Szkolenie Analiza przeżycia

Wielkość: px
Rozpocząć pokaz od strony:

Download "Szkolenie Analiza przeżycia"

Transkrypt

1 Analiza przeżycia program i cennik Łukasz Deryło Analizy statystyczne, szkolenia

2 Analiza przeżycia - program i cennik Analiza przeżycia Co obejmuje? Analiza przeżycia (Survival analysis) jest działem statystyki zajmującym się modelowaniem czasu, jaki upływa do zajścia interesującego badacza zdarzenia (np. awarii maszyny, wyleczenia pacjenta itp.). "Analiza przeżycia" obejmuje najczęściej stosowane w tej gałęzi statystyki metody. Wszystkie obliczenia uczestnicy wykonują w programie R (więcej o nim tutaj). Forma szkolenia jest połączeniem wykładu i warsztatów: po zaprezentowaniu każdej partii materiału, uczestnicy samodzielnie rozwiązują związany z nią problem. trwa 2 dni (po 8 godzin, w tym około godzina przerw). Szczegółowy program znajduje się poniżej. Dla kogo? "Analiza przeżycia" jest przeznaczone dla osób chcących samodzielnie wykonywać analizę przeżycia i interpretować jej wyniki. Zalecana jest znajomość podstawowych pojęć statystyki, takich jak średnia, odchylenie standardowe, kwantyl, test statystyczny, p-value, przedział ufności. Podczas szkolenia, uczestnicy poznają wszystkie niezbędne wzory i twierdzenia z dziedziny analizy przeżycia. Pojawiające się wzory, choć zwykle podawane bez dowodów, są dokładnie analizowane, tak aby wyrobić w uczestnikach intuicyjne rozumienie stosowanych metod i otrzymywanych wyników. Podczas całego szkolenia nacisk kładziony jest na przekazanie idei leżących u podstaw analizy przeżycia oraz na poprawnej interpretacji jej wyników, a nie na technicznych szczegółach obliczeń wykonywanych przez komputer. Znajomość, wykorzystywanego podczas szkolenia, programu R nie jest konieczna. Każde szkolenie rozpoczyna się bowiem od krótkiego wprowadzenia do tego narzędzia, podczas którego uczestnicy zapoznają się z jego podstawowymi funkcjami. Czego uczy? Uczestnik szkolenia nabędzie trzy podstawowe umiejętności: umiejętność wyboru odpowiedniej metody analitycznej, stosownie do problemu, przed którym staje; umiejętność wykonania obliczeń w programie R; umiejętność prawidłowej interpretacji otrzymanych wyników. Kiedy i gdzie się odbywa? oferowane jest jako szkolenie zamknięte. Oznacza to, że przeprowadzane jest na zamówienie w dogodnym dla Klienta terminie. może się odbyć w jednej z sal szkoleniowych przy ulicy Świętego Filipa w Krakowie lub w Państwa sali (również poza Krakowem). W tym drugim przypadku warunkiem jest jednak zapewnienie przez Państwa każdemu uczestnikowi szkolenia dostępu do komputera z zainstalowanym darmowym, również do użytku komercyjnego, programem R.

3 Analiza przeżycia - program i cennik Cennik Analiza przeżycia w sali przy ulicy Świętego Filipa w Krakowie dla jednej osoby dla 2 osób dla 3 osób 4-6 osób 7-10 osób ponad 10 osób Cena 1800 zł 1150 zł/os 800 zł/os 600 zł/os 525 zł/os 480 zł/os Ceny podane w tabeli obejmują: przeprowadzenie szkolenia, materiały szkoleniowe, całodzienny serwis kawowy (kawa, herbata, woda mineralna, ciasteczka), certyfikat ukończenia szkolenia. Istnieje możliwość zamówienia obiadów (zupa + drugie danie) w cenie 15 zł za zestaw. Do cen nie jest doliczany podatek VAT, gdyż organizator szkolenia nie jest jego płatnikiem. Oznacza to też, że za usługę będzie Państwu wystawiony rachunek, a nie faktura VAT. w sali zorganizowanej przez Klienta dla jednej osoby dla 2 osób dla 3 osób 4-6 osób 7-10 osób ponad 10 osób w Krakowie 1500 zł 800 zł/os 550 zł/os 400 zł/os 350 zł/os 320 zł/os poza Krakowem 3000 zł 1500 zł/os 1000 zł/os 800 zł/os 700 zł/os 640 zł/os Ceny podane w tabeli obejmują: przeprowadzenie szkolenia, materiały szkoleniowe, certyfikat ukończenia szkolenia. Do cen nie jest doliczany podatek VAT, gdyż organizator szkolenia nie jest jego płatnikiem. Oznacza to też, że za usługę będzie Państwu wystawiony rachunek, a nie faktura VAT.

4 Analiza przeżycia - program i cennik Program Analiza przeżycia 1 Krótkie wprowadzenie do R wpisywanie poleceń zapisywanie analiz przygotowywanie i odczyt plików z danymi 2 Podstawowe pojęcia analizy przeżycia obserwacje ucięte rodzaje ucinania funkcja przeżycia i jej własności 3 Estymator Kaplana-Meiera wyliczanie i sporządzanie wykresu estymatora K-M przedział i obszar ufności dla estymatora K-M 4 Porównywanie funkcji przeżycia w dwóch i więcej grupach umieszczanie kilku estymatorów na jednym wykresie testy log-rank, Wilcoxona i Tarone-Ware'a 5 Model hazardów proporcjonalnych Coxa definicja i własności funkcji hazardu założenia modelu Coxa estymacja i interpretacja parametrów modelu i współczynników HR przedział ufności dla HR istotność wpływu zmiennych objaśniających: testy likelihood ratio, score i Walda dobroć dopasowania modelu: pseudo-r 2, współczynnik zgodności Harella skorygowane HR wybór skali dla zmiennych ilościowych: Akaike Information Criterion (AIC) testowanie założenia o proporcjonalności hazardów: residua Schoenfelda i test Grambscha-Therneau 6 Rozszerzony model Coxa kiedy stosować model rozszerzony estymacja parametrów interpretacja wyników 7 Model Coxa ze stratyfikacją kiedy stosować model ze stratyfikacją estymacja parametrów interpretacja wyników 8 Model AFT (Accelerated Failure Times) różnice pomiędzy analizami nieparametryczną, semiparametryczną i parametryczną założenia modelu AFT, współczynnik przyspieszenia AF

