Dyskalkulia, czyli specyficzne trudności dzieci w uczeniu się matematyki

Save this PDF as:
 WORD  PNG  TXT  JPG

Wielkość: px
Rozpocząć pokaz od strony:

Download "Dyskalkulia, czyli specyficzne trudności dzieci w uczeniu się matematyki"

Transkrypt

1 Dyskalkulia, czyli specyficzne trudności dzieci w uczeniu się matematyki Dyskalkulia to zaburzenia zdolności matematycznych. Zdolności matematyczne to predyspozycje potrzebne do rozumienia problemów matematycznych, metod i twierdzeń, do uczenia się ich, pamiętania i odtwarzania, do wiązania ich z innymi problemami, symbolami, metodami i twierdzeniami. Powszechne klasyfikacje tego problemu wyróŝniają dwa typy trudności matematycznych: 1. dyskalkulia uogólniona trudności dotyczą róŝnych aspektów myślenia matematycznego i posługiwania się liczbami. Są to głębokie deficyty myślenia matematycznego, 2. dyskalkulia specyficzna gdzie trudności ograniczone są do wąskiego zakresu rozwiązywania problemów matematycznych np. dziecko sprawnie liczy, ale ma trudności w zakresie geometrii, trygonometrii, stereometrii czy rozwiązywania zadań z treścią. Tu deficyty myślenia matematycznego są wybiórcze i mniej nasilone. W roku 1974 słowacki neuropsycholog L. Kosc przedstawił tam jedną z pierwszych definicji dyskalkulii rozwojowej. Dyskalkulia rozwojowa jest strukturalnym zaburzeniem zdolności matematycznych, mającym swe podłoŝe w zaburzeniach genetycznych i wrodzonych tych części mózgu, które są bezpośrednim podłoŝem anatomiczno-fizjologicznym dojrzewania zdolności matematycznych odpowiednio do wieku, bez jednoczesnego zaburzenia ogólnych funkcji umysłowych. Z definicji tej wynika jednoznacznie, Ŝe: - dyskalkulia rozwojowa czyli specyficzne zaburzenia zdolności matematycznych, moŝe być stwierdzana w kontekście prawidłowego, ogólnego rozwoju intelektualnego, - jest rozpoznawana jako zaburzenie, gdy występują istotne róŝnice pomiędzy aktualnymi zdolnościami matematycznymi dziecka, a tymi, które są odpowiednie dla jego wieku. Dyskalkulia bardzo często współwystępuje z dysleksją, ale teŝ moŝe występować jako dysfunkcja samodzielna. WyróŜnia się 6 typów dyskalkulii rozwojowej (wg Kosca) : 1. dyskalkulia werbalna (słowna) - ujawniająca się w postaci zaburzeń zdolności nazywania matematycznych pojęć i relacji, trudności z określeniem liczby obiektów, problemów z nazywaniem cyfr i numerów ( przy uŝyciu liczebników głównych, porządkowych i zbiorowych), 2. dyskalkulia leksykalna (związana z czytaniem) to zaburzenia zdolności odczytywania symboli matematycznych, cyfr, liczb i znaków operacyjnych, trudności w kojarzeniu symboli operacyjnych z ich nazwami ( +,-, =,, :,% ), 3. dyskalkulia graficzna manifestująca się trudnościami w zapisywaniu liczb i symboli operacyjnych, problemami z zapisem liczb przy pisemnym dodawaniu, odejmowaniu, mnoŝeniu i dzieleniu, 4. dyskalkulia proktognostyczna ( wykonawcza) polega na zaburzeniach manipulowania konkretnymi lub obrazkowymi obiektami w celach matematycznych obliczanie liczebności zbiorów, porównywanie wielkości i ilości, trudnościach z uszeregowaniem obiektów wg kolejności rosnącej lub malejącej, problemach ze wskazywaniem, który z obiektów jest

2 mniejszy, większy, które obiekty są tej samej wielkości, 5. dyskalkulia ideognostyczna (pojęciowo - wykonawcza) to zaburzenie rozumienia idei matematycznych, relacji niezbędnych do dokonywania obliczeń pamięciowych, trudności w dostrzeganiu zaleŝności liczbowych (np.: 6 to połowa z 12, 6 jest o 1 większe od 5, jest odpowiednikiem 2x3), 6. dyskalkulia operacyjna to zaburzenie dotyczące dokonywania działań matematycznych mimo dobrych moŝliwości wzrokowo-przestrzennych oraz umiejętności czytania i pisania liczb. PoniŜsza tabela przedstawia charakterystyczne symptomy dyskalkulii, które moŝna rozpoznać u uczniów, a przejawiające się w sześciu sferach ich aktywności. Sfery aktywności ucznia Przejawy dyskalkulii Czytanie i rozumienie trudności ze zrozumieniem języka matematycznego, nawet przy dobrej umiejętności czytania zapominanie, podczas czytania długiego zadania, co było na początku przed skończeniem czytania mylenie podczas odczytywania podobnie wyglądających liczb np. 6 i 9, 3 i 8 pomijanie przestrzeni między liczbami, np jest odczytane jako dziewięćset siedemnaście trudności w rozpoznawaniu, a w konsekwencji w uŝywaniu symboli związanych z obliczeniami, tj. znaków: +, -,, : trudności w czytaniu liczb wielocyfrowych w szczególności liczb w których występuje zero, np. 1006, 3068 błędne odczytywanie liczb, np. 13 jest czytane jako 31 trudności w odczytywaniu wyników pomiarów trudności w czytaniu map, wykresów i tabel Pisanie napisane symbole, często liczby są odwrócone problemy z kopiowaniem liczb, obliczeń lub figur geometrycznych z zestawu obrazków problemy z przywoływaniem z pamięci liczb,obliczeń, kształtów geometrycznych trudności z zapamiętaniem w jaki sposób liczby są zapisywane trudności z zapamiętaniem jak zapisywane są symbole matematyczne takie jak + lub - niemoŝność poprawnego zapisania liczby zawierającej więcej niŝ jedną cyfrę (pomijanie zera, przestawianie kolejności cyfr w zapisywanej liczbie, dzielenie liczby na części składowe, np. zapisanie liczby 4537 jako 4000,

3 500, 30, 7) Rozumienie pojęć i symboli trudności z rozumieniem symboli matematycznych, np. trudności z zapamiętaniem jak powinien być uŝywany symbol minus trudności z oceną wartości miejsca dziesiętnego liczby problem z rozumieniem pojęć związanych z wagą, przestrzenią, kierunkiem i czasem problemy z odczytywaniem danych prezentowanych w układzie współrzędnych problemy w powiązaniu reprezentacji graficznej z wartością liczbową problemy z rozumieniem i odpowiadaniem ustnym lub pisemnym na zagadnienia prezentowane słowami, tekstem lub obrazem problemy z rozumieniem pojęć: duŝo, więcej, najwięcej problemy z rozumieniem pojęcia ilości, gdzie liczby są uŝywane w połączeniu z jednostkami, np. 100 metrów problemy z relacjami między jednostkami miar, np. z zaleŝnościami między centymetrami, metrami i kilometrami trudności z powiązaniem terminów matematycznych z ich skrótami, np. centymetr cm mylenie, w trakcie rozwiązywania zadania, jednostek danej miary, np. metrów i centymetrów zapominanie wzorów, np. do obliczeń pól i obwodów figur trudności z rozpoznawaniem skrótów, np. cm², cm³ zapominanie co oznacza dany skrót w podanym wzorze problemy z zastosowaniem matematyki w zadaniach praktycznych Przyswajanie faktów matematycznych i sekwencjonowanie trudności z uszeregowaniem liczb ze względu na wartość (rosnąco lub malejąco) problemy z sekwencjami liczb ( dziecko nie potrafi umieścić w szeregu liczbowym 8 i 27, liczy na palcach) złe zapamiętywanie prostych faktów liczbowych, np. tabliczki mnoŝenia) problemy z pamięciowym liczeniem (słaba pamięć krótkotrwała) problemy z liczeniem wstecz Myślenie złoŝone sztywność w myśleniu objawiająca się niemoŝnością wybrania właściwej strategii w

