Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych

Wielkość: px
Rozpocząć pokaz od strony:

Download "Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych"

Transkrypt

1 Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Ćwiczenie nr 2 Laboratorium z przedmiotu: Odnawialne źródła energii Kod: OM1302 Opracowała: mgr inż. Anna Demianiuk październik 2012

2 1. Cel i zakres ćwiczenia laboratoryjnego Celem ćwiczenia jest zweryfikowanie i zrozumienie zasady funkcjonowania paneli słonecznych, poprzez wyznaczenie krzywej I-V (charakterystyka prądowo-napięciowa) oraz charakterystycznych parametrów pracy takich jak prąd zwarcia (I sc ), napięcie obwodu otwartego (V oc ) oraz moc maksymalna (P max ). 2. Podstawy teoretyczne 2.1 Początki technologii fotowoltaicznej Efekt fotowoltaiczny jest to zjawisko wytworzenia się potencjału elektrycznego między dwoma elementami z podobnych materiałów w wyniku bezpośredniego działania na miejsce ich połączenia fotonami. Ogniwa fotowoltaiczne przetwarzają w ten sposób światło bezpośrednio na energię elektryczną. Efekt PV został odkryty w 1839 przez francuskiego fizyka Edmunda Becquerela. Pierwsze komercyjne zastosowanie odkrycia zaryzykowało Bell Laboratories, które w 1954 roku wyprodukowało pierwsze krzemowe ogniwo słoneczne. Rozwiązanie to wkrótce znalazło zastosowanie w programach kosmicznych USA ze względu na wysoką wydajność wytwarzania energii odniesioną do jednostki masy. Od tego czasu stało się ważnym źródłem energii dla satelitów. 2.2 Podstawowe wielkości i jednostki Symbol Znaczenie Jednostka I natężenie prądu A I sc prąd zwarcia A V napięcie prądu (różnica potencjałów) V V oc napięcie jałowe (napięcie ogniwa otwartego) V P max moc maksymalna ogniwa W E natężenie promieniowania elektromagnetycznego (w programie SRL) W/m 2 S pole powierzchni ogniwa m 2 R rezystancja Ω 2.3 Budowa i zasada działania ogniwa fotowoltaicznego Rys. 1. Schemat układu z ogniwem fotowoltaicznym 2

3 Najczęściej stosowane współcześnie ogniwa fotowoltaiczne zbudowane są z dwóch półprzewodników o różnych typach przewodnictwa p i n, gdzie półprzewodnik p jest to materiał, w którym większościowym nośnikiem prądu są dziury elektronowe, a w półprzewodniku typu n występuje więcej elektronów. Podstawowym budulcem tych materiałów jest krzem z odpowiednimi domieszkami (zwykle: bor w półprzewodniku typu p, i fosfor w półprzewodniku typu n). Światło padające na półprzewodnik powoduje uwolnienie elektronów z wiązań chemicznych międzyatomowych (tzw. absorpcja promieniowania). Aby zjawisko takie mogło zajść, musi być spełniony warunek dostarczenia przez padający foton energii równej co najmniej energii przerwy energetycznej, która np. dla krzemu w temperaturze 300 K wynosi E g = 1,12 ev (Rys. 2). Rys. 2. Schemat zmiany poziomu energetycznego elektronu w półprzewodniku Nośnikami energii elektrycznej mogą być pary: elektron-jon w wodnych roztworach elektrolitów lub elektron-dziura w półprzewodnikach stałych. Nośniki ładunków znajdujące się w rejonie złącza wytwarzają różnicę potencjałów, zostają przyspieszone w polu elektrycznym i krążą jako prąd w obwodzie zewnętrznym. Iloczyn kwadratu natężenia prądu i rezystancji obwodu wyraża moc przetworzoną na prąd elektryczny. Pozostała energia fotonu powoduje wzrost temperatury ogniwa. Podstawą wytworzenia potencjału fotowoltaicznego jest różnica potencjałów chemicznych elektronów w dwóch różnych, oddzielonych materiałach. Różnica ta jest określana mianem poziomu Fermiego. Gdy materiały zostaną połączone, złącze dąży do ustalenia nowej równowagi termodynamicznej. Taka równowaga może być osiągnięta tylko wtedy, gdy poziom Fermiego jest równy w obu materiałach. Dzieje się tak dzięki przepływowi elektronów od jednego materiału do drugiego, do czasu gdy różnica potencjałów tych materiałów zrówna się z początkową wartością poziomu Fermiego. Ta różnica potencjałów jest źródłem prądu powstającego z przetworzenia energii fotonu. 2.4 Charakterystyka prądowo napięciowa i krzywa mocy Charakterystyka elektryczna ogniwa fotowoltaicznego reprezentowana jest najczęściej przez krzywą zależności natężenia i napięcia prądu elektrycznego krzywej I-V. 3

4 Rys. 3. Przykład charakterystyki prądowo napięciowej (I-V) Rys. 3 przedstawia charakterystykę I-V dla modułu fotowoltaicznego z uwzględnieniem warunków naświetlenia i w przypadku jego braku. Wartość prądu w pierwszej ćwiartce - I sc, lewy górnym rogu krzywej I-V dla zerowej wartości napięcia określana jest mianem prądu zwarcia. Prąd zwarcia określa natężenie prądu płynącego przy zwarciu ogniwa, czyli w chwili maksymalnego obciążenia. Wartość napięcia w prawym dolnym rogu krzywej - V oc, gdy natężenie osiąga wartość zerową, nazywa się napięciem obwodu otwartego lub napięciem jałowym. Jest to napięcie osiągane w sytuacji, kiedy moduł nie jest podłączony do żadnego obciążenia. W lewej części obszaru zacienionego, ogniwo działa jak źródło prądu stałego, generując napięcie odpowiadające rezystancji. W zacienionym obszarze po prawej stronie, natężenie prądu spada gwałtownie przy jednoczesnym, niewielkim wzroście napięcia. W tym rejonie, ogniwo działa jak źródło napięcia stałego z oporem wewnętrznym. Pomiędzy tymi dwoma zacienionymi regionami, znajduje się punkt przegięcia krzywej. W przypadku, gdyby z zewnątrz doprowadzone było napięcie w kierunku odwrotnym (np. podczas awarii układu przetwarzającego), prąd pozostaje stały a moc jest absorbowana przez ogniwo. Jednak poniżej pewnej wartości ujemnego napięcia, złącze ulega przebiciu w wyniku dużego wzrostu natężenia prądu. W ciemności wartość prądu wynosi zero dla napięć aż do wartości napięcia przebicia, co zachodzi także dla warunków pełnego oświetlenia. Moc wyjściowa panelu P jest wielkością zależną od napięcia i natężenia prądu wyjściowego. *Oznaczenia zgodnie z pkt 2.2 P I V (1) Na Rys. 3, przedstawiona jest zależność mocy w funkcji napięcia. Należy zauważyć, że ogniwo nie produkuje mocy przy zerowym napięciu lub prądzie, a moc maksymalna występuje przy napięciu odpowiadającym punktowi przegięcia krzywej I-V. 4