5 Analiza przeżycia - program i cennik rozkłady spełniające założenia modelu AFT: rozkład wykładniczy, Weibulla, lognormalny i log-logistyczny estymacja i interpretacja parametrów modelu i współczynników AF przedział ufności dla AF istotność wpływu zmiennych objaśniających: testy likelihood ratio i Walda dobroć dopasowania modelu: ocena graficzna prognozowanie: rozkład przeżycia sporządzanie wykresu funkcji przeżycia Kontakt w sprawie szkolenia: Łukasz Deryło tel Informacje o pozostałych szkoleniach:

Szkolenie Metaanaliza

Szkolenie Metaanaliza Metaanaliza program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Metaanaliza - program i cennik Metaanaliza Co obejmuje? Metaanaliza jest techniką statystyczną pozwalająca

Bardziej szczegółowo

Szkolenie Regresja liniowa

Szkolenie Regresja liniowa Szkolenie Regresja liniowa program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Szkolenie Regresja liniowa Co to jest regresja liniowa? Regresja liniowa jest podstawową metodą

Bardziej szczegółowo

Szkolenie Analiza danych panelowych

Szkolenie Analiza danych panelowych Szkolenie Analiza danych panelowych program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Szkolenie Analiza danych panelowych Co to są dane panelowe? Najprostsza definicja

Bardziej szczegółowo

Szkolenie Statystyka w medycynie

Szkolenie Statystyka w medycynie Szkolenie Statystyka w medycynie program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Szkolenie Statystyka w medycynie Co obejmuje? Szkolenie obejmuje metody statystyczne

Bardziej szczegółowo

Szkolenie Analiza dyskryminacyjna

Szkolenie Analiza dyskryminacyjna Szkolenie Analiza dyskryminacyjna program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Szkolenie Analiza dyskryminacyjna Co to jest analiza dyskryminacyjna? Inną nazwą analizy

Bardziej szczegółowo

Szkolenie Tworzenie ankiet i konstruowanie problemów badawczych

Szkolenie Tworzenie ankiet i konstruowanie problemów badawczych Szkolenie Tworzenie ankiet i konstruowanie problemów program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Szkolenie Tworzenie ankiet i konstruowanie problemów - program i

Bardziej szczegółowo

Szkolenie Niepewności pomiarowe

Szkolenie Niepewności pomiarowe Szkolenie Niepewności pomiarowe program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Szkolenie Niepewności pomiarowe Co obejmuje? Szkolenie "Niepewności pomiarowe" obejmuje

Bardziej szczegółowo

Szkolenie Data mining przegląd metod

Szkolenie Data mining przegląd metod Szkolenie Data mining przegląd metod program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Szkolenie Data mining przegląd metod Co obejmuje? Szkolenie obejmuje podstawowe

Bardziej szczegółowo

Szkolenie Regresja logistyczna

Szkolenie Regresja logistyczna Szkolenie Regresja logistyczna program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Szkolenie Regresja logistyczna Co to jest regresja logistyczna? Regresja logistyczna pozwala

Bardziej szczegółowo

Szkolenie Podstawy statystyki i analizy danych

Szkolenie Podstawy statystyki i analizy danych Szkolenie Podstawy statystyki i analizy danych program i cennik Łukasz Deryło Analizy statystyczne, szkolenia www.statystyka.c0.pl Szkolenie Podstawy statystyki i analizy danych Co obejmuje? Program szkolenia

Bardziej szczegółowo

Analiza przeżycia. Czym zajmuje się analiza przeżycia?

Analiza przeżycia. Czym zajmuje się analiza przeżycia? ANALIZA PRZEŻYCIA Analiza przeżycia Czym zajmuje się analiza przeżycia? http://www.analyticsvidhya.com/blog/2014/04/survival-analysis-model-you/ Analiza przeżycia Jest to inaczej analiza czasu trwania

Bardziej szczegółowo

Spis treści 3 SPIS TREŚCI

Spis treści 3 SPIS TREŚCI Spis treści 3 SPIS TREŚCI PRZEDMOWA... 1. WNIOSKOWANIE STATYSTYCZNE JAKO DYSCYPLINA MATEMATYCZNA... Metody statystyczne w analizie i prognozowaniu zjawisk ekonomicznych... Badania statystyczne podstawowe

Bardziej szczegółowo

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r

Statystyka matematyczna Testowanie hipotez i estymacja parametrów. Wrocław, r Statystyka matematyczna Testowanie hipotez i estymacja parametrów Wrocław, 18.03.2016r Plan wykładu: 1. Testowanie hipotez 2. Etapy testowania hipotez 3. Błędy 4. Testowanie wielokrotne 5. Estymacja parametrów

Bardziej szczegółowo

Analiza przeżycia Survival Analysis

Analiza przeżycia Survival Analysis Analiza przeżycia Survival Analysis 2013 Analiza przeżycia Doświadczenie dynamiczne - zwierzęta znikają lub pojawiają się w czasie doświadczenia Obserwowane zdarzenia: zachorowanie, wyzdrowienie, zejście,

