Wykład 25 Soczewki. Przyrządy optyczne

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wykład 25 Soczewki. Przyrządy optyczne"

Transkrypt

1 Wykład 5 Soczewki. Przyrządy optycze Soczewka cieka - rówaie oczewek Rozważyy teraz dwie powierzchi erycze oddzielające ośrodki o wpółczyikach załaaia kolejo i odległych od iebie o d. Niech proień krzywizy pierwzej powierzchi wyoi R, a drugiej - R. Przyjujey oczywiście, że obraz wytworzoy przez pierwzą powierzchię taowić będzie przediot dla powierzchi drugiej, a zate d. (5.) Tu pierwzy doly wkaźik, tak jak poprzedio, jet rówy zero dla przediotu, jede - dla obrazu, a drugi wkaźik ueruje powierzchie załaujące. Wzytkie odległości:,,,, ą liczoe względe, odpowiedio, puktu V lub V, tak jak dla pojedyczej powierzchi. Stoując dwukrotie rówaie pojedyczej powierzchi załaującej otrzyujey: + i R +. (5.) R Suując troai te dwa rówaia, uwzględiając związek d i grupując odpowiedie wyrazy zajdujey 3

2 ( + ) ( ) ( ) + R R. (5.3) d Dla ciekiej oczewki d, a zate drugi wyraz po prawej troie rówaia (5.3) ożey zaiedbać i wtedy ozaczając i otrzyujey tzw. rówaie oczewek : + R R. (5.4) Wzór te pokazuje, że oc optycza dla oczewki ciekiej i dwuwypukłej ( R > i R < ) jet uą ocy optyczych dla obu powierzchi (druga powierzchia jet co prawda wklęła od troy wiązki padającej, ale wiązka pada od troy ośrodka gętzego a ie rzadzego jak oralie, a więc, z uwagi a różicę wpółczyików załaaia ta powierzchia otateczie także będzie kupiająca). Z grubza widać także, ad czy ależy ię zataowić w przypadku gdy oczewka jet gruba i ie oża poiąć jej grubości d ; będziey pewie uieli (o ile zdecydujey, że warto taki przypadek rozważyć) przypiać jakąś oc optyczą wartwie o grubości d i wpółczyiku załaaia. No i oczywiście ay wyrażeie (to jet pewie to co potrzebują zliierze oczewek), które pozwala a obliczyć oc optyczą każdej oczewki eryczej, wypukło - wypukłej, wklęło - wypukłej, wypukło - płakiej ( R ) itd, zak wyrażeia z proieiai krzywiz obu powierzchi będzie decydował o ty, czy oczewka będzie kupiająca czy rozprazająca (oczywiście o ile > ). obie rówe: Z rówaia oczewek wyika, że obie ogikowe, przediotowa i obrazowa, będą P R R O. (5.5) R R Dla oczewek zbierających jet dodatie, (p. dla oczewki dwuwypukłej, poieważ R jet ujee, zate i liczik i iaowik ą ujee i wzytko ię zgadza), dla rozprazających (p. dwuwklęłych) ogikowa będzie ujea. 3

3 Rówaie oczewkowe Gaua i Newtoa Podtawiając wyrażeie (6.5) do rówaia zliierzy oczewek (5.4) dotajey rówaie, które azywa ię rówaie oczewkowy Gaua: +. (5.6) Z rówaia Gaua atychiat wyika, że dla oczewek rozprazających ( < ), dla dowolego dodatiego (czyli dla dowolego przediotu rzeczywitego) ui być ujee (czyli obraz będzie zawze pozory i proty) itd., itp. Rówaie oczewkowe w iej potaci, tzw. rówaie oczewkowe Newtoa, wiąże ze obą ie wielkości; zaiat odległości przediotowej i obrazowej i wytępują w i odległości od odpowiedich puktów ogikowych, ozaczoe x i x. Potać taka jet czae wygodiejza, p. dla grubych oczewek, kiedy łatwiej jet zierzyć bezpośredio odległości ogik, a pote przediotu i obrazu, od ajbliżzych powierzchi zewętrzych oczewki. Żeby otrzyać rówaie oczewkowe w potaci ewtoowkiej, podtawy do rówaia w potaci gauowkiej związki poiędzy odległościai gauowkii i ewtoowkii: x + oraz x +. Otrzyujey wtedy: x + + x +. (5.7) Skąd przez prote przekztałceia zajdujey rówaie oczewkowe Newtoa: x. (5.8) x Z rówaia (5.8) wyika bezpośredio, że zaki odległości ewtoowkich x i x uzą być jedakowe (obie dodatie, albo obie ujee, jedocześie), a zate przediot i jego obraz uzą zajdować ię po przeciwych troach odpowiedich puktów ogikowych). łaiących: Kowecja zaków dla oczewek Kowecja zaków dla oczewek jet podoba do tej dla zwierciadeł i powierzchi. Odległość przediotowa jet dodatia dla przediotu rzeczywitego i ujea dla 3

4 pozorego.. Odległość obrazowa jet dodatia dla obrazu rzeczywitego i ujea dla pozorego. 3. Ogikowa oczewki jet dodatia dla oczewek zbierających (kupiających) i ujea dla rozprazających. Wyzaczaie biegu proiei dla oczewki ciekiej Do zalezieia obrazu przediotu oża toować etodę, podobą jak dla zwierciadła. Dla utaleia położeia obrazu wytarczy oczywiście wyzaczeie biegu dwóch dowolie wybraych proiei z wiązki padającej a układ. Najłatwiej jet wykorzytaie trzech proiei, których bieg w układzie optyczy oża łatwo zaleźć. Są to atępujące trzy proiei: )proień główy - ieodchyloy proień przechodzący przez środek krzywizy (dla pojedyczej powierzchi) lub środek oczewki (proień S O ); ) proień rówoległy - proień rówoległy do oi optyczej, po załaaiu przechodzi o przez ogiko obrazowe (proień S A); 3) proień ogikowy - proień przechodzący przez ogiko przediotowe, po załaaiu proień te poruza ię po torze rówoległy do oi optyczej (proień S FP ). Bieg dwóch pośród trzech wyliczoych wyżej proiei do puktu ich przecięcia (w przypadku obrazu pozorego ależy przedłużyć proieie wtecz ), wytarcza do zalezieia obrazu dowolego puktu. 33

5 Powiękzeie poprzecze i podłuże obrazu utworzoego przez oczewkę cieką. Powiękzeie poprzecze T obrazu deiiujey w poób atępujący: T y y. (5.9) Przypoiy, że zgode z ogólie przyjętą kowecją odległości powyżej oi optyczej liczyy jako dodatie, a poiżej jako ujee. Tak więc dla obrazu rzeczywitego T będzie zawze ujee ( i dodatie), a wartość bezwzględa oże być zarówo więkza jak iejza od. Porówując trójkąty S S FP i P OBF a także P P FO i O AOF zajdujey: T y y, (5.) x x gdzie x P FO i x SFP ą odległościai przediotu i obrazu od odpowiedich ogik (ą to odległości ewtoowkie, które wprowadziliśy poprzedio). Powiękzeie podłuże obrazu L deiiujey jako: L d d. (5.) dx dx Korzytając z rówaia Newtoa ( x x ) otrzyujey dx / x, a zate dx / dx. (5.) L T dx x Z rówaia (5.) wyika, że po pierwze, ubytko x towarzyzą przyroty x (trzałka kierowaa do oczewki zotaie odwzorowaa w trzałkę kierowaą od oczewki), a po drugie, że oba powiękzeia ą róże; oża więc oczekiwać dytorji obrazu, zczególie wtedy, gdy oczekujey dużych powiękzeń lub poiejzeń. Soczewki grube i układy złożoe Rozpatrując oczewki grube i złożoe układy optycze (kładające ię z kilku oczewek, ciekich lub grubych) przyjiey za Möbiue i Gaue (bez dowodu), że dowoly układ optyczy oża opiać przy poocy protego odelu, w który zakłada ię, 34