4 Postawa społeczna i emocjonalna rozwiązywaniu problemów i w zamianie strategii na inną, jeśli uprzednio wybrana jest nieskuteczna problemy z następstwem kolejnych kroków w zadaniach matematycznych problemy z rozsądnym oszacowaniem, np. przy ocenie wymiarów w celu wykonania przybliŝonych obliczeń i osiągnięcia rozsądnych odpowiedzi trudności z utrzymaniem jednego ciągu myśli podczas rozwiązywania problemów matematycznych, włączając w to pozostanie wiernym właściwej strategii trudności z planowaniem, tj. problemy z zaplanowaniem rozwiązania zadania przed faktycznym przystąpieniem do rozwiązania problemy z przechodzeniem z poziomu konkretów na poziom abstrakcyjnego myślenia niepokój spowodowany wolniejszą pracą i popełnianiem większej ilości błędów niŝ inni lęk na samą myśl, Ŝe trzeba zająć się matematyką brak zaufania do własnych kompetencji matematycznych brak zaufania do poprawności swoich obliczeń, unikanie obliczeń przybliŝonych i sprawdzania odpowiedzi częste rozwijanie strategii wyuczonej bezradności częste oddawanie prac, które są niestaranne, pomazane, niechlujne niechęć do pracy w grupach duŝa zmienność w wiedzy i w osiągnięciach (dobre i złe dni) niska samoocena Wpływ zaburzeń róŝnych funkcji poznawczych dziecka na naukę matematyki. Zaburzenia funkcji motorycznych: - brzydkie pismo (dysgraficzne) utrudniające precyzyjny zapis matematyczny : wykonywanie działań na ułamkach, potęgach, kłopoty z prawidłowym zapisem działań pisemnych ( w słupkach), - nienadąŝanie z przepisywaniem z tablicy, dłuŝszy czas pisania sprawdzianów, - pomyłki w zapisie obliczeń pomijanie części działania, mylenie linijek, pomijanie znaków. Zaburzenia funkcji słuchowych i językowych: - trudności w skupieniu uwagi na bodźcach słuchowych, w róŝnicowaniu informacji o podobnym brzmieniu np. przyprostokątna i przeciwprostokątna, - problemy ze zrozumieniem treści zadań tekstowych ( wolne tempo i słaba technika

5 czytania literowanie lub czytanie sylabami, mylenie liter, mylenie linijek), - odpowiedzi nie zawierające odpowiednich określeń i terminów matematycznych (ubogie słownictwo), - trudności w zapamiętywaniu definicji i wzorów, w uczeniu się nazw dni tygodnia, miesięcy, tabliczki mnoŝenia (obniŝona słuchowa pamięć sekwencyjna), - kłopoty z wykonywaniem nawet prostych działań rachunkowych w pamięci. Zaburzenia funkcji wzrokowych: - niepełne odczytywanie informacji przekazywanych rysunkiem, grafem, schematem, tabelką, wykresem, - gubienie cyfr i znaków działań, gubienie fragmentów podczas odczytywania i zapisywania wzorów, - błędne odczytywanie zapisów i wzorów matematycznych, problemy z rysowaniem figur, brył, - trudności w zapamiętywaniu wzorów, schematów, nazw figur i brył postrzeganych wzrokowo, - kłopoty z porównywaniem figur i ich cech, takich, jak : połoŝenie, proporcja, wielkość, odległość, głębokość, - mylenie cyfr i liczb o podobnym obrazie graficznym: 9 i 6, 44 i 444. Zaburzenia funkcji przestrzennych: - trudności w rysowaniu figur i brył oraz ich rzutów, - kłopoty w operowaniu pojęciami prostopadłe i równoległe, liczby ujemne, w działaniach na osi współrzędnych, - trudności w porządkowaniu elementów zbioru, w pojmowaniu zjawiska poprzedzania i następowania elementów wg ustalonego porządku, - trudności ze zrozumieniem odwrotności działań rachunkowych, kłopoty ze znalezieniem odpowiedniej strony i zadania w podręczniku, - niewłaściwa kolejność wykonywania działań pisemnych, - nieumiejętne przeliczanie i porównywanie jednostek czasu, - przestawianie kolejności cyfr i liczb w zapisywaniu działań : np. 87=78, 361=316, 2/8 = 8/2 itp. Oprócz wymienionych wyŝej problemów u osób z dyskalkulią mogą pojawić się równieŝ: awersja do jakichkolwiek gier, które wiąŝą się z cyframi lub przestrzennym kojarzeniem (np. domino, warcaby, szachy) pomyłki w uŝywaniu pieniędzy częste złe wykręcanie numeru telefonu kłopoty w podróŝowaniu spowodowane złym odczytywaniem numerów autobusów, zapominaniem numerów dróg zakupywaniem materiałów, których ilość wcześniej trzeba było przeliczyć kłopoty z nauką wartości rytmicznych i nut trudności z zapamiętywaniem reguł gier sportowych, kroków tanecznych Badacze wskazują na odrębność trudności w czytaniu i trudności w liczeniu, jednocześnie zwracając uwagę na wspólne deficyty niektórych funkcji, warunkujących przebieg obu umiejętności. Jednym z nich są zaburzenia pamięciowe, zarówno w zakresie pamięci operacyjnej, jak i długoterminowej. Z badań wynika, iŝ nie naleŝy traktować dyskalkulii jako matematycznej wersji dysleksji, albowiem jedynie 40% dzieci z dysleksją przejawia powaŝne trudności z

6 matematyką, 11% bardzo dobrze radzi sobie z matematyką, a 29% uzyskuje wyniki zbliŝone do dzieci nie mających trudności w czytaniu i liczeniu. Grupy dzieci ze specyficznymi trudnościami w uczeniu się Dzieci z dysleksją Dzieci z dyskalkulią Dzieci z dysleksją i dyskalkulią Trudności w liczeniu jako tzw. efekt uboczny dysleksji Trudności w liczeniu jako rezultat dyskalkulii uwarunkowanej neurobiologicznie Mimo duŝego postępu w rozwoju badań nad specyficznymi trudnościami w uczeniu się matematyki, tak w Polsce jak i zagranicą, nadal istnieje potrzeba opracowania precyzyjnych, trafnych i rzetelnych narzędzi do diagnozy dyskalkulii. W dziedzinie terapii trudności o charakterze dyskalkulicznym większość autorów zaleca stosowanie ogólnych zasad terapii pedagogicznej tj. - trójtorowego oddziaływania terapeutycznego (terapeuta, nauczyciel, rodzic) - indywidualizacji (dostosowania form, metod i treści do konkretnego dziecka) - polimodalnego oddziaływania (angaŝowanie zaburzonych i prawidłowych funkcji i umiejętności) - wczesnych oddziaływań terapeutycznych - oddziaływań psychoterapeutycznych. Ogólna zasada postępowania z uczniem o tego typu trudnościach to budowanie na tym, co uczeń potrafi i robi dobrze. Warto, by nauczyciel: - zrozumiał i zaakceptował, Ŝe niektórych treści programowych uczeń nie zdoła opanować w odpowiednim czasie oraz, Ŝe wiadomości, które nie są systematycznie powtarzane mogą być przez niego zapomniane (np. definicje, wzory), - pomagał w selekcjonowaniu materiału, wyznaczał krótkie partie do nauki, - oceniał przede wszystkim tok rozumowania, nie wymagał wiernego odtworzenia definicji, reguły, a raczej umiejętności stosowania jej w praktyce, - akceptował indywidualny styl poznawczy ucznia, - wprowadzał i zachęcał do korzystania z technik mnemotechnicznych uŝywania kolorów, symboli graficznych, skojarzeń.