Bardziej szczegółowo

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej

7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej 7. Estymacja parametrów w modelu normalnym(14.04.2008) Pojęcie losowej próby prostej Definicja 1 n-elementowa losowa próba prosta nazywamy ciag n niezależnych zmiennych losowych o jednakowych rozkładach

Bardziej szczegółowo

Analiza przeżycia Survival Analysis

Analiza przeżycia Survival Analysis Analiza przeżycia Survival Analysis 2016 Analiza przeżycia Analiza takich zdarzeń jak zachorowanie, wyzdrowienie, zejście, ciąża, Ważne jest nie tylko wystąpienie zdarzenia, ale również czas do momentu

Bardziej szczegółowo

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16

Spis treści. Przedmowa... XI. Rozdział 1. Pomiar: jednostki miar... 1. Rozdział 2. Pomiar: liczby i obliczenia liczbowe... 16 Spis treści Przedmowa.......................... XI Rozdział 1. Pomiar: jednostki miar................. 1 1.1. Wielkości fizyczne i pozafizyczne.................. 1 1.2. Spójne układy miar. Układ SI i jego

Bardziej szczegółowo

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego

Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Wykład 10 (12.05.08). Testowanie hipotez w rodzinie rozkładów normalnych przypadek nieznanego odchylenia standardowego Przykład Cena metra kwadratowego (w tys. zł) z dla 14 losowo wybranych mieszkań w

Bardziej szczegółowo

Model Matematyczny Call Center

Model Matematyczny Call Center OFERTA SZKOLENIOWA Model Matematyczny Call Center TELEAKADEMIA to profesjonalne centrum szkoleniowe mające swoją siedzibę w Pomorskim Parku Naukowo-Technologicznym w Gdyni. TELEAKADEMIA realizuje szkolenia

Bardziej szczegółowo

STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki

STATYSTYKA Statistics. Inżynieria Środowiska. II stopień ogólnoakademicki Załącznik nr 7 do Zarządzenia Rektora nr../12 z dnia.... 2012r. KARTA MODUŁU / KARTA PRZEDMIOTU Kod modułu Nazwa modułu Nazwa modułu w języku angielskim Obowiązuje od roku akademickiego 2012/13 STATYSTYKA

Bardziej szczegółowo

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski

Narzędzia statystyczne i ekonometryczne. Wykład 1. dr Paweł Baranowski Narzędzia statystyczne i ekonometryczne Wykład 1 dr Paweł Baranowski Informacje organizacyjne Wydział Ek-Soc, pok. B-109 pawel@baranowski.edu.pl Strona: baranowski.edu.pl (w tym materiały) Konsultacje:

Bardziej szczegółowo

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski

Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Projekt zaliczeniowy z przedmiotu Statystyka i eksploracja danych (nr 3) Kamil Krzysztof Derkowski Zadanie 1 Eksploracja (EXAMINE) Informacja o analizowanych danych Obserwacje Uwzględnione Wykluczone Ogółem

Bardziej szczegółowo

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013

Krakowska Akademia im. Andrzeja Frycza Modrzewskiego. Karta przedmiotu. obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 2012/2013 Krakowska Akademia im. Andrzeja Frycza Modrzewskiego Karta przedmiotu obowiązuje studentów, którzy rozpoczęli studia w roku akademickim 0/03 WydziałZarządzania i Komunikacji Społecznej Kierunek studiów:

Bardziej szczegółowo

Zastosowanie Excela w matematyce

Zastosowanie Excela w matematyce Zastosowanie Excela w matematyce Komputer w dzisiejszych czasach zajmuje bardzo znamienne miejsce. Trudno sobie wyobrazić jakąkolwiek firmę czy instytucję działającą bez tego urządzenia. W szkołach pierwsze

Bardziej szczegółowo

Środowisko R Założenie normalności metody nieparametryczne Wykład R4; 4.06.07 Weryfikacja założenia o normalności rozkładu populacji

Środowisko R Założenie normalności metody nieparametryczne Wykład R4; 4.06.07 Weryfikacja założenia o normalności rozkładu populacji Środowisko R Założenie normalności metody nieparametryczne Wykład R4; 4.06.07 Weryfikacja założenia o normalności rozkładu populacji Dane są obserwacje x 1, x 2,..., x n. Czy można założyć, że x 1, x 2,...,

Bardziej szczegółowo

I. Oprogramowanie sieciowe do prowadzenia analiz statystycznych wyników badań naukowych

I. Oprogramowanie sieciowe do prowadzenia analiz statystycznych wyników badań naukowych Załącznik nr 1 do siwz Znak sprawy: ZP-PNK/D/2013/9/87 (nazwa wykonawcy) SPECYFIKACJA PRZEDMIOTU ZAMÓWIENIA w postępowaniu powaniu o udzielenie zamówienia publicznego prowadzonym w trybie przetargu nieograniczonego

Bardziej szczegółowo

Analiza wyników egzaminu maturalnego z matematyki na poziomowe podstawowym

Analiza wyników egzaminu maturalnego z matematyki na poziomowe podstawowym Analiza wyników egzaminu maturalnego z matematyki na poziomowe podstawowym Do egzaminu maturalnego w II Liceum Ogólnokształcącego im. Mikołaja Kopernika w Cieszynie z matematyki na poziomie podstawowym

Bardziej szczegółowo

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony

Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Przedmiotowy system oceniania wraz z określeniem wymagań edukacyjnych klasa druga zakres rozszerzony Wymagania konieczne (K) dotyczą zagadnień elementarnych, stanowiących swego rodzaju podstawę, zatem