6 że załaaie proiei wiązki światła w układzie zachodzi tylko i wyłączie w dwóch tzw. płazczyzach główych protopadłych do oi optyczej i zlokalizowaych a ogół wewątrz układu. Właości płazczyz główych ą atępujące:. Rówoległa do oi optyczej wiązka światła padająca a układ z jedej troy wychodzi z układu z drugiej troy kupiając ię w ogiku odległy o ogikową od drugiej płazczyzy główej i, aalogiczie, rówoległa wiązka światła padająca a układ z drugiej troy, wychodzi z układu po przeciwej troie kupiając ię w ogiku odległy o tę aą odległość ogikową od pierwzej płazczyzy główej. Rozbieża wiązka proiei wychodząca z jedego z ogik układu opuści układ po przeciwej troie jako wiązka rówoległa. 3. Jeżeli odległości przediotową i obrazową będziey ierzyć od, odpowiedio, pierwzej i drugiej płazczyzy główej, to rówaie opiujące relację poiędzy tyi wielkościai i ogikową będzie iało potać: +. Dla oczewki ciekiej obie płazczyzy główe pokrywają ię, dla oczewek grubych płazczyzy te ą zlokalizowae w pobliżu zewętrzych powierzchi oczewki, a dla układu optyczego kładającego ię z kilku oczewek zajdują ię, odpowiedio, w pobliżu pierwzej powierzchi pierwzej oczewki i drugiej powierzchi otatiej oczewki w układzie. Dla oczewki grubej pukty przecięcia płazczyz główych z oią optyczą, tzw. pukty główe, powiy zate być zlokalizowae iezbyt daleko od puktów wierzchołkowych. 35

7 Właości ogikujące (obrazujące) układu optyczego ą całkowicie wyzaczoe przez położeia płazczyz główych i ogik tego układu. Zajoość położeń płazczyz główych i ogik przediotowego i obrazowego, pozwala zaleźć bieg proiei rówoległego i ogikowego, a zate pozwala a zalezieie położeia obrazu. Warto jezcze raz podkreślić, że chociaż rzeczywity przebieg proiei w układzie kładający ię z wielu oczewek oże być zaczie bardziej koplikoway, to jedak położeie obrazu zalezioe czy to etodą wytyczaia biegu proiei, czy dzięki zatoowaiu rówaia Gaua w oparciu o zajoość położeń płazczyz główych i ogik, będzie odpowiadało rzeczywitości. Lupa (zkło powiękzające) Najprotzy układe optyczy jet pojedycza oczewka kupiająca, która oże łużyć jako zkło powiękzające czyli tzw. lupa. Poieważ lupa łuży jako przyrząd optyczy wpoagający oko ludzkie zacziey od rozważań ad powiękzeie przediotów oglądaych przez ieuzbrojoe oko. Jak pokazao a ryuku otre widzeie przediotów zajdujących ię w różej odległości od oka wyaga dopaowaia ogikowej tak, by obraz wypadał zawze a iatkówce (akoodacja oka). Poieważ wielkość obrazu a iatkówce oka rośie z alejącą odległością przediotu od oka wprot proporcjoalie do kąta widzeia przediotu α, korzytie jet oglądać przedioty z blika. Powiękzeie dla trzech przypadków pokazaych a ryuku oiąga ajwiękzą wartość dla przypadku c), gdy przediot zajduje ię ajbliżej oka. Nietety dla tego 36

8 przypadku (odległość przediotu od oka iejza iż pewa iiala odległość a którą pozwala zdolość akoodacji oka, tzw odległość dobrego widzeia) obraz jet duży ale ieotry. Przyjuje ię, że odległość dobrego widzeia (róża dla różych ludzi) wyoi średio około 5 c. Na ryuku przedtawioo zaadę działaia lupy. Przediot, który z odległości dobrego widzeia ( L ) jet widziay pod kąte α, oże być, dzięki lupie, widziay pod zaczie więkzy kąte α. Chociaż przediot zajduje ię teraz bliżej oka (w odległości + l ), ie a probleu z akoodacją, gdyż jego pozory obraz, wytworzoy przez lupę i widziay przez oko, zajduje ię w odległości L, która powia być ie iejza iż odległość dobrego widzeia L. Ozaczy odległość przediotu od lupy przez, odległość obrazu pozorego od lupy przez, odległość lupy od oka przez l, a ogikową lupy przez. Powiękzeie kątowe obrazu oglądaego przez lupę określay jako: α α. (5.3) α 37

9 Wprowadzając ozaczeia h i H a wyokość przediotu i jego obrazu pozorego ay dalej (w przybliżeiu ałych kątów: α tg α H / L i α tg α h / L ): α H L L H L α, (5.4) α L h L h L gdzie zak iu zabezpiecza dodatią wartość powiękzeia kątowego dla obrazu pozorego i protego ( ujee). Korzytając z rówaia Gaua (5.6) otrzyujey: L L L α ( ) L L L. (5.5) Poieważ zajdujey: D / jet ocą optyczą oczewki a L + l ( ujee) ze wzoru (5.5) L L L l l α + L + D. (5.6) L L L L Ze wzoru (5.6) wyika, że akyale powiękzeie kątowe wytępuje przy iialej odległości lupy od oka. A zate kładziey w (5.6) l i otrzyujey: L α L + D L D + L. (5.7) L Z wyrażeia (5.7) wiokujey, że powiękzeie kątowe α jet zawarte poiędzy (dla iekończoej odległości obrazu od lupy, przediot w ogiku, wobode oko) i ( L D +) (dla obrazu zajdującego ię w odległości dobrego widzeia L od oka). Dla typowej lupy o ocy optyczej rzędu +D (ogikowa c) powiękzeie kątowe będzie w taki razie zawarte poiędzy.5 i 3.5 co odpowiada oberwacji bezpośrediej przediotu (przez oobę bez wad wzroku) z odległości 7 do c. Mikrokop D L Mikrokopy łużą do otrzyywaia ilie powiękzoych obrazów ałych przediotów. W kład ajprotzego ikrokopu wchodzą obiektyw (oczewka o krótkiej ogikowej tworzący obraz pośredi, rzeczywity, odwrócoy i powiękzoy), oraz okular, 38

10 który pozwala a dalze powiękzeie tworząc obraz pozory, powiękzoy i proty. Powiękzeie ikrokopu będzie rówe iloczyowi powiękzeń obiektywu i okularu. Korzytając ze wzoru (5.): y T, y x dla powiękzeia poprzeczego obiektywu ożey zapiać: x Tob x ob, (5.8) gdzie jet odległością obrazu pośrediego od ogika obiektywu obiektywu. Powiękzeie okularu, z rozważań ad lupą wyoi: F ob, a ob jet ogikową Tok x L ok, (5.9) ok L ok gdzie L jet odległością dobrego widzeia, a ok - ogikową okularu (poijay jedykę). Zauważy, że powiękzeie kątowe i poprzecze dla lupy, o ile ogląday przez lupę obraz zajduje ię w odległości dobrego widzeia, ą obie rówe. 39

11 Pryzaty i dyperja światła Zjawiko dyperji światła jet związae z zależością prędkości światła, a zate i wpółczyika załaaia c / υ, od długości ali świetlej. Zjawiko to taowi podtawę działaia przyrządów pektralych wykorzytujących pryzaty. Zaada działaia pryzatu jet przedtawioa a ryuku. Poieważ kat odchyleia ε proieia wychodzącego z pryzatu po dwukroty załaaiu a powierzchiach pryzatu zależy od kata łaiącego pryzatu δ i od wpółczyika załaaia światła ateriału, z którego wykoao pryzat, a z kolei wpółczyik załaaia światła zależy od długości ali świetlej, pryzat twarza ożliwość przetrzeego rozdzieleia światła o różych barwach. Ozacza to, ze za poocą pryzatu ożey wyzaczyć ilościowo zawartość w widie badaej wiązki światła różych jego kładowych pektralych. Stad takie przyrządy ozą azwę przyrządów pektralych (pektru ozacza wido). Newto był pierwzy, który wykorzytał w te poób pryzat i zadeotrował, ze światło białe kłada ię ze światła o wzytkich barwach, od ioletowej, iebiekiej poprzez zieloą, żółtą, do czerwoej. Udowodiy, ze kąt odchyleia proieia przechodzącego przez pryzat ε jet iialy gdy proień świetly przechodzi przez pryzat yetryczie, tz. gdy kat α jet rówy katowi β. Kąt odchyleia proieia ε jet kate zewętrzy w odpowiedi trójkącie, a zate ε ( α β) + ( β α ). Poieważ δ α + β (kąt δ jet kate zewętrzy w iy trójkącie) ay otateczie: Ze wzoru (5.) wyika, że ε α + β δ. (5.) 33