5 Rys. 4. Zależność mocy wyjściowej od napięcia w ogniwie PV Obwody elektryczne fotowoltaiczne są projektowane tak, aby moduły działały w warunkach zbliżonych do warunków z lewej strony punktu przegięcia. W modelowaniu i analizie systemu modułów PV moduły takie traktuje się w uproszczeniu jako źródła stałego prądu elektrycznego. a) temperatura panelu fotowoltaicznego T=25 C b) natężenie promieniowania E=1000W/m 2 Rys. 5. Charakterystyki I-V panelu A-66P (66W) Rys. 6. Wymiary panelu A-66P (66W) 5

6 Tabela 1. Parametry panelu A-66P(66W) Moc maksymalna (warunki STC) P mp (±8%) 66 W Ilość ogniw 36 - Sprawność panelu 12,87 % Natężenie prądu mocy maksymalnej I mp 3,76 A Napięcie mocy maksymalnej V mp 17,53 V Prąd zwarciowy I sc 4,06 A Napięcie jałowe V oc 21,78 V Maksymalne napięcie systemu V max 1000 V Współczynnik strat temperaturowych I sc ( ) 0,04 %/ C Współczynnik strat temperaturowych V oc ( ) -0,32 %/ C Współczynnik strat temperaturowych P ( ) -0,43 %/ C Podane na Rys. 5 charakterystyki I-V panelu 66W uwzględniają cztery poziomy natężenia promieniowania: 1000 W/m 2, 500 i 250 W/m 2. Krzywe te sporządzone zostały dla założenia AM1,5 (referencyjna masa powietrza 1,5), przy czym wartości: E=1000 W/m 2, T=25 C i AM1,5 odpowiadają tzw. warunkom standardowym (STC Standard Test Conditions), co umożliwia porównanie wyników testów przeprowadzanych w różnych laboratoriach [4]. Zerowa masa powietrza (AM0) reprezentuje stan w przestrzeni kosmicznej, gdzie promieniowanie słoneczne wynosi 1350 W/m 2. AM1 przedstawia uśrednione warunki, dobrze odpowiadające klimatowi większości państw europejskich. AM1 odpowiada następującym warunkom na ziemi: czyste suche powietrze, bezchmurne niebo w samo południe, kiedy światło słoneczne napotyka najmniej przeszkód na drodze do powierzchni Ziemi, średnia wartość wilgotności powietrza oraz średni poziom zanieczyszczeń. Energia słoneczna docierająca do powierzchni Ziemi w dzień z AM1,5 wynosi około 1000 W/m 2. W pochmurny dzień wartość ta jest mniejsza. Wartość 500 W/m 2 jest kolejną wartością odniesienia stosowaną na potrzeby analiz przemysłowych do stworzenia krzywych I-V. W przypadku, gdy temperatura panelu fotowoltaicznego jest różna od temperatury standardowej STC (25 C), w celu korekcji wartości napięcia, natężenia prądu i mocy panelu stosuje się współczynniki strat temperaturowych, które informują o procentowym zysku lub stracie danej wartości maksymalnej, na każdy stopień Celcjusza wzrostu temperatury ogniwa. czyli: Sprawność fotokonwersji ogniwa PV jest zdefiniowana zależnością: moc wyjsciowa energia sloneczna docierająca do ogniwa I U E S *Oznaczenia zgodnie z pkt 2.2 (2) 6

7 3. Metodyka badań 3.1 Budowa stanowiska Rys. 7. Schemat stanowiska badawczego: 1-kolektory słoneczne fotowoltaiczne z symulatorem oświetlenia słonecznego, 2- jednostka sterująca, 3- komputer Rys. 8. Schemat stanowiska z kolektorami słonecznymi fotowoltaicznymi 7

8 3.2 Metodyka pomiarów Przed przystąpieniem do ćwiczenia należy upewnić się, że pokrętło obciążenia DC ustawione jest w pozycji maksymalnego oporu (pozycja w prawo). Następnie wykonać kolejne czynności: 1) Ustawić przełącznik obciążenia DC ( load selector ) w pozycji 2. 2) Odłączyć lampy DC, które są połączone równolegle z regulatorem obciążenia (przełącznik on/off). 3) Podłączyć zasilanie trójfazowe, a następnie, po upewnieniu się, że wszystkie czujniki są prawidłowo podłączone, uruchomić interfejs. 4) Ustawić przełącznik AFTER/BEFORE w pozycji BEFORE. 5) Za pomocą przełącznika series/parallel wybrać równoległe połączenie paneli (pozycja parallel). 6) Włączyć PANEL-1. 7) Włączyć rejestrator, klikając na ikonkę START. 8) Przesunąć suwak SUN-2 do położenia maksymalnego, uzyskując w ten sposób maksymalne natężenie promieniowania. 9) Po ustabilizowaniu się pracy lamp (wskazania SRL) zapisać w tabeli 2 wartości zmierzone przez czujnik prądu DC-1, napięcia DC-2 oraz promieniowania SRL. 10) Zmienić pozycję regulatora obciążenia do wartości około 90% R i zanotować wartości uzyskanych parametrów. 11) Powtarzać punkt 8 zmniejszając obciążenie o ok. 10% aż do osiągnięcia wartości 0% R, która jest punktem zwarcia dla panelu słonecznego. 12) Przywrócić ustawienie początkowe regulatora obciążenia R 13) W celu uzyskania wartości napięcia w obwodzie otwartym (wartość napięcia jałowego) należy ustawić przełącznik obciążenia DC w pozycji 1. W celu otrzymania wartości parametrów oraz wyznaczenia krzywej I-V dla panelu 2, należy wykonać kroki od 6 do 10 pracując z przełącznikami SUN-1 i PANEL-2. Uwaga 1. Należy pamiętać, aby nie pozostawiać przełącznika regulatora obciążenia w pozycji minimalnego oporu przez długi czas! Uwaga 2. Należy upewnić się że podczas wykonywania ćwiczenia akumulator jest odłączony - kontrolka nad przełącznikiem nie świeci się. 8

9 Tabela 2. Zestawienie wyników pomiarów PANEL-1 PANEL-2 Pozycja R I V SRL I V SRL [%] [A] [V] [W/m 2 ] [A] [V] [W/m 2 ] I sc [A] V oc [V] T [ C] * T temperatura panelu Imię i nazwisko studenta: Data wykonania ćwiczenia: 3.3 Analiza wyników 1) W jednym układzie współrzędnych wykreślić krzywą I-V dla obydwu paneli, zapisując w każdym punkcie wykresu wartość zmierzonego promieniowania. 2) Korzystając ze wzoru (1) obliczyć moc paneli i sporządzić w jednym układzie współrzędnych wykresy P-V (zależność mocy panelu od napięcia). 3) Wyznaczyć maksymalną moc obu paneli P max, wartości zaznaczyć na wykresie. 4) Na wykresach I-V zaznaczyć napięcie oraz natężenie dla którego moc paneli jest największa (tzw. punkt przegięcia wykresu I-V). 5) Korzystając ze wzoru (2) obliczyć sprawność paneli i określić maksymalną sprawność pojedynczego panelu. 6) Sformułować wnioski (otrzymane wartości porównać z danymi producenta panelu, wyjaśnić czym mogą być spowodowane różnice). 9