Bardziej szczegółowo

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański

KARTA KURSU. (do zastosowania w roku akademickim 2015/16) Kod Punktacja ECTS* 3. Dr hab. Tadeusz Sozański KARTA KURSU (do zastosowania w roku akademickim 2015/16) Nazwa Statystyka 2 Nazwa w j. ang. Statistics 2 Kod Punktacja ECTS* 3 Koordynator Dr hab. Tadeusz Sozański (koordynator, konwersatorium) Zespół

Bardziej szczegółowo

Analiza przeżycia. Wprowadzenie

Analiza przeżycia. Wprowadzenie Wprowadzenie Przedmiotem badania analizy przeżycia jest czas jaki upływa od początku obserwacji do wystąpienia określonego zdarzenia, które jednoznacznie kończy obserwację na danej jednostce. Analiza przeżycia

Bardziej szczegółowo

III. STRUKTURA I FORMA EGZAMINU

III. STRUKTURA I FORMA EGZAMINU III. STRUKTURA I FORMA EGZAMINU Egzamin maturalny z matematyki jest egzaminem pisemnym sprawdzającym wiadomości i umiejętności określone w Standardach wymagań egzaminacyjnych i polega na rozwiązaniu zadań

Bardziej szczegółowo

166 Wstęp do statystyki matematycznej

166 Wstęp do statystyki matematycznej 166 Wstęp do statystyki matematycznej Etap trzeci realizacji procesu analizy danych statystycznych w zasadzie powinien rozwiązać nasz zasadniczy problem związany z identyfikacją cechy populacji generalnej

Bardziej szczegółowo

Stanisław Cichocki. Natalia Nehrebecka

Stanisław Cichocki. Natalia Nehrebecka Stanisław Cichocki Natalia Nehrebecka - adres mailowy: scichocki@o2.pl - strona internetowa: www.wne.uw.edu.pl/scichocki - dyżur: po zajęciach lub po umówieniu mailowo - 80% oceny: egzaminy - 20% oceny:

Bardziej szczegółowo

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu

Data wydruku: Dla rocznika: 2015/2016. Opis przedmiotu Sylabus przedmiotu: Specjalność: Statystyka Wszystkie specjalności Data wydruku: 31.01.2016 Dla rocznika: 2015/2016 Kierunek: Wydział: Zarządzanie i inżynieria produkcji Inżynieryjno-Ekonomiczny Dane podstawowe

Bardziej szczegółowo

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl

Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności. dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyka w pracy badawczej nauczyciela Wykład 4: Analiza współzależności dr inż. Walery Susłow walery.suslow@ie.tu.koszalin.pl Statystyczna teoria korelacji i regresji (1) Jest to dział statystyki zajmujący

Bardziej szczegółowo

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak

Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Recenzenci: prof. dr hab. Henryk Domański dr hab. Jarosław Górniak Redakcja i korekta Bogdan Baran Projekt graficzny okładki Katarzyna Juras Copyright by Wydawnictwo Naukowe Scholar, Warszawa 2011 ISBN

Bardziej szczegółowo

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie.

SCENARIUSZ LEKCJI. TEMAT LEKCJI: Zastosowanie średnich w statystyce i matematyce. Podstawowe pojęcia statystyczne. Streszczenie. SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH Autorzy scenariusza:

Bardziej szczegółowo

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU

WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Zał. nr 4 do ZW WYDZIAŁ PODSTAWOWYCH PROBLEMÓW TECHNIKI KARTA PRZEDMIOTU Nazwa w języku polskim STATYSTYCZNA ANALIZA DANYCH Nazwa w języku angielskim STATISTICAL DATA ANALYSIS Kierunek studiów (jeśli dotyczy):

Bardziej szczegółowo

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym

Plan wynikowy. Klasa III Technik pojazdów samochodowych/ Technik urządzeń i systemów energetyki odnawialnej. Kształcenie ogólne w zakresie podstawowym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania wykraczające. Plan wynikowy lasa III Technik pojazdów samochodowych/ Technik urządzeń

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS

KARTA PRZEDMIOTU / SYLABUS Załącznik nr 5b do Uchwały nr 21/2013 Senatu KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna

Bardziej szczegółowo

SCENARIUSZ LEKCJI. Jedno z doświadczeń obowiązkowych ujętych w podstawie programowej fizyki - Badanie ruchu prostoliniowego jednostajnie zmiennego.

SCENARIUSZ LEKCJI. Jedno z doświadczeń obowiązkowych ujętych w podstawie programowej fizyki - Badanie ruchu prostoliniowego jednostajnie zmiennego. Autorzy scenariusza: SCENARIUSZ LEKCJI OPRACOWANY W RAMACH PROJEKTU: INFORMATYKA MÓJ SPOSÓB NA POZNANIE I OPISANIE ŚWIATA. PROGRAM NAUCZANIA INFORMATYKI Z ELEMENTAMI PRZEDMIOTÓW MATEMATYCZNO-PRZYRODNICZYCH

Bardziej szczegółowo

Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym

Plan wynikowy. Klasa III Technikum ekonomiczne. Kształcenie ogólne w zakresie rozszerzonym Plan wynikowy lasa III Technikum ekonomiczne. ształcenie ogólne w zakresie rozszerzonym Oznaczenia: wymagania konieczne, P wymagania podstawowe, R wymagania rozszerzające, D wymagania dopełniające, W wymagania

Bardziej szczegółowo

Rozkład materiału nauczania

Rozkład materiału nauczania Dział/l.p. Ilość godz. Typ szkoły: TECHNIKUM Zawód: TECHNIK USŁUG FRYZJERSKICH Rok szkolny 2015/2016 Przedmiot: MATEMATYKA Klasa: III 2 godz/tyg 30 = 60 godzin Rozkład materiału nauczania Temat I. LOGARYTMY

Bardziej szczegółowo

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2

kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 kod nr w planie ECTS Przedmiot studiów PODSTAWY STATYSTYKI 7 2 Kierunek Turystyka i Rekreacja Poziom kształcenia II stopień Rok/Semestr 1/2 Typ przedmiotu (obowiązkowy/fakultatywny) obowiązkowy y/ ćwiczenia

Bardziej szczegółowo

Niezawodność i diagnostyka projekt

Niezawodność i diagnostyka projekt Niezawodność i diagnostyka projekt Jacek Jarnicki Henryk Maciejewski Zajęcia wprowadzające 1. Cel zajęć projektowych 2. Etapy realizacji projektu 3. Tematy zadań do rozwiązania 4. Podział na grupy, wybór

Bardziej szczegółowo

Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części matematyczno przyrodniczej z zakresu matematyki

Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części matematyczno przyrodniczej z zakresu matematyki Analiza wyników egzaminu gimnazjalnego przeprowadzonego w roku szkolnym 2011/2012 w części matematyczno przyrodniczej z zakresu matematyki Zestaw zadań egzaminacyjnych zawierał 23, w tym 20 zadań zamkniętych

Bardziej szczegółowo

laboratoria 24 zaliczenie z oceną

laboratoria 24 zaliczenie z oceną Wydział: Psychologia Nazwa kierunku kształcenia: Psychologia Rodzaj przedmiotu: podstawowy Opiekun: dr Andrzej Tarłowski Poziom studiów (I lub II stopnia): Jednolite magisterskie Tryb studiów: Niestacjonarne

Bardziej szczegółowo

Sterowanie jakością badań i analiza statystyczna w laboratorium

Sterowanie jakością badań i analiza statystyczna w laboratorium Sterowanie jakością badań i analiza statystyczna w laboratorium CS-17 SJ CS-17 SJ to program wspomagający sterowanie jakością badań i walidację metod badawczych. Może działać niezależnie od innych składników

Bardziej szczegółowo

Statystyka SYLABUS A. Informacje ogólne

Statystyka SYLABUS A. Informacje ogólne Statystyka SYLABUS A. Informacje ogólne Elementy składowe sylabusu Nazwa jednostki prowadzącej kierunek Nazwa kierunku studiów Poziom kształcenia Profil studiów Forma studiów Kod Język Rodzaj Dziedzina

Bardziej szczegółowo

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak

Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Podstawy statystyki dla psychologów. Podręcznik akademicki. Wydanie drugie poprawione. Wiesław Szymczak Autor prezentuje spójny obraz najczęściej stosowanych metod statystycznych, dodatkowo omawiając takie

Bardziej szczegółowo

KARTA MODUŁU KSZTAŁCENIA

KARTA MODUŁU KSZTAŁCENIA I. 1 Nazwa modułu kształcenia STATYSTYKA MATEMATYCZNA KARTA MODUŁU KSZTAŁCENIA Informacje ogólne 2 Nazwa jednostki prowadzącej moduł Państwowa Szkoła Wyższa im. Papieża Jana Pawła II,Katedra Nauk Technicznych,

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny 2. Teoria prawdopodobieństwa i elementy kombinatoryki 3. Zmienne losowe 4. Populacje i próby danych 5. Testowanie hipotez i estymacja parametrów 6. Test t 7. Test

Bardziej szczegółowo

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych

Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych Estymacja parametrów modeli liniowych oraz ocena jakości dopasowania modeli do danych empirycznych 3.1. Estymacja parametrów i ocena dopasowania modeli z jedną zmienną 23. Właściciel komisu w celu zbadania

Bardziej szczegółowo

Weryfikacja hipotez statystycznych

Weryfikacja hipotez statystycznych Weryfikacja hipotez statystycznych Hipoteza Test statystyczny Poziom istotności Testy jednostronne i dwustronne Testowanie równości wariancji test F-Fishera Testowanie równości wartości średnich test t-studenta

Bardziej szczegółowo

Wprowadzenie do analizy korelacji i regresji

Wprowadzenie do analizy korelacji i regresji Statystyka dla jakości produktów i usług Six sigma i inne strategie Wprowadzenie do analizy korelacji i regresji StatSoft Polska Wybrane zagadnienia analizy korelacji Przy analizie zjawisk i procesów stanowiących

Bardziej szczegółowo

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU

Analiza danych. http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Analiza danych Wstęp Jakub Wróblewski jakubw@pjwstk.edu.pl http://zajecia.jakubw.pl/ TEMATYKA PRZEDMIOTU Różne aspekty analizy danych Reprezentacja graficzna danych Metody statystyczne: estymacja parametrów

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki

Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07. Przedmiot statystyki Przedmiot statystyki. Graficzne przedstawienie danych. Wykład-26.02.07 Statystyka dzieli się na trzy części: Przedmiot statystyki -zbieranie danych; -opracowanie i kondensacja danych (analiza danych);

Bardziej szczegółowo

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających,

parametrów strukturalnych modelu = Y zmienna objaśniana, X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, 诲 瞴瞶 瞶 ƭ0 ƭ 瞰 parametrów strukturalnych modelu Y zmienna objaśniana, = + + + + + X 1,X 2,,X k zmienne objaśniające, k zmiennych objaśniających, α 0, α 1, α 2,,α k parametry strukturalne modelu, k+1 parametrów

Bardziej szczegółowo

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak

Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego. Katarzyna Kuziak Wykorzystanie funkcji powiązań do pomiaru ryzyka rynkowego Katarzyna Kuziak Cel: łączenie różnych rodzajów ryzyka rynkowego za pomocą wielowymiarowej funkcji powiązań 2 Ryzyko rynkowe W pomiarze ryzyka

Bardziej szczegółowo

Testy nieparametryczne

Testy nieparametryczne Testy nieparametryczne Testy nieparametryczne możemy stosować, gdy nie są spełnione założenia wymagane dla testów parametrycznych. Stosujemy je również, gdy dane można uporządkować według określonych kryteriów

Bardziej szczegółowo

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie:

( x) Równanie regresji liniowej ma postać. By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : Gdzie: ma postać y = ax + b Równanie regresji liniowej By obliczyć współczynniki a i b należy posłużyć się następującymi wzorami 1 : xy b = a = b lub x Gdzie: xy = też a = x = ( b ) i to dane empiryczne, a ilość

Bardziej szczegółowo

Metody oceny ryzyka operacyjnego

Metody oceny ryzyka operacyjnego Instytut Matematyki i Informatyki Wrocław, 10 VII 2009 Bazylejski Komitet Nadzoru Bankowego Umowa Kapitałowa - 1988 Opracowanie najlepszych praktyk rynkowych w zakresie zarządzania ryzykiem Nowa Umowa

Bardziej szczegółowo

STATYSTYKA MATEMATYCZNA

STATYSTYKA MATEMATYCZNA STATYSTYKA MATEMATYCZNA 1. Wykład wstępny. Teoria prawdopodobieństwa i elementy kombinatoryki. Zmienne losowe i ich rozkłady 3. Populacje i próby danych, estymacja parametrów 4. Testowanie hipotez statystycznych

Bardziej szczegółowo

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x

WYMAGANIA EDUKACYJNE Z MATEMATYKI KLASA III ZAKRES ROZSZERZONY (90 godz.) , x WYMAGANIA EDUACYJNE Z MATEMATYI LASA III ZARES ROZSZERZONY (90 godz.) Oznaczenia: wymagania konieczne (dopuszczający); P wymagania podstawowe (dostateczny); R wymagania rozszerzające (dobry); D wymagania

Bardziej szczegółowo

PRZEWODNIK PO PRZEDMIOCIE

PRZEWODNIK PO PRZEDMIOCIE Nazwa przedmiotu: Kierunek: Mechatronika Rodzaj przedmiotu: obowiązkowy na specjalności: systemy sterowania Rodzaj zajęć: wykład, laboratorium UKŁADY AUTOMATYKI PRZEMYSŁOWEJ Industrial Automatics Systems

Bardziej szczegółowo

NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A

NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Wprowadzenie do teorii ekonometrii. Część A NOWY PROGRAM STUDIÓW 2016/2017 SYLABUS PRZEDMIOTU AUTORSKIEGO: Autor: 1. Dobromił Serwa 2. Tytuł przedmiotu Sygnatura (będzie nadana, po akceptacji przez Senacką Komisję Programową) Wprowadzenie do teorii

Bardziej szczegółowo

Opis efektów kształcenia i sposobów ich weryfikacji

Opis efektów kształcenia i sposobów ich weryfikacji PROGRAM PRZEDMIOTU Nazwa przedmiotu WNIOSKOWANIE STATYSTYCZNE Rok akademicki / 26, semestr zimowy, grupy UE 1 Prof. zw. dr hab. Andrzej Luszniewicz Wymagania wstępne Studenci wnioskowania statystycznego

Bardziej szczegółowo

MS Excel od podstaw do analiz biznesowych

MS Excel od podstaw do analiz biznesowych MS Excel od podstaw do analiz biznesowych Terminy szkolenia 21-23 październik 2015r., Wrocław - Hotel Mercure**** Opis MS Excel stał się narzędziem praktycznie niezbędnym w dzisiejszym środowisku biznesowym.

Bardziej szczegółowo

Kierunek i poziom studiów: Biologia, poziom drugi Sylabus modułu: Metody statystyczne w naukach przyrodniczych

Kierunek i poziom studiów: Biologia, poziom drugi Sylabus modułu: Metody statystyczne w naukach przyrodniczych Uniwersytet Śląski w Katowicach str. 1 Kierunek i poziom studiów: Biologia, poziom drugi Sylabus modułu: Metody statystyczne w naukach przyrodniczych kod modułu: 2BL_02 1. Informacje ogólne koordynator

Bardziej szczegółowo

KARTA PRZEDMIOTU / SYLABUS. Zakład Statystyki i Informatyki Medycznej. tel./fax (85) dr Robert Milewski

KARTA PRZEDMIOTU / SYLABUS. Zakład Statystyki i Informatyki Medycznej. tel./fax (85) dr Robert Milewski Załącznik nr 5b do Uchwały nr 21/2013 Senatu KARTA PRZEDMIOTU / SYLABUS Wydział Nauk o Zdrowiu Kierunek Profil kształcenia Nazwa jednostki realizującej moduł/przedmiot: Kontakt (tel./email): Osoba odpowiedzialna

Bardziej szczegółowo

Regresja liniowa wprowadzenie

Regresja liniowa wprowadzenie Regresja liniowa wprowadzenie a) Model regresji liniowej ma postać: gdzie jest zmienną objaśnianą (zależną); są zmiennymi objaśniającymi (niezależnymi); natomiast są parametrami modelu. jest składnikiem

Bardziej szczegółowo

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH

ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH 1 ALGORYTMICZNA I STATYSTYCZNA ANALIZA DANYCH WFAiS UJ, Informatyka Stosowana II stopień studiów 2 Wnioskowanie statystyczne dla zmiennych numerycznych Porównywanie dwóch średnich Boot-strapping Analiza

Bardziej szczegółowo

MS Excel - poziom podstawowy

MS Excel - poziom podstawowy Terminy szkolenia 21 październik 2015r., Wrocław - Hotel Mercure**** 18 maj 2016r., Sopot - Hotel Haffner**** MS Excel - poziom podstawowy Opis MS Excel stał się narzędziem praktycznie niezbędnym w dzisiejszym

Bardziej szczegółowo

Zobacz po kolei podstawowe kroki, które należy wykonać, aby poprawnie zamknąć miesiąc obrachunkowy.