12 d ε dα + dβ, (5.) czyli ziaa kąta ε jet rówa uie zia katów α i β (kąt δ jet tały). Kąt ε będzie iialy, jeżeli d ε dα + dβ. (5.) Zajdziey ziay kątowe d α i d β, korzytając z prawa załaaia Sella iα i β i i β iα. (5.3) Różiczkując wzory (5.3) otrzyujey coα co dα β dβ i co β dβ coα dα. (5.4) Eliiując z rówań (XXV.4) wpółczyik załaaia otrzyujey: dβ coα coα coα dα dα dα. (5.5) co β co β co β dβ Poieważ δ α + β, a zate dα d. (5.6) β Po uwzględieiu (5.6) wzór (5.5) ożey zapiać w potaci: coα coα d β dα. (5.7) co β co β Po podtawieiu (5.7) do wzoru (5.) otrzyujey otateczie: coα coα d ε dα + dβ dα ( ). (5.8) co β co β Rówaie (5.8) będzie pełioe, jeżeli α β oraz β α, (5.9) czyli dla yetryczego przechodzeia proieia przez pryzat. Ozacza to, ze kat odchyleia przyjuje w takich warukach wartość iialą. Wykorzytując wzór (5.), ε α + β δ, dla yetryczego przechodzeia proieia przez pryzat ay 33

13 ε + δ α + β β. Dalej ze wzoru δ α + β zajdujey δ α + β α. A zate i β iα ε + δ i δ i. (5.3) Skąd otateczie otrzyujey rówaie pryzatu: ε + δ δ i i. (5.3) Przypoiy, że w rówaiu ty jet wpółczyikie załaaia ateriału pryzatu, a ε i δ ą odpowiedio, kate ajiejzego odchyleia i kate łaiący pryzatu. Dla ciekiego pryzatu kąty ε i δ ą ieduże i rówaie (5.3) przyjuje, w przybliżeiu, protzą potać: ε + δ δ, kąd ε δ ( ). (5.3) Z rówań (5.3) i (5.3) wyika, ze wielkość rozzczepieia proiei odpowiadających światłu o różych barwach będzie zależą od różicy wartości wpółczyika załaaia dla odpowiedich długości ali. Dyperją średią azywa ię różice wpółczyików załaaia dla światła iebiekiego F ( λ 485 ) i czerwoego C ( λ 656 ). Z kolei rerakcją dla daego ateriału azywa ię wielkość ( D ), gdzie D jet wpółczyikie załaaia dla długości ali odpowiadającej żółtej liii odu (589 ). Wielkość: F C D (5.33) azywa ię dyperją względą albo zdolością rozzczepiającą. Dyperja orala i aoala Zależość wpółczyika załaaia od długości ali światła częto azywa ię dyperją, chociaż bardziej poprawie dyperją azywa ię pochoda wpółczyika 33

14 załaaia względe długości ali d / dλ. Pierwza próba aalityczego opiu zależości wpółczyika załaaia od długości ali światła zapropoował Cauchy (836 r): B C ( λ) A , (5.34) λ λ gdzie A, B, C ą tałe, charakteryzujące day ateriał. Wzór Cauchy ego (5.34) opiuje tzw. dyperję oralą (wpółczyik załaaia aleje ze wzrote długości ali λ ). Okazuje ię, że dla każdego ateriału itieje jedak pewie zakre długości ali, w który wpółczyik załaaia rośie ze wzrote długości ali. W zakreie ty, zway obzare dyperji aoalej, wzór Cauchy ego ie jet łuzy. Wytłuaczeie wytępowaia obu rodzajów dyperji wyaga wiedzy z izyki atoowej, a zate ikrokopowe rozważaie zjawik dyperji odłożyy do dalzych wykładów. Korzytając ze wzoru (5.3) ( ε δ ( ) ) oraz wzoru (5.34), łatwo ożey wyliczyć wielkość ziay kata odchyleia proieia z długością ali światła (a jedotkę długości ali): dε d B 4C δ B δ δ (5.35) dλ dλ λ λ λ Rówaie (5.35) pokazuje, że wzrote długości ali kat odchyleia aleje, jedak aleje ty woliej i więkza jet wartość długości ali światła. Stouek wartości dyperji, a przykład, dla światła o długości ali 4 i 8 (odpowiadających z grubza zakreowi światła widzialego), wyoi około 8, co ozacza, ze w obzarze światła iebiekiego rozzczepieie światła przechodzącego przez pryzat i ierzoe wielkością d ε / dλ, jet 8 razy więkze iż w obzarze światła czerwoego. Warto zwrócić uwagę, ze wielkość wpółczyika załaaia zależy od wartości tałych A i B, atoiat dyperja d / dλ ie zależy od tałej A. Zate duża wartość wpółczyika załaaia (duża wartość A) ie jet warukie koieczy dla uzykaia dużej wartości dyperji. Spektroetry i oochroatory pryzatycze Na ryuku przedtawioo pektroetr pryzatyczy, czyli przyrząd do poiaru wida światła. Szczelia wejściowa S zajduje ię w ogiku koliatora, który ze światła padającego a zczelię S oruje wiązkę rówoległą światła. Po podwójy załaaiu tej wiązki w pryzacie i rozzczepieiu wiązka pada a zwierciadło. Po odbiciu od zwierciadła 333

15 wiązka pada a obiektyw. Wyjściowa zczelia S zajduje ię w płazczyźie ogikowej obiektywu. Oberwacja wida goły okie wyaga zatoowaia okularu; tak kotruoway przyrząd azyway pektrokope. Rejetracja otograicza wida wyagałaby uuięcia zczeliy wyjściowej S (chcey otograować cale wido) i zatoowaia klizy otograiczej, uiezczoej w płazczyźie ogikowej obiektywu; taki przyrząd azyway pektrograe. Moochroator to przyrząd pozwalający a wydzieleie z wiązki światła białego światła o określoej barwie; układ będzie wówcza idetyczy z ty, które jet pokazay a ryuku. W układzie pokazay a ryuku (układzie Wadwortha), jak zreztą we wzytkich iych układach pryzatyczych, wykorzytuje ię pryzat w położeiu iialego kata odchyleia. Pryzat jet ztywo przężoy ze zwierciadłe. Układ taki pozwala, poprzez obrót wokół oi obrotu zajdującej ię w wierzchołku pryzatu, zieiać kąt iialego odchyleia i w te poób dotroić układ do różych długości ali. 334

Wykład 4 Soczewki. Przyrządy optyczne

Wykład 4 Soczewki. Przyrządy optyczne Wykład 4 Soczewki. Przyrządy optycze Soczewka cieka - rówaie zlifierzy oczewek Rozważyy teraz dwie powierzchi ferycze oddzielające ośrodki o wpółczyikach załaaia kolejo i odległych od iebie o d. Niech

Bardziej szczegółowo

sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin,

sin sin ε δ Pryzmat Pryzmat Pryzmat Pryzmat Powierzchnia sferyczna Elementy optyczne II sin sin, Wykład XI Elemety optycze II pryzmat kąt ajmiejszego odchyleia powierzchia serycza tworzeie obrazów rówaie soczewka rodzaje rówaia szliierzy i Gaussa kostrukcja obrazów moc optycza korekcja wad wzroku

Bardziej szczegółowo

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW.

STATYSTYCZNA OCENA WYNIKÓW POMIARÓW. Statytycza ocea wyików pomiaru STATYSTYCZNA OCENA WYNIKÓW POMIARÓW CEL ĆWICZENIA Celem ćwiczeia jet: uświadomieie tudetom, że każdy wyik pomiaru obarczoy jet błędem o ie zawze zaej przyczyie i wartości,

Bardziej szczegółowo

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego

Projekt Inżynier mechanik zawód z przyszłością współfinansowany ze środków Unii Europejskiej w ramach Europejskiego Funduszu Społecznego Zajęcia wyrówawcze z fizyki -Zestaw 5 -Teoria Optyka geometrycza i optyka falowa. Prawo odbicia i prawo załamaia światła, Bieg promiei świetlych w pryzmacie, soczewki i zwierciadła. Zjawisko dyfrakcji

Bardziej szczegółowo

Materiały do wykładu 4 ze Statystyki

Materiały do wykładu 4 ze Statystyki Materiały do wykładu 4 ze Statytyki CHARAKTERYSTYKI LICZBOWE STRUKTURY ZBIOROWOŚCI (dok.) 1. miary położeia - wykład 2 2. miary zmieości (dyperji, rozprozeia) - wykład 3 3. miary aymetrii (kośości) 4.