7 W codziennej pracy z uczniem o specjalnych potrzebach edukacyjnych musimy pamiętać, aby: - nie traktować ucznia jako chorego, niezdolnego, czy leniwego, - nie karać go i nie wyśmiewać w nadziei, Ŝe zmobilizuje się do pracy, - nie oczekiwać, Ŝe sam wyrośnie z tych trudności, lub Ŝe ktoś go z tego całkowicie wyleczy, - nie zwalniać ucznia z systematycznych ćwiczeń i pracy nad sobą, - zrozumieć ucznia, jego potrzeby i ograniczenia; aby zapobiec pogłębianiu się jego trudności szkolnych i występowaniu wtórnych zaburzeń nerwicowych, - nagradzać ucznia za wysiłek i pracę, a nie tylko za jej efekty. Przygotowała Agnieszka Kwaśniewska Literatura: 1. J. Nowińska Dyskalkulia-zbiór dostępnych informacji opracowanie internetowe 2. J.Bil Dyskalkulia opracowanie internetowe 3. M. Bogdanowicz Dekalog dla nauczycieli dzieci dyslektycznych 4. M. Grabarek Dysleksja a matematyka opracowanie internetowe 5. E. Gruszczyk-Kolczyńska Dzieci ze specyficznymi trudnościami w uczeniu się matematyki 6. L. Kosc Psychologia i patopsychologia zdolności matematycznych 7. U. Oszwa Dyskalkulia - opracowanie internetowe 8. J. Radomska Co to jest dyskalkulia opracowanie internetowe 9. W. Zawadowski Dysleksja a dyskalkulia 10.M. Mędrzycka Dyskalkulia a polskie realia 11.Z. Bartkowski - "Uczeń dysmatematyczny"

SPECYFICZNE TRUDNOŚCI W UCZENIU SIĘ MATEMATYKI DYSKALKULIA

SPECYFICZNE TRUDNOŚCI W UCZENIU SIĘ MATEMATYKI DYSKALKULIA SPECYFICZNE TRUDNOŚCI W UCZENIU SIĘ MATEMATYKI DYSKALKULIA DEFINICJA DYSKALKULII Dyskalkulia rozwojowa jest strukturalnym zaburzeniem zdolności matematycznych, mającym swe źródło w genetycznych lub wrodzonych

Bardziej szczegółowo

wolniejsze uczenie wypowiadanych sekwencji językowych, trudności w odczytaniu liczb (szczególnie zawierających zera), trudności w pisaniu liczb (np.

wolniejsze uczenie wypowiadanych sekwencji językowych, trudności w odczytaniu liczb (szczególnie zawierających zera), trudności w pisaniu liczb (np. wolniejsze uczenie wypowiadanych sekwencji językowych, trudności w odczytaniu liczb (szczególnie zawierających zera), trudności w pisaniu liczb (np. opuszczanie, dodawanie, zamiana cyfr w liczbach), trudności

Bardziej szczegółowo

Ryzyko dyskalkulii rozwojowej

Ryzyko dyskalkulii rozwojowej Ryzyko dyskalkulii rozwojowej Wczesna diagnoza dziecięcego liczenia i charakterystyczne symptomy obniżonych kompetencji matematycznych u dzieci w wieku wczesnoszkolnym oraz na drugim etapie edukacyjnym

Bardziej szczegółowo

JAK POKONAĆ TRUDNOŚCI W UCZENIU SIĘ MATEMATYKI?

JAK POKONAĆ TRUDNOŚCI W UCZENIU SIĘ MATEMATYKI? JAK POKONAĆ TRUDNOŚCI W UCZENIU SIĘ MATEMATYKI? 1. Dyskalkulia rozwojowa Dyskalkulia rozwojowa według słowackiego neuropsychologa L. Kosca jest strukturalnym zaburzeniem zdolności matematycznych, mających

Bardziej szczegółowo

Dyskalkulia rozwojowa. Poradnia Psychologiczno-Pedagogiczna w Zabrzu

Dyskalkulia rozwojowa. Poradnia Psychologiczno-Pedagogiczna w Zabrzu Dyskalkulia rozwojowa Poradnia Psychologiczno-Pedagogiczna w Zabrzu WYJAŚNIENIA TERMINOLOGICZNE z greckiego dys = nie, źle; z łacińskiego calculo = liczę; Dyskalkulia rozwojowa jest strukturalnym zaburzeniem

Bardziej szczegółowo

Dyskalkulia. Jedną z pierwszych definicji dyskalkulii przedstawił w 1974 r słowacki neuropsycholog Ladislav Kość.

Dyskalkulia. Jedną z pierwszych definicji dyskalkulii przedstawił w 1974 r słowacki neuropsycholog Ladislav Kość. Dyskalkulia Jedną z pierwszych definicji dyskalkulii przedstawił w 1974 r słowacki neuropsycholog Ladislav Kość. Dyskalkulia rozwojowa jest strukturalnym zaburzeniem zdolności matematycznych, mających

Bardziej szczegółowo

Ewa Strzykowska Dysleksja, dysgrafia, dysortografia

Ewa Strzykowska Dysleksja, dysgrafia, dysortografia Ewa Strzykowska Dysleksja, dysgrafia, dysortografia ( referat dla rodziców ) Dysleksja rozwojowa specyficzne trudności w czytaniu i pisaniu występujące u dzieci o prawidłowym rozwoju umysłowym. Specyficzne

Bardziej szczegółowo

DYSKALKULIA PODSTAWOWE PROBLEMY

DYSKALKULIA PODSTAWOWE PROBLEMY Mgr Magdalena Ratz Hernik Pedagog terapeuta Poradnia Psychologiczno Pedagogiczna Błonie DYSKALKULIA PODSTAWOWE PROBLEMY Nie od dziś wiadomo, że są dzieci, którym nauka przychodzi łatwiej i są takie, które

Bardziej szczegółowo

poradnik Pedagogiczno Terapeutyczny dla Rodziców Szkoły Podstawowej z Oddziałami Integracyjnymi Nr 342 im. J. M. Szancera w Warszawie

poradnik Pedagogiczno Terapeutyczny dla Rodziców Szkoły Podstawowej z Oddziałami Integracyjnymi Nr 342 im. J. M. Szancera w Warszawie poradnik Pedagogiczno Terapeutyczny dla Rodziców Szkoły Podstawowej z Oddziałami Integracyjnymi Nr 342 im. J. M. Szancera w Warszawie Nr 1/2017 /październik, listopad, grudzień/ EUROPEJSKI TYDZIEŃ ŚWIADOMOŚCI

Bardziej szczegółowo

Ocena poziomu rozwoju podstawowych zdolności arytmetycznych w oparciu o baterie testów wydawnictwa PROMATHEMATICA

Ocena poziomu rozwoju podstawowych zdolności arytmetycznych w oparciu o baterie testów wydawnictwa PROMATHEMATICA Ocena poziomu rozwoju podstawowych zdolności arytmetycznych w oparciu o baterie testów wydawnictwa PROMATHEMATICA Profil arytmetyczny U Test Porównywania Ilości Figur określa: Proces rozumienia liczb na

Bardziej szczegółowo

DOSTOSOWANIE WYMAGAŃ EDUKACYJNYCH

DOSTOSOWANIE WYMAGAŃ EDUKACYJNYCH DOSTOSOWANIE WYMAGAŃ EDUKACYJNYCH UWZGLĘDNIANIE OPINII PSYCHOLOGICZNO-PEDAGOGICZNYCH WSKAZÓWKI DLA NAUCZYCIELI Rozporządzenie MEN z dn. 30.04.2007 Nauczyciel jest obowiązany, na podstawie opinii poradni

Bardziej szczegółowo

Dostosowanie wymagań edukacyjnych do potrzeb psychofizycznych i edukacyjnych uczniów dla przedmiotu MATEMATYKA

Dostosowanie wymagań edukacyjnych do potrzeb psychofizycznych i edukacyjnych uczniów dla przedmiotu MATEMATYKA Dostosowanie wymagań edukacyjnych do potrzeb psychofizycznych i edukacyjnych uczniów dla przedmiotu MATEMATYKA Zespół Szkół Nr1 w Olkuszu Ul. Górnicza 12 Zgodnie z Rozporządzeniem MEN z dnia 30 kwietnia