10 4. Sprawozdanie Sprawozdanie powinno zawierać następujące informacje: 1) Skład osobowy grupy oraz podpisy, nazwę kierunku studiów, laboratorium i tytuł ćwiczenia, datę wykonania ćwiczenia, 2) Określenie poszczególnych zadań wraz z ich rozwiązaniem: a) cel i zakres ćwiczenia laboratoryjnego, b) opis rzeczywistego stanowiska badawczego, c) przebieg realizacji eksperymentu, d) wykonanie potrzebnych przeliczeń i zestawień, e) wykresy i charakterystyki (na papierze milimetrowym), f) zestawienie i analiza wyników badań. 3) Posumowanie uzyskanych wyników w postaci wniosków. 5. Wymagania BHP Do wykonania ćwiczeń dopuszczeni są studenci, którzy zostali przeszkoleni (na pierwszych zajęciach) w zakresie szczegółowych przepisów BHP obowiązujących w laboratorium. W trakcie wykonywania ćwiczeń obowiązuje ścisłe przestrzeganie przepisów porządkowych i dokładne wykonywanie poleceń prowadzącego. Wszystkie czynności związane z uruchamianiem urządzeń elektrycznych należy wykonywać za zgodą prowadzącego zajęcia. Zabrania się manipulowania przy wszystkich urządzeniach i przewodach elektrycznych bez polecenia prowadzącego. 5.1 Ostrzeżenia i środki ostrożności 1) Należy unikać bezpośredniego kontaktu wzrokowego z panelem lamp ultrafioletowych, a gdy zaistnieje taka potrzeba stosować okulary ochronne. 2) Nie należy dotykać lamp ani paneli fotowoltaicznych podczas pracy z urządzeniem z uwagi na wysoką temperaturę ich pracy. 3) Urządzenie działa przy stosunkowo wysokich napięć i prądów niebezpiecznych dla ludzi w przypadku bezpośredniego kontaktu. 6. Literatura uzupełniająca 1. Chwieduk D.: Energetyka słoneczna budynku, ARKADY, Warszawa Gronowicz J.: Niekonwencjonalne źródła energii. Radom, Aldo Vieira da Rosa: Fundamentals of renewable energy processes. Amsterdam, Foit H.: Zastosowanie odnawialnych źródeł ciepła w ogrzewnictwie i wentylacji. Gliwice, L. Kołodziejczyk, S. Mańkowski, M. Rubik: Pomiary w inżynierii sanitarnej, Arkady Warszawa

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Ćwiczenie nr 4 Laboratorium z przedmiotu: Alternatywne źródła energii Kod: ŚC3066

Bardziej szczegółowo

Sprawozdanie z laboratorium proekologicznych źródeł energii

Sprawozdanie z laboratorium proekologicznych źródeł energii P O L I T E C H N I K A G D A Ń S K A Sprawozdanie z laboratorium proekologicznych źródeł energii Temat: Wyznaczanie charakterystyk prądowo-napięciowych modułu ogniw fotowoltaicznych i sprawności konwersji

Bardziej szczegółowo

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Ćwiczenie nr 6 Laboratorium z przedmiotu: Odnawialne źródła energii Kod: OM1302

Bardziej szczegółowo

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Badanie własności statycznych siłowników pneumatycznych Ćwiczenie

Bardziej szczegółowo

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych

Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa. Instrukcja do zajęć laboratoryjnych Politechnika Białostocka Wydział Budownictwa i Inżynierii Środowiska Katedra Ciepłownictwa Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: Badanie własności regulacyjnych regulatorów ciśnienia bezpośredniego

Bardziej szczegółowo

Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA

Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA Ćwiczenie E17 BADANIE CHARAKTERYSTYK PRĄDOWO-NAPIĘCIOWYCH MODUŁU OGNIW FOTOWOLTAICZNYCH I SPRAWNOŚCI KONWERSJI ENERGII PADAJĄCEGO PROMIENIOWANIA Cel: Celem ćwiczenia jest zbadanie charakterystyk prądowo

Bardziej szczegółowo

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE

EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE ĆWICZENIE 104 EFEKT FOTOWOLTAICZNY OGNIWO SŁONECZNE Cel ćwiczenia: Wyznaczenie charakterystyki prądowo napięciowej I(V) ogniwa słonecznego przed i po oświetleniu światłem widzialnym; prądu zwarcia, napięcia

Bardziej szczegółowo

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej

POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej POLITECHNIKA WARSZAWSKA Wydział Elektryczny Instytut Elektroenergetyki Zakład Elektrowni i Gospodarki Elektroenergetycznej INSTRUKCJA DO ĆWICZENIA: BADANIE BATERII SŁONECZNYCH W ZALEśNOŚCI OD NATĘśENIA

Bardziej szczegółowo

Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT. Ćwiczenie laboratoryjne Badanie modułu fotowoltaicznego

Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT. Ćwiczenie laboratoryjne Badanie modułu fotowoltaicznego Akademia Górniczo Hutnicza im. Stanisława Staszica w Krakowie Wydział IEiT Katedra Elektroniki Alternatywne Źródła Energii Ćwiczenie laboratoryjne Badanie modułu fotowoltaicznego Opracowanie instrukcji:

Bardziej szczegółowo

BADANIA MODELOWE OGNIW SŁONECZNYCH

BADANIA MODELOWE OGNIW SŁONECZNYCH POZNAN UNIVE RSITY OF TE CHNOLOGY ACADE MIC JOURNALS No 70 Electrical Engineering 2012 Bartosz CERAN* BADANIA MODELOWE OGNIW SŁONECZNYCH W artykule przedstawiono model matematyczny modułu fotowoltaicznego.

Bardziej szczegółowo

SOLARNA. Moduły fotowoltaiczne oraz kompletne systemy przetwarzające energię słoneczną. EKOSERW BIS Sp. j. Mirosław Jedrzejewski, Zbigniew Majchrzak

SOLARNA. Moduły fotowoltaiczne oraz kompletne systemy przetwarzające energię słoneczną. EKOSERW BIS Sp. j. Mirosław Jedrzejewski, Zbigniew Majchrzak Moduły fotowoltaiczne oraz kompletne systemy przetwarzające energię słoneczną ENERGIA SOLARNA Fotowoltaika Do Ziemi dociera promieniowanie słoneczne zbliżone widmowo do promieniowania ciała doskonale czarnego

Bardziej szczegółowo

Ćwiczenie Nr 5. Badanie różnych konfiguracji modułów fotowoltaicznych

Ćwiczenie Nr 5. Badanie różnych konfiguracji modułów fotowoltaicznych Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie Nr 5 Badanie różnych konfiguracji modułów fotowoltaicznych I. Cel ćwiczenia Celem ćwiczenia jest zapoznanie

Bardziej szczegółowo

Rys.2. Schemat działania fotoogniwa.

Rys.2. Schemat działania fotoogniwa. Ćwiczenie E16 BADANIE NATĘŻENIA PRĄDU FOTOELEKTRYCZNEGO W ZALEŻNOŚCI OD ODLEGŁOŚCI ŹRÓDŁA ŚWIATŁA Cel: Celem ćwiczenia jest zbadanie zależności natężenia prądu generowanego światłem w fotoogniwie od odległości

Bardziej szczegółowo

Konfiguracja modułu fotowoltaicznego

Konfiguracja modułu fotowoltaicznego LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 8 Konfiguracja modułu fotowoltaicznego Cel ćwiczenia: Zapoznanie studentów z działaniem modułów fotowoltaicznych, oraz różnymi konfiguracjami połączeń tych modułów.

Bardziej szczegółowo

W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ

W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ POLITECHNIKA BIAŁOSTOCKA Wydział Budownictwa i Inżynierii Środowiska Instrukcja do zajęć laboratoryjnych Temat ćwiczenia: POWIERZCHNIA SWOBODNA CIECZY W NACZYNIU WIRUJĄCYM WOKÓŁ OSI PIONOWEJ Ćwiczenie

Bardziej szczegółowo

Wyznaczanie podstawowych parametrów ogniwa paliwowego

Wyznaczanie podstawowych parametrów ogniwa paliwowego Wyznaczanie podstawowych parametrów ogniwa paliwowego Spis ćwiczeń 1. Charakterystyka IU (prądowo-napięciowa) dla zacienionego i oświetlonego modułu solarnego 2. Natężenie prądu w funkcji odległości i

Bardziej szczegółowo

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe

42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Prąd stały. Prawa, twierdzenia, metody obliczeniowe 42. Prąd stały. Prawa, twierdzenia, metody obliczeniowe Celem ćwiczenia jest doświadczalne sprawdzenie praw obowiązujących w obwodach prądu stałego,

Bardziej szczegółowo

MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV.

MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV. MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV www.oze.utp.edu.pl MOBILNE STANOWISKO DO BADAŃ EFEKTYWNOSCI MODUŁÓW PV Prezentacja stanowiska łącznie z mobilnym układem instalacji solarnej z kolektorem

Bardziej szczegółowo

Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia

Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia MIKROSYSTEMY - laboratorium Ćwiczenie 3 Piezorezystancyjny czujnik ciśnienia: pomiar i wyznaczenie parametrów metrologicznych czujnika i przetwornika ciśnienia Zadania i cel ćwiczenia. W ćwiczeniu zostaną

Bardziej szczegółowo

Instrukcja do ćwiczenia laboratoryjnego nr 6a

Instrukcja do ćwiczenia laboratoryjnego nr 6a Instrukcja do ćwiczenia laboratoryjnego nr 6a Temat: Charakterystyki i parametry półprzewodnikowych przyrządów optoelektronicznych. Cel ćwiczenia: Zapoznać z budową, zasadą działania, charakterystykami

Bardziej szczegółowo

Akademickie Centrum Czystej Energii. Ogniwo paliwowe

Akademickie Centrum Czystej Energii. Ogniwo paliwowe Ogniwo paliwowe 1. Zagadnienia elektroliza, prawo Faraday a, pierwiastki galwaniczne, ogniwo paliwowe 2. Opis Główną częścią ogniwa paliwowego PEM (Proton Exchange Membrane) jest membrana złożona z katody

Bardziej szczegółowo

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI

Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI Instytut Fizyki Doświadczalnej Wydział Matematyki, Fizyki i Informatyki UNIWERSYTET GDAŃSKI I. Zagadnienia do opracowania. 1. Struktura pasmowa ciał stałych. 2. Klasyfikacja ciał stałych w oparciu o teorię

Bardziej szczegółowo

Etapy Projektowania Instalacji Fotowoltaicznej. Analiza kosztów

Etapy Projektowania Instalacji Fotowoltaicznej. Analiza kosztów Etapy Projektowania Instalacji Fotowoltaicznej Analiza kosztów Główne składniki systemu fotowoltaicznego 1 m 2 instalacji fotowoltaicznej może dostarczyć rocznie 90-110 kwh energii elektrycznej w warunkach

Bardziej szczegółowo

INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA

INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 4-EW ELEKTROWNIA WIATROWA ELEKTROWNIA WIATROWA

Bardziej szczegółowo

Ćwiczenie Nr 2 Dopasowanie modeli symulacyjnych ogniw słonecznych do ich charakterystyk rzeczywistych

Ćwiczenie Nr 2 Dopasowanie modeli symulacyjnych ogniw słonecznych do ich charakterystyk rzeczywistych Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie Nr 2 Dopasowanie modeli symulacyjnych ogniw słonecznych do ich charakterystyk rzeczywistych Wstęp teoretyczny.

Bardziej szczegółowo

I we. F (filtr) U we. Rys. 1. Schemat blokowy układu zasilania odbiornika prądu stałego z sieci energetycznej z zastosowaniem stabilizatora napięcia

I we. F (filtr) U we. Rys. 1. Schemat blokowy układu zasilania odbiornika prądu stałego z sieci energetycznej z zastosowaniem stabilizatora napięcia 22 ĆWICZENIE 3 STABILIZATORY NAPIĘCIA STAŁEGO Wiadomości wstępne Stabilizatory napięcia stałego są to układy elektryczne dostarczające do odbiornika napięcie o stałej wartości niezależnie od zmian w określonych

Bardziej szczegółowo

Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych.

Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych. Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Niekonwencjonalne źródła energii Laboratorium Ćwiczenie 1

Bardziej szczegółowo

INSTRUKCJA LABORATORYJNA NR 8-OS a CHARAKTERYSTYKA OGNIW SŁONECZNYCH

INSTRUKCJA LABORATORYJNA NR 8-OS a CHARAKTERYSTYKA OGNIW SŁONECZNYCH LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 8-OS a CHARAKTERYSTYKA OGNIW SŁONECZNYCH 1.

Bardziej szczegółowo

SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D

SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D SPECYFIKACJA PRZETWORNIK RÓŻNICY CIŚNIEŃ DPC250; DPC250-D; DPC4000; DPC4000-D 1. Wprowadzenie...3 1.1. Funkcje urządzenia...3 1.2. Charakterystyka urządzenia...3 1.3. Warto wiedzieć...3 2. Dane techniczne...4

Bardziej szczegółowo

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym?

Ile wynosi całkowite natężenie prądu i całkowita oporność przy połączeniu równoległym? Domowe urządzenia elektryczne są często łączone równolegle, dzięki temu każde tworzy osobny obwód z tym samym źródłem napięcia. Na podstawie poszczególnych rezystancji, można przewidzieć całkowite natężenie

Bardziej szczegółowo

WYDZIAŁ.. LABORATORIUM FIZYCZNE

WYDZIAŁ.. LABORATORIUM FIZYCZNE W S E i Z W WASZAWE WYDZAŁ.. LABOATOUM FZYCZNE Ćwiczenie Nr 10 Temat: POMA OPOU METODĄ TECHNCZNĄ. PAWO OHMA Warszawa 2009 Prawo Ohma POMA OPOU METODĄ TECHNCZNĄ Uporządkowany ruch elektronów nazywa się

Bardziej szczegółowo

Badanie charakterystyki diody

Badanie charakterystyki diody Badanie charakterystyki diody Cel ćwiczenia Celem ćwiczenia jest poznanie charakterystyk prądowo napięciowych różnych diod półprzewodnikowych. Wstęp Dioda jest jednym z podstawowych elementów elektronicznych,

Bardziej szczegółowo

BADANIE DIOD PÓŁPRZEWODNIKOWYCH

BADANIE DIOD PÓŁPRZEWODNIKOWYCH BAANE O PÓŁPZEWONKOWYCH nstytut izyki Akademia Pomorska w Słupsku Cel i ćwiczenia. Celem ćwiczenia jest: - zapoznanie się z przebiegiem charakterystyk prądowo-napięciowych diod różnych typów, - zapoznanie

Bardziej szczegółowo

Eksperyment 2.2. Charakterystyka IU elektrolizera. Zadanie. Wykonanie

Eksperyment 2.2. Charakterystyka IU elektrolizera. Zadanie. Wykonanie Eksperyment 2.2 Charakterystyka IU elektrolizera Zadanie Wyznacz charakterystykę IU elektrolizera i zinterpretuj jej kształt. Ten eksperyment najlepiej jest wykonać przy bezpośrednim promieniowaniu słonecznym

