalkulacji składki w ubezpieczeniach typu non - life

Aktuariat i matematyka finansowa. Metody kalkulacji składki w ubezpieczeniach typu non - life Aktuariat i matematyka finansowa Metody kalkulacji składki w ubezpieczeniach typu non - life Budowa składki ubezpieczeniowej Składka ubezpieczeniowa cena jaką ubezpieczający płaci za ochronę ubezpieczeniowa

Bardziej szczegółowo

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r.

Matematyka finansowa 05.12.2005 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Komisja Egzaminacyjna dla Aktuariuszy XXXVII Egzamin dla Aktuariuszy z 5 grudnia 2005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Terminowe Ubezpieczenie na Życie MONO

Terminowe Ubezpieczenie na Życie MONO Terminowe Ubezpieczenie na Życie MONO 1. Dla kogo jest ta polisa indywidualna? 2. Co to jest ubezpieczenie terminowe MONO? 3. Korzyści dla Ubezpieczonego 4. Cechy ubezpieczenia 5. Suma ubezpieczenia i

Bardziej szczegółowo

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa

Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 16 maja 2005 r. Część I Matematyka finansowa Komisja Egzaminacyjna dla Aktuariuszy XXXV Egzamin dla Aktuariuszy z 6 maja 005 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU A Czas egzaminu: 00 minut . Inwestorzy

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIII Egzamin dla Aktuariuszy z 25 marca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r.

Matematyka finansowa 10.12.2012 r. Komisja Egzaminacyjna dla Aktuariuszy. LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Komisja Egzaminacyjna dla Aktuariuszy LXII Egzamin dla Aktuariuszy z 10 grudnia 2012 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r.

Matematyka finansowa 03.10.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Komisja Egzaminacyjna dla Aktuariuszy LVIII Egzamin dla Aktuariuszy z 3 października 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut

Bardziej szczegółowo

Karta produktu Indywidualne Ubezpieczenie Uniwersalne DIAMENTOWA STRATEGIA

Karta produktu Indywidualne Ubezpieczenie Uniwersalne DIAMENTOWA STRATEGIA Karta produktu Indywidualne Ubezpieczenie Uniwersalne DIAMENTOWA STRATEGIA 1. Opis i charakter produktu Ubezpieczenie bezterminowe o charakterze ochronno-inwestycyjnym łączące szeroki zakres ochrony ubezpieczeniowej

Bardziej szczegółowo

Ubez piecz enie ersalne saln D am a en e t n ow o a a S t S rat ra eg e i g a

Ubez piecz enie ersalne saln D am a en e t n ow o a a S t S rat ra eg e i g a Ubezpieczenie Uniwersalne Diamentowa Strategia 17 październik 2012 Diamentowa Strategia pozwoli Ci zabezpieczyć finansowo rodzinę przed utratą głównych dochodów w przypadku: inwalidztwa, poważnego zachorowania,

Bardziej szczegółowo

Ubezpieczenia na życie

Ubezpieczenia na życie ROZDZIAŁ 4 Ubezpieczenia na życie Ubezpieczenie na życie jest to kontrakt (zwany polisą), w którym ubezpieczony zobowiązuje się do opłacenia składki (jednorazowo lub w ratach), a w zamian za to ubezpieczyciel

Bardziej szczegółowo

Matematyka Ekonomiczna

Matematyka Ekonomiczna Matematyka Ekonomiczna Dr. hab. David Ramsey e-mail: david.ramsey@pwr.edu.pl strona domowa: www.ioz.pwr.edu.pl/pracownicy/ramsey Pokój 5.16, B-4 Godziny konsultacji: Wtorek 11-13, Czwartek 11-13 28 września

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, czerwiec 2014 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,5,,0,0) jest rozwiązaniem dopuszczalnym zagadnienia programowania liniowego: Zminimalizować 3x 1 +x +x 3 +4x 4 +6x 5, przy ograniczeniach

Bardziej szczegółowo

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I

Matematyka finansowa 13.12.2010 r. Komisja Egzaminacyjna dla Aktuariuszy. LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LV Egzamin dla Aktuariuszy z 13 grudnia 2010 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pan