Bardziej szczegółowo

4. PRZEKŁADNIKI PRĄDOWE I NAPIĘCIOWE

4. PRZEKŁADNIKI PRĄDOWE I NAPIĘCIOWE 4. PRZEŁDN PRĄDOWE NPĘOWE 4.. Wstęp 4.. Przekładiki prądowe Przekładikie prądowy prądu zieego azywa się trasforator przezaczoy do zasilaia obwodów prądowych elektryczych przyrządów poiarowych oraz przekaźików.

Bardziej szczegółowo

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = =

WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU. Wprowadzenie. = = WYZNACZANIE WSPÓŁCZYNNIKA ZAŁAMANIA ŚWIATŁA METODĄ SZPILEK I ZA POMOCĄ MIKROSKOPU Wprowadzeie. Przy przejśiu światła z jedego ośrodka do drugiego występuje zjawisko załamaia zgodie z prawem Selliusa siα

Bardziej szczegółowo

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi.

Jarosław Wróblewski Analiza Matematyczna 1A, zima 2012/13. Ciągi. Jarosław Wróblewski Aaliza Matematycza 1A, zima 2012/13 Ciągi. Ćwiczeia 5.11.2012: zad. 140-173 Kolokwium r 5, 6.11.2012: materiał z zad. 1-173 Ćwiczeia 12.11.2012: zad. 174-190 13.11.2012: zajęcia czwartkowe

Bardziej szczegółowo

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 9 (09.05.2007) Plan wykładu nr 9. Politechnika Białostocka. - Wydział Elektryczny

Podstawy informatyki 2. Podstawy informatyki 2. Wykład nr 9 (09.05.2007) Plan wykładu nr 9. Politechnika Białostocka. - Wydział Elektryczny odstawy iforatyki Wykład r 9 /44 odstawy iforatyki olitechika Białostocka - Wydział Elektryczy Elektrotechika, seestr II, studia stacjoare Rok akadeicki 006/007 la wykładu r 9 Obliczaie liczby π etodą

Bardziej szczegółowo

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D.

Arkusz ćwiczeniowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE. W zadaniach od 1. do 21. wybierz i zaznacz poprawną odpowiedź. 1 C. 3 D. Arkusz ćwiczeiowy z matematyki Poziom podstawowy ZADANIA ZAMKNIĘTE W zadaiach od. do. wybierz i zazacz poprawą odpowiedź. Zadaie. ( pkt) Liczbę moża przedstawić w postaci A. 8. C. 4 8 D. 4 Zadaie. ( pkt)

Bardziej szczegółowo

Wykład 11. a, b G a b = b a,

Wykład 11. a, b G a b = b a, Wykład 11 Grupy Grupą azywamy strukturę algebraiczą złożoą z iepustego zbioru G i działaia biarego które spełia własości: (i) Działaie jest łącze czyli a b c G a (b c) = (a b) c. (ii) Działaie posiada

Bardziej szczegółowo

Estymacja przedziałowa

Estymacja przedziałowa Metody probabilistycze i statystyka Estymacja przedziałowa Dr Joaa Baaś Zakład Badań Systemowych Istytut Sztuczej Iteligecji i Metod Matematyczych Wydział Iformatyki Politechiki Szczecińskiej Metody probabilistycze

Bardziej szczegółowo

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74

SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Pracownia Dydaktyki Fizyki i Atronoii, Uniwerytet Szczecińki SPRĘŻYNA DO RUCHU HARMONICZNEGO V 6 74 Sprężyna jet przeznaczona do badania ruchu drgającego protego (haronicznego) na lekcji fizyki w liceu

Bardziej szczegółowo

Optyka kurs wyrównawczy optyka geometryczna przyrządy optyczne, aberracje. 2011 r.

Optyka kurs wyrównawczy optyka geometryczna przyrządy optyczne, aberracje. 2011 r. Optyka kurs wyrówawczy optyka geometrycza przyrządy optycze, aberracje 0 r. Przyrządy do obserwcji okiem Gdy obserwujemy okiem, to waże jest powiększeie kątowe Powiększeie liiowe w przypadku teleskopu

Bardziej szczegółowo

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego

Analiza dokładności pomiaru, względnego rozkładu egzytancji widmowej źródeł światła, dokonanego przy użyciu spektroradiometru kompaktowego doi:1.15199/48.215.4.38 Eugeiusz CZECH 1, Zbigiew JAROZEWCZ 2,3, Przemysław TABAKA 4, rea FRYC 5 Politechika Białostocka, Wydział Elektryczy, Katedra Elektrotechiki Teoretyczej i Metrologii (1), stytut

Bardziej szczegółowo

Egzaminy. na wyższe uczelnie 2003. zadania

Egzaminy. na wyższe uczelnie 2003. zadania zadaia Egzamiy wstępe a wyższe uczelie 003 I. Akademia Ekoomicza we Wrocławiu. Rozwiąż układ rówań Æ_ -9 y - 5 _ y = 5 _ -9 _. Dla jakiej wartości parametru a suma kwadratów rozwiązań rzeczywistych rówaia

Bardziej szczegółowo

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1

Laboratorium Sensorów i Pomiarów Wielkości Nieelektrycznych. Ćwiczenie nr 1 1. Cel ćwiczeia: Laboratorium Sesorów i Pomiarów Wielkości Nieelektryczych Ćwiczeie r 1 Pomiary ciśieia Celem ćwiczeia jest zapozaie się z kostrukcją i działaiem czujików ciśieia. W trakcie zajęć laboratoryjych

Bardziej szczegółowo

Chemia Teoretyczna I (6).

Chemia Teoretyczna I (6). Chemia Teoretycza I (6). NajwaŜiejsze rówaia róŝiczkowe drugiego rzędu o stałych współczyikach w chemii i fizyce cząstka w jedowymiarowej studi potecjału Cząstka w jedowymiarowej studi potecjału Przez

Bardziej szczegółowo

TRANZYSTORY POLOWE JFET I MOSFET

TRANZYSTORY POLOWE JFET I MOSFET POLTECHNKA RZEZOWKA Kaedra Podsaw Elekroiki srukcja Nr5 F 00/003 sem. lei TRANZYTORY POLOWE JFET MOFET Cel ćwiczeia: Pomiar podsawowych charakerysyk i wyzaczeie paramerów określających właściwości razysora

Bardziej szczegółowo

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie

Metrologia: miary dokładności. dr inż. Paweł Zalewski Akademia Morska w Szczecinie Metrologia: miary dokładości dr iż. Paweł Zalewski Akademia Morska w Szczeciie Miary dokładości: Najczęściej rozkład pomiarów w serii wokół wartości średiej X jest rozkładem Gaussa: Prawdopodobieństwem,

Bardziej szczegółowo

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem

x 1 2 3 t 1 (x) 2 3 1 o 1 : x 1 2 3 s 3 (x) 2 1 3. Tym samym S(3) = {id 3,o 1,o 2,s 1,s 2,s 3 }. W zbiorze S(n) definiujemy działanie wzorem 9.1. Izomorfizmy algebr.. Wykład Przykłady: 13) Działaia w grupach często wygodie jest zapisywać w tabelkach Cayleya. Na przykład tabelka działań w grupie Z 5, 5) wygląda astępująco: 5 1 3 1 1 3 1 3 3

Bardziej szczegółowo

POMOCNIK GIMNAZJALISTY

POMOCNIK GIMNAZJALISTY POMOCNIK GIMNAZJALISTY ważne wzory i definicje z fizyki opracowała gr Irena Keka KLASA I... 3 I. WIADOMOŚCI WSTĘPNE... 3 II. HYDROSTATYKA I AEROSTATYKA... 4 Klaa II... 5 I. KINEMATYKA... 5 II. DYNAMIKA...