Bardziej szczegółowo

Specyficzne trudności w uczeniu się matematyki wg E. Gruszczyk-Kolczyńskiej Trudności typowe dla danego ucznia związane z:

Specyficzne trudności w uczeniu się matematyki wg E. Gruszczyk-Kolczyńskiej Trudności typowe dla danego ucznia związane z: Trudności szkolne niespecyficzne (czynniki psychogenne, sensoryczne, intelektualne, dydaktyczne, najczęściej uogólnione) specyficzne (czynniki neurobiologiczne, norma intelektualna, w zakresie czytania

Bardziej szczegółowo

Agata Nazarewicz-Jonko Poradnia Psychologiczno Pedagogiczna Nr 2 w Lublinie. DYSKALKULIA ROZWOJOWA specyficzne trudności w uczeniu się matematyki

Agata Nazarewicz-Jonko Poradnia Psychologiczno Pedagogiczna Nr 2 w Lublinie. DYSKALKULIA ROZWOJOWA specyficzne trudności w uczeniu się matematyki Agata Nazarewicz-Jonko Poradnia Psychologiczno Pedagogiczna Nr 2 w Lublinie DYSKALKULIA ROZWOJOWA specyficzne trudności w uczeniu się matematyki W powyższym opracowaniu pragnę przybliżyć zagadnienia dotyczące

Bardziej szczegółowo

Załącznik 3 do Procedury przyjmowania opinii i orzeczeń PPP

Załącznik 3 do Procedury przyjmowania opinii i orzeczeń PPP Załącznik 3 do Procedury przyjmowania opinii i orzeczeń PPP DYSLEKSJA - specyficzne trudności w pisaniu i czytaniu u osób o prawidłowym rozwoju intelektualnym. Na wszystkich przedmiotach mogą pojawić się

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY V Na ocenę wyższą uczeń powinien opanować wiedzę i umiejętności na ocenę (oceny) niższą. Dział programowy: LICZBY NATURALNE podać przykład liczby naturalnej czytać

Bardziej szczegółowo

Trudności w uczeniu się matematyki

Trudności w uczeniu się matematyki Trudności w uczeniu się matematyki Opracowała Izabela Bednarek Bardzo ważnym problemem współczesnej szkoły są niepowodzenia szkolne. Szukamy przyczyn tych niepowodzeń, objawów ale również podejmujemy działania

Bardziej szczegółowo

Dostosowanie wymagań edukacyjnych w praktyce. Barbara Górecka Atkinson

Dostosowanie wymagań edukacyjnych w praktyce. Barbara Górecka Atkinson Dostosowanie wymagań edukacyjnych w praktyce Barbara Górecka Atkinson Sulechów, luty 2016 Cele szkolenia: - przekazanie wiedzy na temat kategorii dzieci z trudnościami w nauce oraz aktów prawnych regulujących

Bardziej szczegółowo

w Katowicach, kierunek Ochrona Dóbr Kultury, Wydział Nauk Społecznych i Technicznych.

w Katowicach, kierunek Ochrona Dóbr Kultury, Wydział Nauk Społecznych i Technicznych. Konspekt MODELU-Projektu Katowice, 2012r. mgr Magdalena Sobań Absolwentka Uniwersytetu Śląskiego w Katowicach, Instytut Sztuki Wydział Artystyczny w Cieszynie, kierunek Edukacja Artystyczna w zakresie

Bardziej szczegółowo

DYSLEKSJA PORADY DLA RODZICÓW

DYSLEKSJA PORADY DLA RODZICÓW DYSLEKSJA PORADY DLA RODZICÓW CO TO JEST DYSLEKSJA? Dysleksja rozwojowa jest to zespół zaburzeń występujących w procesie uczenia się, czytania i pisania u dzieci o prawidłowym rozwoju umysłowym. U podstaw

Bardziej szczegółowo

Przedmiotowy System Oceniania. Kryteria oceniania uczniów w klasach I III. Szkoły Podstawowej. Zespołu Szkół im. H. Sienkiewicza w Grabowcu

Przedmiotowy System Oceniania. Kryteria oceniania uczniów w klasach I III. Szkoły Podstawowej. Zespołu Szkół im. H. Sienkiewicza w Grabowcu Przedmiotowy System Oceniania Kryteria oceniania uczniów w klasach I III Szkoły Podstawowej Zespołu Szkół im. H. Sienkiewicza w Grabowcu Przedmiotowy System Oceniania jest zgodny z Rozporządzeniem MEN

Bardziej szczegółowo

DYSLEKSJA ROZWOJOWA, CZYLI SPECYFICZNE TRUDNOŚCI W CZYTANIU I PISANIU. mgr Anna Grygny

DYSLEKSJA ROZWOJOWA, CZYLI SPECYFICZNE TRUDNOŚCI W CZYTANIU I PISANIU. mgr Anna Grygny DYSLEKSJA ROZWOJOWA, CZYLI SPECYFICZNE TRUDNOŚCI W CZYTANIU I PISANIU. mgr Anna Grygny DYSLEKSA ROZWOJOWA to termin określający zespół specyficznych trudności w uczeniu się czytania i pisania, u dzieci

Bardziej szczegółowo

trudności w uczeniu się matematyki problem, diagnozowanie, formy pomocy

trudności w uczeniu się matematyki problem, diagnozowanie, formy pomocy Dyskalkulia trudności w uczeniu się matematyki problem, diagnozowanie, formy pomocy Opracowanie: Beata Wiśniewska PP-P Środa Wlkp. Danuta Hulewicz PP-P Środa Wlkp. Kwiecień 2007r. 1. Ustalenia terminologiczne

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA ANGIELSKIEGO DLA UCZNIÓW Z DYSLEKSJĄ ROZWOJOWĄ

PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA ANGIELSKIEGO DLA UCZNIÓW Z DYSLEKSJĄ ROZWOJOWĄ PRZEDMIOTOWY SYSTEM OCENIANIA Z JĘZYKA ANGIELSKIEGO DLA UCZNIÓW Z DYSLEKSJĄ ROZWOJOWĄ Opracowanie: Mgr Anna Borek Mgr Barbara Jakubiec Mgr Tomasz Padyjasek Spis treści: 1. Termin dysleksja. 2. Trudności

Bardziej szczegółowo

TRUDNOŚCI W UCZENIU SIĘ MATEMATYKI, SPOSOBY ICH PRZEZWYCIĘŻANIA RODZAJE DYSKALKULII

TRUDNOŚCI W UCZENIU SIĘ MATEMATYKI, SPOSOBY ICH PRZEZWYCIĘŻANIA RODZAJE DYSKALKULII Opracowała: Nadolna Urszula TRUDNOŚCI W UCZENIU SIĘ MATEMATYKI, SPOSOBY ICH PRZEZWYCIĘŻANIA RODZAJE DYSKALKULII Zdolności matematyczne i ich zaburzenia należy rozpatrywać w kontekście szerszych systemów:

Bardziej szczegółowo

Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe

Projekt Planu wynikowego do programu MATEMATYKA 2001 Gimnazjum klasa 1. Osiągnięcia ponadprzedmiotowe W rezultacie kształcenia matematycznego uczeń potrafi: Umiejętności konieczne i podstawowe Osiągnięcia ponadprzedmiotowe KONIECZNE PODSTAWOWE ROZSZERZAJĄCE DOPEŁNIAJĄCE WYKRACZAJĄCE czytać teksty w stylu

Bardziej szczegółowo

Przedmiotowe zasady oceniania obowiązujące na lekcjach matematyki

Przedmiotowe zasady oceniania obowiązujące na lekcjach matematyki Przedmiotowe zasady oceniania obowiązujące na lekcjach matematyki nauczyciel: Elżbieta Sandelewska I. KRYTERIA OCENIANIA 1. Każdy uczeń jest oceniany zgodnie z zasadami sprawiedliwości. 2. Stosowane będą