Bardziej szczegółowo

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2

Instytut Matematyczny Uniwersytet Wrocławski. Zakres egzaminu magisterskiego. Wybrane rozdziały anazlizy i topologii 1 i 2 Instytut Matematyczny Uniwersytet Wrocławski Zakres egzaminu magisterskiego Wybrane rozdziały anazlizy i topologii 1 i 2 Pojęcia, fakty: Definicje i pojęcia: metryka, iloczyn skalarny, norma supremum,

Bardziej szczegółowo

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych

Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Immunizacja ryzyka stopy procentowej ubezpieczycieli życiowych Elżbieta Krajewska Instytut Matematyki Politechnika Łódzka Elżbieta Krajewska Immunizacja ubezpieczycieli życiowych 1/22 Plan prezentacji

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Ubezpieczenia życiowe Kierunek: Rodzaj przedmiotu: obowiązkowy dla specjalności matematyka finansowa i ubezpieczeniowa Rodzaj zajęć: Wykład i seminarium Matematyka Poziom kwalifikacji:

Bardziej szczegółowo

LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r.

LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Komisja Egzaminacyjna dla Aktuariuszy LXVI Egzamin dla Aktuariuszy z 10 marca 2014 r. Część II Matematyka ubezpieczeń życiowych Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Warszawa,

Bardziej szczegółowo

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I

Matematyka finansowa 04.04.2011 r. Komisja Egzaminacyjna dla Aktuariuszy. LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LVI Egzamin dla Aktuariuszy z 4 kwietnia 2011 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r.

Matematyka finansowa r. Komisja Egzaminacyjna dla Aktuariuszy. LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Komisja Egzaminacyjna dla Aktuariuszy LXIV Egzamin dla Aktuariuszy z 17 czerwca 2013 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 0 minut 1 1. Rozważamy

Bardziej szczegółowo

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r.

Matematyka finansowa 15.06.2015 r. Komisja Egzaminacyjna dla Aktuariuszy. LXXI Egzamin dla Aktuariuszy z 15 czerwca 2015 r. Komisja Egzaminacyjna dla Aktuariuszy LXXI Egzamin dla Aktuariuszy z 1 czerwca 201 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1. Pracownik

Bardziej szczegółowo

Otwarte Ubezpieczenie na Życie z Opcją Funduszy SUPER GRUPA

Otwarte Ubezpieczenie na Życie z Opcją Funduszy SUPER GRUPA Otwarte Ubezpieczenie na Życie z Opcją Funduszy 1. Dla kogo jest ta polisa grupowa? 2. Co to jest program? 3. Korzyści dla Ubezpieczonego 4. Cechy Programu 5. Składki i suma ubezpieczenia tel 58 775 04

Bardziej szczegółowo

Ubezpieczenia życiowe

Ubezpieczenia życiowe Maciej Grzesiak Instytut Matematyki Politechniki Poznańskiej Ubezpieczenia życiowe 1. Z historii ubezpieczeń W uproszczeniu mówiąc mamy dwa tradycyjne modele ubezpieczeń. Pierwszy ma źródło w towarzystwach

Bardziej szczegółowo

EGZAMIN DYPLOMOWY, część II, Biomatematyka

EGZAMIN DYPLOMOWY, część II, Biomatematyka Biomatematyka Niech X n oznacza proporcję pozycji w nici DNA, które po n replikacjach są obsadzone takimi samymi nukleotydami, jak w chwili początkowej, tak więc X 0 = 1. Zakładamy, że w każdej replikacji

Bardziej szczegółowo

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r.

Matematyka finansowa 11.10.2004 r. Komisja Egzaminacyjna dla Aktuariuszy. XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Komisja Egzaminacyjna dla Aktuariuszy XXXIII Egzamin dla Aktuariuszy - 11 października 2004 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... WERSJA TESTU Czas egzaminu: 100 minut

Bardziej szczegółowo

Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej. Ubezpieczenie na ca le życie z n-letnim okresem odroczenia.

Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej. Ubezpieczenie na ca le życie z n-letnim okresem odroczenia. Jednorazowa sk ladka netto w przypadku stochastycznej stopy procentowej Ubezpieczenie na ca le życie z n-letnim okresem odroczenia Wartość obecna wyp laty Y = Zatem JSN = = Kx +1 0, K x = 0, 1,..., n 1,

Bardziej szczegółowo

Zadanie 1. są niezależne i mają rozkład z atomami: ( ),

Zadanie 1. są niezależne i mają rozkład z atomami: ( ), Zadanie. Zmienne losowe są niezależne i mają rozkład z atomami: ( ) ( ) i gęstością: ( ) na przedziale ( ). Wobec tego ( ) wynosi: (A) 0.2295 (B) 0.2403 (C) 0.2457 (D) 0.25 (E) 0.269 Zadanie 2. Niech:

Bardziej szczegółowo

Matematyka ubezpieczeń majątkowych r.

Matematyka ubezpieczeń majątkowych r. Zadanie. W pewnej populacji kierowców każdego jej członka charakteryzują trzy zmienne: K liczba przejeżdżanych kilometrów (w tysiącach rocznie) NP liczba szkód w ciągu roku, w których kierowca jest stroną

Bardziej szczegółowo

Grupowe Ubezpieczenie na Życie dla

Grupowe Ubezpieczenie na Życie dla Grupowe Ubezpieczenie na Życie dla pracowników- 1. Do kogo kierowane jest ubezpieczenie Bezpieczna Firma? 2. Co to jest program Bezpieczna Firma? 3. Korzyści dla Pracodawcy 4. Korzyści dla Pracownika 5.

Bardziej szczegółowo

1. Przyszła długość życia x-latka

1. Przyszła długość życia x-latka Przyszła długość życia x-latka Rozważmy osobę mającą x lat; oznaczenie: (x) Jej przyszłą długość życia oznaczymy T (x), lub krótko T Zatem x+t oznacza całkowitą długość życia T jest zmienną losową, której

Bardziej szczegółowo

Egzamin XXVII dla Aktuariuszy z 12 października 2002 r.

Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Komisja Egzaminacyjna dla Aktuariuszy Egzamin XXVII dla Aktuariuszy z 12 października 2002 r. Część I Matematyka finansowa Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut Ośrodek Doskonalenia

Bardziej szczegółowo

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r.

Matematyka finansowa 15.12.2008 r. Komisja Egzaminacyjna dla Aktuariuszy. XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Komisja Egzaminacyjna dla Aktuariuszy XLVIII Egzamin dla Aktuariuszy z 15 grudnia 2008 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1

Bardziej szczegółowo

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński

Quantile hedging. czyli jak tanio i dobrze zabezpieczyć opcję. Michał Krawiec, Piotr Piestrzyński czyli jak tanio i dobrze zabezpieczyć opcję Michał Krawiec Piotr Piestrzyński Koło Naukowe Probabilistyki i Statystyki Matematycznej Uniwersytet Wrocławski Niedziela, 19 kwietnia 2015 Przykład (opis problemu)

Bardziej szczegółowo

Elementy matematyki finansowej

Elementy matematyki finansowej ROZDZIAŁ 2 Elementy matematyki finansowej 1. Procent składany i ciągły Stopa procentowa i jest związana z podstawową jednostką czasu, jaką jest zwykle jeden rok. Jeśli pożyczamy komuś 100 zł na jeden rok,

Bardziej szczegółowo

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach

EGZAMIN MAGISTERSKI, 18.09.2012 Matematyka w ekonomii i ubezpieczeniach Matematyka w ekonomii i ubezpieczeniach Sprawdź, czy wektor x 0 = (0,0,3,3) jest optymalnym rozwiązaniem zagadnienia programowania liniowego: Zminimalizować 8x 1 +5x 2 +3x 3 +4x 4, przy ograniczeniach

Bardziej szczegółowo

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I

Matematyka finansowa 8.12.2014 r. Komisja Egzaminacyjna dla Aktuariuszy. LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Komisja Egzaminacyjna dla Aktuariuszy LXIX Egzamin dla Aktuariuszy z 8 grudnia 2014 r. Część I Matematyka finansowa WERSJA TESTU A Imię i nazwisko osoby egzaminowanej:... Czas egzaminu: 100 minut 1 1.