Bardziej szczegółowo

12. FOTOWOLTAIKA IMMERGAS EFEKTYWNE WYTWARZANIE PRĄDU I CIEPŁA

12. FOTOWOLTAIKA IMMERGAS EFEKTYWNE WYTWARZANIE PRĄDU I CIEPŁA 12. FOTOWOLTAIKA IMMERGAS EFEKTYWNE WYTWARZANIE PRĄDU I CIEPŁA 266 www.immergas.com.pl FOTOWOLTAIKA IMMERGAS NOWOCZESNE SYSTEMY GRZEWCZE 12. Nowoczesna fotowoltaika Immergas - efektywne wytwarzanie prądu

Bardziej szczegółowo

Odnawialne Źródła Energii I stopień (I stopień/ II stopień) ogólnoakademicki (ogólnoakademicki/praktyczny)

Odnawialne Źródła Energii I stopień (I stopień/ II stopień) ogólnoakademicki (ogólnoakademicki/praktyczny) KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2016/2017 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów Poziom kształcenia

Bardziej szczegółowo

Aktywne i pasywne systemy energetyki słonecznej w budownictwie

Aktywne i pasywne systemy energetyki słonecznej w budownictwie KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2016/2017 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW Kierunek studiów Poziom kształcenia

Bardziej szczegółowo

Podstawy Elektroenergetyki 2

Podstawy Elektroenergetyki 2 POLITECHNIKA BIAŁOSTOCKA WYDZIAŁ ELEKTRYCZNY Katedra Elektroenergetyki, Fotoniki i Techniki Świetlnej Laboratorium z przedmiotu: Podstawy Elektroenergetyki 2 Kod: ES1A500 037 Temat ćwiczenia: BADANIE SPADKÓW

Bardziej szczegółowo

Projektowanie systemów PV. Produkcja modułu fotowoltaicznego (PV)

Projektowanie systemów PV. Produkcja modułu fotowoltaicznego (PV) Projektowanie systemów PV Wykład 3 Produkcja modułu fotowoltaicznego (PV) dr inż. Janusz Teneta C-3 pok. 8 (parter), e-mail: romus@agh.edu.pl Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej

Bardziej szczegółowo

INSTRUKCJA LABORATORYJNA NR 9-OS b BADANIE WPŁYWU CZYNNIKÓW ZEWNĘTRZNYCH NA CHARAKTERYSTYKĘ OGNIW SŁONECZNYCH

INSTRUKCJA LABORATORYJNA NR 9-OS b BADANIE WPŁYWU CZYNNIKÓW ZEWNĘTRZNYCH NA CHARAKTERYSTYKĘ OGNIW SŁONECZNYCH LABORATORIUM ODNAWIALNYCH ŹRÓDEŁ ENERGII Katedra Aparatury i Maszynoznawstwa Chemicznego Wydział Chemiczny Politechniki Gdańskiej INSTRUKCJA LABORATORYJNA NR 9-OS b BADANIE WPŁYWU CZYNNIKÓW ZEWNĘTRZNYCH

Bardziej szczegółowo

LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ

LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ VIII-EW ELEKTROWNIA WIATROWA LABORATORIUM Z PROEKOLOGICZNYCH ŹRÓDEŁ ENERGII ODNAWIALNEJ Katedra Aparatury i Maszynoznawstwa Chemicznego Instrukcja ćwiczenia nr 8. EW 1 8 EW WYZNACZENIE ZAKRESU PRACY I

Bardziej szczegółowo

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE

Ćwiczenie 2a. Pomiar napięcia z izolacją galwaniczną Doświadczalne badania charakterystyk układów pomiarowych CZUJNIKI POMIAROWE I ELEMENTY WYKONAWCZE Politechnika Łódzka Katedra Mikroelektroniki i Technik Informatycznych 90-924 Łódź, ul. Wólczańska 221/223, bud. B18 tel. 42 631 26 28 faks 42 636 03 27 e-mail secretary@dmcs.p.lodz.pl http://www.dmcs.p.lodz.pl

Bardziej szczegółowo

Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor

Fotoelementy. Symbole graficzne półprzewodnikowych elementów optoelektronicznych: a) fotoogniwo b) fotorezystor Fotoelementy Wstęp W wielu dziedzinach techniki zachodzi potrzeba rejestracji, wykrywania i pomiaru natężenia promieniowania elektromagnetycznego o różnych długościach fal, w tym i promieniowania widzialnego,

Bardziej szczegółowo

Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych"

Ćwiczenie: Właściwości wybranych elementów układów elektronicznych Ćwiczenie: "Właściwości wybranych elementów układów elektronicznych" Opracowane w ramach projektu: "Informatyka mój sposób na poznanie i opisanie świata realizowanego przez Warszawską Wyższą Szkołę Informatyki.

Bardziej szczegółowo

WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW

WIECZOROWE STUDIA ZAWODOWE LABORATORIUM OBWODÓW I SYGNAŁÓW POLTECHNKA WARSZAWSKA NSTYTUT RADOELEKTRONK ZAKŁAD RADOKOMUNKACJ WECZOROWE STUDA ZAWODOWE LABORATORUM OBWODÓW SYGNAŁÓW Ćwiczenie 1 Temat: OBWODY PRĄDU STAŁEGO Opracował: mgr inż. Henryk Chaciński Warszawa

Bardziej szczegółowo

Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED)

Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED) Temat ćwiczenia: Badanie diod półprzewodnikowych i elektroluminescencyjnych (LED) - - ` Symbol studiów (np. PK10): data wykonania ćwiczenia - godzina wykonania ćwiczenia. Nazwisko i imię*: 1 Pluton/Grupa

Bardziej szczegółowo

Ćw. 0 Wprowadzenie do programu MultiSIM

Ćw. 0 Wprowadzenie do programu MultiSIM Ćw. 0 Wprowadzenie do programu MultiSIM 1. Cel ćwiczenia Celem ćwiczenia jest zapoznanie się z programem MultiSIM słuŝącym do symulacji działania układów elektronicznych. Jednocześnie zbadane zostaną podstawowe

Bardziej szczegółowo

Ćwiczenie 5. Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej

Ćwiczenie 5. Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej Ćwiczenie 5 Testowanie ogniwa paliwowego wodorowego zasilanego energią pochodzącą z konwersji fotowoltaicznej Wstęp Ogniwo paliwowe jest urządzeniem elektrochemicznym, które wytwarza energię użyteczną

Bardziej szczegółowo

PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3

PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 PODSTAWY METROLOGII ĆWICZENIE 7 TEMPERATURA Międzywydziałowa Szkoła Inżynierii Biomedycznej 2009/2010 SEMESTR 3 Rozwiązania zadań nie były w żaden sposób konsultowane z żadnym wiarygodnym źródłem informacji!!!