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE

Bardziej szczegółowo

DYSLEKSJA - PROBLEM UCZNIÓW, RODZICÓW I NAUCZYCIELI

DYSLEKSJA - PROBLEM UCZNIÓW, RODZICÓW I NAUCZYCIELI DYSLEKSJA - PROBLEM UCZNIÓW, RODZICÓW I NAUCZYCIELI Dysleksja jest jednym z wielu rodzajów trudności w uczeniu się. Przejawia się w niemożności opanowania przez dziecko czytania i poprawnego pisania, mimo

Bardziej szczegółowo

PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ V KLASA SZKOŁY PODSTAWOWEJ

PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ V KLASA SZKOŁY PODSTAWOWEJ PROGRAM ZAJĘĆ MATEMATYCZNYCH DLA UCZNIÓW Z DYSLEKSJĄ V KLASA SZKOŁY PODSTAWOWEJ Opracowała : Dorota Kochańska 1 WSTĘP Indywidualizacja procesu nauczania w pracy z uczniem o szczególnych potrzebach edukacyjnych

Bardziej szczegółowo

Informacje dla rodziców i nauczycieli. Co to jest dysleksja? Czy moje dziecko jest dyslektykiem?

Informacje dla rodziców i nauczycieli. Co to jest dysleksja? Czy moje dziecko jest dyslektykiem? Informacje dla rodziców i nauczycieli Czy moje dziecko jest dyslektykiem? W swojej pracy w gimnazjum spotkałam się niejednokrotnie z uczniami, którzy mimo poważnych trudności w nauce doszli do kolejnego

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne KLASA VI

Wymagania na poszczególne oceny szkolne KLASA VI Matematyka Matematyka z pomysłem Klasa Szkoła podstawowa Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych.

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki

Przedmiotowy system oceniania z matematyki Przedmiotowy system oceniania z matematyki mgr Jagoda Banaszczyk I. Sposoby sprawdzania osiągnięć edukacyjnych uczniów: 1) Uczniowie oceniani są według skali określonej w przepisach ogólnych Wewnątrzszkolnego

Bardziej szczegółowo

Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4

Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4 Matematyka Fragmenty programu nauczania dla szkoły podstawowej klasy 4 Anna Konstantynowicz, Adam Konstantynowicz, Bożena Kiljańska, Małgorzata Pająk, Grażyna Ukleja [ ] 2. Szczegółowe cele kształcenia

Bardziej szczegółowo

WPŁYW ZABURZEŃ PERCEPCYJNYCH UCZNIA DYSLEKTYCZNEGO NA NAUKĘ POSZCZEGÓLNYCH PRZEDMIOTÓW

WPŁYW ZABURZEŃ PERCEPCYJNYCH UCZNIA DYSLEKTYCZNEGO NA NAUKĘ POSZCZEGÓLNYCH PRZEDMIOTÓW WPŁYW ZABURZEŃ PERCEPCYJNYCH UCZNIA DYSLEKTYCZNEGO NA NAUKĘ POSZCZEGÓLNYCH PRZEDMIOTÓW Opracowanie: mgr B. Kustra mgr A. Otłowska Język polski funkcje wzrokowo- funkcje słuchowo- przestrzenne pisanie:

Bardziej szczegółowo

PLAN KIERUNKOWY. Liczba godzin: 180

PLAN KIERUNKOWY. Liczba godzin: 180 Klasa V Matematyka Liczba godzin: 180 PLAN KIERUNKOWY Wstępne Wykonuje działania pamięciowo i pisemnie w zbiorze liczb naturalnych Zna i stosuje reguły kolejności wykonywania działań Posługuje się ułamkami

Bardziej szczegółowo

Kaja Kasprzak. Diagnoza dziecka z grupy ryzyka dysleksji

Kaja Kasprzak. Diagnoza dziecka z grupy ryzyka dysleksji Kaja Kasprzak Diagnoza dziecka z grupy ryzyka dysleksji Kaja Kasprzak pedagog w Poradni Psychologiczno-Pedagogicznej w Rogoźnie Analiza problemu: I. Informacje o dziecku Oskar, uczeń klasy II szkoły podstawowej.

Bardziej szczegółowo

Zdolności arytmetyczne

Zdolności arytmetyczne Zdolności arytmetyczne Zdolności arytmetyczne Nabywanie, przechowywanie i wydobywanie z pamięci długotrwałej wiedzy o faktach arytmetycznych Trwałe opanowywanie wiedzy proceduralnej i jej stosowanie Koncepcyjna

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W GIMNAZJUM

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W GIMNAZJUM PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI W GIMNAZJUM 1. Każdy uczeń jest oceniany zgodnie z zasadami sprawiedliwości. 2. Ocenie podlegają wszystkie wymienione w pkt. II formy aktywności ucznia. 3. Każdy

Bardziej szczegółowo

OCENIAMY TO, CZEGO NAUCZYLIŚMY. PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Klasy IV - VIII

OCENIAMY TO, CZEGO NAUCZYLIŚMY. PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Klasy IV - VIII OCENIAMY TO, CZEGO NAUCZYLIŚMY PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI Klasy IV - VIII Celem przedmiotowego systemu oceniania jest: notowanie postępów i osiągnięć ucznia, ( funkcja informacyjna) wspomaganie

Bardziej szczegółowo

Co to jest dysleksja rozwojowa?

Co to jest dysleksja rozwojowa? Co to jest dysleksja rozwojowa? DYSLEKSJA ROZWOJOWA to nazwa całego zespołu trudności w czytaniu i pisaniu u dzieci o prawidłowym rozwoju umysłowym, w uproszczeniu zwanego dysleksją. Określenie rozwojowa

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki

Wymagania edukacyjne na poszczególne oceny z matematyki Szczegółowe kryteria ocen dla klasy szóstej. 1.Ocenę dopuszczającą otrzymuje uczeń, który: Dodaje, odejmuje, mnoży liczby wymierne, Zapisuje ułamki zwykłe i dziesiętne oraz wykonuje na nich działania,

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń:

podstawowe (ocena dostateczna) 3 Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Klasa V Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6

Matematyka Matematyka z pomysłem Klasa 5 Szkoła podstawowa 4 6 Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

UMIEJĘTNOŚCI TRZECIOKLASISTÓW OBUT 2013, TIMSS, PIRLS

UMIEJĘTNOŚCI TRZECIOKLASISTÓW OBUT 2013, TIMSS, PIRLS UMIEJĘTNOŚCI TRZECIOKLASISTÓW OBUT 2013, TIMSS, PIRLS Po co OBUT Cele OBUT dostarczenie szkołom: profesjonalnych narzędzi badania umiejętności językowych i matematycznych trzecioklasistów danych pozwalających

Bardziej szczegółowo

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas

Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas 22 Rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej. Matematyka wokół nas KLASA 5 Nr lekcji Temat lekcji 1 2 Wakacje, wakacje... i po wakacjach 3 Systemy zapisywania liczb

Bardziej szczegółowo

Raport z Diagnozy ucznia kończącego naukę w klasie III w roku szkolnym 2016/2017 w Szkole Podstawowej nr 6 im. Henryka Sienkiewicza w Pruszkowie

Raport z Diagnozy ucznia kończącego naukę w klasie III w roku szkolnym 2016/2017 w Szkole Podstawowej nr 6 im. Henryka Sienkiewicza w Pruszkowie Raport z Diagnozy ucznia kończącego naukę w klasie III w roku szkolnym 2016/2017 w Szkole Podstawowej nr 6 im. Henryka Sienkiewicza w Pruszkowie Dnia 25 i 26 kwietnia 2017r. przeprowadzono Diagnozę ucznia

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne OCENĘ NIEDOSTATECZNĄ OTRZYMUJE UCZEŃ KTÓRY NIE SPEŁNIA KRYTERIÓW DLA OCENY DOPUSZCZAJĄCEJ, NIE KORZYSTA Z PROPONOWANEJ POMOCY W POSTACI ZAJĘĆ WYRÓWNAWCZYCH, PRACUJE

Bardziej szczegółowo

MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń:

MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ. II. Działania na liczbach naturalnych. Uczeń: MATEMATYKA Z PLUSEM DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI. LICZBY I DZIAŁANIA 4 h. Rachunki pamięciowe

Bardziej szczegółowo

ROZKŁAD MATERIAŁU DLA KLASY IV SZKOŁY PODSTAWOWEJ

ROZKŁAD MATERIAŁU DLA KLASY IV SZKOŁY PODSTAWOWEJ ROZKŁAD MATERIAŁU DLA KLASY IV SZKOŁY PODSTAWOWEJ Prezentowany rozkład materiału jest zgodny z nową podstawą programową z 23 grudnia 2008 r., obowiązującą w klasie IV od roku szkolnego 202/203 oraz stanowi

Bardziej szczegółowo

MATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ

MATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ MATEMATYKA DLA KLASY IV W KONTEKŚCIE WYMAGAŃ PODSTAWY PROGRAMOWEJ TEMAT WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ 1. LICZBY I DZIAŁANIA 1. Rachunki pamięciowe dodawanie i odejmowanie I. Liczby naturalne

Bardziej szczegółowo

W przyszłość bez barier

W przyszłość bez barier Program zajęć dla dzieci z trudnościami w zdobywaniu umiejętności matematycznych w klasach I III w Szkole Podstawowej w Łysowie realizowany w ramach projektu W przyszłość bez barier PO KL.09.01.02-14-071/13

Bardziej szczegółowo

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI. kl. IV - VI. Opracował Zespół nauczycieli matematyki SP 14 w Tomaszowie Maz.

PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI. kl. IV - VI. Opracował Zespół nauczycieli matematyki SP 14 w Tomaszowie Maz. PRZEDMIOTOWE ZASADY OCENIANIA Z MATEMATYKI kl. IV - VI Opracował Zespół nauczycieli matematyki SP 14 w Tomaszowie Maz. I. Ogólne zasady oceniania uczniów 1. Ocenianie osiągnięć edukacyjnych ucznia polega

Bardziej szczegółowo

1 wskazuje dziesiątki i jedności w liczbach dwucyfrowych. 1 potrafi wskazać na osi liczbowej miejsce danej liczby.

1 wskazuje dziesiątki i jedności w liczbach dwucyfrowych. 1 potrafi wskazać na osi liczbowej miejsce danej liczby. Edukacja matematyczna Pojęcie i wiedza matematyczna: Kl. Wymagania Zgodne z oczekiwaniami ma trudności z uporządkowaniem liczb w zakresie od 0 do 0. nie zauważa, że jedna figura jest powiększeniem lub

Bardziej szczegółowo

Wymagania edukacyjne na poszczególne oceny z matematyki

Wymagania edukacyjne na poszczególne oceny z matematyki Szczegółowe kryteria ocen dla klasy czwartej. 1. Ocenę dopuszczającą otrzymuje uczeń, który: Zna zależności wartości cyfry od jej położenia w liczbie, Zna kolejność działań bez użycia nawiasów, Zna algorytmy

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA OSIĄGNIĘĆ UCZNIA Z MATEMATYKI

PRZEDMIOTOWY SYSTEM OCENIANIA OSIĄGNIĘĆ UCZNIA Z MATEMATYKI Zespół Placówek Oświatowych w Borkach Szkoła Podstawowa im. Jana Pawła II Opracowała Hanna Spocińska PRZEDMIOTOWY SYSTEM OCENIANIA OSIĄGNIĘĆ UCZNIA Z MATEMATYKI I. Postanowienia ogólne. 1. Przedmiotowy

Bardziej szczegółowo

pedagog dla rodzica Wpisany przez Jolanta Osadczuk, Monika Ilnicka Szanowni Rodzice

pedagog dla rodzica Wpisany przez Jolanta Osadczuk, Monika Ilnicka Szanowni Rodzice Szanowni Rodzice DYSLEKSJA Dysleksja to specyficzne trudności w czytaniu i pisaniu. Są to zaburzenia niektórych funkcji poznawczych, motorycznych, orientacji w schemacie ciała i przestrzeni, pamięci, lateralizacji

Bardziej szczegółowo

Wymagania edukacyjne z matematyki : Matematyka z plusem GWO

Wymagania edukacyjne z matematyki : Matematyka z plusem GWO klasy Ewy Pakulskiej Wymagania edukacyjne z matematyki : Matematyka z plusem GWO KLASA IV Rozwijanie sprawności rachunkowej Wykonywanie jednodziałaniowych obliczeń pamięciowych na liczbach naturalnych.

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie III gimnazjum

Wymagania edukacyjne z matematyki w klasie III gimnazjum Wymagania edukacyjne z matematyki w klasie III gimnazjum - nie potrafi konstrukcyjnie podzielić odcinka - nie potrafi konstruować figur jednokładnych - nie zna pojęcia skali - nie rozpoznaje figur jednokładnych

Bardziej szczegółowo

Program zajęć wyrównawczych z zakresu edukacji polonistycznej i matematycznej w kształceniu zintegrowanym klasa III B

Program zajęć wyrównawczych z zakresu edukacji polonistycznej i matematycznej w kształceniu zintegrowanym klasa III B . Program zajęć wyrównawczych z zakresu edukacji polonistycznej i matematycznej w kształceniu zintegrowanym klasa III B Program powstał w celu wyrównania szans edukacyjnych dzieci z brakami w wiadomościach

Bardziej szczegółowo

ROZKŁAD MATERIAŁU Z MATEMATYKI DO KLASY IV (4 godz. tygodniowo) NA ROK SZKOLNY 2002/2003 WG PROGRAMU MATEMATYKA Z PLUSEM DKW /99

ROZKŁAD MATERIAŁU Z MATEMATYKI DO KLASY IV (4 godz. tygodniowo) NA ROK SZKOLNY 2002/2003 WG PROGRAMU MATEMATYKA Z PLUSEM DKW /99 ROZKŁAD MATERIAŁU Z MATEMATYKI DO KLASY IV (4 godz. tygodniowo) NA ROK SZKOLNY 00/003 WG PROGRAMU MATEMATYKA Z PLUSEM DKW-404-38/99 I LICZBY NATURALNE- RACHUNEK PAMIĘCIOWY Dodawanie i odejmowanie liczb

Bardziej szczegółowo

Opracowanie: mgr Joanna Jakubiak-Karolak mgr Ewa Niedźwiedzka. Strona 1 z 14

Opracowanie: mgr Joanna Jakubiak-Karolak mgr Ewa Niedźwiedzka. Strona 1 z 14 Raport z Ogólnopolskiego Sprawdzianu Kompetencji Trzecioklasisty Operon w roku szkolnym 2013/2014 w Szkole Podstawowej nr 6 im. Henryka Sienkiewicza w Pruszkowie Opracowanie: mgr Joanna Jakubiak-Karolak

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki w klasie IV, V i VI

Przedmiotowy system oceniania z matematyki w klasie IV, V i VI 1 w klasie IV, V i VI System oceniania jest zgodny z Rozporządzeniem MEN w sprawie zasad oceniania, klasyfikowania i promowania oraz z wewnątrzszkolnym systemem oceniania SP1 w Sokółce 1. Cele priorytetowe

Bardziej szczegółowo

Program nauczania: Katarzyna Makowska, Łatwa matematyka. Program nauczania matematyki w klasach IV VI szkoły podstawowej.

Program nauczania: Katarzyna Makowska, Łatwa matematyka. Program nauczania matematyki w klasach IV VI szkoły podstawowej. ROZKŁAD MATERIAŁU DLA KLASY V SZKOŁY PODSTAWOWEJ Prezentowany rozkład materiału jest zgodny z nową podstawą programową z 23 grudnia 2008 r., obowiązującą w klasie IV od roku szkolnego 202/203 oraz stanowi

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne w klasie V

Wymagania na poszczególne oceny szkolne w klasie V Wymagania na poszczególne oceny szkolne w klasie V Wymagania Dział 1. Liczby naturalne i dziesiętne. Działania na liczbach naturalnych i dziesiętnych Uczeń: Zastosowania matematyki praktycznych liczbę

Bardziej szczegółowo

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h)

Matematyka z kluczem. Układ treści w klasach 4 8 szkoły podstawowej. KLASA 4 (126 h) część 1 (59 h) część 2 (67 h) Matematyka z kluczem Układ treści w klasach 4 8 szkoły podstawowej KLASA 4 (126 h) część 1 (59 h) I. LICZBY NATURALNE część 1 (23) 1. Jak się uczyć matematyki (1) 2. Oś liczbowa 3. Jak zapisujemy liczby

Bardziej szczegółowo

Przedmiotowy system oceniania z matematyki w klasie IV, V, VI, VII

Przedmiotowy system oceniania z matematyki w klasie IV, V, VI, VII 1 Przedmiotowy system oceniania z matematyki w klasie IV, V, VI, VII System oceniania jest zgodny z Rozporządzeniem MEN w sprawie zasad oceniania, klasyfikowania i promowania oraz z wewnątrzszkolnym systemem

Bardziej szczegółowo

PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA

PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA PRZEDMIOTOWE OCENIANIE Z MATEMATYKI I. CELE KSZTAŁCENIA I TREŚCI NAUCZANIA Cele kształcenia i treści nauczania reguluje podstawa programowa przedmiotu, zatwierdzona przez właściwego ministra dla II etapu

Bardziej szczegółowo

Przedmiotowy System Oceniania z historii i społeczeństwa w klasach V VI i z historii w klasach IV i VII oraz w oddziałach gimnazjalnych kl.

Przedmiotowy System Oceniania z historii i społeczeństwa w klasach V VI i z historii w klasach IV i VII oraz w oddziałach gimnazjalnych kl. Przedmiotowy System Oceniania z historii i społeczeństwa w klasach V VI i z historii w klasach IV i VII oraz w oddziałach gimnazjalnych kl. II i III 1. Kryteria oceniania osiągnięć Kryteria ogólne, dotyczące

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI - GIMNAZJUM

PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI - GIMNAZJUM 1 PRZEDMIOTOWY SYSTEM OCENIANIA Z MATEMATYKI - GIMNAZJUM I System oceniania w nauczaniu matematyki ma sprzyjać : dostarczaniu uczniowi bieżącej informacji o poziomie jego osiągnięć edukacyjnych i postępach

Bardziej szczegółowo

Matematyka jest delikatnym kwiatem, który rośnie nie na każdej glebie i zakwita nie wiadomo kiedy i jak..( Jean Fabre ) DYSKALKULIA

Matematyka jest delikatnym kwiatem, który rośnie nie na każdej glebie i zakwita nie wiadomo kiedy i jak..( Jean Fabre ) DYSKALKULIA Matematyka jest delikatnym kwiatem, który rośnie nie na każdej glebie i zakwita nie wiadomo kiedy i jak..( Jean Fabre ) DYSKALKULIA Dlaczego niektórzy uczniowie lubią matematykę, a inni nie? Jednym rozwiązywanie

Bardziej szczegółowo

Wspieranie ucznia z dysleksją.

Wspieranie ucznia z dysleksją. Projekt nr WND-POKL.09.01.02-10-104/09 Tytuł Z dysleksją bez barier Projekt współfinansowany przez Unię Europejską ze środków Europejskiego Funduszu Społecznego w ramach Programu Operacyjnego Kapitał Ludzki

Bardziej szczegółowo

Specyficzne trudności w nauce

Specyficzne trudności w nauce Specyficzne trudności w nauce czytania i pisania Trudności w czytaniu i pisaniu o charakterze dyslektycznym, istnieją odkąd ludzie zaczęli zapisywać mowę ustną. Problemem tym zajęło się wielu badaczy.

Bardziej szczegółowo

Specyficzne trudności w uczeniu się, ze szczególnym uwzględnieniem dyskalkulii

Specyficzne trudności w uczeniu się, ze szczególnym uwzględnieniem dyskalkulii Poradnia Psychologiczno-Pedagogiczna w Piasecznie Specyficzne trudności w uczeniu się, ze szczególnym uwzględnieniem dyskalkulii dr Halina Jaworska Maj - pedagog mgr Wioletta Dzwonkowska - pedagog SZRUS

Bardziej szczegółowo

PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE

PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE PRZEDMIOTOWY SYSTEM OCENIANIA DLA KLAS IV VI SZKOŁA PODSTAWOWA NR 10 W KOSZALINIE (opracowali Janina Kurek, Henryk Zarach, Katarzyna Matusz) ZASADY PSO 1. PSO ma na celu czytelne przedstawienie wymagań

Bardziej szczegółowo

Załącznik do Uchwały Nr 1/2014/2015 Rady Pedagogicznej Szkoły Podstawowej w Czernikowie z dnia 15.09.2014 r.

Załącznik do Uchwały Nr 1/2014/2015 Rady Pedagogicznej Szkoły Podstawowej w Czernikowie z dnia 15.09.2014 r. Celem doskonalenia sprawności rachunkowej należy: stosować różnorodne ćwiczenia doskonalące sprawność rachunkową, dostosowane do indywidualnych możliwości uczniów; wykorzystywać codzienne okazje do utrwalania

Bardziej szczegółowo

Analiza wyników sprawdzianu szóstoklasistów w roku szkolnym 2013/2014

Analiza wyników sprawdzianu szóstoklasistów w roku szkolnym 2013/2014 Analiza wyników sprawdzianu szóstoklasistów w roku szkolnym 2013/2014 CHARAKTERYSTYKA SPRAWDZIANU Sprawdzian w klasie VI bada osiągnięcia uczniów kończących szkołę podstawową w zakresie czytania, pisania,

Bardziej szczegółowo

Zasady oceniania uczniów z matematyki rok szkolny: 2016/2017

Zasady oceniania uczniów z matematyki rok szkolny: 2016/2017 Zespół Szkół nr 2 Gimnazjum nr 2 im. Wacława Potockiego Zasady oceniania uczniów z matematyki rok szkolny: 2016/2017 Małgorzata Niziołek 2 Przepisy ogólne 1. Ocenianiu podlegają osiągnięcia edukacyjne

Bardziej szczegółowo

pieczęć szkoły (data)

pieczęć szkoły (data) pieczęć szkoły.. (data) P o r a d n i a P s y c h o l o g i c z n o - P e d a g o g i c z n a n r 2 ŁCRE w Ł o m ż y ul. Polna 16, 18-400 Łomża Tel./faks 86-215-03-18 www.lcre-lomza.webd.pl e-mail: ppplomza@poczta.onet.pl

Bardziej szczegółowo

Zasady oceniania ucznia z dysleksją, dysortografią, dysgrafią ZASADY OGÓLNE

Zasady oceniania ucznia z dysleksją, dysortografią, dysgrafią ZASADY OGÓLNE Zasady oceniania ucznia z dysleksją, dysortografią, dysgrafią ZASADY OGÓLNE Należy: ustawicznie motywować ucznia do pracy, zwłaszcza samodzielnej; oceniać ucznia chwaląc poprawne wypowiedzi; unikać stawiania

Bardziej szczegółowo

KARTA ODPOWIEDZI UZUPEŁNIA UCZEŃ

KARTA ODPOWIEDZI UZUPEŁNIA UCZEŃ KARTA ODPOWIEDZI UZUPEŁNIA UCZEŃ KOD UCZNIA PESEL Nr zad. MATEMATYKA Odpowiedzi 1 AC. AD. BC. BD. 2 AC. AD. BC. BD. 3 A. B. C. D. 4 AC. AD. BC. BD. 5 A. B. C. D. 6 PP. PF. FP. FF. 7 A. B. C. D. 8 PP. PF.