Zobacz po kolei podstawowe kroki, które należy wykonać, aby poprawnie zamknąć miesiąc obrachunkowy. Zamknięcie miesiąca. Zobacz po kolei podstawowe kroki, które należy wykonać, aby poprawnie zamknąć miesiąc obrachunkowy. WPROWADZENIE Zamknięcie miesiąca to procedura, która pozwala na ustalenie wielkości

Bardziej szczegółowo

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com

PDF created with FinePrint pdffactory Pro trial version http://www.fineprint.com Analiza korelacji i regresji KORELACJA zależność liniowa Obserwujemy parę cech ilościowych (X,Y). Doświadczenie jest tak pomyślane, aby obserwowane pary cech X i Y (tzn i ta para x i i y i dla różnych

Bardziej szczegółowo

Testowanie hipotez statystycznych. Wnioskowanie statystyczne

Testowanie hipotez statystycznych. Wnioskowanie statystyczne Testowanie hipotez statystycznych Wnioskowanie statystyczne Hipoteza statystyczna to dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Hipotezy

Bardziej szczegółowo

2008-03-18 wolne wolne 2008-03-25 wolne wolne

2008-03-18 wolne wolne 2008-03-25 wolne wolne PLAN SPOTKAŃ ĆWICZEŃ: Data Grupa 2a Grupa 4a Grupa 2b Grupa 4b 2008-02-19 Zajęcia 1 Zajęcia 1 2008-02-26 Zajęcia 1 Zajęcia 1 2008-03-04 Zajęcia 2 Zajęcia 2 2008-03-11 Zajęcia 2 Zajęcia 2 2008-03-18 wolne

Bardziej szczegółowo

CENTRUM KURSÓW I SZKOLEŃ KOMPUTEROWYCH Euro Info Group Sp. z o.o.

CENTRUM KURSÓW I SZKOLEŃ KOMPUTEROWYCH Euro Info Group Sp. z o.o. Tabele przestawne to jedno z podstawowych narzędzi analitycznych dostępnych w programie Microsoft Office Excel. Pozwalają one na wykonanie atrakcyjnego wizualnie raportu w ciągu 30 sekund za pomocą kilku

Bardziej szczegółowo

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś.

Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Pomiary urodzeń według płci noworodka i województwa.podział na miasto i wieś. Województwo Urodzenia według płci noworodka i województwa. ; Rok 2008; POLSKA Ogółem Miasta Wieś Pozamałżeńskie- Miasta Pozamałżeńskie-

Bardziej szczegółowo

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji

Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Weryfikacja hipotez statystycznych, parametryczne testy istotności w populacji Dr Joanna Banaś Zakład Badań Systemowych Instytut Sztucznej Inteligencji i Metod Matematycznych Wydział Informatyki Politechniki

Bardziej szczegółowo

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza

Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych. Wykład tutora na bazie wykładu prof. Marka Stankiewicza Podstawy opracowania wyników pomiarów z elementami analizy niepewności pomiarowych Wykład tutora na bazie wykładu prof. Marka tankiewicza Po co zajęcia w I Pracowni Fizycznej? 1. Obserwacja zjawisk i efektów

Bardziej szczegółowo

Testowanie hipotez statystycznych.

Testowanie hipotez statystycznych. Bioinformatyka Wykład 4 Wrocław, 17 października 2011 Temat. Weryfikacja hipotez statystycznych dotyczących wartości oczekiwanej w dwóch populacjach o rozkładach normalnych. Model 3. Porównanie średnich

Bardziej szczegółowo

SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA CZ- V

SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA CZ- V SZCZEGÓŁOWY OPIS PRZEDMIOTU ZAMÓWIENIA CZ- V Zał. nr 1.5 do siwz Oznaczenie części Nazwa zadania Maksymalna liczba uczestników szkolenia Miejsce szkolenia CZĘŚĆ V Programowanie Aplikacji Internetowych

Bardziej szczegółowo

W analizowanym zbiorze danych występowały sporadyczne (nie przekraczające pięciu brakujących wyników na zmienną), losowe braki danych, które

W analizowanym zbiorze danych występowały sporadyczne (nie przekraczające pięciu brakujących wyników na zmienną), losowe braki danych, które Raport z Quzi eksperymentu. Efektywności interwencji edukacyjnej Bliżej. Projekt finansowany przez Narodowe Centrum Badań i Rozwoju w ramach Innowacji Społecznych. Badania zostały przeprowadzone w grupie

Bardziej szczegółowo

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1

Zadanie 1. a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 Zadanie 1 a) Przeprowadzono test RESET. Czy model ma poprawną formę funkcyjną? 1 b) W naszym przypadku populacja są inżynierowie w Tajlandii. Czy można jednak przypuszczać, że na zarobki kobiet-inżynierów

Bardziej szczegółowo

Estymacja w regresji nieparametrycznej

Estymacja w regresji nieparametrycznej Estymacja w regresji nieparametrycznej Jakub Kolecki Politechnika Gdańska 28 listopada 2011 1 Wstęp Co to jest regresja? Przykład regresji 2 Regresja nieparametryczna Założenia modelu Estymacja i jej charakterystyki