Bardziej szczegółowo

Badanie ogniw fotowoltaicznych

Badanie ogniw fotowoltaicznych Badanie ogniw fotowoltaicznych Mikołaj Kordowski 1, Maciej Jabłoński 2, Kamil Bartosiewicz 3, Jarosław Rybusiński 4 1Gimnazjum nr 77 im. Ignacego Domeyki w Warszawie, ul. Staffa 3/5, 01-891 Warszawa 2XIV

Bardziej szczegółowo

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH

LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 POLITECHNIKA ŁÓDZKA KATEDRA PRZYRZĄDÓW PÓŁPRZEWODNIKOWYCH I OPTOELEKTRONICZNYCH LABORATORIUM ELEKTRONIKI ĆWICZENIE 4 Parametry statyczne tranzystorów polowych złączowych Cel ćwiczenia Podstawowym celem ćwiczenia jest poznanie statycznych charakterystyk tranzystorów polowych złączowych

Bardziej szczegółowo

Ćwiczenie nr 3. Badanie instalacji fotowoltaicznej DC z akumulatorem

Ćwiczenie nr 3. Badanie instalacji fotowoltaicznej DC z akumulatorem Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Laboratorium Fotowoltaiki Ćwiczenie nr 3 Badanie instalacji fotowoltaicznej DC z akumulatorem OPIS STANOWISKA ORAZ INSTALACJI OGNIW SŁONECZNYCH.

Bardziej szczegółowo

Wyznaczanie parametrów baterii słonecznej

Wyznaczanie parametrów baterii słonecznej Wyznaczanie parametrów baterii słonecznej Obowiązkowa znajomość zagadnień Działanie ogniwa fotowoltaicznego. Złącze p-n. Parametry charakteryzujące ogniwo fotowoltaiczne. Zastosowanie ogniw fotowoltaicznych.

Bardziej szczegółowo

Laboratorium Metrologii

Laboratorium Metrologii Laboratorium Metrologii Ćwiczenie nr 3 Oddziaływanie przyrządów na badany obiekt I Zagadnienia do przygotowania na kartkówkę: 1 Zdefiniować pojęcie: prąd elektryczny Podać odpowiednią zależność fizyczną

Bardziej szczegółowo

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH

P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH P O L I T E C H N I K A Ł Ó D Z K A INSTYTUT ELEKTROENERGETYKI ZAKŁAD ELEKTROWNI LABORATORIUM POMIARÓW I AUTOMATYKI W ELEKTROWNIACH Badanie siłowników INSTRUKCJA DO ĆWICZENIA LABORATORYJNEGO ŁÓDŹ 2011

Bardziej szczegółowo

Ogniwa fotowoltaiczne

Ogniwa fotowoltaiczne Ogniwa fotowoltaiczne Systemy fotowoltaiczne wykorzystują zjawisko konwersji energii słonecznej na energię elektryczną. Wykonane są z głównie z krzemu. Gdy na ogniwo padają promienie słoneczne pomiędzy

Bardziej szczegółowo

Technologia produkcji paneli fotowoltaicznych

Technologia produkcji paneli fotowoltaicznych partner modułów Technologia produkcji paneli Polsko-Niemieckie Forum Energetyki Słonecznej 07.06.2013r GE partner modułów Fotowoltaika zasada działania GE partner modułów GE partner modułów Rodzaje ogniw

Bardziej szczegółowo

LVII Olimpiada Fizyczna (2007/2008)

LVII Olimpiada Fizyczna (2007/2008) LVII Olimpiada Fizyczna (2007/2008) Zadanie doświadczalne Masz do dyspozycji: baterię słoneczną, sześć różnych oporników o oporach 100Ω, 500Ω, 1000Ω, 2200Ω, 3000Ω, 4300Ω określonych z dokładnością 5%,

Bardziej szczegółowo

Laboratorium ogniw paliwowych i produkcji wodoru

Laboratorium ogniw paliwowych i produkcji wodoru Instrukcja System ogniw paliwowych typu PEM, opr. M. Michalski, J. Długosz; Wrocław 2014-12-03, str. 1 Laboratorium ogniw paliwowych i produkcji wodoru System ogniw paliwowych typu PEM Instrukcja System

Bardziej szczegółowo

Lekcja 14. Obliczanie rozpływu prądów w obwodzie

Lekcja 14. Obliczanie rozpływu prądów w obwodzie Lekcja 14. Obliczanie rozpływu prądów w obwodzie Zad 1.Oblicz wartość rezystancji zastępczej obwodu z rysunku. Dane: R1= 10k, R2= 20k. Zad 2. Zapisz równanie I prawa Kirchhoffa dla węzła obwodu elektrycznego

Bardziej szczegółowo

LVII Olimpiada Fizyczna (2007/2008)

LVII Olimpiada Fizyczna (2007/2008) LVII Olimpiada Fizyczna (2007/2008) Zadanie doświadczalne Masz do dyspozycji: baterię słoneczną, sześć różnych oporników o oporach 100Ω, 500Ω, 1000Ω, 2200Ω, 3000Ω, 4300Ω określonych z dokładnością 5%,

Bardziej szczegółowo

Rys. 1. Układ informacji na wyświetlaczu układu MPPT

Rys. 1. Układ informacji na wyświetlaczu układu MPPT Przetwarzanie energii elektrycznej w fotowoltaice Poszukiwanie punktu mocy maksymalnej modułu fotowoltaicznego wer. 1.0.1, 2014 opracowanie: Łukasz Starzak Układ pomiarowy Układ śledzenia punktu mocy maksymalnej

Bardziej szczegółowo

Badanie wyspowej instalacji fotowoltaicznej

Badanie wyspowej instalacji fotowoltaicznej LABORATORIUM OPTOELEKTRONIKI Ćwiczenie 6 Badanie wyspowej instalacji fotowoltaicznej Cel ćwiczenia: Zapoznanie studentów z działaniem wyspowej instalacji fotowoltaicznej. Badane elementy: Laboratoryjna

Bardziej szczegółowo

CLA. Przetwornik temperatury z wyjściem 4 20mA. wyprodukowano dla

CLA. Przetwornik temperatury z wyjściem 4 20mA. wyprodukowano dla Wersja 1.0 21.06.2012 wyprodukowano dla Dziękujemy za wybór naszego produktu. Niniejsza instrukcja ułatwi Państwu prawidłową obsługę i poprawną eksploatację opisywanego urządzenia. Informacje zawarte w

Bardziej szczegółowo

Interfejs USB-RS485 KOD: INTUR. v.1.0. Zastępuje wydanie: 2 z dnia 19.12.2012

Interfejs USB-RS485 KOD: INTUR. v.1.0. Zastępuje wydanie: 2 z dnia 19.12.2012 Interfejs USB-RS485 v.1.0 KOD: PL Wydanie: 3 z dnia 05.12.2013 Zastępuje wydanie: 2 z dnia 19.12.2012 SPIS TREŚCI 1. Opis ogólny.... 3 2. Instalacja interfejsu w systemie operacyjnym.... 4 3. Przyłączenie

Bardziej szczegółowo

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja

UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO. Ćwiczenie laboratoryjne Nr.2. Elektroluminescencja UNIWERSYTET SZCZECIŃSKI INSTYTUT FIZYKI ZAKŁAD FIZYKI CIAŁA STAŁEGO Ćwiczenie laboratoryjne Nr.2 Elektroluminescencja SZCZECIN 2002 WSTĘP Mianem elektroluminescencji określamy zjawisko emisji spontanicznej

Bardziej szczegółowo

Słońce pracujące dla firm

Słońce pracujące dla firm Słońce pracujące dla firm Po co płacić za prąd pobierany z sieci skoro możesz go wytworzyć sam! Fotowoltaika to przetwarzanie energii słonecznej w energię elektryczną przy pomocy ogniw słonecznych. Na

Bardziej szczegółowo

Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych.

Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych. Politechnika Łódzka Wydział Elektrotechniki, Elektroniki, Informatyki i Automatyki Katedra Przyrządów Półprzewodnikowych i Optoelektronicznych Niekonwencjonalne źródła energii Laboratorium Ćwiczenie 3

Bardziej szczegółowo

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L2 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE P

AUTOMATYKA I STEROWANIE W CHŁODNICTWIE, KLIMATYZACJI I OGRZEWNICTWIE L2 STEROWANIE INWERTEROWYM URZĄDZENIEM CHŁODNICZYM W TRYBIE P ĆWICZENIE LABORAORYJNE AUOMAYKA I SEROWANIE W CHŁODNICWIE, KLIMAYZACJI I OGRZEWNICWIE L2 SEROWANIE INWEREROWYM URZĄDZENIEM CHŁODNICZYM W RYBIE P Wersja: 2013-09-30-1- 2.1. Cel ćwiczenia Celem ćwiczenia

Bardziej szczegółowo

Elektrotechnika II stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES)

Elektrotechnika II stopień (I stopień / II stopień) Ogólnoakademicki (ogólnoakademicki / praktyczny) kierunkowy (podstawowy / kierunkowy / inny HES) KARTA MODUŁU / KARTA PRZEDMIOTU Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/2013

Bardziej szczegółowo

Obwody liniowe. Sprawdzanie praw Kirchhoffa

Obwody liniowe. Sprawdzanie praw Kirchhoffa POLTECHNK ŚLĄSK WYDZŁ NŻYNER ŚRODOWSK ENERGETYK NSTYTT MSZYN RZĄDZEŃ ENERGETYCZNYCH LBORTORM ELEKTRYCZNE Obwody liniowe. Sprawdzanie praw Kirchhoffa (E 2) Opracował: Dr inż. Włodzimierz OGLEWCZ 3 1. Cel

Bardziej szczegółowo

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą.

Ćwiczenie nr 9. Pomiar rezystancji metodą porównawczą. Ćwiczenie nr 9 Pomiar rezystancji metodą porównawczą. 1. Cel ćwiczenia Celem ćwiczenia jest praktyczne poznanie różnych metod pomiaru rezystancji, a konkretnie zapoznanie się z metodą porównawczą. 2. Dane

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE

WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE WYMAGANIA EDUKACYJNE I KRYTERIA OCENIANIA Z PRZEDMIOTU POMIARY W ELEKTROTECHNICE I ELEKTRONICE Klasa: 1 i 2 ZSZ Program: elektryk 741103 Wymiar: kl. 1-3 godz. tygodniowo, kl. 2-4 godz. tygodniowo Klasa

Bardziej szczegółowo

Laboratorium z Konwersji Energii. Kolektor słoneczny

Laboratorium z Konwersji Energii. Kolektor słoneczny Laboratorium z Konwersji Energii Kolektor słoneczny 1.0 WSTĘP Kolektor słoneczny to urządzenie służące do bezpośredniej konwersji energii promieniowania słonecznego na ciepło użytkowe. Podział urządzeń

Bardziej szczegółowo

Produkcja modułu fotowoltaicznego (PV)

Produkcja modułu fotowoltaicznego (PV) Czyste energie Wykład 3 Produkcja modułu fotowoltaicznego (PV) dr inż. Janusz Teneta C-3 pok. 8 (parter), e-mail: romus@agh.edu.pl Wydział EAIiIB Katedra Automatyki i Inżynierii Biomedycznej AGH Kraków

Bardziej szczegółowo

INSTRUKCJA OBSŁUGI ZASILACZ PWS-500B

INSTRUKCJA OBSŁUGI ZASILACZ PWS-500B INSTRUKCJA OBSŁUGI ZASILACZ PWS-500B Spis treści 1. WSTĘP 2. OPIS TECHNICZNY 3. INSTALOWANIE, OBSŁUGA, EKSPLOATACJA POLWAT IO-PWS-500B Strona 2 z 8 1. WSTĘP Zasilacz PWS-500B jest podzespołem wg normy

Bardziej szczegółowo

Elementy elektroniczne i przyrządy pomiarowe

Elementy elektroniczne i przyrządy pomiarowe Elementy elektroniczne i przyrządy pomiarowe Cel ćwiczenia. Nabycie umiejętności posługiwania się miernikami uniwersalnymi, oscyloskopem, generatorem, zasilaczem, itp. Nabycie umiejętności rozpoznawania

Bardziej szczegółowo

LV6. Pomiary mocy i energii w jednofazowych obwodach prądu przemiennego

LV6. Pomiary mocy i energii w jednofazowych obwodach prądu przemiennego LV6 Pomiary mocy i energii w jednofazowych obwodach prądu przemiennego Celem ćwiczenia jest zapoznanie z problematyką wyznaczania wartości mocy i energii z próbek sygnału zebranych w obwodzie pomiarowym

Bardziej szczegółowo

Fotowoltaika. Szansa na darmowy prąd

Fotowoltaika. Szansa na darmowy prąd Fotowoltaika. Szansa na darmowy prąd Promieniowanie Słoneczne W P o l s c e n a 1 m 2 p r z y p a d a o k o ł o 1 0 0 0 K W h R ó ż n i c e w n a s ł o n e c z n i e n i u w y n o s z ą m n i e j n i ż

Bardziej szczegółowo

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji

Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa. Katedra Architektury Komputerów i Telekomunikacji Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Elektronika Laboratorium nr 1 Temat: Pomiary podstawowych wielkości elektrycznych: prawa Ohma i Kirchhoffa Katedra Architektury Komputerów i Telekomunikacji

Bardziej szczegółowo

Moduły fotowoltaiczne w kamperach, przyczepach kempingowych i na jachtach.

Moduły fotowoltaiczne w kamperach, przyczepach kempingowych i na jachtach. Moduły fotowoltaiczne w kamperach, przyczepach kempingowych i na jachtach. Moduły fotowoltaiczne (w skrócie moduły PV) są to urządzenia, w których zachodzi bezpośrednia konwersja energii promieniowania

Bardziej szczegółowo

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO

Ć w i c z e n i e 1 POMIARY W OBWODACH PRĄDU STAŁEGO Ć w i c z e n i e POMIAY W OBWODACH PĄDU STAŁEGO. Wiadomości ogólne.. Obwód elektryczny Obwód elektryczny jest to układ odpowiednio połączonych elementów przewodzących prąd i źródeł energii elektrycznej.