Bardziej szczegółowo

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO

ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO Agieszka Jakubowska ROZDZIAŁ 5 WPŁYW SYSTEMU OPODATKOWANIA DOCHODU NA EFEKTYWNOŚĆ PROCESU DECYZYJNEGO. Wstęp Skąplikowaie współczesego życia gospodarczego powoduje, iż do sterowaia procesem zarządzaia

Bardziej szczegółowo

STATYSTYKA OPISOWA WYKŁAD 1 i 2

STATYSTYKA OPISOWA WYKŁAD 1 i 2 STATYSTYKA OPISOWA WYKŁAD i 2 Literatura: Marek Cieciura, Jausz Zacharski, Metody probabilistycze w ujęciu praktyczym, L. Kowalski, Statystyka, 2005 2 Statystyka to dyscyplia aukowa, której zadaiem jest

Bardziej szczegółowo

Materiał ćwiczeniowy z matematyki Marzec 2012

Materiał ćwiczeniowy z matematyki Marzec 2012 Materiał ćwiczeiowy z matematyki Marzec 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Marzec 0 Klucz puktowaia do zadań zamkiętych Nr zad 3 5 6 7 8 9 0

Bardziej szczegółowo

Rynek funduszu inwestycyjnych RYNEK. Liczba FI działających w Polsce. Lokaty funduszy inwestycyjnych 2015-05-17. Liczba TFI i FI działających w Polsce

Rynek funduszu inwestycyjnych RYNEK. Liczba FI działających w Polsce. Lokaty funduszy inwestycyjnych 2015-05-17. Liczba TFI i FI działających w Polsce 199 1993 1994 1995 1996 1997 1998 1999 1 3 4 5 6 7 8 9 1 15-5-17 11 1 13 Liczba TFI i FI działających w Polce yek uduzu iwetycyjych YNEK 7 6 5 4 3 1 416 364 71 79 313 194 81 94 11 11 144 6 1 1 1 3 7 1

Bardziej szczegółowo

Analiza gazów spalinowych

Analiza gazów spalinowych POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA i ENERGETYKI INSTYTUT MASZYN i URZĄDZEŃ ENERGETYCZNYCH Aaliza gazów iowych Laboratorium mierictwa (M 7) Opracował: dr iż. Grzegorz Wiciak Sprawdził:

Bardziej szczegółowo

Zasady dynamiki. 1. Jakie mogą być oddziaływania ciał? 2. Co dzieje się z ciałem, na które nie działają żadne siły?

Zasady dynamiki. 1. Jakie mogą być oddziaływania ciał? 2. Co dzieje się z ciałem, na które nie działają żadne siły? Zaady dynaiki. 1. Jakie ogą być oddziaływania ciał? Świat jet pełen rozaitych ciał. Ciała te nie ą od iebie niezależne, nieutannie na iebie działają. Objawy tego działania, czy też, jak ówią fizycy, oddziaływania

Bardziej szczegółowo

Wprowadzenie do laboratorium 1

Wprowadzenie do laboratorium 1 Wprowadzeie do laboratorium 1 Etymacja jedorówaiowego modelu popytu a bilety loticze Etapy budowy modelu ekoometryczego Specyfikacja modelu Zebraie daych tatytyczych Etymacja parametrów modelu Weryfikacja

Bardziej szczegółowo

+OPTYKA 3.stacjapogody.waw.pl K.M.

+OPTYKA 3.stacjapogody.waw.pl K.M. Zwierciadło płaskie, prawo odbicia. +OPTYKA.stacjapogody.waw.pl K.M. Promień padający, odbity i normalna leżą w jednej płaszczyźnie, prostopadłej do płaszczyzny zwierciadła Obszar widzialności punktu w

Bardziej szczegółowo

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu.

Rachunek prawdopodobieństwa i statystyka W12: Statystyczna analiza danych jakościowych. Dr Anna ADRIAN Paw B5, pok 407 adan@agh.edu. Rachuek prawdopodobieństwa i statystyka W12: Statystycza aaliza daych jakościowych Dr Aa ADRIAN Paw B5, pok 407 ada@agh.edu.pl Wprowadzeie Rozróżia się dwa typy daych jakościowych: Nomiale jeśli opisują

Bardziej szczegółowo

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD

OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI SWOBODNIE PODPARTEJ SWOBODNIE PODPARTEJ ALGORYTM DO PROGRAMU MATHCAD OBLICZENIE SIŁ WEWNĘTRZNYCH DLA BELKI ALGORYTM DO PROGRAMU MATHCAD 1 PRAWA AUTORSKIE BUDOWNICTWOPOLSKIE.PL GRUDZIEŃ 2010 Rozpatrujemy belkę swobodie podpartą obciążoą siłą skupioą, obciążeiem rówomierie

Bardziej szczegółowo

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH

PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH PODSTAWY OPRACOWANIA WYNIKÓW POMIARÓW Z ELEMENTAMI ANALIZY NIEPEWNOŚCI POMIAROWYCH POMIAR FIZYCZNY Pomiar bezpośredi to doświadczeie, w którym przy pomocy odpowiedich przyrządów mierzymy (tj. porówujemy

Bardziej szczegółowo

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym?

Obliczanie średniej, odchylenia standardowego i mediany oraz kwartyli w szeregu szczegółowym i rozdzielczym? Oblczae średej, odchylea tadardowego meday oraz kwartyl w zeregu zczegółowym rozdzelczym? Średa medaa ależą do etymatorów tzw. tedecj cetralej, atomat odchylee tadardowe to etymatorów rozprozea (dyperj)

Bardziej szczegółowo

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom podstawowy

KRYTERIA OCENIANIA ODPOWIEDZI Próbna Matura z OPERONEM. Fizyka i astronomia Poziom podstawowy RYTERIA OCENIANIA ODPOIEDZI Próbna Matura z OPERONEM Fizyka i atronoia Pozio podtawowy Litopad 03 niniejzy cheacie oceniania zadań otwartych ą prezentowane przykładowe poprawne odpowiedzi. tego typu ch

Bardziej szczegółowo

Egzamin maturalny z matematyki CZERWIEC 2011

Egzamin maturalny z matematyki CZERWIEC 2011 Egzami maturaly z matematyki CZERWIEC 0 Klucz puktowaia do zadań zamkiętych oraz schemat oceiaia do zadań otwartych POZIOM PODSTAWOWY Poziom podstawowy czerwiec 0 Klucz puktowaia do zadań zamkiętych Nr

Bardziej szczegółowo

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały

Matematyka. Zakres podstawowy. Nawi zanie do gimnazjum. n/m Rozwi zywanie zada Zadanie domowe Dodatkowe Komunikaty Bie ce materiały Lekcja 1. Lekcja orgaizacyja kotrakt Podręczik: W. Babiański, L. Chańko, D. Poczek Mateatyka. Zakres podstawowy. Wyd. Nowa Era. Zakres ateriału: Liczby rzeczywiste Wyrażeia algebraicze Rówaia i ierówości

Bardziej szczegółowo

9. DZIAŁANIE SIŁY NORMALNEJ

9. DZIAŁANIE SIŁY NORMALNEJ Część 2 9. DZIŁIE SIŁY ORMLEJ 1 9. DZIŁIE SIŁY ORMLEJ 9.1. ZLEŻOŚCI PODSTWOWE Przyjmiemy, że materiał pręta jet jednorodny i izotropowy. Jeśli ponadto założymy, że pręt jet pryzmatyczny, to łuzne ą wzory

Bardziej szczegółowo

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki.

Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. Opis matematyczny odbicia światła od zwierciadła kulistego i przejścia światła przez soczewki. 1. Równanie soczewki i zwierciadła kulistego. Z podobieństwa trójkątów ABF i LFD (patrz rysunek powyżej) wynika,

Bardziej szczegółowo

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y

ma rozkład złożony Poissona z oczekiwaną liczbą szkód równą λ i rozkładem wartości pojedynczej szkody takim, że Pr( Y Zadaie. Łącza wartość szkód z pewego ubezpieczeia W = Y + Y +... + YN ma rozkład złożoy Poissoa z oczekiwaą liczbą szkód rówą λ i rozkładem wartości pojedyczej szkody takim, że ( Y { 0,,,3,... }) =. Niech:

Bardziej szczegółowo

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi

Zatem przyszła wartość kapitału po 1 okresie kapitalizacji wynosi Zatem rzyszła wartość kaitału o okresie kaitalizacji wyosi m k m* E Z E( m r) 2 Wielkość K iterretujemy jako umowa włatę, zastęującą w rówoważy sosób, w sesie kaitalizacji rostej, m włat w wysokości E

Bardziej szczegółowo

Dlaczego ekonomiści głównego nurtu mogą ignorować czas?

Dlaczego ekonomiści głównego nurtu mogą ignorować czas? Dlaczego ekoomiści główego urtu mogą igorować cza? Autor: Wojciech Czariecki Poczyając od Joh B. Clarka w główym urcie ekoomii przyjął ię pogląd, że kapitał taowi permaety, homogeiczy fuduz, w którym dobra

Bardziej szczegółowo

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN

SYSTEM OCENY STANU NAWIERZCHNI SOSN ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI BITUMICZNYCH W SYSTEMIE OCENY STANU NAWIERZCHNI SOSN ZAŁĄCZNIK B GENERALNA DYREKCJA DRÓG PUBLICZNYCH Biuro Studiów Sieci Drogowej SYSTEM OCENY STANU NAWIERZCHNI SOSN WYTYCZNE STOSOWANIA - ZAŁĄCZNIK B ZASADY POMIARU I OCENY STANU RÓWNOŚCI PODŁUŻNEJ NAWIERZCHNI

Bardziej szczegółowo

Wprowadzenie. metody elementów skończonych

Wprowadzenie. metody elementów skończonych Metody komputerowe Wprowadzeie Podstawy fizycze i matematycze metody elemetów skończoych Literatura O.C.Ziekiewicz: Metoda elemetów skończoych. Arkady, Warszawa 972. Rakowski G., acprzyk Z.: Metoda elemetów

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTUT EKSPLOATACJI MASZYN I TRANSPORTU ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E20 BADANIE UKŁADU

Bardziej szczegółowo

Novosibirsk, Russia, September 2002

Novosibirsk, Russia, September 2002 Noobk, ua, Septebe 00 W-5 (Jaoewc) 4 lajdów Dyaka były tywej Cało tywe jego uch uch potępowy cała tywego uch obotowy cała tywego wględe tałej o obotu. oet bewładośc Dyaka cała tywego uch łożoy cała tywego

Bardziej szczegółowo

Dodatek 1. C f. A x. h 1 ( 2) y h x. powrót. xyf

Dodatek 1. C f. A x. h 1 ( 2) y h x. powrót. xyf B Dodatek C f h A x D y E G h Z podobieństwa trójkątów ABD i DEG wynika z h x a z trójkątów DC i EG ' ' h h y ' ' to P ( ) h h h y f to ( 2) y h x y x y f ( ) i ( 2) otrzymamy to yf xy xf f f y f h f yf

Bardziej szczegółowo

Fale elektromagnetyczne i optyka

Fale elektromagnetyczne i optyka Fale elekromageycze i opyka Pole elekrycze i mageycze Powsaie siły elekromooryczej musi być związae z powsaiem wirowego pola elekryczego Zmiee pole mageycze wywołuje w kaŝdym pukcie pola powsawaie wirowego

Bardziej szczegółowo

Przykładowe zadania dla poziomu rozszerzonego

Przykładowe zadania dla poziomu rozszerzonego Przkładowe zadaia dla poziomu rozszerzoego Zadaie. ( pkt W baku w pierwszm roku oszczędzaia stopa procetowa bła rówa p%, a w drugim roku bła o % iższa. Po dwóch latach, prz roczej kapitalizacji odsetek,

Bardziej szczegółowo

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r.

V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizyka się liczy I Etap ZADANIA 27 lutego 2013r. V OGÓLNOPOLSKI KONKURS Z FIZYKI Fizka się licz I Etap ZDNI 7 lutego 3r.. Dwa pociski wstrzeloo jeocześie w tę saą stroę z wóch puktów oległch o o. Pierwsz pocisk wstrzeloo z prękością o po kąte α. Z jaką

Bardziej szczegółowo

STATYSTYKA I ANALIZA DANYCH

STATYSTYKA I ANALIZA DANYCH TATYTYKA I ANALIZA DANYCH Zad. Z pewej partii włókie weły wylosowao dwie próbki włókie, a w każdej z ich zmierzoo średicę włókie różymi metodami. Otrzymao astępujące wyiki: I próbka: 50; średia średica

Bardziej szczegółowo

3. Funkcje elementarne

3. Funkcje elementarne 3. Fukcje elemetare Fukcjami elemetarymi będziemy azywać fukcję tożsamościową x x, fukcję wykładiczą, fukcje trygoometrycze oraz wszystkie fukcje, jakie moża otrzymać z wyżej wymieioych drogą astępujących

Bardziej szczegółowo

Niepewności pomiarowe

Niepewności pomiarowe Niepewości pomiarowe Obserwacja, doświadczeie, pomiar Obserwacja zjawisk fizyczych polega a badaiu ych zjawisk w warukach auralych oraz a aalizie czyików i waruków, od kórych zjawiska e zależą. Waruki

Bardziej szczegółowo

Temat ćwiczenia: Optyczne podstawy fotografii.

Temat ćwiczenia: Optyczne podstawy fotografii. Uiwerstet Rolicz w Krakowie Wdział Iżierii Środowiska i Geodezji Katedra Fotogrametrii i Teledetekcji Temat ćwiczeia: Otcze odstaw otograii. Podział układów otczch Pojęcie układów otczch Podział układów

Bardziej szczegółowo

0.1 ROZKŁADY WYBRANYCH STATYSTYK

0.1 ROZKŁADY WYBRANYCH STATYSTYK 0.1. ROZKŁADY WYBRANYCH STATYSTYK 1 0.1 ROZKŁADY WYBRANYCH STATYSTYK Zadaia 0.1.1. Niech X 1,..., X będą iezależymi zmieymi losowymi o tym samym rozkładzie. Obliczyć ES 2 oraz D 2 ( 1 i=1 X 2 i ). 0.1.2.

Bardziej szczegółowo

Zasada indukcji matematycznej. Dowody indukcyjne.

Zasada indukcji matematycznej. Dowody indukcyjne. Zasada idukcji matematyczej Dowody idukcyje Z zasadą idukcji matematyczej i dowodami idukcyjymi sytuacja jest ajczęściej taka, że podaje się w szkole treść zasady idukcji matematyczej, a astępie omawia,

Bardziej szczegółowo

Składka ubezpieczeniowa

Składka ubezpieczeniowa Przychody zakładów ubezpieczeń Przychody i wydatki zakładów ubezpieczeń Składka ubezpieczeiowa 60-95 % Przychody z lokat 5-15 % Przychody z reasekuracji 5-30 % Wydatki zakładów ubezpieczeń Odszkodowaia

Bardziej szczegółowo

Metody Obliczeniowe w Nauce i Technice laboratorium

Metody Obliczeniowe w Nauce i Technice laboratorium Marci Rociek Iformatyka, II rok Metody Obliczeiowe w Nauce i Techice laboratorium zestaw 1: iterpolacja Zadaie 1: Zaleźć wzór iterpolacyjy Lagrage a mając tablicę wartości: 3 5 6 y 1 3 5 6 Do rozwiązaia

Bardziej szczegółowo

WYBRANE METODY DOSTĘPU DO DANYCH

WYBRANE METODY DOSTĘPU DO DANYCH WYBRANE METODY DOSTĘPU DO DANYCH. WSTĘP Coraz doskoalsze, szybsze i pojemiejsze pamięci komputerowe pozwalają gromadzić i przetwarzać coraz większe ilości iformacji. Systemy baz daych staowią więc jedo

Bardziej szczegółowo

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum

MATEMATYKA (poziom podstawowy) przykładowy arkusz maturalny wraz ze schematem oceniania dla klasy II Liceum MATEMATYKA (poziom podstawowy) przykładowy arkusz maturaly wraz ze schematem oceiaia dla klasy II Liceum Propozycja zadań maturalych sprawdzających opaowaie wiadomości i umiejętości matematyczych z zakresu

Bardziej szczegółowo

KONKURS FIZYCZNY. FASCYNUJĄCA FIZYKA Poziom gimnazjalny

KONKURS FIZYCZNY. FASCYNUJĄCA FIZYKA Poziom gimnazjalny II KONKURS FIZYCZNY FASCYNUJĄCA FIZYKA Pozio ginazjalny Organizator: STOWARZYSZENIE NAUCZYCIELI FIZYKI ZIEMI ŁÓDZKIEJ http://nf-lodz.cba.pl/ I. Cele konkuru Cele konkuru jet inpirowanie łodzieży zkół ginazjalnych

Bardziej szczegółowo

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA

Ćwiczenia rachunkowe TEST ZGODNOŚCI χ 2 PEARSONA ROZKŁAD GAUSSA Aaliza iepewości pomiarowych w esperymetach fizyczych Ćwiczeia rachuowe TEST ZGODNOŚCI χ PEARSONA ROZKŁAD GAUSSA UWAGA: Na stroie, z tórej pobrałaś/pobrałeś istrucję zajduje się gotowy do załadowaia arusz

Bardziej szczegółowo

ĆWICZENIE NR 2 Badanie jakości betonu w konstrukcji metodą ultradźwiękową

ĆWICZENIE NR 2 Badanie jakości betonu w konstrukcji metodą ultradźwiękową ĆWICZENIE NR kontrukcji etodą 1 1. CEL ĆWICZENIA Cele ćwiczenia jet praktyczne zapoznanie ię ze poobe kontroli jakości betonu w kontrukcji etodą.. PROGRAM ĆWICZENIA. 1. Dokonać przygotowania i kalibracji

Bardziej szczegółowo

Struktura czasowa stóp procentowych (term structure of interest rates)

Struktura czasowa stóp procentowych (term structure of interest rates) Struktura czasowa stóp procetowych (term structure of iterest rates) Wysokość rykowych stóp procetowych Na ryku istieje wiele różorodych stóp procetowych. Poziom rykowej stopy procetowej (lub omialej stopy,

Bardziej szczegółowo

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40.