Bardziej szczegółowo

Kurs Chemometrii Poznań 28 listopad 2006

Kurs Chemometrii Poznań 28 listopad 2006 Komisja Nauk Chemicznych Polskiej Akademii Nauk Oddział w Poznaniu Wydział Technologii Chemicznej Politechniki Poznańskiej w Poznaniu GlaxoSmithKline Pharmaceuticals S.A. w Poznaniu Stowarzyszenie ISPE

Bardziej szczegółowo

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015

Zmienne losowe, statystyki próbkowe. Wrocław, 2 marca 2015 Zmienne losowe, statystyki próbkowe Wrocław, 2 marca 2015 Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20 punktów) aktywność Zasady zaliczenia 2 kolokwia (każde po 20 punktów) projekt (20

Bardziej szczegółowo

V. WYMAGANIA EGZAMINACYJNE

V. WYMAGANIA EGZAMINACYJNE V. WYMAGANIA EGZAMINACYJNE Standardy wymagań egzaminacyjnych Zdający posiada umiejętności w zakresie: POZIOM PODSTAWOWY POZIOM ROZSZERZONY 1. wykorzystania i tworzenia informacji: interpretuje tekst matematyczny

Bardziej szczegółowo

a. opisać badaną cechę; cechą X jest pomiar średnicy kulki

a. opisać badaną cechę; cechą X jest pomiar średnicy kulki Maszyna ustawiona jest tak, by produkowała kulki łożyskowe o średnicy 1 cm. Pomiar dziesięciu wylosowanych z produkcji kulek dał x = 1.1 oraz s 2 = 0.009. Czy można uznać, że maszyna nie rozregulowała

Bardziej szczegółowo

Przedmiot statystyki. Graficzne przedstawienie danych.

Przedmiot statystyki. Graficzne przedstawienie danych. Przedmiot statystyki. Graficzne przedstawienie danych. dr Mariusz Grządziel 23 lutego 2009 Przedmiot statystyki Statystyka dzieli się na trzy części: -zbieranie danych; -opracowanie i kondensacja danych

Bardziej szczegółowo

Testowanie hipotez statystycznych

Testowanie hipotez statystycznych Testowanie hipotez statystycznych Hipotezą statystyczną jest dowolne przypuszczenie co do rozkładu populacji generalnej (jego postaci funkcyjnej lub wartości parametrów). Prawdziwość tego przypuszczenia

Bardziej szczegółowo

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA W TRYBIE PRZETARGU NIEOGRANICZONEGO

SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA W TRYBIE PRZETARGU NIEOGRANICZONEGO SPECYFIKACJA ISTOTNYCH WARUNKÓW ZAMÓWIENIA W TRYBIE PRZETARGU NIEOGRANICZONEGO Załącznik nr 1 Szczegółowy opis przedmiotu zamówienia Tytuł zadania: Zorganizowanie szkoleo zamkniętych i udziału w szkoleniach

Bardziej szczegółowo

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015

Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok akademicki 2014/2015 Tryb studiów Stacjonarne Nazwa kierunku studiów Finanse i Rachunkowość Poziom studiów Stopień pierwszy Rok studiów/ semestr II/ Specjalność Państwowa Wyższa Szkoła Zawodowa w Suwałkach SYLLABUS na rok

Bardziej szczegółowo

Sterowanie wielkością zamówienia w Excelu - cz. 3

Sterowanie wielkością zamówienia w Excelu - cz. 3 Sterowanie wielkością zamówienia w Excelu - cz. 3 21.06.2005 r. 4. Planowanie eksperymentów symulacyjnych Podczas tego etapu ważne jest określenie typu rozkładu badanej charakterystyki. Dzięki tej informacji

Bardziej szczegółowo

KARTA INFORMACYJNA PRZEDMIOTU

KARTA INFORMACYJNA PRZEDMIOTU Uniwersytet Rzeszowski WYDZIAŁ KIERUNEK Matematyczno-Przyrodniczy Fizyka techniczna SPECJALNOŚĆ RODZAJ STUDIÓW stacjonarne, studia pierwszego stopnia KARTA INFORMACYJNA PRZEDMIOTU NAZWA PRZEDMIOTU WG PLANU

Bardziej szczegółowo

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów

Uczeń: -podaje przykłady ciągów liczbowych skończonych i nieskończonych oraz rysuje wykresy ciągów Wymagania edukacyjne PRZEDMIOT: Matematyka KLASA: III Th ZAKRES: zakres podstawowy Poziom wymagań Lp. Dział programu Konieczny-K Podstawowy-P Rozszerzający-R Dopełniający-D Uczeń: 1. Ciągi liczbowe. -zna

Bardziej szczegółowo

SPRAWDZIAN I EGZAMINY 2013 W SZKOŁACH ARTYSTYCZNYCH. w w o je w ó dztwie śląskim

SPRAWDZIAN I EGZAMINY 2013 W SZKOŁACH ARTYSTYCZNYCH. w w o je w ó dztwie śląskim SPRAWDZIAN I EGZAMINY 2013 W SZKOŁACH ARTYSTYCZNYCH w w o je w ó dztwie śląskim Jaworzno 2013 Spis treści I. WPROWADZENIE 4 II. SPRAWDZIAN 6 2.1. Wyniki uczniów szkół podstawowych artystycznych dotyczące

Bardziej szczegółowo

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1.

Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: y t. X 1 t. Tabela 1. tel. 44 683 1 55 tel. kom. 64 566 811 e-mail: biuro@wszechwiedza.pl Zadanie 1 Zakładając liniową relację między wydatkami na obuwie a dochodem oszacować MNK parametry modelu: gdzie: y t X t y t = 1 X 1

Bardziej szczegółowo