Bardziej szczegółowo

6. Teoria Podaży Koszty stałe i zmienne

6. Teoria Podaży Koszty stałe i zmienne 6. Teoria Podaży - 6.1 Koszty stałe i zmienne Koszty poniesione przez firmę zwykle są podzielone na dwie kategorie. 1. Koszty stałe - są niezależne od poziomu produkcji, e.g. stałe koszty energetyczne

Bardziej szczegółowo

Karta Produktu UBEZPIECZENIE NA ŻYCIE DLA KREDYTOBIORCÓW RAIFFEISEN BANK POLSKA S.A. TWÓJ KREDYT - STANDARD. Ubezpieczający: Ubezpieczony:

Karta Produktu UBEZPIECZENIE NA ŻYCIE DLA KREDYTOBIORCÓW RAIFFEISEN BANK POLSKA S.A. TWÓJ KREDYT - STANDARD. Ubezpieczający: Ubezpieczony: Karta Produktu UBEZPIECZENIE NA ŻYCIE DLA KREDYTOBIORCÓW RAIFFEISEN BANK POLSKA S.A. TWÓJ KREDYT - STANDARD Ubezpieczający: Osoba fizyczna, będąca klientem Banku, zawierająca Umowę Ubezpieczenia z Ubezpieczycielem,

Bardziej szczegółowo

1 Funkcja użyteczności

1 Funkcja użyteczności 1 Funkcja użyteczności Funkcja użyteczności to funkcja, której wartościami są wartości użyteczności (satysfakcji, komfortu psychicznego). Można mówić o użyteczności różnych zjawisk. Użyteczność pieniądza

Bardziej szczegółowo

brak opodatkowania zysków kapitałowych (tzw. podatku Belki) osiągniętych przez oszczędzających w związku z oszczędzaniem na IKE,

brak opodatkowania zysków kapitałowych (tzw. podatku Belki) osiągniętych przez oszczędzających w związku z oszczędzaniem na IKE, 1. Czy każdy może założyć IKE i IKZE? Prawo do dodatkowego oszczędzania na przyszłą emeryturę w ramach IKE i IKZE przysługuje każdej osobie fizycznej, która ukończyła 16 lat. W przypadku osób małoletnich,

Bardziej szczegółowo

Wytyczne dotyczące podmodułu ryzyka katastroficznego w ubezpieczeniach zdrowotnych

Wytyczne dotyczące podmodułu ryzyka katastroficznego w ubezpieczeniach zdrowotnych EIOPA-BoS-14/176 PL Wytyczne dotyczące podmodułu ryzyka katastroficznego w ubezpieczeniach zdrowotnych EIOPA Westhafen Tower, Westhafenplatz 1-60327 Frankfurt Germany - Tel. + 49 69-951119-20; Fax. + 49

Bardziej szczegółowo

Ogólne warunki ubezpieczenia dodatkowego na wypadek śmierci (ALC/1/2013) 3. Ogólne warunki ubezpieczenia dodatkowego na wypadek śmierci (ALC/1/2014) 5

Ogólne warunki ubezpieczenia dodatkowego na wypadek śmierci (ALC/1/2013) 3. Ogólne warunki ubezpieczenia dodatkowego na wypadek śmierci (ALC/1/2014) 5 Spis treści Ogólne warunki ubezpieczenia dodatkowego na wypadek śmierci (ALC/1/2013) 3 Ogólne warunki ubezpieczenia dodatkowego na wypadek śmierci (ALC/1/2014) 5 Ogólne warunki ubezpieczenia dodatkowego

Bardziej szczegółowo

PROGNOZA WPŁYWÓW I WYDATKÓW FUNDUSZU UBEZPIECZEŃ SPOŁECZNYCH

PROGNOZA WPŁYWÓW I WYDATKÓW FUNDUSZU UBEZPIECZEŃ SPOŁECZNYCH ZAKŁAD UBEZPIECZEŃ SPOŁECZNYCH DEPARTAMENT STATYSTYKI I PROGNOZ AKTUARIALNYCH PROGNOZA WPŁYWÓW I WYDATKÓW FUNDUSZU UBEZPIECZEŃ SPOŁECZNYCH NA LATA 2013 2017 WARSZAWA, WRZESIEŃ 2011 SPIS TREŚCI Spis treści...2

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo