INFORMATYKA W CHEMII. Dr Piotr Szczepański. Katedra Chemii Fizycznej i Fizykochemii Polimerów. pok. 256 B

Wielkość: px
Rozpocząć pokaz od strony:

Download "INFORMATYKA W CHEMII. Dr Piotr Szczepański. Katedra Chemii Fizycznej i Fizykochemii Polimerów. pok. 256 B"

Transkrypt

1 INFORMATYKA W CHEMII Dr Piotr Szczepański Katedra Chemii Fizycznej i Fizykochemii Polimerów pok. 256 B

2 INFORMATYKA W CHEMII Wykładowca: dr Piotr Szczepański, Katedra Chemii Fizycznej i Fizykochemii Polimerów, p. 256 B Pracownia: Opieka techniczna i administracyjna: inż. Dariusz Czerwiński Prowadzący zajęcia: dr hab. Stanisław Koter, prof. UMK dr hab. Wojciech Kujawski dr Izabela Koter Dr Ewa Olewnik Dr Magdalena Gierszewska-Drużyńska dr Piotr Adamczak dr Jacek Nowaczyk mgr Andrzej Oberta dr Piotr Szczepański

3 ZASADY ZALICZENIA PRZEDMIOTU Pracownia Informatyki 45 h (40%) - poprawne wykonanie odpowiedniej ilości zadań na komputerze - zaliczenie dwóch kolokwiów Test egzaminacyjny (60%) - poprawne wykonanie odpowiedniej ilości zadań

4 PRACOWNIA INFORMATYKI Wymiar: 45 h (15 x 2h 15 min) Zad. 1. Wartość średnia, odchylenie standardowe, miary dyspersji Zad. 2. Zależność wartości średniej oraz miar dyspersji od liczności próbek Zad. 3. Zastosowanie regresji liniowej do obliczania stałej szybkości reakcji I-rzędu Zad. 4. Obliczanie ph mieszaniny dwóch kwasów Zad.10. Liniowa regresja wielokrotna Zad.11. Regresja liniowa transformacje linearyzujące Zad.12. Całkowanie numeryczne: metoda prostokątów, trapezów i Simpsona Zad.14. Optymalizacja sympleksowa

5 ZAKRES MATERIAŁU [wg materiałów pomocniczych dostępnych na Pracowni Informatyki Chemii] Wykład wymiar: 15 h (1x1h + 7x2h) ROZWÓJ INFORMATYKI I KOMPUTERÓW CHARAKTERYSTYCZNE CECHY KOMPUTERÓW PODSTAWOWE ZASTOSOWANIA KOMPUTERÓW W CHEMII I NAUCE ALGORYTM [zasady projektowania, ocena] BŁĄD I STATYSTYKA [błąd systematyczny, błąd przypadkowy, dokładność, precyzja] LICZBY ZNACZĄCE STATYSTYCZNA OCENA WYNIKÓW DOŚWIADCZEŃ [liczność, średnia, odchylenie standardowe a niepewność standardowa] POWIELANIE BŁĘDU [zasada oceny błędu, rodzaje niepewności] ANALIZA REGRESJI - DOPASOWANIE KRZYWYCH I DANYCH DOŚWIADCZALNYCH [metoda najmniejszych kwadratów] REGRESJA LINIOWA [podstawy, regresja ważona, analiza reszt, współczynnik korelacji, błąd standardowy] REGRESJA NIELINIOWA [podstawy, wielomiany w analizie regresji] TRANSFORMACJA LINEARYZUJĄCA

6 ZAKRES MATERIAŁU c.d. [wg materiałów pomocniczych dostępnych na Pracowni Informatyki Chemii] LINIOWA REGRESJA WIELOKROTNA [model, współczynniki, wariancja] REDUKCJA MODELU PROCEDURY KROKOWE [wybór zmiennych] CAŁKOWANIE NUMERYCZNE [całka i jej interpretacja geometryczna] METODA TRAPEZÓW [algorytm, ocena błędu] METODA SIMPSONA [algorytm, ocena błędu] METODA GAUSSA-LEGENDRE'A [zasada, przeznaczenie] ROZWIĄZYWANIE RÓWNAŃ RÓŻNICZKOWYCH [podstawy] METODA RUNGEGO - KUTTY [algorytm, ocena błędu] METODA MILNE'A (PREDYKTOR-KOREKTOR) [algorytm, ocena błędu] ROZWIĄZYWANIE UKŁADÓW RÓWNAŃ RÓWNANIA LINIOWE [met. Cramera, met. Gaussa-Seidla, met. Gaussa-Jordana] RÓWNANIA NIELINIOWE [metoda Newtona-Raphsona] INTERPOLACJA [wg Lagrange'a, różnice i ilorazy różnicowe, wielomian interpolacyjny Newtona] RÓŻNICZKOWANIE NUMERYCZNE [wg Lagrange'a, wg Newtona]

7 ZAKRES MATERIAŁU c.d. [wg materiałów pomocniczych dostępnych na Pracowni Informatyki Chemii] OPTYMALIZACJA I PLANOWANIE DOŚWIADCZEŃ [przegląd metod] PROSTA METODA SYMPLEKSOWA [algorytm, reguły] OPTYMALIZACJA METODĄ NELDERA-MEADA [algorytm, ekspansja, kontrakcja] ZASTOSOWANIE W CHEMII METODY MONTE CARLO - CAŁKOWANIE I SYMULACJA LICZBY PSEUDOLOSOWE [generatory, transformacja rozkładu] CAŁKOWANIE METODĄ MONTE CARLO [zasada, zależność od parametrów] SYMULACJA METODĄ MONTE CARLO [chromatografia] SZTUCZNA INTELIGENCJA I SYSTEMY EKSPERTOWE [podstawy] KOMPUTEROWE WSPOMAGANIE BADAŃ CHEMICZNYCH [bazy danych, systemy ekspertowe]

8 LITERATURA 1. R. Wódzki, Zastosowanie informatyki w chemii, Toruń Z. Fortuna, B. Macukow, J. Wąsowski, Metody numeryczne, WNT H. Hänsel, Podstawy rachunku błędów, WNT A. Ralston, Wstęp do analizy numerycznej, PWN J.B. Czermiński, A. Iwasiewicz, Z. Paszek, A. Sikorski, Metody statystyczne dla chemików, PWN A. Łomnicki, Wprowadzenie do statystyki dla przyrodników, PWN, Warszawa J. Arendalski, Niepewność pomiarów, Oficyna wydawnicza PW J. Kornacki, J. Mielniczuk, Statystyka dla studentów kierunków technicznych i przyrodniczych, WNT E. Bulska, Metrologia chemiczna, Wydawnictwo MALAMUT, Warszawa P. Konieczka, J. Namieśnik, Ocena i kontrola jakości wyników pomiarów analitycznych, W. N.-T., Warszawa 2007

9 TEST EGZAMINACYJNY 1. Czas trwania: 2 h 2. Forma: test 3. Niezbędne: kalkulator, wiedza 4. Dozwolone jest korzystanie z notatek, książek i innych materiałów 5. Niedozwolone: korzystanie z rozwiązanych testów, pomoc koleżeńska

10 TEST EGZAMINACYJNY - PRZYKŁAD

11 Od lipca 2006 Wydział Chemii UMK przystąpił do programu MSDN Academic Alliance, w ramach którego pracownicy wydziału (związani z dydaktyką) oraz studenci mają możliwość otrzymania legalnego oprogramowania firmy Microsoft. Szczegółowy wykaz oprogramowania znajduje się na stronie msdnaa.chem.uni.torun.pl

12 Produkty wchodzące w skład MSDN AA: 1) Windows 7, Windows XP i inne systemy operacyjne Microsoft 2) Microsoft Access 3) Microsoft Visio Professional 4) Microsoft One Note 5) Microsoft Info Path 6) Microsoft Project Professional 7) Visual Studio.NET Professional 8) Windows 2003 Serwer 9).NET Enterprise Servers: Windows Server, SQL Server, Exchange Server, Commerce Server, 10) BizTalk Server, Systems Management Server, Sharepoint Portal Server 11) MSDN Library (kwartalnie aktualizowana dokumentacja, artykuły i przykładowy kod) 12) Software Development Kits (SDKs) oraz bety oprogramowania i aktualizacje. 13) Narzędzia programistyczne dla Windows CE 14) Nowe wersje oprogramowania, beta wersje i poprawki

13 Aby uzyskać konto w systemie ELMS niezbędne jest: posiadanie ważnego konta na Serwerze Wydziału (pracownicy) lub na serwerze 'student.uni.torun.pl' (studenci Wydziału Chemii. Informacje o sposobie założenia konta znajdują się na stronach Konta założone na innych serwerach nie będą honorowane. Wysłanie na adres administratora zawierający: nagłówek: treść linia: Rejestracja w systemie MSDNA 1. adres 2. imię i nazwisko 3. nr indeksu 4. rok rozpoczęcia studiów

14 Po dokonaniu rejestracji w ciągu 48 godzin zostanie wysłany list przez system ELMS do użytkownika z hasłem loginem oraz adresem strony Wydziału w systemie ELMS Autoryzowany użytkownik ma prawo do pobierania oprogramowania dostępnego na liście programów systemu ELMS. Pobieranie oprogramowania innej wersji niż polska lub angielska jest możliwe po uzgodnieniu z administratorem.

INFORMATYKA W CHEMII. Dr Piotr Szczepański. Katedra Chemii Fizycznej i Fizykochemii Polimerów. pok. 256 B

INFORMATYKA W CHEMII. Dr Piotr Szczepański. Katedra Chemii Fizycznej i Fizykochemii Polimerów. pok. 256 B INFORMATYKA W CHEMII Dr Piotr Szczepański Katedra Chemii Fizycznej i Fizykochemii Polimerów pok. 256 B INFORMATYKA W CHEMII Wykładowca: dr Piotr Szczepański, e-mail: piotrs@chem.umk.pl Katedra Chemii Fizycznej

Bardziej szczegółowo

Podstawy informatyki i algorytmizacji. Wykład 1 organizacja zajęć

Podstawy informatyki i algorytmizacji. Wykład 1 organizacja zajęć Pracownia Informatyczna Instytut Technologii Mechanicznej Wydział Inżynierii Mechanicznej i Mechatroniki Podstawy informatyki i algorytmizacji Wykład 1 organizacja zajęć dr inż. Maria Lachowicz 1. CEL

Bardziej szczegółowo

PROGRAM MICROSOFT DEVELOPER NETWORK ACADEMIC ALLIANCE MSDN AA

PROGRAM MICROSOFT DEVELOPER NETWORK ACADEMIC ALLIANCE MSDN AA PROGRAM MICROSOFT DEVELOPER NETWORK ACADEMIC ALLIANCE MSDN AA Wydział Matematyczno-Przyrodniczy Szkoła Nauk Ścisłych Koło Naukowe Informatyków FRAKTAL Opracował : Michał Wójcik, II rok MU IiE CZYM JEST

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2016/2017 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 206/207 Kierunek studiów: Budownictwo Profil:

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

Prezentacja kierunku Informatyka w I Liceum Ogólnokształcącym im. Stanisława Wyspiańskiego w Szubinie

Prezentacja kierunku Informatyka w I Liceum Ogólnokształcącym im. Stanisława Wyspiańskiego w Szubinie Kwalifikacje kadry dydaktycznej kluczem do rozwoju Uczelni PROJEKT WSPÓŁFINANSOWANY ZE ŚRODKÓW UNII EUROPEJSKIEJ W RAMACH EUROPEJSKIEGO FUNDUSZU SPOŁECZNEGO Prezentacja kierunku Informatyka w I Liceum

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Elementy metod obliczeniowych. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Elementy metod obliczeniowych. 2. KIERUNEK: Matematyka. 3. POZIOM STUDIÓW: I stopnia KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Elementy metod obliczeniowych 2. KIERUNEK: Matematyka 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: III/5 5. LICZBA PUNKTÓW ECTS: 3 6. LICZBA GODZIN: 15 wykład

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYKA MATEMATYCZNA Nazwa w języku angielskim Mathematical Statistics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia

Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Nazwa modułu kształcenia Nazwa jednostki prowadzącej moduł Kod modułu Język kształcenia Efekty kształcenia dla modułu kształcenia Numeryczne rozwiązywanie równań różniczkowych zwyczajnych Wydział Matematyki

Bardziej szczegółowo

KARTA KURSU (realizowanego w module specjalności) Metody numeryczne

KARTA KURSU (realizowanego w module specjalności) Metody numeryczne KARTA KURSU (realizowanego w module ) Administracja systemami informatycznymi (nazwa ) Nazwa Nazwa w j. ang. Metody numeryczne Numerical methods Kod Punktacja ECTS* 3 Koordynator dr Kazimierz Rajchel Zespół

Bardziej szczegółowo

Katarzyna Pękala MSDN AA Program Manager Microsoft

Katarzyna Pękala MSDN AA Program Manager Microsoft Katarzyna Pękala MSDN AA Program Manager Microsoft Bezpłatne oprogramowanie Microsoft; MSDN AA, wersje Express, Wyobraź sobie świat konkurs Imagine Cup; Inne inicjatywy; społeczności, certyfikacje, Microsoft

Bardziej szczegółowo

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures.

ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. Algorytmy i struktury danych. Metody numeryczne ECTS (Część 2. Metody numeryczne) Nazwa w języku angielskim: Algorithms and data structures. dzienne magisterskie Numerical methods. (Part 2. Numerical methods)

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni 30 30 WYDZIAŁ ARCHITEKTURY KARTA PRZEDMIOTU Nazwa w języku polskim Matematyka 1 Nazwa w języku angielskim Mathematics 1 Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów i forma:

Bardziej szczegółowo

S Y L A B U S P R Z E D M I O T U

S Y L A B U S P R Z E D M I O T U "Z A T W I E R D Z A M Prof. dr hab. inż. Radosław TRĘBIŃSKI dm Dziekan Wydziału Mechatroniki i Lotnictwa Warszawa, dnia... S Y L A B U S P R Z E D M I O T U NAZWA PRZEDMIOTU: NUMERYCZNE METODY OBLICZENIOWE

Bardziej szczegółowo

Rachunek prawdopodobieństwa WZ-ST1-AG--16/17Z-RACH. Liczba godzin stacjonarne: Wykłady: 15 Ćwiczenia: 30. niestacjonarne: Wykłady: 9 Ćwiczenia: 18

Rachunek prawdopodobieństwa WZ-ST1-AG--16/17Z-RACH. Liczba godzin stacjonarne: Wykłady: 15 Ćwiczenia: 30. niestacjonarne: Wykłady: 9 Ćwiczenia: 18 Karta przedmiotu Wydział: Wydział Zarządzania Kierunek: Analityka gospodarcza I. Informacje podstawowe Nazwa przedmiotu Rachunek prawdopodobieństwa Nazwa przedmiotu w j. ang. Język prowadzenia przedmiotu

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI 1. Zalecana znajomość matematyki odpowiadająca maturze na poziomie podstawowym Zał. nr do ZW WYDZIAŁ INFORMATYKI I ZARZĄDZANIA KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA Nazwa w języku angielskim Mathematics 1 for Economists Kierunek studiów (jeśli dotyczy): Specjalność (jeśli

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Matematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0

Matematyka - Statystyka matematyczna Mathematical statistics 2, 2, 0, 0, 0 Nazwa przedmiotu: Kierunek: Matematyka - Statystyka matematyczna Mathematical statistics Inżynieria materiałowa Materials Engineering Rodzaj przedmiotu: Poziom studiów: forma studiów: obowiązkowy studia

Bardziej szczegółowo

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES)

Informatyka I stopień (I stopień / II stopień) ogólno akademicki (ogólno akademicki / praktyczny) podstawowy (podstawowy / kierunkowy / inny HES) Załącznik nr 7 do Zarządzenia Rektora nr 10/12 z dnia 21 lutego 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Modelowanie i wizualizacja procesów fizycznych Nazwa modułu w języku angielskim

Bardziej szczegółowo

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: -

Rok akademicki: 2013/2014 Kod: ZIE n Punkty ECTS: 6. Poziom studiów: Studia I stopnia Forma i tryb studiów: - Nazwa modułu: Statystyka opisowa i ekonomiczna Rok akademicki: 2013/2014 Kod: ZIE-1-205-n Punkty ECTS: 6 Wydział: Zarządzania Kierunek: Informatyka i Ekonometria Specjalność: - Poziom studiów: Studia I

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCHY KOMPETENCJI EFEKTY KSZTAŁCENIA I. KARTA PRZEDMIOTU. Nazwa przedmiotu: MATEMATYKA STOSOWANA 2. Kod przedmiotu: Ms 3. Jednostka prowadząca: Wydział Nawigacji i Uzbrojenia Okrętowego 4. Kierunek: Nawigacja 5. Specjalność: Nawigacja morska

Bardziej szczegółowo

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Biometria KOD WF/II/st/15

KARTA PRZEDMIOTU. 1. NAZWA PRZEDMIOTU: Biometria KOD WF/II/st/15 KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Biometria KOD WF/II/st/15 2. KIERUNEK: Wychowanie fizyczne. Specjalność: wychowanie fizyczne w służbach mundurowych 3. POZIOM STUDIÓW 1 : II stopień studia stacjonarne

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: wiadomości i umiejętności z zakresu matematyki z semestru 1 KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Matematyka 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 4 6. LICZBA GODZIN: 30 WY + 30

Bardziej szczegółowo

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15

Sylabus do programu kształcenia obowiązującego od roku akademickiego 2014/15 Sylabus do programu kształcenia obowiązującego od roku akademickiego 0/5 () Nazwa Rachunek prawdopodobieństwa i statystyka () Nazwa jednostki prowadzącej Wydział Matematyczno - Przyrodniczy przedmiot ()

Bardziej szczegółowo

Matematyka I i II - opis przedmiotu

Matematyka I i II - opis przedmiotu Matematyka I i II - opis przedmiotu Informacje ogólne Nazwa przedmiotu Matematyka I i II Kod przedmiotu Matematyka 02WBUD_pNadGenB11OM Wydział Kierunek Wydział Budownictwa, Architektury i Inżynierii Środowiska

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: INTELIGENTNE SYSTEMY OBLICZENIOWE Systems Based on Computational Intelligence Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj

Bardziej szczegółowo

Statystyka SYLABUS A. Informacje ogólne

Statystyka SYLABUS A. Informacje ogólne Statystyka SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Dziedzina

Bardziej szczegółowo

1. Co to jest program MSDN Academic Alliance (MSDN AA)?

1. Co to jest program MSDN Academic Alliance (MSDN AA)? FAQ (v.2.0) 1. CO TO JEST PROGRAM MSDN ACADEMIC ALLIANCE (MSDN AA)? 2. CZY DO UCZESTNICTWA W PROGRAMIE NIEZBĘDNE JEST POSIADANIE KONTA POCZTOWEGO W DOMENIE POLSL.PL LUB STUDENT.POLSL.PL, A JEŚLI TAK, TO

Bardziej szczegółowo

Technologie informatyczne

Technologie informatyczne Prof. dr hab. Maria Hilczer Międzyresortowy Instytut Techniki Radiacyjnej Politechniki Łódzkiej ul. Wróblewskiego 15 pokój 308 (II piętro) program WYKŁADÓW Matematyczne podstawy działania komputerów (systemy

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Informatyka Rodzaj przedmiotu: moduł specjalności obowiązkowy: Inżynieria oprogramowania, Sieci komputerowe Rodzaj zajęć: wykład, laboratorium MODELOWANIE I SYMULACJA Modelling

Bardziej szczegółowo

Opis przedmiotu: Probabilistyka I

Opis przedmiotu: Probabilistyka I Opis : Probabilistyka I Kod Nazwa Wersja TR.SIK303 Probabilistyka I 2012/13 A. Usytuowanie w systemie studiów Poziom Kształcenia Stopień Rodzaj Kierunek studiów Profil studiów Specjalność Jednostka prowadząca

Bardziej szczegółowo

Przykładowy program ćwiczeń

Przykładowy program ćwiczeń Przykładowy program ćwiczeń Ćwiczenie 1. Obliczenie funkcji elementarnych za pomocą szeregów. Opracowanie wyrażeń rekurencyjnych. 3 4 Realizacja w Ecelu funkcji e 1. 1!! 3! 4! Przykład 1: Obliczenie wartości

Bardziej szczegółowo

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE

Matematyka zajęcia fakultatywne (Wyspa inżynierów) Dodatkowe w ramach projektu UE PROGRAM ZAJĘĆ FAKULTATYWNYCH Z MATEMATYKI DLA STUDENTÓW I ROKU SYLABUS Nazwa uczelni: Wyższa Szkoła Przedsiębiorczości i Administracji w Lublinie ul. Bursaki 12, 20-150 Lublin Kierunek Rok studiów Informatyka

Bardziej szczegółowo

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski

Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Statystyka od podstaw Janina Jóźwiak, Jarosław Podgórski Książka jest nowoczesnym podręcznikiem przeznaczonym dla studentów uczelni i wydziałów ekonomicznych. Wykład podzielono na cztery części. W pierwszej

Bardziej szczegółowo

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III

ZALICZENIA. W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III ZALICZENIA W celu uzyskania zaliczenia należy wybrać jeden z trzech poniższych wariantów I, II lub III 1 Wariant I. PROBLEM WŁASNY Sformułować własne zadanie statystyczne związane z własną pracą badawczą

Bardziej szczegółowo

Wprowadzenie do metod numerycznych Wykład 9 Różniczkowanie numeryczne

Wprowadzenie do metod numerycznych Wykład 9 Różniczkowanie numeryczne Wprowadzenie do metod numerycznych Wykład 9 Różniczkowanie numeryczne Polsko-Japońska Wyższa Szkoła Technik Komputerowych Katedra Informatyki Stosowanej Spis treści 1 Na czym polega różniczkowanie numeryczne

Bardziej szczegółowo

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 Kierunek Turystyka i Rekreacja Poziom kształcenia II stopień Rok/Semestr 1/2 Typ przedmiotu (obowiązkowy/fakultatywny) obowiązkowy y/ ćwiczenia

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim: METODY NUMERYCZNE W RÓWNANIACH RÓŻNICZKOWYCH Nazwa w języku angielskim: NUMERICAL METHODS IN DIFFERENTIAL EQUATIONS Kierunek

Bardziej szczegółowo

Sylabus modułu: Matematyka stosowana z elementami chemometrii (0310-CH-S1-018)

Sylabus modułu: Matematyka stosowana z elementami chemometrii (0310-CH-S1-018) Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: chemia, poziom pierwszy Sylabus modułu: Matematyka stosowana z elementami chemometrii (018) 1. Informacje ogólne koordynator modułu dr

Bardziej szczegółowo

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH

RÓWNOWAŻNOŚĆ METOD BADAWCZYCH RÓWNOWAŻNOŚĆ METOD BADAWCZYCH Piotr Konieczka Katedra Chemii Analitycznej Wydział Chemiczny Politechnika Gdańska Równoważność metod??? 2 Zgodność wyników analitycznych otrzymanych z wykorzystaniem porównywanych

Bardziej szczegółowo

Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni

Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni Karta (sylabus) modułu/przedmiotu Inżynieria Materiałowa Studia II stopnia Specjalność: Inżynieria Powierzchni Przedmiot: Statystyczne Sterowanie Procesami Rodzaj przedmiotu: Obowiązkowy Kod przedmiotu:

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim ANALIZA MATEMATYCZNA. Nazwa w języku angielskim Mathematical Analysis. Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów

Metody numeryczne. materiały do wykładu dla studentów Metody numeryczne materiały do wykładu dla studentów Autorzy: Maria Kosiorowska Marta Kornafel Grzegorz Kosiorowski Grzegorz Szulik Sebastian Baran Jakub Bielawski Materiały przygotowane w ramach projektu

Bardziej szczegółowo

PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika

PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika PWSZ w Tarnowie Instytut Politechniczny Elektrotechnika METODY NUMERYCZNE WYKŁAD Andrzej M. Dąbrowski amd@agh.edu.pl Paw.C p.100e Konsultacje: środa 14 45-15 30 czwartek 14 45 - Wykład 2 godz. lekcyjne.

Bardziej szczegółowo

Semestr I, studia magisterskie IŚ, 2013/14. Dr inż. Wojciech Artichowicz. Katedra Hydrotechniki PG

Semestr I, studia magisterskie IŚ, 2013/14. Dr inż. Wojciech Artichowicz. Katedra Hydrotechniki PG Semestr I, studia magisterskie IŚ, 2013/14 Dr inż. Wojciech Artichowicz Katedra Hydrotechniki PG Dr inż. Wojciech Artichowicz wojartic@pg.gda.pl (0 58) 347 21 12 Pokój 102A / Hydro Zasady zaliczenia 1.

Bardziej szczegółowo

Opis efektów kształcenia dla modułu zajęć

Opis efektów kształcenia dla modułu zajęć Nazwa modułu: Metody numeryczne Rok akademicki: 2014/2015 Kod: MIS-1-403-n Punkty ECTS: 5 Wydział: Inżynierii Metali i Informatyki Przemysłowej Kierunek: Informatyka Stosowana Specjalność: - Poziom studiów:

Bardziej szczegółowo

LABORATORIUM Z FIZYKI

LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI LABORATORIUM Z FIZYKI I PRACOWNIA FIZYCZNA C w Gliwicach Gliwice, ul. Konarskiego 22, pokoje 52-54 Regulamin pracowni i organizacja zajęć Sprawozdanie (strona tytułowa, karta pomiarowa)

Bardziej szczegółowo

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol)

KARTA PRZEDMIOTU. 12. PRZEDMIOTOWE EFEKTY KSZTAŁCENIA Odniesienie do kierunkowych efektów kształcenia (symbol) KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Geometria analityczna (GAN010) 2. KIERUNEK: MATEMATYKA 3. POZIOM STUDIÓW: I stopnia 4. ROK/ SEMESTR STUDIÓW: I/2 5. LICZBA PUNKTÓW ECTS: 8 6. LICZBA GODZIN: 30 / 30

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2015/2016

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2015/2016 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 015/016 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:

Bardziej szczegółowo

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski

Metody numeryczne. Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Metody numeryczne Instytut Sterowania i Systemów Informatycznych Wydział Elektrotechniki, Informatyki i Telekomunikacji Uniwersytet Zielonogórski Elektrotechnika stacjonarne-dzienne pierwszego stopnia

Bardziej szczegółowo

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU

WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ MECHANICZNY KARTA PRZEDMIOTU Nazwa w języku polskim RÓWNANIA RÓŻNICZKOWE ZWYCZAJNE Nazwa w języku angielskim ORDINARY DIFFERENTIAL EQUATIONS Kierunek studiów (jeśli dotyczy): Automatyka

Bardziej szczegółowo

Dostawa oprogramowania. Nr sprawy: ZP /15

Dostawa oprogramowania. Nr sprawy: ZP /15 ........ (pieczątka adresowa Oferenta) Zamawiający: Państwowa Wyższa Szkoła Zawodowa w Nowym Sączu, ul. Staszica,33-300 Nowy Sącz. Strona: z 5 Arkusz kalkulacyjny określający minimalne parametry techniczne

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: ALGEBRA LINIOWA I GEOMETRIA ANALITYCZNA Kierunek: Mechatronika Linear algebra and analytical geometry Kod przedmiotu: A01 Rodzaj przedmiotu: obowiązkowy dla wszystkich specjalności Poziom

Bardziej szczegółowo

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer.

METODY NUMERYCZNE. Wykład 3. Plan. Aproksymacja Interpolacja wielomianowa Przykłady. dr hab.inż. Katarzyna Zakrzewska, prof.agh. Met.Numer. METODY NUMERYCZNE Wykład 3. dr hab.inż. Katarzyna Zakrzewska, prof.agh Met.Numer. wykład 3 1 Plan Aproksymacja Interpolacja wielomianowa Przykłady Met.Numer. wykład 3 2 1 Aproksymacja Metody numeryczne

Bardziej szczegółowo

Obliczenia naukowe Wykład nr 6

Obliczenia naukowe Wykład nr 6 Obliczenia naukowe Wykład nr 6 Paweł Zieliński Katedra Informatyki, Wydział Podstawowych Problemów Techniki, Politechnika Wrocławska Literatura Literatura podstawowa [1] D. Kincaid, W. Cheney, Analiza

Bardziej szczegółowo

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne

Metody numeryczne. materiały do wykładu dla studentów. 7. Całkowanie numeryczne Metody numeryczne materiały do wykładu dla studentów 7. Całkowanie numeryczne 7.1. Całkowanie numeryczne 7.2. Metoda trapezów 7.3. Metoda Simpsona 7.4. Metoda 3/8 Newtona 7.5. Ogólna postać wzorów kwadratur

Bardziej szczegółowo

MODELE LINIOWE. Dr Wioleta Drobik

MODELE LINIOWE. Dr Wioleta Drobik MODELE LINIOWE Dr Wioleta Drobik MODELE LINIOWE Jedna z najstarszych i najpopularniejszych metod modelowania Zależność między zbiorem zmiennych objaśniających, a zmienną ilościową nazywaną zmienną objaśnianą

Bardziej szczegółowo

1.INFORMACJE O PRZEDMIOCIE A. Podstawowe dane

1.INFORMACJE O PRZEDMIOCIE A. Podstawowe dane Kod przedmiotu:. Pozycja planu: B.1., B.1a 1.INFORMACJE O PRZEDMIOCIE A. Podstawowe dane Nazwa przedmiotu Metody badań na zwierzętach Kierunek studiów Poziom studiów Profil studiów Forma studiów Specjalność

Bardziej szczegółowo

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński

Obliczenia Naukowe. Wykład 12: Zagadnienia na egzamin. Bartek Wilczyński Obliczenia Naukowe Wykład 12: Zagadnienia na egzamin Bartek Wilczyński 6.6.2016 Tematy do powtórki Arytmetyka komputerów Jak wygląda reprezentacja liczb w arytmetyce komputerowej w zapisie cecha+mantysa

Bardziej szczegółowo

Statystyka matematyczna i ekonometria

Statystyka matematyczna i ekonometria Statystyka matematyczna i ekonometria prof. dr hab. inż. Jacek Mercik B4 pok. 55 jacek.mercik@pwr.wroc.pl (tylko z konta studenckiego z serwera PWr) Konsultacje, kontakt itp. Strona WWW Elementy wykładu.

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4

KARTA KURSU. (do zastosowania w roku ak. 2015/16) Kod Punktacja ECTS* 4 KARTA KURSU (do zastosowania w roku ak. 2015/16) Nazwa Statystyka 1 Nazwa w j. ang. Statistics 1 Kod Punktacja ECTS* 4 Koordynator Dr hab. Tadeusz Sozański (koordynator, wykłady) Dr Paweł Walawender (ćwiczenia)

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Statystyka komputerowa Computer statistics Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: Fakultatywny - oferta Poziom studiów:

Bardziej szczegółowo

Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe

Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe Analiza matematyczna i algebra liniowa Wprowadzenie Ciągi liczbowe Wojciech Kotłowski Instytut Informatyki Politechniki Poznańskiej email: imię.nazwisko@cs.put.poznan.pl pok. 2 (CW) tel. (61)665-2936 konsultacje:

Bardziej szczegółowo

12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych

12. Przynależność do grupy przedmiotów: Blok przedmiotów matematycznych (pieczęć wydziału) KARTA PRZEDMIOTU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa przedmiotu: Rachunek prawdopodobieństwa i statystyka matematyczna 2. Kod przedmiotu: RPiS 3. Karta przedmiotu ważna od roku akademickiego:

Bardziej szczegółowo

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU

Zał. nr 4 do ZW 33/2012 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Zał. nr 4 do ZW 33/01 WYDZIAŁ MATEMATYKI WYDZIAŁ BUDOWNICTWA LĄDOWEGO I WODNEGO KARTA PRZEDMIOTU Nazwa w języku polskim: Analiza matematyczna 1.1 A Nazwa w języku angielskim: Mathematical Analysis 1.1

Bardziej szczegółowo

Nowoczesne metody nauczania przedmiotów ścisłych

Nowoczesne metody nauczania przedmiotów ścisłych Nowoczesne metody nauczania przedmiotów ścisłych Bartosz Ziemkiewicz Wydział Matematyki i Informatyki UMK, Toruń 14 VI 2012 Bartosz Ziemkiewicz Nowoczesne metody nauczania... 1/14 Zdalne nauczanie na UMK

Bardziej szczegółowo

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015

Politechnika Krakowska im. Tadeusza Kościuszki. Karta przedmiotu. obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Politechnika Krakowska im. Tadeusza Kościuszki Karta przedmiotu Wydział Inżynierii Środowiska obowiązuje studentów rozpoczynających studia w roku akademickim 2014/2015 Kierunek studiów: Inżynieria Środowiska

Bardziej szczegółowo

KARTA MODUŁU. 17. Efekty kształcenia: 2. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia 1 potrafi wykorzystać

KARTA MODUŁU. 17. Efekty kształcenia: 2. Nr Opis efektu kształcenia Metoda sprawdzenia efektu kształcenia 1 potrafi wykorzystać (pieczęć wydziału) KARTA MODUŁU Z1-PU7 WYDANIE N1 Strona 1 z 5 1. Nazwa modułu: MATEMATYKA 2. Kod przedmiotu: 3 3. Karta modułu ważna od roku akademickiego: 2013/2014 4. Forma kształcenia: studia pierwszego

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015 Tryb studiów Niestacjonarne Nazwa kierunku studiów Finanse i Rachunkowość Poziom studiów Stopień pierwszy Rok studiów/ semestr II/4 Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Badania operacyjne Operational research Zarządzanie i Inżynieria Produkcji Management and Engineering of Production Rodzaj przedmiotu: obowiązkowy Poziom studiów: studia I stopnia

Bardziej szczegółowo

Rozkład normalny, niepewność standardowa typu A

Rozkład normalny, niepewność standardowa typu A Podstawy Metrologii i Technik Eksperymentu Laboratorium Rozkład normalny, niepewność standardowa typu A Instrukcja do ćwiczenia nr 1 Zakład Miernictwa i Ochrony Atmosfery Wrocław, listopad 2010 r. Podstawy

Bardziej szczegółowo

Sylabus - Matematyka

Sylabus - Matematyka Sylabus - Matematyka 1. Metryczka Nazwa Wydziału: Program kształcenia: Wydział Farmaceutyczny z Oddziałem Medycyny Laboratoryjnej Farmacja, jednolite studia magisterskie Forma studiów: stacjonarne i niestacjonarne

Bardziej szczegółowo

WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS

WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS WYŻSZA SZKOŁA MENEDŻERSKA W WARSZAWIE WYDZIAŁ ZARZĄDZANIA W CIECHANOWIE KARTA PRZEDMIOTU - SYLABUS Nazwa przedmiotu: Statystyka opisowa Profil 1 : ogólnoakademicki Cel przedmiotu: Zapoznanie studentów

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych.

Przedmiot statystyki. Graficzne przedstawienie danych. Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych

Bardziej szczegółowo

Zastosowanie Informatyki w Chemii Laboratorium. Instrukcje do c wiczen

Zastosowanie Informatyki w Chemii Laboratorium. Instrukcje do c wiczen Zastosowanie Informatyki w Chemii Laboratorium Instrukcje do c wiczen Plan zajęć 1. Zajęcia organizacyjne. Przypomnienie z Excela. 2. Korelacja, regresja wprowadzenie zadanie część a i b 3. Korelacja,

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo

Statystyka opisowa SYLABUS A. Informacje ogólne

Statystyka opisowa SYLABUS A. Informacje ogólne Statystyka opisowa SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Rok

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: SYSTEMY INFORMATYCZNE WSPOMAGAJĄCE DIAGNOSTYKĘ MEDYCZNĄ Kierunek: Inżynieria Biomedyczna Rodzaj przedmiotu: obowiązkowy moduł specjalności informatyka medyczna Rodzaj zajęć: wykład, projekt

Bardziej szczegółowo

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1

Wykład Ćwiczenia Laboratorium Projekt Seminarium Liczba godzin zajęć zorganizowanych w Uczelni ,5 1 Zał. nr 4 do ZW WYDZIAŁ ***** KARTA PRZEDMIOTU Nazwa w języku polskim ALGEBRA Z GEOMETRIĄ ANALITYCZNĄ B Nazwa w języku angielskim Algebra and Analytic Geometry B Kierunek studiów (jeśli dotyczy): Specjalność

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka tankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i efektów

Bardziej szczegółowo

Ekonometria_FIRJK Arkusz1

Ekonometria_FIRJK Arkusz1 Rok akademicki: Grupa przedmiotów Numer katalogowy: Nazwa przedmiotu 1) : łumaczenie nazwy na jęz. angielski 3) : Kierunek studiów 4) : Ekonometria Econometrics Ekonomia ECS 2) Koordynator przedmiotu 5)

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim WSTĘP DO TEORII RÓWNAŃ RÓŻNICZKOWYCH Nazwa w języku angielskim INTRODUCTION TO DIFFERENTIAL EQUATIONS THEORY

Bardziej szczegółowo

Wykład Ćwiczeni a 15 30

Wykład Ćwiczeni a 15 30 Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim MATEMATYKA AiR Nazwa w języku angielskim Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy): Stopień studiów

Bardziej szczegółowo

Z-ZIPN1-004 Statystyka. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki Niestacjonarne Wszystkie Katedra Matematyki dr Zdzisław Piasta

Z-ZIPN1-004 Statystyka. Zarządzanie i Inżynieria Produkcji I stopień Ogólnoakademicki Niestacjonarne Wszystkie Katedra Matematyki dr Zdzisław Piasta KARTA MODUŁU / KARTA PRZEDMIOTU Z-ZIPN-004 Statystyka Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Statistics Obowiązuje od roku akademickiego 0/04 A. USYTUOWANIE MODUŁU W SYSTEMIE STUDIÓW