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne. Matematyka

Wymagania na poszczególne oceny szkolne. Matematyka Wymagania na poszczególne oceny szkolne Matematyka Klasa IV Wymagania Wymagania ponad Dział 1. Liczby naturalne Zbieranie i prezentowanie danych gromadzi dane (13.1); odczytuje dane przedstawione w tekstach,

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

Wymagania na poszczególne oceny szkolne

Wymagania na poszczególne oceny szkolne Wymagania na poszczególne oceny szkolne Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie nauczania Matematyka z pomysłem umiejętności

Bardziej szczegółowo

LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23

LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI TEMAT 1. LICZBY I DZIAŁANIA 23 TEMAT LICZBA GODZIN LEKCYJNYCH WYMAGANIA SZCZEGÓŁOWE Z PODSTAWY PROGRAMOWEJ UWAGI 1. LICZBY I DZIAŁANIA 3 1. Rachunki pamięciowe, dodawanie i odejmowanie. O ile więcej, o ile mniej 3. Rachunki pamięciowe,

Bardziej szczegółowo

Przedmiotowe zasady oceniania Matematyka. Wymagania edukacyjne na poszczególne oceny

Przedmiotowe zasady oceniania Matematyka. Wymagania edukacyjne na poszczególne oceny Przedmiotowe zasady oceniania Matematyka Wymagania edukacyjne na poszczególne oceny Ocena postępów ucznia jest wynikiem oceny stopnia opanowania jego umiejętności podstawowych i ponadpodstawowych. W programie

Bardziej szczegółowo

Jak pomóc dziecku ze specyficznymi trudnościami w uczeniu się matematyki (wskazówki dla rodziców i opiekunów)

Jak pomóc dziecku ze specyficznymi trudnościami w uczeniu się matematyki (wskazówki dla rodziców i opiekunów) DYSKALKULIA Dyskalkulia jest to rozwojowe zaburzenie w rozwoju pojęć liczbowych, w opanowaniu umiejętności rozwiązywania zadań rachunkowych, co w konsekwencji prowadzi do trudności w opanowywaniu podstawowych

Bardziej szczegółowo

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ

EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 2016/2017 CZĘŚĆ 2. ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ EGZAMIN W KLASIE TRZECIEJ GIMNAZJUM W ROKU SZKOLNYM 016/017 CZĘŚĆ. MATEMATYKA ZASADY OCENIANIA ROZWIĄZAŃ ZADAŃ ARKUSZE: GM-MX1, GM-M, GM-M4, GM-M5, GM-M6 KWIECIEŃ 017 Zadanie 1. (0 1) II. Wykorzystywanie

Bardziej szczegółowo

Matematyka Matematyka z pomysłem Klasy 4 6

Matematyka Matematyka z pomysłem Klasy 4 6 Szczegółowy rozkład materiału nauczania z odniesieniami do wymagań z podstawy programowej w klasach IV VI Klasa IV szczegółowe z DZIAŁ I. LICZBY NATURALNE W DZIESIĄTKOWYM UKŁADZIE POZYCYJNYM (19 godz.)

Bardziej szczegółowo

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy

LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA Kartoteka testu. Maksymalna liczba punktów. Nr zad. Matematyka dla klasy 3 poziom podstawowy Matematyka dla klasy poziom podstawowy LUBELSKA PRÓBA PRZED MATURĄ 09 MARCA 06 Kartoteka testu Nr zad Wymaganie ogólne. II. Wykorzystanie i interpretowanie reprezentacji.. II. Wykorzystanie i interpretowanie

Bardziej szczegółowo

2. Kryteria oceniania

2. Kryteria oceniania 2. Kryteria oceniania OSIĄGNIĘCIA PONADPRZEDMIOTOWE W rezultacie kształcenia matematycznego w klasie 1 gimnazjum uczeń potrafi: Umiejętności konieczne i podstawowe Umiejętności ponadpodstawowe Konieczne

Bardziej szczegółowo

CZYTANIE DYSLEKTYCZNE PORADNIA PSYCHOLOGICZNO PEDAGOGICZNA NR 2 W ELBLĄGU ANNA LASSMANN

CZYTANIE DYSLEKTYCZNE PORADNIA PSYCHOLOGICZNO PEDAGOGICZNA NR 2 W ELBLĄGU ANNA LASSMANN CZYTANIE DYSLEKTYCZNE PORADNIA PSYCHOLOGICZNO PEDAGOGICZNA NR 2 W ELBLĄGU ANNA LASSMANN SPECYFICZNE TRUDNOŚCI W UCZENIU SIĘ Dysleksja - Syndrom zaburzeń wyższych czynności psychicznych, które przejawiają

Bardziej szczegółowo

WYMAGANIA PROGRAMOWE Z MATEMATYKI DLA KLASY V

WYMAGANIA PROGRAMOWE Z MATEMATYKI DLA KLASY V WYMAGANIA PROGRAMOWE Z MATEMATYKI DLA KLASY V (n - el prowadzący M. Stańczyk) Wymagania programowe z matematyki w klasie V szkoły podstawowej czyli kompetencje i umiejętności uczniów z matematyki w klasie

Bardziej szczegółowo

PROGRAM NAPRAWCZY MAJĄCY NA CELU POPRAWĘ WYNIKÓW SPRAWDZIANU ZEWNĘTRZNEGO KLAS SZÓSTYCH PRZYJĘTY PRZEZ RADĘ PEDAGOGICZNĄ W DNIU 3 GRUDNIA 2012 R.

PROGRAM NAPRAWCZY MAJĄCY NA CELU POPRAWĘ WYNIKÓW SPRAWDZIANU ZEWNĘTRZNEGO KLAS SZÓSTYCH PRZYJĘTY PRZEZ RADĘ PEDAGOGICZNĄ W DNIU 3 GRUDNIA 2012 R. PROGRAM NAPRAWCZY MAJĄCY NA CELU POPRAWĘ WYNIKÓW SPRAWDZIANU ZEWNĘTRZNEGO KLAS SZÓSTYCH PRZYJĘTY PRZEZ RADĘ PEDAGOGICZNĄ W DNIU 3 GRUDNIA 2012 R. KONSULTOWANY Z RODZICAMI W DNIU 17 LISTOPADA 2012 R. Jakość

Bardziej szczegółowo

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych.

Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. Wymagania edukacyjne niezbędne do otrzymania przez ucznia poszczególnych śródrocznych i rocznych ocen klasyfikacyjnych. TEMAT Z PODRĘCZNIKA 1. Rachunki pamięciowe, dodawanie i odejmowanie 2. O ile więcej,

Bardziej szczegółowo

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV

MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV MATEMATYKA WYMAGANIA EDUKACYJNE DLA KLASY IV Nauczyciel: Jacek Zoń WYMAGANIA EDUKACYJNE NA OCENĘ DOPUSZCZAJĄCĄ DLA KLASY IV : 1. przeczyta i zapisze liczbę wielocyfrową (do tysięcy) 2. zna nazwy rzędów

Bardziej szczegółowo

KRYTERIA OCENIANIA OPISOWEGO W NAUCZANIU ZINTEGROWANYM EDUKACJA MATEMATYCZNA KLASA II

KRYTERIA OCENIANIA OPISOWEGO W NAUCZANIU ZINTEGROWANYM EDUKACJA MATEMATYCZNA KLASA II KRYTERIA OCENIANIA OPISOWEGO W NAUCZANIU ZINTEGROWANYM EDUKACJA MATEMATYCZNA KLASA II OCENA WSPANIALE WYMAGANIA EDUKACYJNE Wiadomości i umiejętności praktyczne Szybko i bezbłędnie odczytuje wskazania zegara

Bardziej szczegółowo

Wymagania edukacyjne z matematyki w klasie 5

Wymagania edukacyjne z matematyki w klasie 5 Wymagania edukacyjne z matematyki w klasie 5 Wymagania podstawowe Wymagania ponadpodstawowe Rozdział konieczne (ocena dopuszczająca) 2 podstawowe (ocena dostateczna) 3 rozszerzające (ocena dobra) 4 dopełniające

Bardziej szczegółowo