Bardziej szczegółowo

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora

ELEMENTY ELEKTRONICZNE. Układy polaryzacji i stabilizacji punktu pracy tranzystora Politechnika Białostocka Wydział Elektryczny Katedra Automatyki i Elektroniki Instrukcja do ćwiczeń laboratoryjnych z przedmiotu: ELEMENTY ELEKTRONICZNE TS1C300 018 Układy polaryzacji i stabilizacji punktu

Bardziej szczegółowo

Ćwiczenie M-2 Pomiar mocy

Ćwiczenie M-2 Pomiar mocy POLITECHNIKA ŚLĄSKA W GLIWICACH WYDZIAŁ INŻYNIERII ŚRODOWISKA I ENERGETYKI INSTYTUT MASZYN I URZĄDZEŃ ENERGETYCZNYCH INSTRUKCJA do ćwiczeń laboratoryjnych z Metrologii wielkości energetycznych Ćwiczenie

Bardziej szczegółowo

Badanie ogniwa fotowoltaicznego

Badanie ogniwa fotowoltaicznego Badanie ogniwa fotowoltaicznego Cel ćwiczenia Zapoznanie się z podstawowymi wiadomościami na temat ogniw fotowoltaicznych oraz wyznaczenie: zależności prądu fotoogniwa od natężenia oświetlenia, charakterystyk

Bardziej szczegółowo

ELEKTROTECHNIKA I ELEKTRONIKA

ELEKTROTECHNIKA I ELEKTRONIKA UNIWERSYTET TECHNOLOGICZNO-PRZYRODNICZY W BYDGOSZCZY WYDZIŁ INŻYNIERII MECHNICZNEJ INSTYTUT EKSPLOTCJI MSZYN I TRNSPORTU ZKŁD STEROWNI ELEKTROTECHNIK I ELEKTRONIK ĆWICZENIE: E2 POMIRY PRĄDÓW I NPIĘĆ W

Bardziej szczegółowo

PVCHECK Rel. 2.04 18/01/13

PVCHECK Rel. 2.04 18/01/13 Meter for safety, functionality and performance on PV plants Pag 1 of 7 Wielofunkcyjny przyrząd PVCHECK wykonuje szybkie i bezpieczne kontrole elektryczne wymagane dla systemów fotowoltaicznych (sekcja

Bardziej szczegółowo

Tranzystor. C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz2b.cmr

Tranzystor. C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz2b.cmr Tranzystor Program: Coach 6 Projekt: komputer H : C:\Program Files (x86)\cma\coach6\full.en\cma Coach Projects\PTSN Coach 6 \Elektronika\Tranzystor_cz1.cmr C:\Program Files (x86)\cma\coach6\full.en\cma

Bardziej szczegółowo

teoretyczne podstawy działania

teoretyczne podstawy działania Techniki Niskotemperaturowe w medycynie Seminarium Termoelektryczne urządzenia chłodnicze - teoretyczne podstawy działania Edyta Kamińska IMM II st. Sem I 1 Spis treści Termoelektryczność... 3 Zjawisko

Bardziej szczegółowo

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH

POMIARY MOCY (OBWODY JEDNO- I TRÓJFAZOWE). POMIARY PRĄDÓW I NAPIĘĆ W OBWODACH TRÓJFAZOWYCH POMIRY MOCY (OBWODY JEDNO- I TRÓJFZOWE). POMIRY PRĄDÓW I NPIĘĆ W OBWODCH TRÓJFZOWYCH. Pomiary mocy w obwodach jednofazowych W obwodach prądu stałego moc określamy jako iloczyn napięcia i prądu stałego,

Bardziej szczegółowo

Odnawialne źródła energii

Odnawialne źródła energii KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Odnawialne źródła energii Nazwa modułu w języku angielskim Renewable energy sources Obowiązuje od roku akademickiego 2012/2013 A. USYTUOWANIE MODUŁU

Bardziej szczegółowo

Sprzęt i architektura komputerów

Sprzęt i architektura komputerów Bogdan Olech Mirosław Łazoryszczak Dorota Majorkowska-Mech Sprzęt i architektura komputerów Laboratorium Temat:Pomiary podstawowych wielkości elektryczych: prawa Ohma i Kirchhoffa Katedra Architektury

Bardziej szczegółowo

190-210. DIAMOND Seria WYSOKA JAKOŚĆ MODUŁÓW FOTOWOLTAICZNYCH O PHONO SOLAR DZIEL SIĘ SŁOŃCEM, UMACNIAJ PRZYSZŁOŚĆ! MONO POLY

190-210. DIAMOND Seria WYSOKA JAKOŚĆ MODUŁÓW FOTOWOLTAICZNYCH O PHONO SOLAR DZIEL SIĘ SŁOŃCEM, UMACNIAJ PRZYSZŁOŚĆ! MONO POLY POLY MONO O PHONO SOLAR Phono Solar Technology Co., Ltd. jest jednym z wiodących producentów wyrobów do wytwarzania energii odnawialnej na świecie oraz zaufanym usługodawcą. Marka Phono Solar stała się

Bardziej szczegółowo

ĆWICZENIE 2 Badanie obwodów trójfazowych z odbiornikiem połączonym w gwiazdę

ĆWICZENIE 2 Badanie obwodów trójfazowych z odbiornikiem połączonym w gwiazdę Laboratorium Wirtualne Obwodów w Stanach stalonych i ieustalonych ĆWZ adanie obwodów trójowych z odbiornikiem połączonym w gwiazdę. el ćwiczenia Zapoznanie się z rozpływem prądów, rozkładem napięć i poborem

Bardziej szczegółowo

Pomiary elektryczne modeli laboratoryjnych turbiny wiatrowej i ogniwa PV

Pomiary elektryczne modeli laboratoryjnych turbiny wiatrowej i ogniwa PV Pomiary elektryczne modeli laboratoryjnych turbiny wiatrowej i ogniwa PV Tomasz Jarmuda, Grzegorz Trzmiel, Dorota Typańska 1. Wprowadzenie Odnawialne źródła energii, takie jak wiatr i Słońce, mają coraz

Bardziej szczegółowo

Ćwiczenie 6. Wyznaczanie parametrów eksploatacyjnych kolektora słonecznego

Ćwiczenie 6. Wyznaczanie parametrów eksploatacyjnych kolektora słonecznego Ćwiczenie 6 Wyznaczanie parametrów eksploatacyjnych kolektora słonecznego Wstęp Kolektor słoneczny jest urządzeniem do konwersji energii promieniowania słonecznego na ciepło. Energia docierająca do kolektora

Bardziej szczegółowo

Ładowarka UAC-01. Przeznaczenie. Parametry Techniczne

Ładowarka UAC-01. Przeznaczenie. Parametry Techniczne Ładowarka UAC-01 Przeznaczenie Ładowarka UAC - 01 jest nowoczesnym mikroprocesorowym urządzeniem przeznaczonym do ładowania wszystkich typów lamp górniczych produkowanych przez FASER S.A. w Tarnowskich

Bardziej szczegółowo

Gimnazjum nr 2 im. Karpatczyków w Nysie

Gimnazjum nr 2 im. Karpatczyków w Nysie Surowce energetyczne możemy podzielić na konwencjonalne (wyczerpywalne) i odnawialne. Do najważniejszych surowców energetyki konwencjonalnej należą: węgiel kamienny, węgiel brunatny, torf, ropa naftowa

Bardziej szczegółowo

Regulator ładowania Steca Tarom MPPT MPPT 6000

Regulator ładowania Steca Tarom MPPT MPPT 6000 Regulator ładowania Steca Tarom MPPT MPPT 6000 Regulator ładowania Steca Tarom MPPT 6000 wyznacza nowe standardy w obszarze regulatorów MPPT. Nadzwyczajna sprawność z unikalnymi cechami bezpieczeństwa

Bardziej szczegółowo

Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie ładowania i rozładowywania kondensatora

Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie ładowania i rozładowywania kondensatora Małgorzata Marynowska Uniwersytet Wrocławski, I rok Fizyka doświadczalna II stopnia Prowadzący: dr M. Grodzicki Data wykonania ćwiczenia: 17.03.2015 Pracownia pomiarów i sterowania Ćwiczenie 4 Badanie

Bardziej szczegółowo