Bardziej szczegółowo

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty)

SYLABUS DOTYCZY CYKLU KSZTAŁCENIA (skrajne daty) Załącznik nr 4 do Uchwały Senatu nr 430/01/2015 SYLABUS DOTYCZY CYKLU KSZTAŁCENIA 2016-2019 (skrajne daty) 1.1. PODSTAWOWE INFORMACJE O PRZEDMIOCIE/MODULE Nazwa przedmiotu/ modułu Statystyka w biologii

Bardziej szczegółowo

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION

PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION Mirosław GUZIK Grzegorz KOSZŁKA PORÓWNANIE WYBRANYCH SCHEMATÓW RÓŻNICO- WYCH NA PRZYKŁADZIE RÓWNANIA SELECTED DIFFERENTIAL SCHEMES COMPARISON BY MEANS OF THE EQUATION W artykule przedstawiono niektóre

Bardziej szczegółowo

WYKŁAD 8 ANALIZA REGRESJI

WYKŁAD 8 ANALIZA REGRESJI WYKŁAD 8 ANALIZA REGRESJI Regresja 1. Metoda najmniejszych kwadratów-regresja prostoliniowa 2. Regresja krzywoliniowa 3. Estymacja liniowej funkcji regresji 4. Testy istotności współczynnika regresji liniowej

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia I. Informacje ogólne Analiza matematyczna 2 Nazwa jednostki prowadzącej moduł Instytut Informatyki, Zakład Informatyki Stosowanej 3 Kod modułu (wypełnia

Bardziej szczegółowo

KORELACJE I REGRESJA LINIOWA

KORELACJE I REGRESJA LINIOWA KORELACJE I REGRESJA LINIOWA Korelacje i regresja liniowa Analiza korelacji: Badanie, czy pomiędzy dwoma zmiennymi istnieje zależność Obie analizy się wzajemnie przeplatają Analiza regresji: Opisanie modelem

Bardziej szczegółowo

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, mgr

Imię, nazwisko i tytuł/stopień KOORDYNATORA (-ÓW) kursu/przedmiotu zatwierdzającego protokoły w systemie USOS Jacek Marcinkiewicz, mgr SYLLABUS na rok akademicki 010/011 Tryb studiów Studia stacjonarne Kierunek studiów Ekonomia Poziom studiów Pierwszego stopnia Rok studiów/ semestr /4 Specjalność Bez specjalności Kod katedry/zakładu w

Bardziej szczegółowo

Niepewności pomiarów

Niepewności pomiarów Niepewności pomiarów Międzynarodowa Organizacja Normalizacyjna (ISO) w roku 1995 opublikowała normy dotyczące terminologii i sposobu określania niepewności pomiarów [1]. W roku 1999 normy zostały opublikowane

Bardziej szczegółowo

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI

WYMAGANIA WSTĘPNE W ZAKRESIE WIEDZY, UMIEJĘTNOŚCI I INNYCH KOMPETENCJI Zał. nr 4 do ZW WYDZIAŁ ELEKTRONIKI KARTA PRZEDMIOTU Nazwa w języku polskim: Matematyka (EiT stopień) Nazwa w języku angielskim: Mathematics Kierunek studiów (jeśli dotyczy): Specjalność (jeśli dotyczy):

Bardziej szczegółowo

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: technologia informacyjna na poziomie szkoły średniej.

KARTA PRZEDMIOTU. 10. WYMAGANIA WSTĘPNE: technologia informacyjna na poziomie szkoły średniej. KARTA PRZEDMIOTU 1. NAZWA PRZEDMIOTU: Technologia informacyjna 2. KIERUNEK: Mechanika i budowa maszyn 3. POZIOM STUDIÓW: inżynierskie 4. ROK/ SEMESTR STUDIÓW: 1/1 5. LICZBA PUNKTÓW ECTS: 2 6. LICZBA GODZIN:

Bardziej szczegółowo

Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie):

Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie): Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Informatyka, pierwszy Sylabus modułu: Analiza Matematyczna Nazwa wariantu modułu (opcjonalnie): 1. Informacje ogólne koordynator modułu

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: systemy sterowania Rodzaj zajęć: wykład, laboratorium UKŁADY AUTOMATYKI PRZEMYSŁOWEJ Industrial Automatics Systems

Bardziej szczegółowo

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem.

Teoria błędów. Wszystkie wartości wielkości fizycznych obarczone są pewnym błędem. Teoria błędów Wskutek niedoskonałości przyrządów, jak również niedoskonałości organów zmysłów wszystkie pomiary są dokonywane z określonym stopniem dokładności. Nie otrzymujemy prawidłowych wartości mierzonej

Bardziej szczegółowo

Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia

Kierunek Informatyka stosowana Studia stacjonarne Studia pierwszego stopnia Studia pierwszego stopnia I rok Matematyka dyskretna 30 30 Egzamin 5 Analiza matematyczna 30 30 Egzamin 5 Algebra liniowa 30 30 Egzamin 5 Statystyka i rachunek prawdopodobieństwa 30 30 Egzamin 5 Opracowywanie

Bardziej szczegółowo

METODY STATYSTYCZNE W BIOLOGII

METODY STATYSTYCZNE W BIOLOGII METODY STATYSTYCZNE W BIOLOGII 1. Wykład wstępny 2. Populacje i próby danych 3. Testowanie hipotez i estymacja parametrów 4. Planowanie eksperymentów biologicznych 5. Najczęściej wykorzystywane testy statystyczne

Bardziej szczegółowo