40:5. 40:5 = 500000υ5 5p 40, 40:5 = 500000 5p 40. Portfele polis Poieważ składka jest ustalaa jako wartość oczekiwaa rzeczywistego, losowego kosztu ubezpieczeia, więc jest tym bliższa średiej wydatków im większa jest liczba ubezpieczoych Polisy grupuje

Bardziej szczegółowo

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh -

Fundamentalna tabelka atomu. eureka! to odkryli. p R = nh - TEKST TRUDNY Postulat kwatowaia Bohra, czyli założoy ad hoc związek pomiędzy falą de Broglie a a geometryczymi własościami rozważaego problemu, pozwolił bez większych trudości teoretyczie przewidzieć rozmiary

Bardziej szczegółowo

Moduł 4. Granica funkcji, asymptoty

Moduł 4. Granica funkcji, asymptoty Materiały pomocicze do e-learigu Matematyka Jausz Górczyński Moduł. Graica fukcji, asymptoty Wyższa Szkoła Zarządzaia i Marketigu Sochaczew Od Autora Treści zawarte w tym materiale były pierwotie opublikowae

Bardziej szczegółowo

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi.

Zad. 4 Oblicz czas obiegu satelity poruszającego się na wysokości h=500 km nad powierzchnią Ziemi. Grawitacja Zad. 1 Ile muiałby wynoić okre obrotu kuli ziemkiej wokół włanej oi, aby iła odśrodkowa bezwładności zrównoważyła na równiku iłę grawitacyjną? Dane ą promień Ziemi i przypiezenie grawitacyjne.

Bardziej szczegółowo

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU

METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU METODYKA WYKONYWANIA POMIARÓW ORAZ OCENA NIEPEWNOŚCI I BŁĘDÓW POMIARU Celem każdego ćwiczeia w laboratorium studeckim jest zmierzeie pewych wielkości, a astępie obliczeie a podstawie tych wyików pomiarów

Bardziej szczegółowo

Drobiną tą jest: A) proton B) neutron C) atom wodoru D) elektron

Drobiną tą jest: A) proton B) neutron C) atom wodoru D) elektron ŁÓDZKIE CENTRUM DOSKONALENIA NAUCZYCIELI I KSZTAŁCENIA PRAKTYCZNEGO Kod pracy Wypełnia Przewodniczący Wojewódzkiej Koiji Wojewódzkiego Konkuru Przediotowego z Fizyki Iię i nazwiko ucznia... Szkoła... Punkty

Bardziej szczegółowo

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P Wiadomości wstępe Odsetki powstają w wyiku odjęcia od kwoty teraźiejszej K kwoty początkowej K, zatem Z = K K. Z ekoomiczego puktu widzeia właściciel kapitału K otrzymuje odsetki jako zapłatę od baku za

Bardziej szczegółowo

POLITECHNIKA OPOLSKA

POLITECHNIKA OPOLSKA POLITCHIKA OPOLSKA ISTYTUT AUTOMATYKI I IFOMATYKI LABOATOIUM MTOLOII LKTOICZJ 7. KOMPSATOY U P U. KOMPSATOY APIĘCIA STAŁO.. Wstęp... Zasada pomiaru metodą kompesacyją. Metoda kompesacyja pomiaru apięcia

Bardziej szczegółowo

Optyka 2012/13 powtórzenie

Optyka 2012/13 powtórzenie strona 1 Imię i nazwisko ucznia Data...... Klasa... Zadanie 1. Słońce w ciągu dnia przemieszcza się na niebie ze wschodu na zachód. W którym kierunku obraca się Ziemia? Zadanie 2. Na rysunku przedstawiono

Bardziej szczegółowo

BADANIA DOCHODU I RYZYKA INWESTYCJI

BADANIA DOCHODU I RYZYKA INWESTYCJI StatSoft Polska, tel. () 484300, (60) 445, ifo@statsoft.pl, www.statsoft.pl BADANIA DOCHODU I RYZYKA INWESTYCJI ZA POMOCĄ ANALIZY ROZKŁADÓW Agieszka Pasztyła Akademia Ekoomicza w Krakowie, Katedra Statystyki;

Bardziej szczegółowo

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE

LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE LABORATORIUM FIZYKI PAŃSTWOWEJ WYŻSZEJ SZKOŁY ZAWODOWEJ W NYSIE Ćwiczenie nr 7 Temat: Pomiar kąta załamania i kąta odbicia światła. Sposoby korekcji wad wzroku. 1. Wprowadzenie Zestaw ćwiczeniowy został

Bardziej szczegółowo

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste:

Zwierciadło kuliste stanowi część gładkiej, wypolerowanej powierzchni kuli. Wyróżniamy zwierciadła kuliste: Fale świetlne Światło jest falą elektromagnetyczną, czyli rozchodzącymi się w przestrzeni zmiennymi i wzajemnie przenikającymi się polami: elektrycznym i magnetycznym. Szybkość światła w próżni jest największa

Bardziej szczegółowo

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI. Obróbka skrawaniem i narzędzia

KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI. Obróbka skrawaniem i narzędzia KATEDRA TECHNIK WYTWARZANIA I AUTOMATYZACJI Przedmiot: Temat ćwiczeia: Obróbka skrawaiem i arzędzia Frezowaie Numer ćwiczeia: 5 1. Cel ćwiczeia Celem ćwiczeia jest pozaie odmia frezowaia, parametrów skrawaia,

Bardziej szczegółowo

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI

autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI autor: Włodzimierz Wolczyński rozwiązywał (a)... ARKUSIK 34 OPTYKA GEOMETRYCZNA. CZĘŚĆ 2. ZAŁAMANIE ŚWIATŁA. SOCZEWKI Rozwiązanie zadań należy zapisać w wyznaczonych miejscach pod treścią zadania Zadanie

Bardziej szczegółowo

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura

pobrano z serwisu Fizyka Dla Każdego - http://fizyka.dk - zadania z fizyki, wzory fizyczne, fizyka matura 12. Fale elektromagnetyczne zadania z arkusza I 12.5 12.1 12.6 12.2 12.7 12.8 12.9 12.3 12.10 12.4 12.11 12. Fale elektromagnetyczne - 1 - 12.12 12.20 12.13 12.14 12.21 12.22 12.15 12.23 12.16 12.24 12.17

Bardziej szczegółowo

2. ANALIZA BŁĘDÓW I NIEPEWNOŚCI POMIARÓW

2. ANALIZA BŁĘDÓW I NIEPEWNOŚCI POMIARÓW . ANALIZA BŁĘDÓW I NIEPEWNOŚCI POMIARÓW Z powodu iedokładości przyrządów i metod pomiarowych, iedoskoałości zmysłów, iekotrolowaej zmieości waruków otoczeia (wielkości wpływających) i iych przyczy, wyik

Bardziej szczegółowo

EGZAMIN MATURALNY Z INFORMATYKI

EGZAMIN MATURALNY Z INFORMATYKI Miejsce a aklejkę z kodem szkoły dysleksja MIN-R_P-072 EGZAMIN MATURALNY Z INFORMATYKI MAJ ROK 2007 POZIOM ROZSZERZONY CZĘŚĆ I Czas pracy 90 miut Istrukcja dla zdającego. Sprawdź, czy arkusz egzamiacyjy

Bardziej szczegółowo

Zasada ruchu środka masy i zasada d Alemberta 6

Zasada ruchu środka masy i zasada d Alemberta 6 Zaada ruchu środka ay i zaada d Aleerta 6 Wprowadzenie Zaada ruchu środka ay Środek ay układu punktów aterialnych poruza ię tak, jaky w ty punkcie yła kupiona cała aa układu i jaky do teo punktu przyłożone

Bardziej szczegółowo

Jak obliczać podstawowe wskaźniki statystyczne?

Jak obliczać podstawowe wskaźniki statystyczne? Jak obliczać podstawowe wskaźiki statystycze? Przeprowadzoe egzamiy zewętrze dostarczają iformacji o tym, jak ucziowie w poszczególych latach opaowali umiejętości i wiadomości określoe w stadardach wymagań

Bardziej szczegółowo

This copy is for personal use only - distribution prohibited.

This copy is for personal use only - distribution prohibited. ZESZYTY NAUKOWE WSOWL - - - - - Nr 1 (159) 11 Włodzimierz KUPICZ Staiław NIZIŃSKI ETODA DIAGNOZOWANIA SILNIKÓW SPALINOWYCH W WARUNKACH TRAKCYJNYCH W pracy przedtawioo ową metodę diagozowaia ilika paliowego

Bardziej szczegółowo

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D.

17. Który z rysunków błędnie przedstawia bieg jednobarwnego promienia światła przez pryzmat? A. rysunek A, B. rysunek B, C. rysunek C, D. rysunek D. OPTYKA - ĆWICZENIA 1. Promień światła padł na zwierciadło tak, że odbił się od niego tworząc z powierzchnią zwierciadła kąt 30 o. Jaki był kąt padania promienia na zwierciadło? A. 15 o B. 30 o C. 60 o

Bardziej szczegółowo

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa

WERSJA TESTU A. Komisja Egzaminacyjna dla Aktuariuszy. LX Egzamin dla Aktuariuszy z 28 maja 2012 r. Część I. Matematyka finansowa Matematyka fiasowa 8.05.0 r. Komisja Egzamiacyja dla Aktuariuszy LX Egzami dla Aktuariuszy z 8 maja 0 r. Część I Matematyka fiasowa WERJA EU A Imię i azwisko osoby egzamiowaej:... Czas egzamiu: 00 miut

Bardziej szczegółowo

ZBIÓR ZADAŃ Z FIZYKI

ZBIÓR ZADAŃ Z FIZYKI ZBIÓR ZADAŃ Z FIZYKI OPRACOWANIE: Toaz Drohoirecki I RUCH JEDNOSTAJNY PROSTOLINIOWY 1. Tore ruchu wobodnie padającego jabłka z drzewa jet: A) parabola B) hiperbola C) prota D) półprota. W ciągu jednej

Bardziej szczegółowo

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P

co wskazuje, że ciąg (P n ) jest ciągiem arytmetycznym o różnicy K 0 r. Pierwszy wyraz tego ciągu a więc P 1 z uwagi na wzór (3) ma postać P WIADOMOŚCI WSTĘPNE Odsetki powstają w wyiku odjęcia od kwoty teaźiejszej K kwoty początkowej K 0, zate Z = K K 0. Z ekooiczego puktu widzeia właściciel kapitału K 0 otzyuje odsetki jako zapłatę od baku

Bardziej szczegółowo

Przeczytaj, zanim zaczniesz rozwiązywać

Przeczytaj, zanim zaczniesz rozwiązywać Przeczytaj, zaim zacziesz rozwiązywać Maturzysto! Zaim rozpocziesz rozwiązywaie zadań z aszych arkuszy: Przygotuj: u Arkusz I 5 kartek papieru podaiowego w kratkę a czystopis i a brudopis; Arkusz II 5

Bardziej szczegółowo

24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC

24-01-0124-01-01 G:\AA_Wyklad 2000\FIN\DOC\Geom20.doc. Drgania i fale III rok Fizyki BC 4-0-04-0-0 G:\AA_Wyklad 000\FIN\DOC\Geom0.doc Dgaa ale III ok Fzyk BC OPTYKA GEOMETRYCZNA. W ośodku jedoodym śwatło ozcodz sę ostolowo.. Pzecające sę omee śwetle e zabuzają sę awzajem. 3. Pawo odbca śwatła.

Bardziej szczegółowo

Analiza matematyczna. Robert Rałowski

Analiza matematyczna. Robert Rałowski Aaliza matematycza Robert Rałowski 6 paździerika 205 2 Spis treści 0. Liczby aturale.................................... 3 0.2 Liczby rzeczywiste.................................... 5 0.2. Nierówości...................................

Bardziej szczegółowo

wydanie czwarte, 2012 r. (poprawione) W interesie postępu technicznego producent zastrzega sobie prawo wprowadzania zmian w oferowanych wyrobach.

wydanie czwarte, 2012 r. (poprawione) W interesie postępu technicznego producent zastrzega sobie prawo wprowadzania zmian w oferowanych wyrobach. OM TILN wydaie czwarte, 0 r. (poprawioe) itereie potępu techiczego producet zatrzega obie prawo wprowadzaia zia w oferowaych wyrobach. I TRŚI opy zatapiale typu M troy foracje ogóle... ola pracy pop...

Bardziej szczegółowo

Analiza drgań wybranych dźwigarów powierzchniowych metodą elementów brzegowych

Analiza drgań wybranych dźwigarów powierzchniowych metodą elementów brzegowych a prawach rękopisu Istytut Iżyierii Lądowej Politechiki Wrocławskiej Aaliza drgań wybraych dźwigarów powierzchiowych metodą elemetów brzegowych Raport serii PRE r 5/ Praca doktorska autor mgr iż. Jacek

Bardziej szczegółowo

Ćwiczenie 10/11. Holografia syntetyczna - płytki strefowe.

Ćwiczenie 10/11. Holografia syntetyczna - płytki strefowe. Ćwiczeie 10/11 Holografia sytetycza - płytki strefowe. Wprowadzeie teoretycze W klasyczej holografii optyczej, gdzie hologram powstaje w wyiku rejestracji pola iterferecyjego, rekostruuje się jedyie takie

Bardziej szczegółowo

ĆWICZENIE NR VII OBRÓBKA PLASTYCZNA BLACH - TŁOCZENIE - KSZTAŁTOWANIE -

ĆWICZENIE NR VII OBRÓBKA PLASTYCZNA BLACH - TŁOCZENIE - KSZTAŁTOWANIE - ĆWICZENIE NR VII OBRÓBKA PLASTYCZNA BLACH - TŁOCZENIE - KSZTAŁTOWANIE -. Cel ćwiczeia Cele ćwiczeia jest zapozaie z techologią tłoczeia - kształtowaia, ze szczególy uwzglęieie wytłaczaia.. Teatyka prac

Bardziej szczegółowo

Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej

Materiały pomocnicze 14 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej Materiały pomocnicze 4 do zajęć wyrównawczych z Fizyki dla Inżynierii i Gospodarki Wodnej. Zwierciadło płaskie. Zwierciadło płaskie jest najprostszym przyrządem optycznym. Jest to wypolerowana płaska powierzchnia

Bardziej szczegółowo

Programy CAD w praktyce inŝynierskiej

Programy CAD w praktyce inŝynierskiej Katedra Mikroelektroniki i Technik Informatycznych Politechniki Łódzkiej Programy CAD w praktyce inŝynierkiej Wykład IV Filtry aktywne dr inż. Piotr Pietrzak pietrzak@dmc dmc.p..p.lodz.pl pok. 54, tel.

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA NIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIAŁ INŻYNIERII MECHANICZNEJ INSTYTT EKSPLOATACJI MASZYN I TRANSPORT ZAKŁAD STEROWANIA ELEKTROTECHNIKA I ELEKTRONIKA ĆWICZENIE: E13 BADANIE ELEMENTÓW

Bardziej szczegółowo

ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU

ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Dr iż. Staisław NOGA oga@prz.edu.pl Politechika Rzeszowska ANALIZA DRGAŃ POPRZECZNYCH PŁYTY PIERŚCIENIOWEJ O ZŁOŻONYM KSZTAŁCIE Z UWZGLĘDNIENIEM WŁASNOŚCI CYKLICZNEJ SYMETRII UKŁADU Streszczeie: W publikacji

Bardziej szczegółowo